KR20160104047A - 센서 플레이트 임피던스 측정 기능이 있는 프린트헤드 - Google Patents

센서 플레이트 임피던스 측정 기능이 있는 프린트헤드 Download PDF

Info

Publication number
KR20160104047A
KR20160104047A KR1020167020742A KR20167020742A KR20160104047A KR 20160104047 A KR20160104047 A KR 20160104047A KR 1020167020742 A KR1020167020742 A KR 1020167020742A KR 20167020742 A KR20167020742 A KR 20167020742A KR 20160104047 A KR20160104047 A KR 20160104047A
Authority
KR
South Korea
Prior art keywords
fluid
sensor plate
ink
print head
impedance
Prior art date
Application number
KR1020167020742A
Other languages
English (en)
Other versions
KR101947883B1 (ko
Inventor
아담 엘 고제일
스콧 에이 린
데이비드 맥스필드
브룩린 앤드류 반
Original Assignee
휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. filed Critical 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피.
Publication of KR20160104047A publication Critical patent/KR20160104047A/ko
Application granted granted Critical
Publication of KR101947883B1 publication Critical patent/KR101947883B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17566Ink level or ink residue control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14032Structure of the pressure chamber
    • B41J2/1404Geometrical characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14153Structures including a sensor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14354Sensor in each pressure chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17566Ink level or ink residue control
    • B41J2002/17579Measuring electrical impedance for ink level indication

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Ink Jet (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

한 구현예에서, 프린트헤드는 노즐 및 유체 채널을 포함한다. 센서 플레이트가 채널 내에 위치된다. 임피던스 측정 회로가 센서 플레이트에 연결되어 센서 플레이트를 지나 유체를 이동시키는 유체 이동 이벤트 동안 채널 내의 유체의 임피던스를 측정한다.

Description

센서 플레이트 임피던스 측정 기능이 있는 프린트헤드{PRINTHEADS WITH SENSOR PLATE IMPEDANCE MEASUREMENT}
다수의 이유 때문에, 다양한 타입의 잉크젯 프린터용의 잉크 공급 저장소에서는 정확한 잉크 레벨 감지가 바람직하다. 예를 들면, 유체 카트리지에서의 잉크의 정확한 레벨을 감지하는 것 및 대응하는 잉크 잔량의 표시를 제공하는 것은 프린터 유저가 빈 잉크 카트리지의 교체를 준비하는 것을 허용한다. 정확한 잉크 레벨 표시는 또한 잉크 낭비의 방지를 돕는데, 부정확한 잉크 레벨 표시는 종종 잉크를 여전히 포함하는 잉크 카트리지의 너무 이른 교체로 나타나기 때문이다. 또한, 프린팅 시스템은, 부정확한 공급 레벨로부터 유래할 수도 있는 저품질 프린트의 방지를 돕는 소정의 액션을 트리거하기 위해 잉크 레벨 감지를 사용할 수 있다.
저장소, 또는 유체 챔버 내의 유체의 레벨을 결정하는 데 이용가능한 다수의 기술이 존재하지만, 이들 다수의 기술의 정확성 및 비용과 관련된 다양한 도전과제가 남아 있다.
이제, 첨부의 도면을 참조하여, 본 발명의 실시형태가 예로서 설명될 것인데, 도면에서:
도 1은 센서 플레이트의 임피던스를 측정하는 유체 레벨 센서를 구비하는 유체 토출 디바이스(fluid ejection device)를 구현하는 데 적합한 잉크젯 프린팅 시스템의 한 예를 도시한다;
도 2는 실리콘 다이 기판에 형성된 단일의 유체 슬롯을 갖는 예시적인 TIJ 프린트헤드의 일단(one end)의 하부 뷰(bottom view)를 도시한다;
도 3은 예시적인 유체 액적(fluid drop) 생성기의 단면도를 도시한다;
도 4는 유체 이동 이벤트 동안 센서 플레이트 위에서 잉크가 후퇴할 때의 상이한 스테이지에서의 예시적인 MEMS 구조체의 부분 평면도 및 측면도를 도시한다;
도 5는 예시적인 임피던스 측정/센서 회로의 하이 레벨 블록도를 도시한다;
도 6은 센서 플레이트를 통해 전류를 유도하는 전압원을 구비하는 예시적인 임피던스 측정/센서 회로의 하이 레벨 블록도를 도시한다;
도 7은 센서 플레이트 양단에 전압을 유도하는 전류원을 구비하는 예시적인 임피던스 측정/센서 회로의 하이 레벨 블록도를 도시한다;
도 8은 잉크 레벨 센서의 한 예를 블랙 박스 엘리먼트로서 도시한다;
도 9는 입력 자극(input stimulus)의 범위에 걸친 드라이 응답 곡선(dry response curve), 웨트 응답 곡선(wet response curve), 및 차이 곡선의 예를 도시한다;
도 10은 약한 드라이 응답 곡선(weak dry response curve), 약한 웨트 응답 곡선(weak wet response curve), 및 약한 차이 곡선의 예를 도시한다;
도 11은 약한 웨트 및 드라이 응답 곡선에 영향을 끼치는 프로세스 및 환경적 변동의 예를 도시한다;
도 12는 도 11의 웨트-드라이 차이 신호와 중첩하며, 자극에 대해 플롯된 차이를 도시하는데, 프로세스 및 환경에 의해 야기되는 시프트의 예를 예시한다;
도 13은 자극 대신 응답에 기초한 차이 신호 곡선의 예를 도시한다.
상기에서 언급된 바와 같이, 저장소 또는 유체 챔버 내의 유체의 레벨을 결정하는 데 이용가능한 다수의 기술이 존재한다. 예를 들면, 잉크 카트리지 내에서 광빔을 반사시키거나 굴절시켜 전기적 및/또는 유저가 볼 수 있는 잉크 레벨 표시를 생성하기 위해, 프리즘이 사용되고 있다. 배압(backpressure) 표시기는 저장소 안의 유체 레벨을 결정하는 다른 방식이다. 몇몇 프린팅 시스템은, 잉크 레벨을 결정하는 방식으로서, 잉크 프린트 카트리지로부터 토출되는 액적의 수를 카운트한다. 또 다른 기술은, 프린팅 시스템의 레벨 표시기로서, 유체의 전기 전도성을 사용한다. 그러나, 유체 레벨 감지 시스템 및 기술을 향상시키는 것에 관한 도전과제가 남아 있다.
본원에서 논의되는 예시적인 프린트헤드는 종래의 잉크 레벨 감지 기술을 향상시키는 유체/잉크 레벨 센서를 제공한다. 프린트헤드 유체/잉크 레벨 센서는 일반적으로 프린트헤드 MEMS 구조체의 하나 이상의 유체 엘리먼트를 임피던스 측정/센서 회로와 통합한다. MEMS 구조체의 유체 엘리먼트는 테스트 챔버의 한 타입으로서 작용하는 유체 채널을 포함한다. 유체 채널은 잉크 저장소의 잉크의 이용가능성과 대응하는 잉크 레벨을 갖는다. 한 회로는 채널 내에 위치되는 하나 이상의 센서(즉, 센서 플레이트)를 포함하고, 그 회로는 센서 플레이트로부터 그라운드 리턴(ground return)까지의 채널에서 잉크의 임피던스를 측정하는 것에 의해 채널에서의 잉크의 레벨 또는 존재를 측정한다. 잉크의 임피던스가 공기의 임피던스보다 훨씬 더 낮을 것이기 때문에, 임피던스 측정 회로는 잉크가 더 이상 센서와 접촉하지 않는지를 검출한다. 임피던스 측정 회로는 작은 막의 잔여 잉크가 센서 상에 남아 있는지를 또한 검출한다. 임피던스는 잔여 막의 단면이 감소함에 따라 상승한다. 최적의 동작 포인트에서 회로를 바이어싱하기 위해 프린팅 시스템에 대해 바이어싱 알고리즘이 실행된다. 회로가 바이어싱되는 동작 포인트는 드라이 잉크 상태(즉, 잉크가 없는 상태)와 웨트 잉크 상태(즉, 잉크가 존재하는 상태) 사이에서 최대 출력 차이 신호를 가능하게 한다. 상이한 유체 움직임 이벤트, 예컨대 프린트헤드 노즐로부터의 잉크 액적의 토출/분사(firing) 및 잉크를 이용한 인쇄헤드의 프라이밍(priming)은 유체 채널 내에서 잉크에 대해 배압을 가한다. 배압은 잉크를 노즐로부터 후퇴시켜 잉크를 센서 플레이트 위의 채널을 통해 다시 끌어 당길 수 있어서, 플레이트를 공기에 노출시키고 플레이트 임피던스에서 측정가능한 변동을 야기하게 된다. 임피던스 측정/센서 회로는, 예를 들면, 플레이트를 통해 측정가능한 전류를 유도하는 제어식 전압원(controlled voltage source)으로서, 또는 자신의 전류가 플레이트 양단에 전압 응답을 야기하는 제어식 전류원(controlled current source)으로서 구현될 수 있다.
임피던스 측정 회로 내에서 제어식 전압원을 구현하는 경우, 센서 플레이트를 통해 유도되는 전류는 감지 저항기를 통해 측정되어 플레이트가 웨트인지(즉, 유체 채널에 잉크가 존재한다는 것을 나타냄) 또는 드라이인지(즉, 유체 채널에 공기가 존재한다는 것을 나타냄)의 여부를 제공한다. 바이어싱 알고리즘은, 약한 신호 상태에서 웨트 플레이트 상태와 드라이 플레이트 상태 사이에서 센서 플레이트(및 감지 저항기)를 통한 최대 차동 전류 응답(maximum differential current response)을 유도하는 최적의 포인트에서 전압원을 바이어싱하도록 실행한다. 임피던스 측정 회로 내에서 제어식 전류원을 구현하는 경우, 플레이트가 웨트인지 또는 드라이인지의 여부의 유사한 표시를 플레이트 양단에서 유도되는 전압이 제공한다. 바이어싱 알고리즘은, 센서 플레이트에 공급되는 전류의 양이, 약한 신호 상태에서 웨트 플레이트 상태와 드라이 플레이트 상태 사이에서 플레이트 양단에 최대 차동 전압 응답을 유도하는 최적의 포인트에서 전류를 바이어싱하도록 실행된다.
개시된 프린트헤드 및 임피던스 측정/감지 회로는, MMES 구조체(예를 들면, 유체 채널 및 잉크 챔버)에 남아 있는 파편(debris)으로부터의 오염에 대해 높은 내성을 포함하는 이점을 갖는 유체 레벨 센서를 가능하게 한다. 오염에 대한 높은 내성은 웨트 상태와 드라이 상태 사이에 정확한 유체 레벨 표시를 제공하는 것을 돕는다. 현존하는 열 잉크젯 프린트헤드 상에 배치되는 MEMS 구조체 및 회로부의 유체 레벨 센서의 사용 때문에, 유체 레벨 센서의 비용도 또한 제어된다. 임피던스 측정/감지 회로부의 사이즈는, 임피던스 측정/감지 회로부가 몇몇 잉크젯 노즐의 공간에 배치될 수 있도록 하는 그런 것이다.
하나의 예에서, 프린트헤드는 노즐, 유체 채널, 및 유체 채널 내에 위치되는 센서 플레이트를 포함한다. 프린트헤드는 또한, 센서 플레이트에 연결되어 센서 플레이트를 지나 유체를 이동시키는 유체 이동 이벤트 동안 채널 내의 유체의 임피던스를 측정하는 임피던스 측정 회로를 포함한다.
다른 예에서, 프린트헤드는, 노즐을 유체 공급 슬롯과 유체적으로 연결하는 유체 채널을 포함한다. 프린트헤드 상에 통합되는 임피던스 측정 회로는, 센서 플레이트 및 감지 저항기를 통해 전류를 유도하는 제어식 전압원 및 채널 내에 위치되는 센서 플레이트를 포함한다. 임피던스 측정 회로의 샘플 및 유지 증폭기(sample and hold amplifier)는, 잉크 액적 토출 또는 잉크 프라이밍 이벤트와 같은 유체 이동 이벤트 동안 감지 저항기를 통해 유도되는 전류 값의 값을 측정하여 유지한다.
예시적인 실시형태
도 1은 센서 플레이트의 임피던스를 측정하는 유체 레벨 센서를 구비하는 유체 토출 디바이스를 구현하는 데 적합한 잉크젯 프린팅 시스템(100)의 한 예를 예시한다. 이 예에서, 유체 분사 디바이스는 잉크젯 프린트헤드(114)로서 개시된다. 잉크젯 프린팅 시스템(100)은, 잉크젯 프린트헤드 어셈블리(102), 잉크 공급 어셈블리(104), 마운팅 어셈블리(106), 매체 전송 어셈블리(108), 전자 프린터 컨트롤러(110), 및 잉크젯 프린팅 시스템(100)의 다양한 전자 컴포넌트로 전력을 제공하는 적어도 하나의 전원(112)을 포함한다. 잉크젯 프린트헤드 어셈블리(102)는, 프린트 매체(118) 상에 프린트하기 위해 프린트 매체(118)를 향해 복수의 구멍 또는 노즐(116)을 통해 잉크의 액적을 토출하는 적어도 하나의 유체 토출 어셈블리(114)(프린트헤드(114))를 포함한다. 프린트 매체(118)는 임의의 타입의 적절한 시트 또는 롤 재료, 예컨대 종이, 카드 스톡, 슬라이드(transparency), 폴리에스테르, 합판(plywood), 폼 보드(foam board), 직물, 캔버스, 등등일 수 있다. 노즐(116)은, 잉크젯 프린트헤드 어셈블리(102) 및 프린트 매체(118)가 서로에 대해 상대적으로 이동됨에 따라, 노즐(116)로부터의 잉크의 적절히 시퀀스화된 토출에 의해 문자(character), 심볼, 및/또는 다른 그래픽 또는 이미지가 프린트 매체(118) 상에 프린트되도록, 하나 이상의 칼럼 또는 어레이에서 통상적으로 정렬된다.
잉크 공급 어셈블리(104)는 유체 잉크를 프린트헤드 어셈블리(102)에 공급하고 잉크를 저장하기 위한 저장소(120)를 포함한다. 잉크는 저장소(120)로부터 잉크젯 프린트헤드 어셈블리(102)로 흐른다. 잉크 공급 어셈블리(104) 및 잉크젯 프린트헤드 어셈블리(102)는 일방향 잉크 전달 시스템(one-way ink delivery system) 또는 순환식 잉크 전달 시스템(recirculating ink delivery system) 중 어느 하나를 형성할 수 있다. 일방향 잉크 전달 시스템에서는, 잉크젯 프린트헤드 어셈블리(102)로 공급되는 잉크의 실질적으로 모두가 프린팅 동안 소비된다. 그러나, 순환식 잉크 전달 시스템에서는, 프린트헤드 어셈블리(102)로 공급되는 잉크 중 일부만이 프린팅 동안 소비된다. 프린팅 동안 소비되지 않은 잉크는 잉크 공급 어셈블리(104)로 리턴된다.
몇몇 예에서, 잉크 공급 어셈블리(104)는, (예를 들면, 잉크 필터링, 예열, 압력 서지 흡수, 가스배출(degassing)을 위한) 잉크 컨디셔닝 어셈블리(105)를 통해 양압(positive pressure) 하에서 인터페이스 연결부, 예컨대 공급 튜브를 통해 잉크를 잉크젯 프린트헤드 어셈블리(102)로 공급한다. 따라서, 잉크 공급 어셈블리(104)는 또한 하나 이상의 펌프 및 압력 조절기(도시되지 않음)를 포함할 수도 있다. 잉크는 음압(negative pressure) 하에서 프린트헤드 어셈블리(102)로부터 잉크 공급 어셈블리(104)로 흡수된다. 프린트헤드 어셈블리(102)에 대한 유입구와 유출구사이의 압력 차이는 노즐(116)에서 정확한 배압을 달성하도록 선택되며, 보통은, H2O의 "대략 음의 1과 대략 음의 10" 사이의 음압이다. 그러나, (예를 들면, 저장소(120)에 있는) 잉크 공급부가 자신의 수명의 끝에 가까워짐에 따라, 프린팅(즉, 잉크 액적 토출) 또는 프라이밍 동작 동안 가해지는 배압은 증가한다. 증가된 배압은 잉크 메니스커스(meniscus)를 노즐(116)로부터 멀어지게 후퇴시키고 MEMS 구조체의 유체 채널을 통해 잉크 메니스커스를 뒤로 이동시키기에 충분히 강하다. 프린트헤드(114) 상의 잉크 레벨 센서(206)(도 2)는, 이러한 유체 이동 이벤트 동안 정확한 잉크 레벨 표시를 제공하는 임피던스 측정/센서 회로를 포함한다.
몇몇 예에서, 저장소(120)는, 프린팅 프로세스에서 사용되는 다른 적절한 유체, 예컨대 상이한 물감(colors) 또는 잉크, 전처리 조성물, 정착제, 등등을 공급하는 다수의 저장소를 포함할 수 있다. 몇몇 예에서, 저장소의 유체는 프린팅 유체 이외의 유체일 수 있다. 하나의 예에서, 프린트헤드 어셈블리(102) 및 잉크 공급 어셈블리(104)는 잉크젯 카트리지 또는 펜(도시되지 않음)에 함께 하우징된다. 잉크젯 카트리지는 카트리지 바디 내에 자기 자신의 유체 공급부를 포함할 수도 있거나, 또는 잉크젯 카트리지는, 예를 들면, 튜브를 통해 카트리지에 연결되는 유체 저장소(120)와 같은 외부 공급부로부터 유체를 수용할 수도 있다. 자기 자신의 유체 공급부를 포함하는 잉크젯 카트리지는, 일반적으로는, 유체 공급부가 비워지게 되면 폐기될 수 있다.
마운팅 어셈블리(106)는, 매체 전송 어셈블리(108)에 대해 잉크젯 프린트헤드 어셈블리(102)의 위치를 결정하고, 매체 전송 어셈블리(108)는 잉크젯 프린트헤드 어셈블리(102)에 대해 프린트 매체(118)의 위치를 결정한다. 따라서, 잉크젯 프린트헤드 어셈블리(102)와 프린트 매체(118) 사이의 영역에서 노즐(116)에 인접한 프린트 구역(122)이 정의된다. 하나의 예에서, 잉크젯 프린트헤드 어셈블리(102)는 주사 타입 프린트헤드 어셈블리(scanning type printhead assembly)이다. 그러한 것으로서, 마운팅 어셈블리(106)는 프린트 매체(118)를 주사하기 위해 매체 전송 어셈블리(108)에 대해 잉크젯 프린트헤드 어셈블리(102)를 이동시키기 위한 카트리지를 포함한다. 다른 예에서, 잉크젯 프린트헤드 어셈블리(102)는 비주사 타입 프린트헤드 어셈블리(non-scanning type printhead assembly)이다. 그러한 것으로서, 마운팅 어셈블리(106)는, 매체 전송 어셈블리(108)에 대해 규정된 위치에서 잉크젯 프린트헤드 어셈블리(102)를 고정하고, 한편 매체 전송 어셈블리(108)는 잉크젯 프린트헤드 어셈블리(102)에 대해 프린트 매체(118)의 위치를 결정한다.
전자 프린터 컨트롤러(110)는, 통상적으로, 프로세서(CPU)(111), 펌웨어, 소프트웨어, 휘발성 및 불휘발성 메모리 컴포넌트를 비롯한 하나 이상의 메모리 컴포넌트(113), 및 잉크젯 프린트헤드 어셈블리(102), 마운팅 어셈블리(106), 및 매체 전송 어셈블리(108)와 통신하고 이들을 제어하기 위한 다른 프린터 전자장치를 포함한다. 전자 컨트롤러(110)는 호스트 시스템, 예컨대 컴퓨터로부터 데이터(124)를 수신하고 데이터(124)를 메모리(113)에 일시적으로 저장한다. 데이터(124)는, 예를 들면, 프린트될 다큐먼트 및/또는 파일을 나타낸다. 그러한 것으로서, 데이터(124)는 잉크젯 프린팅 시스템(100)에 대한 프린트 작업을 형성하고 하나 이상의 프린트 작업 커맨드 및/또는 커맨드 파라미터를 포함한다.
하나의 구현예에서, 전자 프린터 컨트롤러(110)는 노즐(116)로부터 잉크 액적을 토출하도록 잉크젯 프린트헤드 어셈블리(102)를 제어한다. 따라서, 전자 컨트롤러(110)는, 프린트 매체(118) 상에 문자, 심볼, 및/또는 다른 그래픽 또는 이미지를 형성하는 토출된 잉크 액적의 패턴을 정의한다. 토출된 잉크 액적의 패턴은 데이터(124)로부터의 프린트 작업 커맨드 및/또는 커맨드 파라미터에 의해 결정된다. 하나의 예에서, 전자 컨트롤러(110)는 프로세서(111) 상에서 실행가능한 명령어를 구비하는 바이어싱 알고리즘(126)을 메모리(113)에 포함한다. 바이어싱 알고리즘(126)은 잉크 레벨 센서(206)(도 2)를 제어하도록 그리고 웨트 상태(즉, 잉크가 존재하는 경우)와 드라이 상태(공기가 존재하는 경우) 사이에서 센서(206)로부터 최대 전압 응답 차이를 생성하는 최적의 동작/바이어스 포인트를 결정하도록 실행한다. 전자 컨트롤러(110)는 프로세서(111) 상에서 실행가능한 명령어를 구비하는 측정 모듈(128)을 메모리(113)에 추가적으로 포함한다. 최적의 바이어스 포인트가 결정된 이후, 측정 모듈(128)은, 잉크 레벨 센서(206)를 제어하고 MEMS 구조체의 유체 채널 내에서 드라이 상태가 지속하는 측정된 시간 기간에 기초하여 잉크 레벨을 결정하는 측정 싸이클을 개시하도록 실행한다.
설명된 예에서, 잉크젯 프린팅 시스템(100)은, 본원에서 개시되는 바와 같은 잉크 레벨 센서를 구현하는 데 적합한 열 잉크젯(thermal inkjet; TIJ) 프린트헤드(114)를 갖는 드랍 온 디맨드(drop-on-demand) 열 잉크젯 프린팅 시스템이다. 하나의 구현예에서, 잉크젯 프린트헤드 어셈블리(102)는 단일의 TIJ 프린트헤드(114)를 포함한다. 다른 구현예에서, 잉크젯 프린트헤드 어셈블리(102)는 TIJ 프린트헤드(114)의 와이드 어레이를 포함한다. TIJ 프린트헤드와 관련된 제조 프로세스가, 개시된 잉크 레벨 센서의 통합에 잘 적합되지만, 압전방식 프린트헤드(piezoelectric printhead)와 같은 다른 프린트헤드 타입도 또한 이러한 잉크 레벨 센서를 구현할 수 있다. 따라서, 개시된 잉크 레벨 센서는 TIJ 프린트 헤드(114) 내에서의 구현에 제한되는 것이 아니라, 압전방식 프린트헤드와 같은 다른 유체 토출 디바이스 내에서의 사용에도 또한 적합하다.
도 2는 실리콘 다이 기판(202)에 형성된 단일의 유체 공급 슬롯(200)을 갖는 예시적인 TIJ 프린트헤드(114)의 일단(one end)의 하부 뷰를 도시한다. 프린트헤드(114)가 단일의 유체 슬롯(200)을 가지고 도시되지만, 본원에서 논의되는 원리는 단지 하나의 슬롯(200)을 갖는 프린트헤드에 대한 적용으로 제한되지 않는다. 대신, 두 개 이상의 유체 슬롯을 갖는 프린트헤드, 또는 유체 채널 및 챔버로 잉크를 가져가기 위해 다양한 사이즈의 홀을 사용하는 헤드와 같은 다른 프린트헤드 구성도 또한 가능하다. 유체 슬롯(200)은, 유체 공급부, 예컨대 유체 저장소(120)와 유체 연통하는 기판(202)에 형성되는 가늘고 긴 슬롯(elongated slot)이다. 유체 슬롯(200)은, 슬롯의 양 변을 따라 정렬된, 유체 챔버(204) 및 노즐(116)을 포함하는 유체 액적 생성기(300)를 구비한다. 기판(202)은, 도 3과 관련하여 하기에서 논의되는 바와 같이, 유체 챔버(204)를 구비하는 챔버층 및 노즐(116)이 안에 형성된 노즐층 밑에 놓인다. 그러나, 예시의 목적을 때문에, 하부의 기판(202)을 도시하기 위해, 챔버층 및 노즐층은 도 2에서 투명한 것으로 간주된다. 따라서, 도 2에서의 챔버(204) 및 노즐(116)은 점선을 사용하여 예시된다.
슬롯(200)의 양변을 따라 정렬되는 액적 생성기(300) 외에, TIJ 프린트헤드(114)는 하나 이상의 유체(잉크) 레벨 센서(206)를 포함한다. 유체 레벨 센서(206)는, 일반적으로, 임피던스 측정/센서 회로(208) 및 프린트헤드(114) 상의 MEMS 구조체의 하나 이상의 엘리먼트를 통합한다. MEMS 구조체는, 예를 들면, 유체 슬롯(200), 유체 채널(210), 유체 챔버(204) 및 노즐(116)을 포함한다.
임피던스 측정/센서 회로(208)는 유체 채널(210) 내에 위치되는, 예컨대 유체 채널(210)의 벽 상에 또는 플로어 상에 위치되는 센서 플레이트(212)를 포함한다. 임피던스 측정/센서 회로(208)는 또한, 임피던스를 측정하는 감지용 컴포넌트 및 센서 플레이트(212)에서 임피던스를 유도하는 소스 컴포넌트(504)(도 5)를 일반적으로 포함하는 다른 회로부(214)를 통합한다. 상이한 구현예에서, 소스 컴포넌트는 전압원 및 전류원을 포함할 수 있다. 감지용 컴포넌트는, 예를 들면, 버퍼 증폭기, 샘플 및 유지 증폭기, DAC(디지털-아날로그 변환기), ADC(아날로그-디지털 변환기), 및 다른 측정 회로부를 포함할 수 있다. 센서 플레이트(212)는, 예를 들면, 탄탈로 형성된 금속 플레이트이다. 다른 회로부(214) 중 일부, 예컨대 ADC 및 측정 회로부는 모두 기판(202) 상의 하나의 위치에 있는 것이 아니라, 대신, 기판(202) 상에서 상이한 위치에 분산될 수도 있다. 유체 센서(206) 및 임피던스 측정/센서 회로(208)는 도 5 내지 도 13과 관련하여 하기에서 더 상세히 논의된다.
도 3은 예시적인 유체 액적 생성기(300)의 단면도를 도시한다. 각각의 액적 생성기(300)는 노즐(116), 유체 챔버(204), 및 유체 챔버(204) 내에 배치되는 분사 엘리먼트(302)를 포함한다. 노즐(116)은 노즐층(310)에 형성되고 유체 슬롯(200)의 양변을 따라 노즐 칼럼을 형성하도록 일반적으로 정렬된다. 분사 엘리먼트(302)는 실리콘 기판(202)의 상면 상의 절연층(304)(예를 들면, 포스포실리게이트 글래스(phosphosilicate glass; PSG)) 상에서 금속 플레이트(예를 들면, 탄탈 알루미늄(tantalum-aluminum; TaAI))로 형성되는 열 저항기이다. 분사 엘리먼트(302) 위의 패시베이션층(306)은 챔버(204)의 잉크로부터 분사 엘리먼트를 보호하고 붕괴하는 증기 기포의 충격을 흡수하는 기계적 패시베이션 또는 보호성 캐비테이션(cavitation) 배리어 구조체로서 작용한다. 챔버층(308)은, 노즐층(310)으로부터 기판(202)을 분리하는 챔버(204) 및 벽을 구비한다.
프린팅 동안, 유체 액적은 챔버(204)로부터 대응하는 노즐(116)을 통해 토출되고, 그 다음, 챔버(204)는 유체 순환을 통해 유체 슬롯(200)으로부터 재충전된다. 더 구체적으로는, 전류가 저항기 분사 엘리먼트(302)를 통과하여, 엘리먼트의 급격한 가열로 나타나게 된다. 분사 엘리먼트(302)를 피복하는 패시베이션층(306)에 인접하는 유체의 박층(thin layer)은 과열되어 기화하고, 대응하는 분사 챔버(204) 내에서 증기 기포를 생성하게 된다. 급격히 팽창하는 증기 기포는 유체 액적이 대응하는 노즐(116)을 빠져나가게 강제한다. 가열 엘리먼트가 냉각되면, 증기 기포는 급격히 붕괴하고, 유체 슬롯(200)으로부터 분사 챔버(204) 안으로 더 많은 유체를 끌어 당겨 노즐(116)로부터의 다른 액적을 토출할 준비를 한다.
도 4는, 유체 이동 이벤트 동안, 예컨대 잉크 액적 토출 또는 잉크 프라이밍 동작 동안, 잉크가 센서 플레이트 위에서 후퇴될 때의 상이한 스테이지에서의 예시적인 MEMS 구조체의 부분적인 평면도 및 측면도를 도시한다. 상기에서 언급된 바와 같이, 유체 레벨 센서(206)는, 일반적으로, 유체 채널(210), 유체 챔버(204) 및 전용 센서 노즐(116)과 같은 MEMS 구조체의 엘리먼트를 포함한다. 유체 레벨 센서(206)는 또한, 유체 채널(210) 내에 위치되는, 예컨대 유체 채널(210)의 플로어 상에 또는 벽 상에 위치되는 센서 플레이트(212)를 통합하는 임피던스 측정/센서 회로(208)를 포함한다. 임피던스 측정/센서 회로(208)는, 잉크 액적 토출 또는 잉크 프라이밍 동작과 같은 유체 이동 이벤트 동안 유체 채널 내에서 유체(잉크)가 존재하거나 또는 없는 정도를 검출하도록 동작한다. 저장소(120) 내의 잉크 공급부가 자신의 수명의 끝에 가까워짐에 따라, 프린팅 또는 프라이밍 동작 동안 가해지는 배압은 잉크 메니스커스를 노즐(116)로부터 유체 채널(210)을 통해 뒤로 후퇴시켜 센서 플레이트(212)를 공기에 노출시키기에 충분히 강하게 된다. 도 4의 (a)는, 잉크(400)가 챔버(204)를 채우고 있고 노즐(116) 내에서 잉크 메니스커스(402)를 형성하는 정상 상태를 도시한다. 이 상태에서, 센서 플레이트(212)는, 유체 채널(210)을 채우는 잉크로 센서 플레이트가 피복되기 때문에 웨트 상태에 있다. 프라이밍 동작 동안, 또는 정상적인 잉크 액적 토출 프린팅 동작 동안, 도 4의 (b)에서 도시되는 바와 같이, 잉크 메니스커스(402)를 노즐로부터 후퇴시키고 채널 내에서 잉크를 뒤로 당기는 배압이 유체 채널(210)의 잉크에 대해 가해진다. 저장소(120) 내의 잉크 공급부가 자신의 수명의 끝에 가까워짐에 따라, 이 배압은 증가하고, 잉크가 채널(210) 및 노즐(116) 안으로 다시 흐르는데 걸리는 시간도 증가한다. 도 4의 (c)에서 도시되는 바와 같이, 증가된 배압은 잉크 메니스커스를 채널(210) 안으로 충분히 멀리 뒤로 당기고 그 결과 센서 플레이트(212)는 노즐(116)을 통해 흡수한 공기에 노출된다. 저장소 안에 남아 있는 잉크의 양 및 결과로서 생기는 배압에 따라, 센서 플레이트(212)는 노즐(116)을 통해 안으로 흡수되고 있는 공기에 더 많이 또는 더 적게 노출된다. 하기에서 논의되는 바와 같이, 센서 회로(208)는 잉크 공급부의 수명의 끝 가까이에서 정확한 잉크 레벨을 결정하기 위해 노출된 센서 플레이트(212)를 사용한다.
도 5는 예시적인 임피던스 측정/센서 회로(208)의 하이 레벨 블록도를 도시한다. 상기에서 언급된 바와 같이, 임피던스 측정/센서 회로(208)는, 유체 채널(210) 내에 위치된 센서 플레이트(212), 및 센서 플레이트(212) 양단에 임피던스를 유도하는 소스 컴포넌트(504)를 포함한다. 하나의 예에서, 도 6에서 도시되는 바와 같이, 소스 컴포넌트(504)는, 센서 플레이트(212)에 연결되어 플레이트(212) 및 감지 저항기(600)를 통해 전류를 유도하는 전압원(504)을 포함한다. 이 예에서는, 센서 플레이트(212)에서의 임피던스를 결정하기 위해, 감지 저항기(600)를 통과하는 전류가 측정된다. 다른 예에서는, 도 7에서 도시되는 바와 같이, 소스 컴포넌트(504)는, 센서 플레이트(212)에 연결되어 센서 플레이트(212) 양단에 전압을 유도하는 전류원(504)을 포함한다. 이 예에서는, 센서 플레이트(212)에서의 임피던스를 결정하기 위해, 센서 플레이트(212) 양단의 전압이 측정된다.
센서 플레이트(212) 및 소스 컴포넌트(504) 외에, 임피던스 측정/센서 회로(208)는 다른 컴포넌트 예컨대 DAC(디지털-아날로그 변환기(500), 입력 S&H(sample and hold element; 샘플 및 유지 엘리먼트)(502), 스위치(506), 출력 S&H(508), ADC(아날로그-디지털 변환기)(510), 상태 머신(512), 클록(514), 및 레지스터(0xD0~0xD6)(516)와 같은 다수의 레지스터를 포함한다. 임피던스 측정/센서 회로(208)의 동작은, 스위치(506)가 센서 플레이트(212)를 단락하도록 닫힌 동안, DAC(500) 및 입력 S&H(502)로 소스 컴포넌트(504)를 구성하는 것으로(즉, 바이어싱하는 것으로) 시작한다. 하기에서 더 상세히 논의되는 바이어싱 알고리즘(126)은, DAC(500)로부터 최적의 바이어스 전압을 산출하는, 레지스터(0xD2)에 인가할 자극(입력 코드)를 결정하도록 컨트롤러(110) 상에서 실행되는데, 이 최적의 바이어스 전압을 이용하여 소스 컴포넌트(504)를 바이어싱한다.
소소 컴포넌트(504)가 바이어싱된 이후, 측정 모듈(128)은 컨트롤러(110) 상에서 실행되어 유체 레벨 측정 싸이클을 개시하는데, 이 싸이클 동안 측정 모듈(128)은 상태 머신(512)을 통해 임피던스 측정 회로(208)를 제어한다. 측정 시간에, 상태 머신(512)은, 회로를 준비하고, 측정치를 취하고, 회로를 아이들 상태로 되돌리는 여러 스테이지를 통해 회로(208)를 답습시키는 것에 의해 측정치를 조화시킨다. 제1 단계에서, 상태 머신(512)은, 예를 들면, 라인(518) 상에 신호를 배치하는 것에 의해, 유체 이동 이벤트를 개시한다. 유체 이동 이벤트는 노즐(116)로부터 잉크를 뿜어내거나 또는 토출하여 노즐 및 잉크의 챔버(204)를 깨끗이 하고, 유체 채널(210)에서 배압 스파이크(backpressure spike)를 생성한다. 그 다음, 상태 머신(512)은 지연 기간을 제공한다. 지연 기간은 가변적이지만, 통상적으로는, 2 내지 32 마이크로초 정도 지속한다.
지연 기간 이후, 제1 회로 준비 단계는 스위치(506)를 개방한다. 도 6을 참조하면, 스위치(506)가 개방되면, 전압원(504)은 센서 플레이트(212)에 연결된다. 인가된 전압원(504)은 센서 플레이트(212)를 덮는 잉크의 임피던스에 따라 플레이트(212)를 통해 그리고 감지 저항기(600)를 통해 전류를 유도한다. 더 구체적으로는, 플레이트(212)에 인가되는 플레이트(212) 양단의 전압(Vout)은 다음의 관계에 기초한다:
Figure pct00001
여기서 Vdd는 공급 전압이고 ID는 DAC(500)로부터의 바이어스 전압(Vgs)(즉, 602의 게이트 소스 전압)에 의해 제어되는 트랜지스터의 드레인을 통과하는 전류이다. 회로(208)의 전압은 도 5 내지 도 7에서 접지 심볼(520)에서 도시된 바와 같이 접지를 기준으로 한다. 도 7을 참조하면, 스위치(506)가 개방되면, 전류원(504)은, 전류원(504)으로부터 플레이트(212)로 전류를 인가하는 센서 플레이트(212)에 연결된다. 플레이트의 임피던스로 인가되는 전류 및 (잉크가 존재하는 경우의) 플레이트 상의 잉크의, 또는 (잉크가 존재하지 않는 경우의) 공기의 관련 전기화학적 특성(electrochemistry)은 플레이트 및 그 화학적 시스템 양단에 전압 응답을 유도한다. 유체 채널(210)이 완전히 드라이이면, 임피던스는 지배적으로 용량성일 것이다. 유체가 존재하면, 임피던스는 실수 및 허수의 시변 성분 양자일 것이다. 전류원(504)으로부터 공급되는 전류는 다음의 관계에 기초한다:
Figure pct00002
여기서 Vgs는 DAC(500)로부터의 바이어스 전압이다. Vgs는 게이트 소스 전압이고, Vt는, DAC 전압이 인가되는 전류원(504)의 전류 생성 트랜지스터의 게이트 임계 전압이다.
제2 회로 준비 단계에서, 상태 머신(512)은 스위치(506)를 개방하고 제2 지연 기간을 제공하는데, 제2 지연 기간도 역시 2 내지 32 마이크로초 정도 지속한다. 제2 지연 이후, 상태 머신(512)은 출력 S&H 증폭기(508)로 하여금 아날로그 응답을 샘플링하게(즉, 측정하게) 한다. 도 6을 참조하면, 출력 S&H 증폭기(508)는 감지 저항기(Rs)(600)를 통해 흐르는 전류의 값을 샘플링하고 그 값을 유지한다. 도 7을 참조하면, 출력 S&H(508)는 센서 플레이트(212)에서 전압의 값을 샘플링하고 그 값을 유지한다. 양 예에서, 상태 머신(512)은, 그 다음, 샘플링된 아날로그 응답 값을 레지스터(0xD6)에 저장되는 디지털 값으로 변환하는 ADC(510)를 통해 변환을 개시한다. 레지스터는, 측정 모듈(128)이 레지스터를 판독할 때까지 디지털 응답 값을 유지한다. 그 다음, 회로(208)는, 다른 측정 싸이클이 개시될 때까지 아이들 모드에 놓이게 된다.
측정 모듈(128)은 디지털화된 응답 값을 Rdetect 임계치에 비교하여, 센서 플레이트가 드라이 상태에 있는지를 결정한다. 측정된 응답이 Rdetect 임계치를 초과하면, 드라이 상태가 존재한다. 그렇지 않다면, 웨트 상태가 존재한다. (Rdetect 임계치의 계산은 하기에서 논의된다). 드라이 상태를 검출하는 것은, 센서 플레이트(212)를 공기에 노출시키도록 유체 채널(210)에서 잉크를 충분히 멀리 당겼다는 것을 나타낸다. 추가적인 측정 싸이클을 통해, 드라이 상태가 지속하는 시간의 길이(즉, 센서 플레이트가 공기에 노출되는 동안)가 측정되어 드라이 상태를 생성하는 배압의 크기를 보간하기 위해 사용된다. 잉크 공급부의 수명의 끝을 향해 배압이 예측가능하게 증가하기 때문에, 잉크 레벨의 정확한 결정이 이루어질 수 있다.
상기에서 언급된 바와 같이, 바이어싱 알고리즘(126)은, DAC(500)로부터 최적의 바이어스 전압을 결정하도록 컨트롤러(110) 상에서 실행되는데, 이 최적의 바이어스 전압을 이용하여 소스 컴포넌트(504)를 바이어싱한다. 바이어싱 알고리즘(126)은, 바이어스 전압을 결정하는 동안, 유체 레벨 센서(206)(즉, 임피던스 측정 회로(208) 및 MEMS 구조체)를 제어한다. 바이어싱 알고리즘(126)의 관점으로부터, 도 8에서 도시되는 바와 같이, 유체 레벨 센서(206)는, 입력 및 자극을 수신하고 출력 및 응답을 제공하는 블랙 박스 엘리먼트이다. 입력 전압은, 임피던스 측정 회로(208)의 레지스터(0xD2)에 인가되는 0-255(8비트)의 번호(입력 코드)를 사용하여 설정된다. 레지스터(0xD2) 에서의 입력 번호 또는 코드는, DAC(500)에 인가되는 자극이고, DAC로부터의 아날로그 출력 전압은 10mV에 의해 승산된 자극이다. 따라서, 소스 컴포넌트(504)를 바이어싱하는 데 이용가능한 DAC(500)로부터의 아날로그 바이어스 전압의 범위는 0-2.55V이다. 임피던스 측정 회로(208)로부터의 출력 또는 응답은 8비트 레지스터(0xD6)에 저장된 디지털 코드이다.
바이어싱 알고리즘은, 센서 플레이트(212)가 웨트인 경우(즉, 잉크가 MEMS 유체 채널(210)에 존재하고 플레이트를 피복하는 경우)와 센서 플레이트(212)가 드라이인 경우(즉, 잉크가 유체 채널(210)로부터 당겨졌고 공기가 플레이트를 둘러싸는 경우) 사이에서 최적의 출력 델타 신호(예를 들면, 최대 응답 전압)를 제공하기 위해 입력 코드와 출력 코드 사이에서 임피던스 측정 회로(208)의 자극-응답 관계를 사용한다. 도 9에서 도시되는 바와 같이, 자극(입력 코드)이 자신의 최소치로부터 자신의 최대 프리차지 전압 카운트까지(즉, 0-255; Smin 내지 Smax) 스윕되면, 응답(출력 코드)은, 세 개의 별개의 영역: 오프, 액티브 및 포화를 통해 진행하는 응답 파형을 생성한다. 세 개의 영역은, 함께, 늘어진(lazy) "S"자의 형상을 형성한다. 도 9는, 드라이 응답 곡선(900), 웨트 응답 곡선(902), 및 입력 자극의 범위에 걸친 웨트 응답 곡선과 드라이 응답 곡선 사이의 차이를 나타내는 차이 곡선(904)을 도시한다. 도 9의 응답 곡선은 응답이 강한 바람직한 상태를 묘사한다. 일반적으로, 가장 큰 신호 델타(즉, 가장 큰 차이 응답 곡선)는, 센서 플레이트(212)가 채널 전체의 잉크에 의해 완전히 웨트인 경우와 센서 플레이트(212)가 채널의 공기와 완전히 접촉하여 완전히 드라이인 경우 사이에서 발생한다.
유체/잉크의 유무 사이에서(즉, 웨트 상태와 드라이 상태 사이에서) 응답 곡선이 변하지만, 변화량은, MEMS 구조체에 오염, 예컨대 도전성 파편 또는 잉크 잔류물이 거의 또는 전혀 없는 경우에 더 강하다. 따라서, 도 9의 강한 응답 곡선에 의해 도시되는 바와 같이, 응답은 초기에는 강하다. 그러나, 시간에 걸쳐, MEMS 구조체는 유체 채널 및 챔버의 잉크 잔류물로 오염되게 될 수도 있고, 드라이 응답은 특히 저하될 것이고 웨트 응답에 더 가깝게 될 것이다. 오염은 드라이 경우에서 드라이 응답을 약하게 만드는 도전성을 야기하고, 이것은 드라이 응답과 웨트 응답 사이에 약한 차이로 나타나게 된다. 도 10은 MEMS 구조체에 오염물과 같은 바람직하지 않은 상태가 응답을 저하시킨 경우에서의 약한 드라이(1000), 웨트(1002), 및 차이(1004) 응답 곡선의 예를 도시한다. 도 10에서 알 수 있는 바와 같이, 약한 웨트 응답 곡선과 약한 드라이 응답 곡선 사이의 차이는 도 9의 강한 응답 곡선에서 도시된 차이보다 훨씬 더 작다. 도 9에서 도시된 강한 차이 곡선(904)은, 웨트 상태와 드라이 상태 사이에서 즉각 평가될 수 있는 강한 차이를 제공한다. 그러나, 약한 응답 상태 하에서, 웨트 상태와 드라이 상태 사이의 차이를 찾는 것은, 약한 차이 때문에 더욱 어렵다. 바이어싱 알고리즘(126)은, 유체/잉크 레벨 측정치가 웨트 상태와 드라이 상태 사이에서 최대 응답을 제공할, 응답 차이 곡선(1004)(즉, 도 10에 도시됨)의 최적의 차이 포인트를 찾는다.
도 11(a.1, a.2, a.3, b.1, b.2, b.3, c.1, c.2, c.3)은 약한 드라이 응답 곡선(1100) 및 약한 웨트 응답 곡선(1102)과 프로세스 및 환경적 조건 예컨대 제조 프로세스, 공급 전압 및 온도(process, supply voltage and temperature; PV&T)에서의 차이에 응답한 그들의 변동의 예를 도시한다. 도 11의 (a.1), (a.2) 및 (a.3)은, 각각, 최악의(W) 경우의 프로세싱 조건, 5.5 볼트 전원, 및 15도씨 온도(도면에서 "W;5.5V;15C"로 참조됨)에서의, 입력 자극 범위(1X, 10X 및 100X)에 걸친 예시적인 곡선을 도시한다. 도 11의 (b.1), (b.2) 및 (b.3)은, 각각, 최상의(B) 경우의 프로세싱 조건, 4.5 볼트 전원, 및 110도씨 온도(도면에서 "B;4.5V;110C"로 참조됨)에서의, 입력 자극 범위(1X, 10X 및 100X)에 걸친 예시적인 곡선을 도시한다. 도 11의 (c.1), (c.2) 및 (c.3)은, 각각, 통상적인(T) 경우의 프로세싱 조건, 5.0 볼트 전원, 및 60도씨 온도(도면에서 "T;5.0V;60C"로 참조됨)에서의, 입력 자극 범위(1X, 10X 및 100X)에 걸친 예시적인 곡선을 도시한다. 몇몇 경우에서, 응답 곡선의 활성 영역은 PV&T에서의 변동으로 인해 경사가 변한다. 다른 경우에서, 응답 곡선의 활성 영역은 그들의 배치를 시프트하는데, 오프 영역에서 더 앞서거나 또는 더 늦게 시작한다. 도 11의 (a), (b) 및 (c)에서의 드라이 응답 곡선 및 웨트 응답 곡선은, PV&T 조건을 변경하는 것으로부터 유래할 수 있는 경사 및 시작 포인트에서의 이러한 변동을 도시한다. 도 11의 (a), (b) 및 (c)에서의 차이 곡선(1104)은, 입력 자극의 범위에 걸친 그리고 PV&T 조건에서의 변동에 걸친 웨트 응답 곡선과 드라이 응답 곡선 사이의 차이를 도시한다.
도 12는 자극에 대해 플롯된 드라인 응답과 웨트 응답 사이의 차이의 예를 도시한다. 도 11에서 도시된 차이 곡선(1104)이 오버레이되어 도 12를 형성한다. 의도는, 차이 곡선의 피크의 높이, 곡선의 소멸과 어프로치의 경사, 및 곡선을 따른 자극 축(stimulus axis)의 중심의 배치를 예시하는 것인데, 이들 모두는 PV&T에 걸쳐 변한다.
도 13은, 본 개시의 한 실시형태에 따른, 웨트 응답 곡선에 대한 복합 차이 곡선(1300)의 한 예를 도시한다. 차이 곡선의 기초를 자극 대신 응답으로 전환하는 것에 의해, PV&T 차이로부터의 분리의 척도가 달성된다. 바이어싱 알고리즘(126)은, 웨트 상태와 드라이 상태 사이에서 최대 잉크 레벨 측정 응답을 제공하는 최적의 차이 포인트가 약한 차이 경우에 위치되는 솔루션을 찾는다. 따라서, 솔루션은 PV&T에서의 이러한 변동에 내성이 있어야 할 뿐만 아니라, 가능한 한 큰 마진을 제공해야 한다. 따라서, 도 13에서 도시되는 바와 같이, 큰 양의 PV&T 변화는, 입력 자극의 함수로서 대신, 웨트 응답 곡선(1102)의 함수로서 차이 곡선(1104)을 관찰하는 것에 의해 제거될 수 있다. 이것은, 프로세스, 전압 및 온도(PV&T)에 걸친 주어진 자극에 대한 출력 값에서 큰 변동이 존재하기 때문이다. 그러나, 드라이 상태(잉크 없음)와 웨트 상태(잉크 존재) 사이의 차이는 PV&T에 걸쳐 그만큼 변하지 않으며, 따라서 이 차이를 사용하는 것은 PV&T 유도 변동의 많은 부분을 공제한다. 차이 곡선의 합성은, 모든 프로세스 및 환경(PV&T) 조건에 걸쳐 결정되는 많은 차이 곡선을 중첩시키는 것에 의해 형성되는 영역을 포괄한다. 따라서, 복합 차이 위쪽의 영역은, PV&T 조건에 독립적인 실행가능한 신호 응답 영역을 나타낸다. 복합 차이의 중심은, 드라이 상태와 웨트 상태 사이에서 출력 응답 값(예를 들면, 전압 응답)을 최대화하는 피크 응답(Rpeak)을 달성하기 위해 잉크 레벨 측정이 이루어져야 하는 위치를 나타낸다. Rpeak 응답의 위치는, 최소 및 최대 응답(Rmin 및 Rmax) 사이의 거리의 비율로서 표현된다. 따라서, 복합 차이 곡선(1300) 상의 Rpeak의 위치는 RPd%로 칭해진다. 또한, 측정 싸이클 동안, 위치 RPd%에서의 복합 차이 곡선(1300)의 피크의 높이는, 드라이 상태가 존재하는 경우에 예상되는 최소 차이를 (Rmin과 Rmax 사이의 거리의 비율로서) 나타내며, Dmin%로 칭해질 수 있다.
바이어싱 알고리즘(126)은, RPd%에서 복합 차이 곡선(1300) 상에 위치되는 피크 응답(Rpeak)을 생성하는 입력 자극 값(Speak)을 결정한다. 알고리즘은 레지스터(0xD2)에서 최소 자극(Smin)을 입력하고 레지스터(0xD6)에서 응답을 샘플링한다. 알고리즘은 또한 레지스터(0xD2)에서 최대 자극(Smax)을 입력하고 레지스터(0xD6)에서 응답을 샘플링한다. 레지스터(0xD6)에서의 이들 두 값은, 각각, 응답의 극값인 Rmin 및 Rmax이다. 그 다음, 피크 응답 값(Rpeak)은 다음과 같이 계산될 수 있다:
Figure pct00003
그 다음, 대응하는 자극 값(Speak)은 다양한 방식에 의해 발견될 수 있다. 자극은, 예를 들면, Smin에서부터 Smax까지 스윕될 수 있고, 응답이 Rpeak에 도달하는 경우 정지한다. 다른 방식은 바이너리 검색을 사용하는 것이다. 피크 응답(Rpeak)을 생성하는 자극 값(Speak)은, 드라이 플레이트 상태와 웨트 플레이트 상태 사이에서 센서 플레이트(212)에 걸쳐 최대 응답이 측정될 수 있도록, 임피던스 측정 회로(208)의 소스 컴포넌트(504)를 최적으로 바이어싱하기 위해 레지스터(0xD2)에 적용되는 입력 코드이다.
상기에서 언급된 바와 같이, 측정 싸이클에서, 측정 모듈(128)은, 플레이트에 걸쳐 측정된 응답 값을 Rdetect 임계치에 비교하는 것에 의해, 센서 플레이트(212)가 드라이 상태에 있는지를 결정할 수 있다. 측정된 응답이 Rdetect 임계치를 초과하면, 드라이 상태가 존재한다. 그렇지 않다면, 웨트 상태가 존재한다. Rdetect 임계치는 다음 식에 의해 계산될 수 있다:
Figure pct00004
응답 전압에서 예상되는 최소 차이(Dmin%)는, 드라이 상태 경우와 웨트 상태 경우 사이에서 노이즈 마진을 공유하도록 분할된다(즉, 2로 나누어진다).

Claims (15)

  1. 노즐과,
    유체 채널과,
    상기 채널 내에 위치된 센서 플레이트와,
    상기 센서 플레이트에 연결되어, 상기 센서 플레이트를 지나 유체를 이동시키는 유체 이동 이벤트 동안 상기 채널 내의 유체의 임피던스를 측정하는 임피던스 측정 회로를 포함하는
    프린트헤드.
  2. 제 1 항에 있어서,
    상기 임피던스 측정 회로는, 상기 센서 플레이트를 통해 전류를 유도하는 제어식 전압원(controlled voltage source) 및 상기 센서 플레이트 양단에 전압을 유도하는 제어식 전류원(controlled current source)으로 구성되는 그룹으로부터 선택되는
    프린트헤드.
  3. 제 2 항에 있어서,
    상기 임피던스 측정 회로는,
    입력 레지스터와,
    상기 입력 레지스터로부터 입력 코드를 수신하고 상기 전압원을 바이어싱하는 바이어스 전압을 제공하는 디지털-아날로그 변환기(digital to analog converter; DAC)를 더 포함하는
    프린트헤드.
  4. 제 3 항에 있어서,
    상기 임피던스 측정 회로는 상기 DAC로부터 상기 바이어스 전압을 샘플링하고 상기 바이어스 전압을 상기 전압원으로 인가하는 입력 샘플 및 유지부를 더 포함하는
    프린트헤드.
  5. 제 3 항에 있어서,
    상기 임피던스 측정 회로는, 상기 전압원의 바이어싱 동안 닫힌 위치에서 상기 센서 플레이트를 단락시키고, 열린 위치에서 상기 센서 플레이트로 상기 전압원으로부터의 전압을 인가하는 스위치를 더 포함하는
    프린트헤드.
  6. 제 4 항에 있어서,
    상기 임피던스 측정 회로는,
    감지 저항기와,
    상기 감지 저항기를 통해 응답 전류를 측정하는 증폭기와,
    상기 감지 저항기를 통해 상기 응답 전류를 샘플링하는 출력 샘플 및 유지부를 더 포함하는
    프린트헤드.
  7. 제 6 항에 있어서,
    상기 임피던스 측정 회로는 상기 응답 전류를 디지털 값으로 변환하는 아날로그-디지털 변환기(analog to digital converter; ADC)를 더 포함하는
    프린트헤드.
  8. 제 7 항에 있어서,
    상기 임피던스 측정 회로는 상기 디지털 값을 저장하는 출력 레지스터를 더 포함하는
    프린트헤드.
  9. 제 1 항에 있어서,
    상기 임피던스 측정 회로는 상기 유체 이동 이벤트를 개시하는 상태 머신을 더 포함하는
    프린트헤드.
  10. 제 1 항에 있어서,
    상기 유체 이동 이벤트는 상기 노즐을 통해 유체를 토출하는 분사 이벤트(firing event) 및 상기 유체 채널을 통해 유체를 푸시하는 프라이밍(priming) 이벤트로 구성되는 그룹으로부터 선택되는
    프린트헤드.
  11. 노즐을 유체 슬롯과 유체적으로 연결시키는 유체 채널과,
    임피던스 측정 회로를 포함하고,
    상기 임피던스 측정 회로는,
    상기 채널 내에 위치된 센서 플레이트와,
    상기 센서 플레이트 및 감지 저항기를 통해 전류를 유도하는 제어식 전압원과,
    유체 이동 이벤트 동안 상기 감지 저항기를 통해 상기 전류의 전류 값을 측정하여 유지하는 샘플 및 유지 증폭기를 포함하는
    프린트헤드.
  12. 제 11 항에 있어서,
    상기 임피던스 측정 회로는,
    상기 전류 값을 디지털 값으로 변환하는 ADC와,
    상기 디지털 값을 저장하는 출력 레지스터를 더 포함하는
    프린트헤드.
  13. 제 11 항에 있어서,
    상기 임피던스 측정 회로는,
    입력 코드를 제공하는 입력 레지스터와,
    상기 입력 코드를 바이어스 전압으로 변환하는 DAC와,
    상기 DAC로부터 상기 바이어스 전압을 샘플링하고 상기 샘플링된 바이어스 전압을 상기 제어식 전압원으로 인가하는 입력 샘플 및 유지 증폭기를 더 포함하는
    프린트헤드.
  14. 제 13 항에 있어서,
    상기 임피던스 측정 회로는, 상기 전압원의 바이어싱 동안 닫힌 위치에서 상기 센서 플레이트를 단락시키고, 열린 위치에서 상기 센서 플레이트로 상기 전압원으로부터의 전압을 인가하는 스위치를 더 포함하는
    프린트헤드.
  15. 제 14 항에 있어서,
    상기 임피던스 측정 회로는 상기 스위치, 상기 샘플 및 유지 증폭기, 상기 DAC, 및 상기 ADC를 제어하는 상태 머신을 더 포함하는
    프린트헤드.
KR1020167020742A 2014-01-30 2014-01-30 센서 플레이트 임피던스 측정 기능이 있는 프린트헤드 KR101947883B1 (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2014/013796 WO2015116092A1 (en) 2014-01-30 2014-01-30 Printheads with sensor plate impedance measurement

Publications (2)

Publication Number Publication Date
KR20160104047A true KR20160104047A (ko) 2016-09-02
KR101947883B1 KR101947883B1 (ko) 2019-02-13

Family

ID=51868293

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167020742A KR101947883B1 (ko) 2014-01-30 2014-01-30 센서 플레이트 임피던스 측정 기능이 있는 프린트헤드

Country Status (9)

Country Link
US (2) US9962949B2 (ko)
EP (1) EP3099491B1 (ko)
JP (1) JP6283752B2 (ko)
KR (1) KR101947883B1 (ko)
CN (1) CN105939856B (ko)
BR (1) BR112016017602A2 (ko)
RU (1) RU2654178C2 (ko)
TW (1) TWI637858B (ko)
WO (1) WO2015116092A1 (ko)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10753815B2 (en) 2015-10-28 2020-08-25 Hewlett-Packard Development Company, L.P. Relative pressure sensor
US10933648B2 (en) 2016-04-29 2021-03-02 Hewlett-Packard Development Company, L.P. Detecting fluid levels using a counter
EP3458927B1 (en) * 2016-10-13 2021-12-01 Hewlett-Packard Development Company, L.P. Switches for bypass capacitors
WO2018156170A1 (en) 2017-02-27 2018-08-30 Hewlett-Packard Development Company, L.P. Drive bubble evaluation
JP6950217B2 (ja) * 2017-03-22 2021-10-13 セイコーエプソン株式会社 液体吐出装置
WO2018186853A1 (en) 2017-04-05 2018-10-11 Hewlett-Packard Development Company, L.P. On-die actuator evaluation with pre-charged thresholds
JP7039231B2 (ja) 2017-09-28 2022-03-22 キヤノン株式会社 液体吐出ヘッドおよび液体吐出装置
EP3774357A4 (en) * 2018-04-12 2021-11-17 Hewlett-Packard Development Company, L.P. FLUID PRESSURE FLUSHING
AU2019394682A1 (en) 2018-12-03 2021-06-24 Hewlett-Packard Development Company, L.P. Logic circuitry
WO2020117397A1 (en) * 2018-12-03 2020-06-11 Hewlett-Packard Development Company, L.P. Logic circuitry package
KR20210087987A (ko) 2018-12-03 2021-07-13 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 로직 회로 패키지
JP6995252B1 (ja) 2018-12-03 2022-02-09 ヒューレット-パッカード デベロップメント カンパニー エル.ピー. 論理回路
US11338586B2 (en) 2018-12-03 2022-05-24 Hewlett-Packard Development Company, L.P. Logic circuitry
US10894423B2 (en) 2018-12-03 2021-01-19 Hewlett-Packard Development Company, L.P. Logic circuitry
BR112021010044A2 (pt) 2018-12-03 2021-08-17 Hewlett-Packard Development Company, L.P. circuitos lógicos
ES2886253T3 (es) 2018-12-03 2021-12-16 Hewlett Packard Development Co Circuitos lógicos
KR20210087982A (ko) 2018-12-03 2021-07-13 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 로직 회로
US11364716B2 (en) 2018-12-03 2022-06-21 Hewlett-Packard Development Company, L.P. Logic circuitry
WO2021080607A1 (en) 2019-10-25 2021-04-29 Hewlett-Packard Development Company, L.P. Logic circuitry package
EP3687820B1 (en) 2018-12-03 2022-03-23 Hewlett-Packard Development Company, L.P. Logic circuitry
US11559987B2 (en) 2019-01-31 2023-01-24 Hewlett-Packard Development Company, L.P. Fluidic die with surface condition monitoring
BR112021019885A2 (pt) * 2019-04-05 2021-12-07 Hewlett Packard Development Co Sensor de propriedade de fluido
KR20220002603A (ko) 2019-06-17 2022-01-06 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 가열 구성요소 보호 및 상태를 감지를 위한 캐비테이션 플레이트
US11733190B2 (en) 2021-05-26 2023-08-22 Alliance For Sustainable Energy, Llc Method and system for measurement of impedance of electrochemical devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015808A1 (en) * 2011-07-27 2013-01-31 Hewlett-Packard Development Company, L.P. Fluid level sensor and related methods

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6215415A (ja) * 1985-07-12 1987-01-23 Hitachi Koki Co Ltd インクレベル検出装置
US5721574A (en) * 1995-12-11 1998-02-24 Xerox Corporation Ink detecting mechanism for a liquid ink printer
JPH09300648A (ja) * 1996-05-10 1997-11-25 Oki Data:Kk インクジェットプリンタ
JPH11334102A (ja) * 1998-05-25 1999-12-07 Mitsubishi Electric Corp インクジェット式プリンタ、気泡検出回路及び気泡検出方法
JP2001232814A (ja) * 2000-02-18 2001-08-28 Canon Inc インクジェットヘッド用基板、インクジェットヘッド、インクジェットカートリッジおよびインクジェット記録装置
US6929343B2 (en) * 2003-04-28 2005-08-16 Hewlett-Packard Development Company, L.P. Fluid detection system
US6874861B2 (en) 2003-04-29 2005-04-05 Hewlett-Packard Development Company, L.P. Printing device having a printing fluid detection system
US7029082B2 (en) 2003-07-02 2006-04-18 Hewlett-Packard Development Company, L.P. Printing device having a printing fluid detector
US7278703B2 (en) * 2004-04-19 2007-10-09 Hewlett-Packard Development Company, L.P. Fluid ejection device with identification cells
US8136905B2 (en) 2008-06-26 2012-03-20 Eastman Kodak Company Drop volume compensation for ink supply variation
US8336981B2 (en) * 2009-10-08 2012-12-25 Hewlett-Packard Development Company, L.P. Determining a healthy fluid ejection nozzle
JP5442579B2 (ja) * 2010-10-29 2014-03-12 京セラドキュメントソリューションズ株式会社 インクジェット記録装置
JP5645616B2 (ja) * 2010-11-17 2014-12-24 キヤノン株式会社 記録装置
JP2012192646A (ja) * 2011-03-17 2012-10-11 Ricoh Co Ltd 画像形成装置
WO2013062513A1 (en) * 2011-10-24 2013-05-02 Hewlett-Packard Development Company, L.P. Fluid ejection systems and methods thereof
US8870322B2 (en) 2012-04-19 2014-10-28 Hewlett-Packard Development Company, L.P. Calibrating a program that detects a condition of an inkjet nozzle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013015808A1 (en) * 2011-07-27 2013-01-31 Hewlett-Packard Development Company, L.P. Fluid level sensor and related methods

Also Published As

Publication number Publication date
US10336089B2 (en) 2019-07-02
EP3099491B1 (en) 2020-05-13
JP2017502863A (ja) 2017-01-26
US20170028738A1 (en) 2017-02-02
BR112016017602A2 (pt) 2018-05-15
TWI637858B (zh) 2018-10-11
RU2016135035A3 (ko) 2018-03-05
WO2015116092A1 (en) 2015-08-06
US20180297370A1 (en) 2018-10-18
EP3099491A1 (en) 2016-12-07
US9962949B2 (en) 2018-05-08
JP6283752B2 (ja) 2018-02-21
KR101947883B1 (ko) 2019-02-13
TW201540542A (zh) 2015-11-01
RU2654178C2 (ru) 2018-05-16
RU2016135035A (ru) 2018-03-05
CN105939856B (zh) 2018-10-16
CN105939856A (zh) 2016-09-14

Similar Documents

Publication Publication Date Title
KR101947883B1 (ko) 센서 플레이트 임피던스 측정 기능이 있는 프린트헤드
US10308035B2 (en) Fluid level sensor and related methods
US10378946B2 (en) Ink level sensing
KR101964494B1 (ko) 집적형 잉크 레벨 센서를 구비한 유체 분출 디바이스
AU2011373635A1 (en) Fluid level sensor and related methods

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant