KR20160112162A - 산 질화물 형광체 및 이를 이용한 발광 소자 패키지 - Google Patents

산 질화물 형광체 및 이를 이용한 발광 소자 패키지 Download PDF

Info

Publication number
KR20160112162A
KR20160112162A KR1020150037337A KR20150037337A KR20160112162A KR 20160112162 A KR20160112162 A KR 20160112162A KR 1020150037337 A KR1020150037337 A KR 1020150037337A KR 20150037337 A KR20150037337 A KR 20150037337A KR 20160112162 A KR20160112162 A KR 20160112162A
Authority
KR
South Korea
Prior art keywords
phosphor
light emitting
oxynitride phosphor
emitting device
elements
Prior art date
Application number
KR1020150037337A
Other languages
English (en)
Other versions
KR102415649B1 (ko
Inventor
사토시 다나카
슌이치 쿠보타
šœ이치 쿠보타
케니치 니시가키
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020150037337A priority Critical patent/KR102415649B1/ko
Publication of KR20160112162A publication Critical patent/KR20160112162A/ko
Application granted granted Critical
Publication of KR102415649B1 publication Critical patent/KR102415649B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7768Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/57Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing manganese or rhenium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7756Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing neodynium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7786Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/77927Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/77928Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

본 발명은 형광체에 관한 것으로 특히, 산 질화물 형광체 및 이를 이용한 발광 소자 패키지에 관한 것이다. 이러한 본 발명은, 적어도 M 원소, A 원소, N 원소, O 원소, R 원소를 포함하는 조성물로서 일반식 MaAbOcNd:Re로 표현되고, 상기 M은 Mg, Ca, Sr, Ba, Zn 및 R 원소 이외의 2 가의 희토류 원소로부터 선택되는 1 종 또는 2 종 이상의 원소, 상기 A는 4 가의 금속 원소로 이루어진 군에서 선택되는 1 종 또는 2 종 이상의 원소, 상기 O는 산소, 상기 N은 질소, 및 상기 R은 Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb에서 선택되는 1 종 또는 2 종 이상의 원소이며, 상기 M 원소, A 원소, N 원소, O 원소, R 원소는, 2.5 ≤ (a + e) ≤ 3.5, 7.5 ≤ b ≤ 8.5, 3 ≤ c ≤ 5, 9 ≤ d ≤ 11, 13 ≤ (c + d) ≤ 15, 및 0.0001 ≤ e ≤ 0.2의 조성을 가질 수 있다.

Description

산 질화물 형광체 및 이를 이용한 발광 소자 패키지 {Oxy-nitride phosphor and light emitting device package}
본 발명은 형광체에 관한 것으로 특히, 산 질화물 형광체 및 이를 이용한 발광 소자 패키지에 관한 것이다.
발광 다이오드(light emitting diode; LED)는 기존의 일반 조명 중 가장 대표적이라 할 수 있는 형광등을 대체 할 수 있는 차세대 발광 소자 후보 중의 하나이다.
LED는 기존의 광원보다 소비전력이 적으며, 형광등과 달리 수은을 포함하지 않아 친환경적이라 할 수 있다. 또한 기존의 광원과 비교하여 수명이 길며 응답 속도가 빠르다는 장점을 갖는다.
이러한 LED는 LED로부터 방출되는 광을 흡수하여 여러 색상의 광을 발광하는 형광체와 함께 이용될 수 있다. 이와 같은 형광체는 보통 황색, 녹색 및 적색 광을 발광할 수 있다.
이와 같은 형광체 및 청색 발광 LED를 이용하는 LED 조명은 실생활에 매우 빠르게 확장 및 적용되고 있다.
이와 같이 LED 조명의 보급이 매우 빠르게 진행되고 있지만, 이에 따라 빛의 고품질이 요구되고 있다. 구체적으로는 연색성이 높은 백색 LED 조명이 요구되고 있으며, 현재 실용화되어있는 형광체에서 생성되는 백색 LED 조명은 연색성이 부족한 실정이다.
연색성을 향상시키기 위해 발광 스펙트럼을 태양 광과 같은 연속 스펙트럼에 가깝게 조절할 필요가 있으며, 이를 위해서는 사용되는 형광체의 발광 스펙트럼의 반치폭을 넓게 할 필요가 있다.
현재까지 다양한 형광체가 개발되어 있지만, 그 중에서도 산 질화물은 화학 안정성 의해 유망한 호스트 결정이 될 수 있는 것으로 보인다.
선행 특허문헌 1은 MSi2O2N2 조성(M은 Ca, Sr, Ba)에 의한 형광체가 제시되고 있으며, Eu을 활성제로 이용하여 녹색 내지 황색 파장 영역에서 발광을 얻을 수 있는 사항이 게재되어 있다.
선행 특허문헌 2는 MSi3O4N2 결정(M은 Ca, Sr, Ba)에 희토류 원소를 활성제로 이용한 형광체가 제안되었으며, 이것도 녹색 내지 노란색 발광이 보고하고 있다.
선행 특허문헌 3에서는 대표 조성으로 Ba2Si7O10N4 결정에 Eu을 활성제로 이용한 형광체가 제안되고 있으며, 녹색 발광이 보고되고 있다.
선행 특허문헌 4에서는 Sr2Si4ON6:Eu, Sr3Si7ON10:Eu, Sr3Si8ON12:Eu, Sr3Si8ON12:Eu, Sr4Si7O3N10:Eu, Sr2Si3O2N4:Eu, Sr2 .6Ba0 .2Si6O3N8:Eu0 .2, Sr1 .5Ba1 .5Si7ON10:Eu, SrBa2Si7ON10:Eu와 같은 MSiON 계의 많은 형광체가 제안되었으며, 모두 녹색 발광이 보고되고 있다.
그러나 이러한 선행 특허문헌에 게재된 형광체의 발광의 반치폭은 100nm 이하이며, 높은 연색성을 얻기 위한 충분한 피크의 확산을 보이고 있지 않다.
따라서, 높은 연색성을 실현할 수 있는 발광 스펙트럼의 반치폭이 넓은 형광체를 구현하는 것이 요구된다.
1. 국제특허출원(PCT) 공개공보 WO2004/030109호 2. 일본 특허공개공보 2007-223864호 2. 일본 특허공개공보 2008-138156호 4. 미국 특허공개공보 2011/0163322호
본 발명은 산 질화물 형광체에 있어서, 발광 스펙트럼의 반치폭이 넓은 형광체를 구현할 수 있는 산 질화물 형광체 및 이를 이용한 발광 소자 패키지를 제공하는 데 있다.
상기 기술적 과제를 이루기 위한 제1관점으로서, 본 발명은, 적어도 M 원소, A 원소, N 원소, O 원소, R 원소를 포함하는 조성물로서 일반식 MaAbOcNd:Re로 표현되고, 상기 M은 Mg, Ca, Sr, Ba, Zn 및 R 원소 이외의 2 가의 희토류 원소로부터 선택되는 1 종 또는 2 종 이상의 원소, 상기 A는 4 가의 금속 원소로 이루어진 군에서 선택되는 1 종 또는 2 종 이상의 원소, 상기 O는 산소, 상기 N은 질소, 및 상기 R은 Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb에서 선택되는 1 종 또는 2 종 이상의 원소이며, 상기 M 원소, A 원소, N 원소, O 원소, R 원소는, 2.5 ≤ (a + e) ≤ 3.5, 7.5 ≤ b ≤ 8.5, 3 ≤ c ≤ 5, 9 ≤ d ≤ 11, 13 ≤ (c + d) ≤ 15, 및 0.0001 ≤ e ≤ 0.2의 조성을 가질 수 있다.
여기서, 상기 일반식의 각 매개 변수는 (a + e) = 3, b = 8, c = 4, d = 10 중 적어도 어느 하나의 조건을 만족할 수 있다.
여기서, 상기 M 원소는 Sr일 수 있다.
여기서, 상기 M 원소는 Sr과 Ca의 혼합 상태이며, 포함된 원자 수로 계산했을 때 Ca/(Sr + Ca) < 0.40일 수 있다.
여기서, 상기 A 원소는 Si일 수 있다.
여기서, 상기 R 원소는 Eu일 수 있다.
상기 기술적 과제를 이루기 위한 제2관점으로서, 본 발명은, 적어도 M 원소, A 원소, B 원소, C 원소, N 원소, O 원소, R 원소를 포함하는 조성물로서 일반식 MaBfAbCgOcNd:Re로 표현되고, 상기 M은 Mg, Ca, Sr, Ba, Zn 및 R 원소 이외의 2 가의 희토류 원소로부터 선택되는 1 종 또는 2 종 이상의 원소, 상기 A는 4 가의 금속 원소로 이루어진 군에서 선택되는 1 종 또는 2 종 이상의 원소, 상기 B는 3 가의 Sc, Y, La, Ce, Pr, Nd, Sm, Gd , Tb, Dy, Ho, Er, Tm, Yb, Lu에서 선택되는 1 종 또는 2 종 이상의 원소, 상기 C는 Al, Ga, In으로부터 선택되는 1 종 또는 2 종 이상의 원소, 상기 O는 산소, 상기 N은 질소, 상기 R은 Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb에서 선택되는 1 종 또는 2 종 이상의 원소이며, 상기 M 원소, A 원소, B 원소, C 원소, N 원소, O 원소, R 원소는, 2.5 ≤ (a + e + f) ≤ 3.5, 7.5 ≤ (b + g) ≤ 8.5, 3 ≤ c ≤ 5, 9 ≤ d ≤ 11, 13 ≤ (c + d) ≤ 15, 0.0001 ≤ e ≤ 0.2, f = g의 조성을 가질 수 있다.
여기서, 상기 일반식의 각 매개 변수는 (a + e + f) = 3, (b + g) = 8, c = 4, d = 10 중 적어도 어느 하나의 조건을 만족할 수 있다.
여기서, 상기 M 원소는 Sr일 수 있다.
여기서, 상기 A 원소는 Si일 수 있다.
여기서, 상기 B 원소는 La일 수 있다.
여기서, 상기 C 원소는 Al일 수 있다.
여기서, 상기 R 원소가 Eu일 수 있다.
여기서, 청색 광에 의하여 여기 된 발광 스펙트럼의 피크 점이 560 nm 이상 및 640 nm 이하일 수 있다.
여기서, 청색 광에 의하여 여기 된 발광 스펙트럼의 반치폭이 110 nm 이상 및 130 nm 이하일 수 있다.
본 발명에 의하면 새로운 결정 구조를 가지는 산 질화물 형광체로서 넓은 발광 스펙트럼 반치폭을 가지는 발광을 하는 형광체를 얻을 수 있는 효과가 있다.
도 1은 본 발명의 실시예 1 및 비교예 1의 결정 구조에 대하여 시뮬레이션 한 XRD 패턴을 나타내는 도이다.
도 2는 본 발명의 실시예 1과 비교예 1의 450 nm 여기 광에 의한 발광 스펙트럼을 나타내는 도이다.
도 3은 본 발명의 실시예 1 내지 실시예 4 및 비교예 3의 발광 스펙트럼을 나타내는 도이다.
도 4는 Eu의 첨가량을 변경한 본 발명의 실시예 1, 실시예 5 내지 10의 450 nm 여기 광에 의한 발광 스펙트럼을 나타내는 도이다.
도 5는 La을 첨가한 본 발명의 실시예 11과 비교예 4의 450nm 여기 광에 의한 발광 스펙트럼을 나타내는 도이다.
도 6은 본 발명의 산 질화물 형광체가 이용된 발광 소자 패키지의 일례를 나타내는 단면도이다.
도 7은 본 발명의 산 질화물 형광체가 이용된 발광 소자 패키지의 다른 예를 나타내는 단면도이다.
이하, 첨부된 도면을 참고하여 본 발명에 의한 실시예를 상세히 설명하면 다음과 같다.
본 발명이 여러 가지 수정 및 변형을 허용하면서도, 그 특정 실시예들이 도면들로 예시되어 나타내어지며, 이하에서 상세히 설명될 것이다. 그러나 본 발명을 개시된 특별한 형태로 한정하려는 의도는 아니며, 오히려 본 발명은 청구항들에 의해 정의된 본 발명의 사상과 합치되는 모든 수정, 균등 및 대용을 포함한다.
층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.
비록 제1, 제2 등의 용어가 여러 가지 요소들, 성분들, 영역들, 층들 및/또는 지역들을 설명하기 위해 사용될 수 있지만, 이러한 요소들, 성분들, 영역들, 층들 및/또는 지역들은 이러한 용어에 의해 한정되어서는 안 된다는 것을 이해할 것이다.
이러한 본 발명의 과제를 해결하기 위해 새로운 조성의 산 질화물 형광체 탐색하고, 적어도 M 원소, A 원소, N 원소, O 원소, R 원소를 포함하는 조성물로서 일반식(1) MaAbOcNd:Re로 표현되고, M은 Mg, Ca, Sr, Ba, Zn 및 R 원소 이외의 2 가의 희토류 원소로부터 선택되는 1 종 또는 2 종 이상의 원소, A는 4 가의 금속 원소로 이루어진 군에서 선택되는 1 종 또는 2 종 이상의 원소, O는 산소, N은 질소, 및 R은 Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb에서 선택되는 1 종 또는 2 종 이상의 원소이며, M 원소, A 원소, N 원소, O 원소, R 원소는, 2.5 ≤ (a + e) ≤ 3.5, 7.5 ≤ b ≤ 8.5, 3 ≤ c ≤ 5, 9 ≤ d ≤ 11, 13 ≤ (c + d) ≤ 15, 및 0.0001 ≤ e ≤ 0.2의 조성을 가지는 형광체가 매우 넓은 발광 스펙트럼 반치폭을 가지는 것을 발견했다.
여기서, 일반식(1)의 각 매개 변수는 (a + e) = 3, b = 8, c = 4, d = 10 중 적어도 어느 하나의 조건을 만족할 수 있다.
여기서, M 원소는 Sr일 수 있다.
또한, M 원소는 Sr과 Ca의 혼합 상태이며, 포함된 원자 수로 계산했을 때 Ca/(Sr + Ca) < 0.40일 수 있다.
여기서, A 원소는 Si일 수 있다. 또한, R 원소는 Eu일 수 있다.
한편, 새로운 조성의 산 질화물 형광체 탐색하고, 적어도 M 원소, A 원소, B 원소, C 원소, N 원소, O 원소, R 원소를 포함하는 조성물로서 일반식(2) MaBfAbCgOcNd:Re로 표현되고, M은 Mg, Ca, Sr, Ba, Zn 및 R 원소 이외의 2 가의 희토류 원소로부터 선택되는 1 종 또는 2 종 이상의 원소, A는 4 가의 금속 원소로 이루어진 군에서 선택되는 1 종 또는 2 종 이상의 원소, B는 3 가의 Sc, Y, La, Ce, Pr, Nd, Sm, Gd , Tb, Dy, Ho, Er, Tm, Yb, Lu에서 선택되는 1 종 또는 2 종 이상의 원소, 상기 C는 Al, Ga, In으로부터 선택되는 1 종 또는 2 종 이상의 원소, O는 산소, N은 질소, R은 Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb에서 선택되는 1 종 또는 2 종 이상의 원소이며, M 원소, A 원소, B 원소, C 원소, N 원소, O 원소, R 원소는, 2.5 ≤ (a + e + f) ≤ 3.5, 7.5 ≤ (b + g) ≤ 8.5, 3 ≤ c ≤ 5, 9 ≤ d ≤ 11, 13 ≤ (c + d) ≤ 15, 0.0001 ≤ e ≤ 0.2, f = g의 조성을 가지는 형광체에서도 매우 넓은 발광 스펙트럼 반치폭을 가지는 것을 발견했다.
여기서, 일반식(2)의 각 매개 변수는 (a + e + f) = 3, (b + g) = 8, c = 4, d = 10 중 적어도 어느 하나의 조건을 만족할 수 있다.
여기서, M 원소는 Sr일 수 있다. 또한, A 원소는 Si일 수 있다. 또한, B 원소는 La일 수 있다. 또한, C 원소는 Al일 수 있다. 또한, R 원소가 Eu일 수 있다.
여기서, 일반식(1) 또는 일반식(2)로 표현되고 위에 기재한 조성을 가지는 형광체는 청색 광에 의하여 여기 된 발광 스펙트럼의 피크 점이 560 nm 이상 및 640 nm 이하일 수 있다.
여기서, 일반식(1) 또는 일반식(2)로 표현되고 위에 기재한 조성을 가지는 형광체는 청색 광에 의하여 여기 된 발광 스펙트럼의 반치폭이 110 nm 이상 및 130 nm 이하일 수 있다.
<실시예>
본 발명의 산 질화물의 일례는 적어도 M 원소, A 원소, N 원소, O 원소, R 원소(여기서, M은 Mg, Ca, Sr, Ba, Zn 및 R 원소 이외의 2 가의 희토류 원소에서 선택되는 1 종 또는 2 종 이상의 원소, A는 4 가의 금속 원소로 이루어진 군에서 선택되는 1 종 또는 2 종 이상의 원소, O는 산소, N은 질소, R은 Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb에서 선택되는 1 종 또는 2 종 이상의 원소)를 포함하는 조성물이며, 일반식(1) MaAbOcNd:Re로 표현되고, 여기서 M 원소, A 원소, N 원소, O 원소, R 원소는, 2.5 ≤ (a + e) ≤ 3.5, 7.5 ≤ b ≤ 8.5, 3 ≤ c ≤ 5, 9 ≤ d ≤ 11, 13 ≤ (c + d) ≤ 15, 및 0.0001 ≤ e ≤ 0.2의 조성을 가지는 것을 특징으로 하는 형광체 모체이다.
본 실시 형태의 산 질화물 형광체는 종래의 산 질화물과 조성, 결정 구조가 다른 새로운 화합물이다.
여기서, 일반식(1)의 각 매개 변수는 (a + e) = 3, b = 8, c = 4, d = 10의 조건을 만족하는 것이 바람직하다.
또한, M 원소는 Sr을 주체로 한 알칼리 토금속인 것이 바람직하다. A 원소는 Si인 것이 바람직하다. R 원소는 Eu인 것이 바람직하다.
한편, 본 발명의 산 질화물의 다른 예는 적어도 M 원소, A 원소, B 원소, C 원소, N 원소, O 원소, R 원소 (여기서, M은 Mg, Ca, Sr, Ba, Zn 및 R 원소 이외의 2 가의 희토류 원소로부터 선택되는 1 종 또는 2 종 이상의 원소 A는 4 가의 금속 원소로 이루어진 군에서 선택되는 1 종 또는 2 종 이상의 원소, B는 3 가의 Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu에서 선택되는 1 종 또는 2 종 이상의 원소, C는 Al, Ga, In으로부터 선택되는 1 종 또는 2 종 이상의 원소, O는 산소, N은 질소, R은 Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb에서 선택되는 1 종 또는 2 종 이상의 원소)를 포함하는 조성물이며, 일반식(2) MaBfAbCgOcNd:Re로 표현되고, M 원소, A 원소, B 원소, C 원소, N 원소, O 원소, R 원소는, 2.5 ≤ (a + e + f) ≤ 3.5, 7.5 ≤ (b + g) ≤ 8.5, 3 ≤ c ≤ 5, 9 ≤ d ≤ 11, 13 ≤ (c + d) ≤ 15, 0.0001 ≤ e ≤ 0.2, f = g의 조성을 가지는 것을 특징으로 하는 형광체이다.
본 실시 형태의 산 질화물은 위에서 설명한 산 질화물과 결정 구조가 동일하고, B 원소, C 원소가 첨가된 화합물이다.
이하, 본 발명의 산 질화물 형광체의 합성 방법을 설명한다. 그러나, 본 발명은 이러한 합성 방법에 한정되지 않는다.
우선, 산 질화물의 원료로서 M 원소의 탄산염 또는 산화물, A 원소의 산화물, A 원소의 질화물, B 원소의 산화물, C 원소의 질화물, R 원소의 산화물을 소정 비 균일하게 될 때까지 혼합한다. M 원소 원료로는 금속 질화물, 수 소화물 등을 이용해도 좋다. A 원소, B 원소, C 원소로서 각각의 산화물, 질화물, 단체를 이용해도 좋다. 또한 재료의 일부 구성 원소의 합금 및 합금의 산화물, 질화물을 이용해도 좋다. 그러나 구성 성분에 질소 공급 원료는 항상 포함된다.
이하, 실시예에 나타내는 원료의 대략적인 조성 값(또는 이러한 조성의 전후 값)에서도 견딜 수 있는 충분한 특성을 가질 수 있다.
한편, 플럭스(flux)로서 작용하는 물질, 예를 들어 CaF2, SrF2, NaCl, KCl, CaCl2, SrCl2 등을 동시에 혼합하여도 무방하다.
이들 원료 혼합물을 질화 붕소 도가니 등에 넣고 1500 내지 1900 ℃에서 환원 분위기 또는 불활성 분위기에서 소성한다. 질화 붕소 도가니 외에도 몰리브덴 도가니 텅스텐 도가니를 사용할 수도 있다.
소성 온도는 1600 ~ 1800 ℃의 소성 온도가 더욱 바람직하다. 소성 시간은 3 시간 이상이며, 6 시간 이상이 더욱 바람직하다.
환원 분위기는 질소 - 수소 분위기, 암모니아 분위기 질소 - 암모니아 분위기이다. 불활성 분위기는 질소 분위기이다.
또한, 이들 재료의 일부를 혼합하여 소성하여 얻은 한 소성물에 나머지 재료를 추가 혼합 및 소성하여 원하는 형광체를 얻을 수 있었다.
이렇게 얻어진 소성물을 해쇄하여, 예를 들면 증류수, 정제수 등 불순물이 제거된 물이나 질산, 염산, 황산 등의 강산 의해 세척하고 있다.
본 실시 형태의 산 질화물은 이러한 제조 방법에 의해 한정되지 않는다. 위에서 설명한 고상 반응뿐만 아니라 기상 반응 액상 반응에 따라 제조 가능하다.
아래의 표 1은 아래에서 설명하는 각 실시예의 조성을 나타내고 있다.
  조성 (g)
SrCO3 CaCO3 Si3N4 SiO2 Eu2O3 La2O3 AlN
실시예 1 1.1133   0.9596   0.0271    
실시예 2 0.8777 0.1520 0.9467   0.0267    
실시예 3 0.7289 0.1901 0.9472   0.1336    
실시예 4 0.6790 0.2301 0.9559   0.1348    
실시예 5 1.0484   0.9129   0.0386    
실시예 6 1.0365   0.9120   0.0514    
실시예 7 1.0128   0.9101   0.0771    
실시예 8 0.9892   0.9082   0.1025    
실시예 9 0.9657   0.9063   0.1279    
실시예 10 0.9074   0.9017   0.1909    
실시예 11 0.8555   0.8694   0.1275 0.1180 0.0297
               
비교예 1 1.1514   0.6166 0.2039 0.0280    
비교예 2 1.1044   0.8923 0.0764 0.0269    
비교예 3 0.6745 0.3153 0.9823   0.0277    
비교예 4 0.8537   0.9014   0.1272 0.1178  
<실시예 1>
원료 SrCO3, Si3N4, 및 Eu2O3를 표 1에 기재 한 수치의 무게를 잰 후 사발을 이용하여 30 분 이상 혼합하여 얻은 혼합물을 펠릿으로 성형 한 후 질화 붕소 도가니에 넣고 N2 가스를 이용한 가압 불활성 분위기 중, 약 1700 ℃ 약 0.9 MPa에서 약 4 시간 소성을 실시한다.
소성 후 사발에서 분쇄하고, 1 규정의 질산 수용액을 이용하여 실온에서 15 분 세척 후 침강 회수한다. 이후 산을 제거하기 위하여 2 회 세척하여 형광체를 얻을 수 있다.
<실시예 2> (Ca 고용 20%)
원료 CaCO3, SrCO3, Si3N4, 및 Eu2O3를 표 1에 기재 한 수치의 무게를 잰 후 사발을 이용하여 30 분 이상 혼합하여 얻은 혼합물을 펠릿으로 성형 한 후 질화 붕소 도가니에 넣고 N2 가스를 이용한 가압 불활성 분위기 중, 약 1700 ℃ 약 0.9 MPa에서 약 4 시간 소성을 실시한다.
소성 후 사발에서 분쇄하고, 1 규정의 질산 수용액을 이용하여 실온에서 15 분 세척 후 침강 회수한다. 이후 산을 제거하기 위하여 2 회 세척하여 형광체를 얻을 수 있다.
<실시예 3> (Ca 고용 25%)
원료 CaCO3, SrCO3, Si3N4, 및 Eu2O3를 표 1에 기재 한 수치의 무게를 잰 후 사발을 이용하여 30 분 이상 혼합하여 얻은 혼합물을 펠릿으로 성형 한 후 질화 붕소 도가니에 넣고 N2 가스를 이용한 가압 불활성 분위기 중, 약 1700 ℃ 약 0.9 MPa에서 약 4 시간 소성을 실시한다.
소성 후 사발에서 분쇄하고, 1 규정의 질산 수용액을 이용하여 실온에서 15 분 세척 후 침강 회수한다. 이후 산을 제거하기 위하여 2 회 세척하여 형광체를 얻을 수 있다.
<실시예 4> (Ca 고용 30%)
원료 CaCO3, SrCO3, Si3N4, 및 Eu2O3를 표 1에 기재 한 수치의 무게를 잰 후 사발을 이용하여 30 분 이상 혼합하여 얻은 혼합물을 펠릿으로 성형 한 후 질화 붕소 도가니에 넣고 N2 가스를 이용한 가압 불활성 분위기 중, 약 1700 ℃ 약 0.9 MPa에서 약 4 시간 소성을 실시한다.
소성 후 사발에서 분쇄하고, 1 규정의 질산 수용액을 이용하여 실온에서 15 분 세척 후 침강 회수한다. 이후 산을 제거하기 위하여 2 회 세척하여 형광체를 얻을 수 있다.
<실시예 5> (Eu 0.03 조성)
원료 SrCO3, Si3N4, 및 Eu2O3를 표 1에 기재 한 수치의 무게를 잰 후 사발을 이용하여 30 분 이상 혼합하여 얻은 혼합물을 펠릿으로 성형 한 후 질화 붕소 도가니에 넣고 N2 가스를 이용한 가압 불활성 분위기 중, 약 1700 ℃ 약 0.9 MPa에서 약 4 시간 소성을 실시한다.
소성 후 사발에서 분쇄하고, 1 규정의 질산 수용액을 이용하여 실온에서 15 분 세척 후 침강 회수한다. 이후 산을 제거하기 위하여 2 회 세척하여 형광체를 얻을 수 있다.
<실시예 6> (Eu 0.04 조성)
원료 SrCO3, Si3N4, 및 Eu2O3를 표 1에 기재 한 수치의 무게를 잰 후 사발을 이용하여 30 분 이상 혼합하여 얻은 혼합물을 펠릿으로 성형 한 후 질화 붕소 도가니에 넣고 N2 가스를 이용한 가압 불활성 분위기 중, 약 1700 ℃ 약 0.9 MPa에서 약 4 시간 소성을 실시한다.
소성 후 사발에서 분쇄하고, 1 규정의 질산 수용액을 이용하여 실온에서 15 분 세척 후 침강 회수한다. 이후 산을 제거하기 위하여 2 회 세척하여 형광체를 얻을 수 있다.
<실시예 7> (Eu 0.06 조성)
원료 SrCO3, Si3N4, 및 Eu2O3를 표 1에 기재 한 수치의 무게를 잰 후 사발을 이용하여 30 분 이상 혼합하여 얻은 혼합물을 펠릿으로 성형 한 후 질화 붕소 도가니에 넣고 N2 가스를 이용한 가압 불활성 분위기 중, 약 1700 ℃ 약 0.9 MPa에서 약 4 시간 소성을 실시한다.
소성 후 사발에서 분쇄하고, 1 규정의 질산 수용액을 이용하여 실온에서 15 분 세척 후 침강 회수한다. 이후 산을 제거하기 위하여 2 회 세척하여 형광체를 얻을 수 있다.
<실시예 8> (Eu 0.08 조성)
원료 SrCO3, Si3N4, 및 Eu2O3를 표 1에 기재 한 수치의 무게를 잰 후 사발을 이용하여 30 분 이상 혼합하여 얻은 혼합물을 펠릿으로 성형 한 후 질화 붕소 도가니에 넣고 N2 가스를 이용한 가압 불활성 분위기 중, 약 1700 ℃ 약 0.9 MPa에서 약 4 시간 소성을 실시한다.
소성 후 사발에서 분쇄하고, 1 규정의 질산 수용액을 이용하여 실온에서 15 분 세척 후 침강 회수한다. 이후 산을 제거하기 위하여 2 회 세척하여 형광체를 얻을 수 있다.
<실시예 9> (Eu 0.10 조성)
원료 SrCO3, Si3N4, 및 Eu2O3를 표 1에 기재 한 수치의 무게를 잰 후 사발을 이용하여 30 분 이상 혼합하여 얻은 혼합물을 펠릿으로 성형 한 후 질화 붕소 도가니에 넣고 N2 가스를 이용한 가압 불활성 분위기 중, 약 1700 ℃ 약 0.9 MPa에서 약 4 시간 소성을 실시한다.
소성 후 사발에서 분쇄하고, 1 규정의 질산 수용액을 이용하여 실온에서 15 분 세척 후 침강 회수한다. 이후 산을 제거하기 위하여 2 회 세척하여 형광체를 얻을 수 있다.
<실시예 10> (Eu 0.15 조성)
원료 SrCO3, Si3N4, 및 Eu2O3를 표 1에 기재 한 수치의 무게를 잰 후 사발을 이용하여 30 분 이상 혼합하여 얻은 혼합물을 펠릿으로 성형 한 후 질화 붕소 도가니에 넣고 N2 가스를 이용한 가압 불활성 분위기 중, 약 1700 ℃ 약 0.9 MPa에서 약 4 시간 소성을 실시한다.
소성 후 사발에서 분쇄하고, 1 규정의 질산 수용액을 이용하여 실온에서 15 분 세척 후 침강 회수한다. 이후 산을 제거하기 위하여 2 회 세척하여 형광체를 얻을 수 있다.
<실시예 11> (La 10%, Al 첨가)
원료 SrCO3, La2O3, Si3N4, AlN 및 Eu2O3를 표 1에 기재 한 수치의 무게를 잰 후 사발을 이용하여 30 분 이상 혼합하여 얻은 혼합물을 펠릿으로 성형 한 후 질화 붕소 도가니에 넣고 N2 가스를 이용한 가압 불활성 분위기 중, 약 1700 ℃ 약 0.9 MPa에서 약 4 시간 소성을 실시한다.
소성 후 사발에서 분쇄하고, 1 규정의 질산 수용액을 이용하여 실온에서 15 분 세척 후 침강 회수한다. 이후 산을 제거하기 위하여 2 회 세척하여 형광체를 얻을 수 있다.
<비교예 1> (Sr1 .02Si2O2N2 상)
원료 SrCO3, Si3N4, SiO2 및 Eu2O3를 표 1에 기재 한 수치의 무게를 잰 후 사발을 이용하여 30 분 이상 혼합하여 얻은 혼합물을 펠릿으로 성형 한 후 질화 붕소 도가니에 넣고 N2 4% H2 가스를 이용한 환원 분위기 중, 약 1500 ℃에서 약 4 시간 소성을 실시한다.
소성 후 사발에서 분쇄하고, 1 규정의 질산 수용액을 이용하여 실온에서 15 분 세척 후 침강 회수한다. 이후 산을 제거하기 위하여 2 회 세척하여 형광체를 얻을 수 있다.
<비교예 2> (O 투입량 많음)
원료 SrCO3, Si3N4, SiO2 및 Eu2O3를 표 1에 기재 한 수치의 무게를 잰 후 사발을 이용하여 30 분 이상 혼합하여 얻은 혼합물을 펠릿으로 성형 한 후 질화 붕소 도가니에 넣고 N2 가스를 이용한 가압 불활성 분위기 중, 약 1700 ℃ 약 0.9 MPa에서 약 4 시간 소성을 실시한다.
소성 후 사발에서 분쇄하고, 1 규정의 질산 수용액을 이용하여 실온에서 15 분 세척 후 침강 회수한다. 이후 산을 제거하기 위하여 2 회 세척하여 형광체를 얻을 수 있다.
<비교예 3> (Ca 40% 대체)
원료 SrCO3, CaCO3, Si3N4 및 Eu2O3를 표 1에 기재 한 수치의 무게를 잰 후 사발을 이용하여 30 분 이상 혼합하여 얻은 혼합물을 펠릿으로 성형 한 후 질화 붕소 도가니에 넣고 N2 가스를 이용한 가압 불활성 분위기 중, 약 1700 ℃ 약 0.9 MPa에서 약 4 시간 소성을 실시한다.
소성 후 사발에서 분쇄하고, 1 규정의 질산 수용액을 이용하여 실온에서 15 분 세척 후 침강 회수한다. 이후 산을 제거하기 위하여 2 회 세척하여 형광체를 얻을 수 있다.
<비교예 4> (La 10%, Al 무첨가)
원료 SrCO3, La2O3, Si3N4 및 Eu2O3를 표 1에 기재 한 수치의 무게를 잰 후 사발을 이용하여 30 분 이상 혼합하여 얻은 혼합물을 펠릿으로 성형 한 후 질화 붕소 도가니에 넣고 N2 가스를 이용한 가압 불활성 분위기 중, 약 1700 ℃ 약 0.9 MPa에서 약 4 시간 소성을 실시한다.
소성 후 사발에서 분쇄하고, 1 규정의 질산 수용액을 이용하여 실온에서 15 분 세척 후 침강 회수한다. 이후 산을 제거하기 위하여 2 회 세척하여 형광체를 얻을 수 있다.
각 실시예 및 비교예에 대한 결정상의 평가를 실시하였다. 결정상의 평가는 X 선 회절 장치 (XRD) (주식회사 RIGAKU 사의 "SmartLab")을 사용하였다. X 선으로 CuKa 선을 이용하여 2θ= 10 ~ 40°범위에 대해 측정을 실시하였다.
얻어진 XRD 패턴을 분석 한 결과, 비교예 1은 ICDD 데이터베이스 No. 01-076-3141에 기재되어있는 Sr1 .02Si2O2N2 상에 귀속되었다. 실시예 1은 ICDD 데이터베이스에 해당하는 결정상은 존재하지 않는다.
실시예 1의 XRD 결과에 대해 상세하게 분석을 실시하고 패턴에 지수를 매긴 결과를 아래의 표 3에 나타내고 있다. 이와 같이, 표 2에 표시된 공간 군 P 1 21 / n 1 (No.14 setting 2) a = 4.8259Å, b = 24.2157Å, c = 10.566Å, β = 90.634도(degree)로 표시되는 단사정(monoclinic)에 의해 각 지수가 지정되었다.
공간군 P 1 21/n 1 (No.14 setting 2)
a (Å) 4.8259
b (Å) 24.2157
c (Å) 10.566
β (°) 90.634
피크 No. 2θ(deg) d(Å) h k l
1 11.13 7.944 0 2 1
2 14.66 6.036 0 4 0
3 16.81 5.271 0 0 2
4 17.20 5.150 0 1 2
5 18.36 4.827 0 2 2
6 22.04 4.029 0 6 0
7 22.38 3.969 0 4 2
8 23.61 3.765 1 4 0
9 25.55 3.483 0 1 3
10 26.36 3.378 1 5 0
11 27.11 3.286 0 7 1
12 27.82 3.204 0 6 2
13 28.96 3.080 1 6 0
14 29.28 3.047 0 4 3
15 30.72 2.907 0 8 1
16 31.27 2.858 1 0 -3
17 31.41 2.846 0 5 3
18 31.83 2.809 1 7 0
19 32.15 2.782 1 2 -3
20 33.03 2.710 1 7 1
21 33.54 2.670 1 6 -2
22 33.78 2.651 0 6 3
23 34.13 2.624 0 8 2
24 34.39 2.605 0 9 1
25 34.68 2.584 1 4 -3
26 36.01 2.492 1 8 -1
27 37.13 2.419 0 10 0
28 37.48 2.398 2 1 0
29 38.10 2.360 2 2 0
30 38.83 2.317 0 5 4
31 39.22 2.295 1 8 2
32 39.78 2.264 1 2 4
아래의 표 4는 실시예 1에서 얻어진 결정을 단결정 X 선 산란에 의한 구조 해석을 실시하여 얻어진 결정 구조 파라미터를 나타낸다. 이 결정은 조성식이 Sr3Si8O4N10로 표시되는 것으로 밝혀졌다. 이 성분에서 얻은 책 결정상은 알 수 없는 결정이며, 본 검토에서 처음 발견된 것이다. 이 결정은 Si(N, O) 4 사면체가 N 원자의 정점 공유를 통해 연결된 층 사이에 Sr이 침입한 구조를 가진다.
또한 Sr의 일부가 불규칙한(Disorder) 분포를 나타내고 있다. 이 결정 구조의 Sr 자리(site)에 R 원소가 고용함으로써 형광체로 발광을 나타낸다. 이후, 이 결정 조성을 Sr3Si8O4N10 상이라고 부른다.
원자 x y z B g Site
Sr 0.08338(16) 0.22423(3) 0.20577(6) 0.01325(17) 1 4d
Sr 0.1415(3) -0.01311(6) 0.18329(13) 0.0197(3) 0.5 4d
Sr 0.3671(3) -0.02538(6) 0.06245(13) 0.0195(3) 0.5 4d
Sr 0.3821(3) -0.00383(7) 0.56614(15) 0.0251(4) 0.5 4d
Sr -0.1180(3) -0.04302(6) 0.31478(17) 0.0255(4) 0.5 4d
Si -0.4112(4) 0.30656(8) 0.06614(17) 0.0087(4) 1 4d
Si -0.4096(4) 0.09469(7) 0.20266(18) 0.0088(4) 1 4d
Si -0.4146(4) 0.30277(8) 0.34107(16) 0.0091(4) 1 4d
Si 0.0869(4) 0.11075(8) 0.04956(17) 0.0096(4) 1 4d
Si -0.4162(4) 0.17629(8) 0.42119(17) 0.0094(4) 1 4d
Si -0.4112(4) 0.18045(8) -0.01428(17) 0.0091(4) 1 4d
Si 0.0854(4) 0.10419(8) 0.35594(17) 0.0094(4) 1 4d
Si -0.4175(4) 0.14422(8) 0.70270(18) 0.0098(4) 1 4d
O -0.3523(12) 0.0299(2) 0.1971(5) 0.0183(12) 1 4d
O -0.3930(13) 0.0783(2) 0.6977(5) 0.0234(12) 1 4d
O 0.1370(12) 0.0545(2) -0.0237(5) 0.0223(12) 1 4d
O 0.1270(11) 0.0433(2) 0.4118(5) 0.0199(12) 1 4d
N -0.3727(12) 0.2342(2) 0.3387(5) 0.0097(12) 1 4d
N -0.3414(13) 0.2398(2) 0.0544(5) 0.0124(12) 1 4d
N -0.2603(13) 0.1256(2) 0.0709(5) 0.0110(12) 1 4d
N -0.2607(12) 0.1205(2) 0.3401(5) 0.0113(12) 1 4d
N -0.7629(12) 0.1575(2) 0.4407(5) 0.0122(13) 1 4d
N -0.7623(12) 0.1095(2) 0.2028(5) 0.0111(12) 1 4d
N -0.2640(12) 0.1779(2) 0.5735(5) 0.0114(12) 1 4d
N -0.7621(12) 0.1682(2) 0.7063(5) 0.0117(12) 1 4d
N -0.7620(12) 0.3234(2) 0.3350(5) 0.0110(12) 1 4d
N 0.2347(12) 0.1666(2) -0.0250(5) 0.0100(12) 1 4d
도 1은 본 발명의 실시예 1 및 비교예 1의 결정 구조에 대하여 시뮬레이션 한 XRD 패턴을 나타내는 도이다. 이와 같이, 공지의 형광체인 Sr1 .02Si2O2N2:Eu는 분명히 다른 XRD 패턴을 나타내고 있다.
실시예 1의 결정 구조에 의한 시뮬레이션 한 XRD 패턴과 각 실시예의 XRD 패턴을 비교한 결과, 그 피크 위치는 정확히 일치함을 나타내고, 각 실시예의 XRD 패턴에 Sr3Si8O4N10 상에 귀속할 수 없는 피크는 보고되지 않았다. 따라서 각 실시예는 단일 화합물인 것으로 볼 수 있다..
각 실시예 및 비교예의 형광체 특성을 평가하기 위해 광 여기 발광 특성의 측정을 실시하였다. 여기 광원으로 Xe 램프를 이용하여 회절 격자에 의해 단색화한 450 nm의 청색 광을 입사했을 때 얻은 발광 스펙트럼을 측정했다. 이때 청색 광으로 여기시킨 청색 LED에 의한 자극을 상정한 것이다.
아래의 표 5에 각 실시예의 발광 피크 파장, 반치폭 상대 강도의 목록을 나타내고 있다. 또한 XRD 측정 결과 확인된 위상에 대해서도 목록으로 기재한다. 상대 강도는 실시예 1의 발광 피크의 적분 강도를 기준으로 한 어떤 강도이며, 절대값이 아니다.
Sr3Si8O4N10 상에서는 조성에 의해 발광 스펙트럼이 변화하고 발광 피크 파장이 589 내지 620 nm, 반치폭이 120 내지 127 nm이다. 비교예 3 및 4에서는 반치폭이 132, 135 nm로 커지고 있지만, 이것은 얻어진 형광체 동안 여러 단계가 포함되어 있으며, 여러 단계에서의 발광이 겹치는 것으로 반치폭이 크게 되어있는 것이며 본질적인 것은 아니다. 비교예 1의 Sr1 .02Si2O2N2 형광체의 반치폭은 74 nm이며, 그것보다 매우 큰 반치폭을 가지고 연색성을 향상시키는 것이 가능하게 되는 형광체이다.
  발광피크 파장(nm) 반치폭(nm) 발광상대강도 XRD에 의하여 식별된 상
실시예 1 602 120 1.00 Sr3Si8O4N10
실시예 2 589 120 0.76 Sr3Si8O4N10
실시예 3 608 125 1.03 Sr3Si8O4N10
실시예 4 620 142 0.92 Sr3Si8O4N10
실시예 5 601 121 0.95 Sr3Si8O4N10
실시예 6 605 121 1.00 Sr3Si8O4N10
실시예 7 608 123 0.97 Sr3Si8O4N10
실시예 8 609 123 1.12 Sr3Si8O4N10
실시예 9 613 124 1.15 Sr3Si8O4N10
실시예 10 618 127 1.08 Sr3Si8O4N10
실시예 11 619 135 0.59 Sr3Si8O4N10
         
비교예 1 537 74 1.12 Sr1 .02Si2O2N2
비교예 2 545 111 0.75 Sr3Si8O4N10+Sr2Si2O2N2
비교예 3 648 132 0.20 unknown(복수상)
비교예 4 554 135 0.46 Sr3Si8O4N10+Sr2Si2O2N2+LaSi3N5
또한, 실시예 1에서 화학식 MaAbOcNd:Re에서 M = Sr, A = Si, R = Eu, a = 2.94, b = 8, c = 4, d = 10, e = 0.06의 경우를 설명하였다. 하지만 기본적으로 조성식 M3A8O4N10로 표시되는 화합물을 주체로 되는 것을 특징으로 하는 산 질화물이면 되고, 위의 M, A, R의 구성 원소 매개 변수 등에 대해서는 기재 내용을 벗어나지 않는 범위에서 특별히 한정되는 것은 아니다.
일반식의 실시예 1에서 매개 변수는 결정 구조에서 도출된 구성을 나타내고 있지만 실제 결정에 빈 구멍 교대 적층 결함 등의 격자 결함이 포함된 것이 일반적이다. 이러한 결함이 포함되는 것으로 결정 구조를 유지 범위에서 파라미터가 일정한 범위를 가질 예측할 수 있다.
M 원소는 Mg, Ca, Sr, Ba, Zn 및 R 원소 이외의 2 가의 희토류 원소로부터 선택되는 1 종 또는 2 종 이상의 원소이며, 상기 M 원소가 Sr 이외의 원소인 경우에도 알칼리 토금속 원소, 희토류 원소 등의 화학적 성질의 유사성에서 본 실시예 1과 동일한 형광체를 구성하는 것은 예측할 수 있다.
또한, Zn은 12 족 원소이지만, 전자 배치가 2 족의 알칼리 토금속 원소와 유사한 것으로부터, 본 실시예 1과 동일한 형광체를 구성하는 것은 예측할 수 있다.
또한, A 원소는 4 가의 금속 원소로 이루어진 군에서 선택되는 1 종 또는 2 종 이상의 원소이며, A 원소가 Si 이외의 4 가의 원소인 경우에도 과학적 성질의 유사 성에서 본 실시예 1과 동일한 형광체를 구성하는 것은 예측할 수 있다.
또한, R 원소는 발광 중심으로 작용하는 Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb에서 선택되는 1 종 또는 2 종 이상의 원소이며, 지금까지 공지의 사실에 의해 이러한 군의 원소는 발광 중심으로 일하는 것은 분명하고, 이들이 Eu 대신 고용하여도 본 실시예 1과 마찬가지로 형광체로 작용하는 것은 예측할 수 있다.
도 2는 본 발명의 실시예 1과 비교예 1의 450 nm 여기 광에 의한 발광 스펙트럼을 나타내는 도이다. 스펙트럼 형상을 비교하기 위해 발광 강도의 최대치로 규격화를 실시하고 있다. 이와 같이, 본 발명의 형광체는 600 nm 부근을 정점으로 한 매우 넓은 반치폭을 가지는 발광 스펙트럼을 나타내는 것이 특징이다. 비교예 1은 Sr1 .02Si2O2N2 상이며, 540 nm 부근을 정점으로 한 발광을 나타낸다.
도 3은 본 발명의 실시예 1 내지 실시예 4, 및 비교예 3의 발광 스펙트럼을 나타내는 도로서, Ca 0%의 실시예 1, Ca를 첨가 한 실시예 2 내지 4, 비교예 3의 450 nm 여기 광에 의한 발광 스펙트럼을 나타낸다. 실시예 1 내지 4에서는 모든 Sr3Si8O4N10 결정상인 것이 확인되었다.
또한, 발광 피크 파장은 589 내지 620 nm를 나타내고 있다. 조성에 따라 발광 파장을 제어할 수 있는 것을 알 수 있다. 또 다른 결정상이 된 비교예 3에서는 발광 강도가 크게 저하된 것을 알 수 있다.
도 4는 Eu의 첨가량을 변경한 본 발명의 실시예 1, 실시예 5 내지 10의 450 nm 여기 광에 의한 발광 스펙트럼을 나타내는 도이다. 이러한 도 4의 모든 실시예에 있어서 Sr3Si8O4N10 상임이 확인되었다. Eu의 첨가량이 증가함에 따라 발광 피크가 장파장 쪽으로 이동하고, 피크 파장이 600 내지 615 nm인 발광을 나타내고 있다.
도 5는 La을 첨가한 본 발명의 실시예 11과 비교예 4의 450nm 여기 광에 의한 발광 스펙트럼을 나타내는 도이다. 위의 표 4에서 나타낸 바와 같이, 비교예 4의 La 단체 첨가는 Sr3Si8O4N10 상에 고용되지 않고, La는 LaSi3N5 상을 형성하여 크게 다른 발광 스펙트럼을 보여주고 있다.
La는 희토류 원소이며, 성격이 유사한 알칼리 토금속 원소인 Sr을 대체할 수 있을 것으로 예상되지만 3 가 이온이 되는 La는 2 가의 이온인 Sr과 대체하기 위해 전하를 보상하기 위해 Si 자리(site)에 3 가의 금속을 동시에 첨가하는 것이 필요하며, 실시예 11과 같이 Al을 첨가함으로써 Sr과 원자가 다른 La를 고용시켜 Sr3Si8O4N10 상에서 발광을 얻을 수 있다.
실시예 11에 있어서, 화학식 MaBfAbCgOcNd : Re에서 M = Sr, A = Si, B = La, C = Al, R = Eu, a = 2.4, b = 7.7, c = 4, d = 10, e = 0.3 , f = 0.3, g = 0.3의 경우를 설명했지만, 기본적으로 조성식 (M + B)3(A + C)8O4N10로 표시되는 화합물을 주체로 되는 것을 특징으로 하는 산 질화물이면 본 발명의 특성을 발휘할 수 있고, M, A, B, C, R의 구성 원소 매개 변수 등에 대해서는 기재 내용을 벗어나지 않는 범위에서 특별히 한정되는 것은 아니다.
이러한 실시예 11의 매개 변수는 결정 구조에서 도출된 구성을 나타내고 있지만 실제 결정에 빈 구멍 교대 적층 결함 등의 격자 결함이 포함된 것이 일반적이다. 이러한 결함이 포함되는 것으로 결정 구조를 유지 범위에서 파라미터가 일정한 범위를 가질 것을 예측할 수 있다.
M 원소는 Mg, Ca, Sr, Ba, Zn 및 R 원소 이외의 2 가의 희토류 원소로부터 선택되는 1 종 또는 2 종 이상의 원소이며, M 원소가 Sr 이외의 원소인 경우에도 알칼리 토금속 원소, 희토류 원소 등의 화학적 성질의 유사성에서 본 실시예 11과 동일한 형광체를 구성하는 것은 예측할 수 있다.
또한, Zn은 12 족 원소이지만, 전자 배치가 2 족의 알칼리 토금속 원소와 유사한 것으로부터, 본 실시예 11과 동일한 형광체를 구성하는 것을 예측할 수 있다.
또한, A 원소는 4 가의 금속 원소로 이루어진 군에서 선택되는 1 종 또는 2 종 이상의 원소이며, A 원소가 Si 이외의 4 가의 원소인 경우, 4 가의 원소는 14 족이며 그 동족 원소의 과학적 성질의 유사성에 의하여 본 실시예 11과 동일한 형광체를 구성하는 것을 예측할 수 있다.
또한, B 원소는 3 가의 Sc, Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu에서 선택되는 1 종 또는 2 종 이상의 원소이다. 이들 원소는 모두 3 족 원소이며, B 원소가 La 이외의 3가 원소인 경우에도 동족 원소의 화학적 유사성에 의하여 본 실시예 11과 동일한 형광체를 구성할 것을 예측할 수 있다.
또한, C 원소는 Al, Ga, In으로부터 선택되는 1 종 또는 2 종 이상의 원소이며, 이들은 모두 13 족 원소이고, C 원소가 Al 이외의 Ga, In 인 경우에도 이러한 13 족 원소의 화학적 유사성에 의하여 본 실시예 11과 동일한 형광체를 구성하는 것은 예측할 수 있다.
또한, R 원소는 발광 중심으로 작용하는 Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb에서 선택되는 1 종 또는 2 종 이상의 원소이며, 지금까지 공지의 사실에 의해 이들 군의 원소는 발광 중심으로 작용하는 것은 분명하고, 이들이 Eu 대신 고용하여도 본 실시예 11과 마찬가지로 형광체로 작용하는 것을 예측할 수 있다.
<발광장치>
도 6은 본 발명의 산 질화물 형광체가 이용된 발광 소자 패키지의 일례를 나타내는 단면도이다. 이러한 도 6은 표면 실장 형 발광 소자 패키지를 나타내고 있다.
본 발명의 일 실시예에 따른 표면 실장 형 발광 소자 패키지(100)는 도 6에 도시된 바와 같이, 양극 및 음극의 리드 프레임(110)이 구비되고, 이 양극 및 음극의 리드 프레임(110) 중 어느 하나의 위에 위치하여 전압의 인가에 따라 빛을 발생시키는 발광 소자(120)를 포함한다. 이러한 발광 소자(120)는 발광 다이오드 또는 레이저 다이오드를 이용할 수 있다.
이러한 발광 소자(120)는 리드 프레임(110)과 와이어(130)에 의하여 전기적으로 연결되고, 발광 소자(120) 상에는 광 투과 수지(140)가 몰딩된다.
또한, 이러한 광 투과 수지(140)에 분산하는 형광체(141)를 포함하여 구성된다.
여기에 사용되는 형광체(141)는 위에서 설명한 산 질화물 형광체 이외에 다른 형광체가 함께 분산되어 구비될 수 있다. 예를 들어, YAG, β-SiAlON 등의 다른 형광체와 함께 분산될 수 있다. 이때, 이러한 다른 분산 형광체는 두 종류 이상이 이용될 수 있다.
발광 소자(120)는 전압을 인가하면 400 내지 480 nm의 파장 영역에서 발광 스펙트럼의 주 피크를 갖는 광을 발생시키는 근 자외선 또는 청색 발광 소자를 사용할 수 있다.
또한, 근 자외선 발광 소자 대신 동일한 파장 영역에 주 발광 피크를 가지는 발광 소자로서, 레이저 다이오드, 면 발광 레이저 다이오드, 무기 전계 발광 소자, 유기 전계 발광 소자 등을 사용할 수도 있다. 본 발명에서는 바람직한 응용 예로서 질화물 반도체 발광 다이오드가 이용되는 예를 나타내고 있다.
몰딩 부재로 사용되는 광 투과 수지(140)는 광 투과 에폭시 수지, 실리콘 수지, 폴리이미드 수지, 요소 수지, 아크릴 수지 등이 사용될 수 있다. 바람직하게는 광 투과 에폭시 수지 또는 광 투과 실리콘 수지 등이 사용될 수 있다.
이러한 광 투명 수지(140)는 발광 소자(120) 주위를 전체적으로 몰딩할 수도 있지만 필요에 따라 발광 부위에 부분적으로 몰딩하는 것도 가능하다. 즉, 소용량 발광 소자의 경우 전체적으로 몰딩하는 것이 바람직하지만, 고출력 발광 소자의 경우에는 발광 소자(120)의 대형화로 인해 전체적으로 몰딩할 경우, 광 투과 수지(140)에 분산되는 형광체(141)의 균일 분산에 불리할 수 있기 때문이다. 이 경우 발광 부위에 부분적으로 몰딩하는 것이 바람직 것이다.
도 7은 본 발명의 산 질화물 형광체가 이용된 발광 소자 패키지의 다른 예를 나타내는 단면도이다. 도 7은 본 발명의 다른 실시 예에 따른 램프형의 발광 소자 패키지(200)의 예를 나타내고 있다.
이러한 램프형의 발광 소자 패키지(200)는 한 쌍의 리드 프레임(210)과, 전압의 인가에 따라 빛을 발생시키는 발광 소자(220)를 포함한다.
발광 소자(220)는 리드 프레임(210)과 와이어(230)에 의하여 전기적으로 연결되고, 발광 소자(220) 상에는 광 투과 수지(240)가 몰딩된다.
이러한 광 투과성 수지(240)에는 형광체(241)가 분산되어 구비될 수 있고, 광 투과성 수지(240) 상에는 소자 전체의 외부 공간을 마감하는 외장재(250)가 구비될 수 있다.
여기서 사용되는 형광체(241)는 위에서 설명한 산 질화물 형광체 이외에 다른 형광체, 예를 들면 YAG, β-SiAlON 등의 형광체와 함께 분산되어 구비될 수 있다. 이러한 분산 형광체(241)는 두 종류 이상이 구비될 수 있다.
본 실시예의 광 투과성 수지(240)도 발광 소자(220) 주위를 전체적으로 몰딩 할 수도 있지만 필요에 따라 발광 부위에 부분적으로 몰딩되어 구비될 수도 있다. 이러한 이유는 앞에서 언급된 바와 같다.
위에서 상세히 설명한 본 발명에 따른 표면 실장형 발광 소자 패키지(100) 또는 램프형의 발광 소자 패키지(200)는 백색 발광 패키지로 구현될 수 있다. 이러한 백색광이 구현되는 과정을 설명하면 다음과 같다.
발광 소자(120, 220)에서 출사되는 근 자외선에 해당하는 400 내지 480 nm 파장 영역의 푸른 빛이 형광체(141, 241)를 통과하게 된다. 여기에 일부 빛은 형광체(141, 241)를 구동시켜 발광 파장 중심이 500 내지 600 nm 범위의 주요 피크를 갖는 광을 발생시키고, 나머지 빛은 푸른 빛으로 그대로 투과시킨다.
그 결과, 400 내지 700 nm의 넓은 파장의 스펙트럼을 갖는 백색광을 발광하게 된다.
형광체(141, 241)는 위에서 설명한 산 질화물 형광체 이외에 다른 형광체가 함께 분산되어 구비될 수 있다.
예를 들어, 이들 형광체(141, 241)는 위에서 설명한 산 질화물 형광체(이하, 제1형광체)와 다른 발광 피크를 가지는 제2형광체가 혼합되어 함께 이용될 수 있다.
이러한, 발광 소자 패키지(100, 200)는, 적어도 430 내지 500 nm 및 500 내지 730 nm 파장 대역 중 적어도 어느 하나에서 하나 이상의 발광 피크를 가지는 발광 스펙트럼을 가질 수 있다.
한편, 본 명세서와 도면에 개시된 본 발명의 실시 예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.
100, 200: 발광 소자 패키지 110, 210: 리드 프레임
120, 220: 발광 소자 130, 230: 와이어
140, 240: 광 투과 수지 141, 241: 형광체

Claims (15)

  1. 적어도 M 원소, A 원소, N 원소, O 원소, R 원소를 포함하는 조성물로서 일반식 MaAbOcNd:Re로 표현되고,
    상기 M은 Mg, Ca, Sr, Ba, Zn 및 R 원소 이외의 2 가의 희토류 원소로부터 선택되는 1 종 또는 2 종 이상의 원소, 상기 A는 4 가의 금속 원소로 이루어진 군에서 선택되는 1 종 또는 2 종 이상의 원소, 상기 O는 산소, 상기 N은 질소, 및 상기 R은 Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb에서 선택되는 1 종 또는 2 종 이상의 원소이며,
    상기 M 원소, A 원소, N 원소, O 원소, R 원소는, 2.5 ≤ (a + e) ≤ 3.5, 7.5 ≤ b ≤ 8.5, 3 ≤ c ≤ 5, 9 ≤ d ≤ 11, 13 ≤ (c + d) ≤ 15, 및 0.0001 ≤ e ≤ 0.2의 조성을 가지는 것을 특징으로 하는 산 질화물 형광체.
  2. 제1항에 있어서, 상기 일반식의 각 매개 변수는 (a + e) = 3, b = 8, c = 4, d = 10 중 적어도 어느 하나의 조건을 만족하는 것을 특징으로 하는 산 질화물 형광체.
  3. 제1항에 있어서, 상기 M 원소는 Sr인 것을 특징으로 하는 산 질화물 형광체.
  4. 제1항에 있어서, 상기 M 원소는 Sr과 Ca의 혼합 상태이며, 포함된 원자 수로 계산했을 때 Ca/(Sr + Ca) < 0.40을 만족하는 것을 특징으로 하는 산 질화물 형광체.
  5. 제1항에 있어서, 상기 A 원소는 Si인 것을 특징으로 하는 산 질화물 형광체.
  6. 제1항에 있어서, 상기 R 원소는 Eu인 것을 특징으로 하는 산 질화물 형광체.
  7. 적어도 M 원소, A 원소, B 원소, C 원소, N 원소, O 원소, R 원소를 포함하는 조성물로서 일반식 MaBfAbCgOcNd:Re로 표현되고,
    상기 M은 Mg, Ca, Sr, Ba, Zn 및 R 원소 이외의 2 가의 희토류 원소로부터 선택되는 1 종 또는 2 종 이상의 원소, 상기 A는 4 가의 금속 원소로 이루어진 군에서 선택되는 1 종 또는 2 종 이상의 원소, 상기 B는 3 가의 Sc, Y, La, Ce, Pr, Nd, Sm, Gd , Tb, Dy, Ho, Er, Tm, Yb, Lu에서 선택되는 1 종 또는 2 종 이상의 원소, 상기 C는 Al, Ga, In으로부터 선택되는 1 종 또는 2 종 이상의 원소, 상기 O는 산소, 상기 N은 질소, 상기 R은 Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb에서 선택되는 1 종 또는 2 종 이상의 원소이며,
    상기 M 원소, A 원소, B 원소, C 원소, N 원소, O 원소, R 원소는, 2.5 ≤ (a + e + f) ≤ 3.5, 7.5 ≤ (b + g) ≤ 8.5, 3 ≤ c ≤ 5, 9 ≤ d ≤ 11, 13 ≤ (c + d) ≤ 15, 0.0001 ≤ e ≤ 0.2, f = g의 조성을 가지는 것을 특징으로 하는 산 질화물 형광체.
  8. 제7항에 있어서, 상기 일반식의 각 매개 변수는 (a + e + f) = 3, (b + g) = 8, c = 4, d = 10 중 적어도 어느 하나의 조건을 만족하는 것을 특징으로 하는 산 질화물 형광체.
  9. 제7항에 있어서, 상기 M 원소는 Sr인 것을 특징으로 하는 산 질화물 형광체.
  10. 제7항에 있어서, 상기 A 원소는 Si인 것을 특징으로 하는 산 질화물 형광체.
  11. 제7항에 있어서, 상기 B 원소는 La인 것을 특징으로 하는 산 질화물 형광체.
  12. 제7항에 있어서, 상기 C 원소는 Al인 것을 특징으로 하는 산 질화물 형광체.
  13. 제7항에 있어서, 상기 R 원소가 Eu인 것을 특징으로 하는 산 질화물 형광체.
  14. 제1항 또는 제7항에 있어서, 청색 광에 의하여 여기 된 발광 스펙트럼의 피크 점이 560 nm 이상 및 640 nm 이하인 것을 특징으로 하는 산 질화물 형광체.
  15. 제1항 또는 제7항에 있어서, 청색 광에 의하여 여기 된 발광 스펙트럼의 반치폭이 110 nm 이상 및 130 nm 이하인 것을 특징으로 하는 산 질화물 형광체.
KR1020150037337A 2015-03-18 2015-03-18 산 질화물 형광체 및 이를 이용한 발광 소자 패키지 KR102415649B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150037337A KR102415649B1 (ko) 2015-03-18 2015-03-18 산 질화물 형광체 및 이를 이용한 발광 소자 패키지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150037337A KR102415649B1 (ko) 2015-03-18 2015-03-18 산 질화물 형광체 및 이를 이용한 발광 소자 패키지

Publications (2)

Publication Number Publication Date
KR20160112162A true KR20160112162A (ko) 2016-09-28
KR102415649B1 KR102415649B1 (ko) 2022-07-01

Family

ID=57101892

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150037337A KR102415649B1 (ko) 2015-03-18 2015-03-18 산 질화물 형광체 및 이를 이용한 발광 소자 패키지

Country Status (1)

Country Link
KR (1) KR102415649B1 (ko)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223864A (ja) 2006-02-24 2007-09-06 Matsushita Electric Ind Co Ltd 酸窒化物、酸窒化物蛍光体及びその酸窒化物蛍光体を用いた発光装置
JP2008138156A (ja) 2006-02-02 2008-06-19 Mitsubishi Chemicals Corp 複合酸窒化物蛍光体、それを用いた発光装置、画像表示装置、照明装置及び蛍光体含有組成物、並びに、複合酸窒化物
KR20110031823A (ko) * 2009-09-21 2011-03-29 금호전기주식회사 산질화물 형광체, 그 제조방법 및 발광장치
KR20110050206A (ko) * 2009-11-06 2011-05-13 삼성전자주식회사 옥시나이트라이드 형광체, 그 제조 방법 및 그것을 사용한 백색 발광 소자
JP2011163322A (ja) 2010-02-15 2011-08-25 Nippon Soken Inc 内燃機関の制御装置
CN102994079A (zh) * 2012-12-21 2013-03-27 北京有色金属研究总院 氮氧化物橙-红色荧光物质,包括其的发光膜或发光片及发光器件
KR20130091751A (ko) * 2010-07-22 2013-08-19 제너럴 일렉트릭 캄파니 옥시니트라이드 인광체, 제조 방법 및 발광 기구
KR20150005978A (ko) * 2012-05-31 2015-01-15 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 형광체, 그 제조 방법, 발광 장치 및 화상 표시 장치
JP2016030819A (ja) * 2014-07-30 2016-03-07 三星電子株式会社Samsung Electronics Co.,Ltd. 蛍光体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138156A (ja) 2006-02-02 2008-06-19 Mitsubishi Chemicals Corp 複合酸窒化物蛍光体、それを用いた発光装置、画像表示装置、照明装置及び蛍光体含有組成物、並びに、複合酸窒化物
JP2007223864A (ja) 2006-02-24 2007-09-06 Matsushita Electric Ind Co Ltd 酸窒化物、酸窒化物蛍光体及びその酸窒化物蛍光体を用いた発光装置
KR20110031823A (ko) * 2009-09-21 2011-03-29 금호전기주식회사 산질화물 형광체, 그 제조방법 및 발광장치
KR20110050206A (ko) * 2009-11-06 2011-05-13 삼성전자주식회사 옥시나이트라이드 형광체, 그 제조 방법 및 그것을 사용한 백색 발광 소자
JP2011163322A (ja) 2010-02-15 2011-08-25 Nippon Soken Inc 内燃機関の制御装置
KR20130091751A (ko) * 2010-07-22 2013-08-19 제너럴 일렉트릭 캄파니 옥시니트라이드 인광체, 제조 방법 및 발광 기구
KR20150005978A (ko) * 2012-05-31 2015-01-15 도쿠리츠교세이호징 붓시쯔 자이료 겐큐키코 형광체, 그 제조 방법, 발광 장치 및 화상 표시 장치
CN102994079A (zh) * 2012-12-21 2013-03-27 北京有色金属研究总院 氮氧化物橙-红色荧光物质,包括其的发光膜或发光片及发光器件
JP2016030819A (ja) * 2014-07-30 2016-03-07 三星電子株式会社Samsung Electronics Co.,Ltd. 蛍光体

Also Published As

Publication number Publication date
KR102415649B1 (ko) 2022-07-01

Similar Documents

Publication Publication Date Title
EP1566426B1 (en) Phosphor converted light emitting device
EP2937315B1 (en) Rare earth aluminum garnet-type inorganic oxide, phosphor and light-emitting device using same
US9657222B2 (en) Silicate phosphors
EP2966149B1 (en) Rare earth aluminum garnet-type inorganic oxide, phosphor and light-emitting device using same
US8801969B2 (en) Carbonitride and carbidonitride phosphors and lighting devices using the same
CN111971366A (zh) 近红外发光荧光体、荧光体混合物、发光元件和发光装置
KR101873221B1 (ko) 형광체 및 발광장치
KR101862242B1 (ko) 형광체, 형광체 제조방법 및 발광장치
EP3015530B1 (en) Fluorescent powder and light emitting apparatus comprising same
JP7155507B2 (ja) 蛍光体、発光装置、照明装置及び画像表示装置
CN107163943B (zh) 一种适于近紫外激发的光谱可调控的荧光粉及其制备方法
KR101243774B1 (ko) 산질화물 형광체
KR101525317B1 (ko) 형광체 및 이를 포함하는 발광장치
JP2013144794A (ja) 酸窒化物系蛍光体およびこれを用いた発光装置
KR101856534B1 (ko) 산질화물계 형광체 및 이를 포함하는 발광장치
KR102415649B1 (ko) 산 질화물 형광체 및 이를 이용한 발광 소자 패키지
KR102415650B1 (ko) 산 질화물 형광체 및 이를 이용한 발광 소자 패키지
JP7464959B1 (ja) 発光装置、照明装置、画像表示装置及び車両用表示灯
KR102499057B1 (ko) 황화물계 형광체와 이 형광체를 포함하는 발광장치
WO2024142450A1 (ja) 発光装置、照明装置、画像表示装置及び車両用表示灯
KR101394618B1 (ko) 발광장치에 제공되는 적색 질화물계 형광체
KR20130057157A (ko) 산질화물계 형광체 및 이를 포함하는 발광장치
KR102197804B1 (ko) 타이타늄 불화물계 형광체, 이를 포함하는 장치 및 타이타늄 불화물계 형광체의 제조방법
KR20120072547A (ko) 칼슘-보레이트-실리케이트계 녹색 발광 형광체
KR101687622B1 (ko) 질화물 형광체, 그 제조 방법 및 이를 이용한 발광 소자 패키지

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant