KR20160030576A - 전자사진 기반 적층 제조를 위한 abs 부품재료 - Google Patents
전자사진 기반 적층 제조를 위한 abs 부품재료 Download PDFInfo
- Publication number
- KR20160030576A KR20160030576A KR1020167003933A KR20167003933A KR20160030576A KR 20160030576 A KR20160030576 A KR 20160030576A KR 1020167003933 A KR1020167003933 A KR 1020167003933A KR 20167003933 A KR20167003933 A KR 20167003933A KR 20160030576 A KR20160030576 A KR 20160030576A
- Authority
- KR
- South Korea
- Prior art keywords
- component material
- abs
- particle size
- copolymer
- electrophotographic
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08702—Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- G03G9/08737—Polymers derived from conjugated dienes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/147—Processes of additive manufacturing using only solid materials using sheet material, e.g. laminated object manufacturing [LOM] or laminating sheet material precut to local cross sections of the 3D object
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G13/00—Electrographic processes using a charge pattern
- G03G13/06—Developing
- G03G13/08—Developing using a solid developer, e.g. powder developer
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/14—Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
- G03G15/16—Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
- G03G15/1625—Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer on a base other than paper
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/22—Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
- G03G15/221—Machines other than electrographic copiers, e.g. electrophotographic cameras, electrostatic typewriters
- G03G15/224—Machines for forming tactile or three dimensional images by electrographic means, e.g. braille, 3d printing
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/22—Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
- G03G15/225—Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 using contact-printing
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G15/00—Apparatus for electrographic processes using a charge pattern
- G03G15/22—Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
- G03G15/24—Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20 whereby at least two steps are performed simultaneously
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/0819—Developers with toner particles characterised by the dimensions of the particles
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08702—Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- G03G9/08706—Polymers of alkenyl-aromatic compounds
- G03G9/08708—Copolymers of styrene
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08702—Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- G03G9/08706—Polymers of alkenyl-aromatic compounds
- G03G9/08708—Copolymers of styrene
- G03G9/08711—Copolymers of styrene with esters of acrylic or methacrylic acid
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08702—Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- G03G9/08726—Polymers of unsaturated acids or derivatives thereof
- G03G9/08731—Polymers of nitriles
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08742—Binders for toner particles comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- G03G9/08768—Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08784—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
- G03G9/08791—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by the presence of specified groups or side chains
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08784—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
- G03G9/08797—Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their physical properties, e.g. viscosity, solubility, melting temperature, softening temperature, glass transition temperature
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/09—Colouring agents for toner particles
- G03G9/0902—Inorganic compounds
- G03G9/0904—Carbon black
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/097—Plasticisers; Charge controlling agents
- G03G9/09733—Organic compounds
- G03G9/09775—Organic compounds containing atoms other than carbon, hydrogen or oxygen
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/097—Plasticisers; Charge controlling agents
- G03G9/09783—Organo-metallic compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2055/00—Use of specific polymers obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of main groups B29K2023/00 - B29K2049/00, e.g. having a vinyl group, as moulding material
- B29K2055/02—ABS polymers, i.e. acrylonitrile-butadiene-styrene polymers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G2215/00—Apparatus for electrophotographic processes
- G03G2215/16—Transferring device, details
- G03G2215/1676—Simultaneous toner image transfer and fixing
- G03G2215/1695—Simultaneous toner image transfer and fixing at the second or higher order transfer point
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Civil Engineering (AREA)
- Composite Materials (AREA)
- Structural Engineering (AREA)
- Developing Agents For Electrophotography (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Combination Of More Than One Step In Electrophotography (AREA)
- Electrostatic Charge, Transfer And Separation In Electrography (AREA)
Abstract
전자사진 기반 적층제조 시스템(10)으로 3차원 부품(80)을 인쇄하기 위한 부품재료에 관한 것으로, 상기 부품재료는 (아크릴로니트릴 유닛, 부타디엔 유닛 및 방향족 유닛을 포함하는) 코폴리머, 전하 조절제 및 열 흡수제를 구비하는 조성을 포함한다. 상기 부품재료는 조절된 입자 크기를 가지는 파우더 형태로 제공되고, 3차원 부품재료(80)를 적층 방식으로 인쇄하기 위한 레이어 트랜스퓨전 어셈블리(20)를 가지는 전자사진 기반 적층제조 시스템(10)에 사용되도록 구성된다.
Description
본 발명은 3차원(3D) 부품 및 지지 구조를 인쇄하기 위한 적층제조 시스템에 관한 것이다. 특히, 본 발명은 전자사진과 같은 이미징 프로세스를 이용하여 3D 부품 및 지지 구조를 인쇄하기 위한 소모성 재료에 관한 것이다.
적층제조 시스템은 하나 이상의 적층제조 기술을 이용하여 3D 부품에 대한 디지털 표현(예를 들면, AMF 및 STL 포맷 파일)으로부터 3D 부품을 생성하는데 사용된다. 상업적으로 이용가능한 적층제조 기술의 예로는, 압출기반(extrusion-based) 기술, 잉크 분사(ink jetting), 선택적 레이저 신터링(selective laser sintering), 파우더/바인더 분사(powder/binder jetting), 전자빔 용해(electron-beam melting) 및 스테레오리소그래픽 프로세스(stereolithographic processes)가 있다. 이들 기술 각각에 있어서, 3D 부품의 디지털 표현은 초기에 다수의 수평층으로 분할된다. 각각의 분할된 층에 대해, 툴 경로(tool paths)가 그 다음 생성되고, 이는 특정 적층제조 시스템이 상기 주어진 층을 형성하도록 지침을 제공한다.
예를 들면, 압출 기반 적층제조 시스템에서, 3D 부품 또는 모델은 유동성 부품재료를 압출하여 적층 방식으로(layer-by-layer manner) 3D 부품의 디지털 표현으로부터 인쇄될 수 있다. 부품재료는 시스템의 프린트 헤드에 의해 지지되는 압출 팁을 통해 압출되고, x-y 평면상의 기판 위에 일련의 로드(a sequence of roads)로 적층된다. 압출된 부품재료는 이전에 적층된 부품재료에 융합되고, 온도가 내려가면 굳어진다. 그 다음 기판에 대한 프린트 헤드의 위치가 (x-y 평면에 수직한) z-축을 따라 증가되고 디지털 표현을 닮은 3D 부품을 형성하기 위해 상기 프로세스가 반복된다.
부품재료로 된 층들을 적층시킴으로써 3D 부품을 제조함에 있어서, 지지 층들 또는 구조는 일반적으로 생성중인 물체의 공동(cavities) 내에 또는 돌출부 아래에 구축되고, 부품재료 자체에 의해서는 지지되지 않는다. 지지 구조는 부품재료를 적층시키는 것과 동일한 적층 기술을 이용하여 구축될 수 있다. 호스트 컴퓨터는 형성되는 3D 부품의 자유공간 세그먼트 또는 돌출부, 및 어떤 경우에는 형성되는 3D 부품의 측벽에 대한 지지구조로서 작용하는 추가적인 기하학적 구조를 생성한다. 제조중에 지지 재료는 부품재료에 부착되고 인쇄 프로세스가 완료될 때 완성된 3D 부품으로부터 분리될 수 있다.
2차원(2D) 인쇄에서, 전자사진(즉, 제로그래피(xerography))는 인쇄 용지 및 투명 기판과 같은 평면 기판상에 2D 이미지를 생성하는 기술이다. 전자사진 시스템은 일반적으로 광전도성 재료층으로 코팅된 전도성 지지 드럼(conductive support drum)을 포함하고, 여기서 정전 잠상 이미지가 정전기 하전에 의해 형성되고 광원에 의한 상기 광전도성 층의 이미지 방향으로의(image-wise) 노출이 뒤따른다. 그 다음 상기 정전 잠상은 가시적인 이미지를 형성하기 위하여 토너가 광전도성 절연체의 하전 영역에, 또는 선택적으로 방전 영역에 적용된 현상 스테이션(development station)으로 이동된다. 이후 상기 형성된 토너 이미지는 기판(예컨대, 인쇄 용지)에 전달되어 열 및/또는 압력으로 상기 기판에 부착된다.
본 발명의 일 목적은 전자사진 기반 적층제조 시스템으로 3D 부품을 인쇄하기 위한 부품재료를 제공하는 것이다.
본 발명의 또 다른 목적은 전자사진 엔진, 전사 매체(transfer medium) 및 레이어 트랜스퓨전 어셈블리(layer transfusion assembly)를 구비하는 전자사진 기반 적층제조 시스템으로 3D 부품을 인쇄하는 방법을 제공하는 것이다.
본 발명의 일 측면은 전자사진 기반 적층제조 시스템으로 3D 부품을 인쇄하기 위한 부품재료에 관한 것이다. 상기 부품재료는 아크릴로니트릴 유닛, 부타디엔 유닛 및 방향족 유닛을 포함하는 코폴리머, 전하 조절제 및 열 흡수제를 구비하는 조성을 가진다. 상기 부품재료는 조절된 입자 크기(예를 들면, 약 5 마이크로미터에서 약 30 마이크로미터 범위의 D50 입자크기)를 가지는 파우더 형태로 제공되고, 3D 부품을 적층 방식으로 인쇄하는 레이어 트랜스퓨전 어셈블리(layer transfusion assembly)를 가지는 전자사진 기반 적층제조 시스템에 사용되도록 이루어진다.
본 발명의 또 다른 측면은 전자사진 기반 적층제조 시스템으로 3D 부품을 인쇄하기 위한 부품재료에 관한 것으로, 상기 부품재료는 아크릴로니트릴-부타디엔-스티렌(ABS) 코폴리머, 전하 조절제, 유동성 조절제 및 열 흡수제를 포함하는 조성을 구비한다. 상기 부품재료는 조절된 입자 크기 및 좁은 입자 크기 분포를 가지는 파우더 형태로 제공되고, 적층 방식으로 3차원 부품을 인쇄하기 위한 레이어 트랜스퓨전 어셈블리를 구비하는 전자사진 기반 적층제조 시스템에 사용되도록 구성된다.
일부 실시예에서, 상기 설명된 부품재료는 교체 가능한 카트리지 또는 다른 유사한 장비 내에, 캐리어(carrier) 입자와 함께, 전자사진 기반 적층제조 시스템에 사용되기 위해 제공될 수 있다.
본 발명의 또 다른 측면은 전자사진 엔진, 전사 매체(transfer medium) 및 레이어 트랜스퓨전 어셈블리(layer transfusion assembly)를 구비하는 전자사진 기반 적층제조 시스템으로 3D 부품을 인쇄하는 방법에 관한 것이다. 상기 방법은 부품재료를 상기 전자사진 기반 적층제조 시스템에 제공하는 단계를 포함하고, 상기 부품재료는 조성적으로 전하 조절제, 열 흡수제 및 아크릴로니트릴 유닛, 부타디엔 유닛 및 방향족 유닛을 가지는 코폴리머를 포함하고, 파우더 형태를 가진다.
또한, 상기 방법은 상기 부품재료를 원하는 마찰 전하(예를 들면, 음전하 또는 양전하, 및 약 5 마이크로 쿨롱/그램(μC/g)에서 약 50 마이크로 쿨롱/그램(μC/g) 범위의 크기(magnitude)를 가지는 Q/M 비율)로 마찰 전기적으로 대전시키는 단계, 및 상기 대전된 부품재료로부터 3D 부품의 층들을 전자사진 엔진으로 현상하는 단계를 포함한다. 상기 방법은 상기 현상된 층들을 상기 전자사진 엔진으로부터 상기 전사 매체로 정전기적으로 끌어당기는 단계, 상기 끌려온 층들을 상기 전사 매체를 이용하여 레이어 트랜스퓨전 어셈블리로 이동시키는 단계 및 상기 이동된 층들을 상기 레이어 트랜스퓨전 어셈블리를 이용하여 이전에 인쇄된 3D 부품의 층들에 트랜스퓨즈(transfuse)하는 단계를 더 포함한다.
<정의>
다르게 설명되지 않는 한, 여기에 사용되는 다음의 용어들은 하기에 제공된 의미를 가진다:
"코폴리머(copolymer)"는 둘 이상의 모노머(monomer) 종류를 가지는 폴리머(polymer)를 지칭하고, 터폴리머(terpolymers)(즉, 세 종류의 모노머를 가지는 코폴리머)를 포함한다.
"바람직한" 및 "바람직하게"는 특정 환경에서 특정 이점을 가질 수 있는 발명의 실시형태를 지칭한다. 그러나 다른 실시형태도 동일한 또는 다른 환경에서, 바람직한 것으로 될 수 있다. 또한, 하나 이상의 바람직한 실시형태라는 기재는, 다른 실시형태가 유용하지 않다는 것을 의미하지는 않으며, 본 발명의 창작 범위에서 다른 실시형태를 배제하고자 하는 것이 아니다.
"하나의(a)" 화합물에 대한 지칭은 상기 화합물의 하나 이상의 분자를 말하며, 그 화합물의 단일 분자에 제한되는 것이 아니다. 또한, 상기 하나 이상의 분자는 상기 화합물의 카테고리에 속하기만 한다면 동일하거나 동일하지 않을 수도 있다. 따라서, 예를 들면 "하나의" ABS 코폴리머는 ABS 코폴리머인 하나 이상의 폴리머 분자를 포함하는 것으로 해석되고, 상기 폴리머 분자는 동일하거나 동일하지 않을 수 있다(예를 들면, 상이한 분자량 및/또는 이성체일 수 있음).
"적어도 하나의" 및 "하나 이상의" 요소라는 용어는 서로 대체하여 사용될 수 있고, 단일의 요소 및 복수의 요소를 포함한다는 동일한 의미를 가지며, 요소의 끝에 접미사 "들(s)"이 붙여질 수도 있다. 예를 들면, "적어도 하나의 ABS 코폴리머", "하나 이상의 코폴리머" 및 "ABS 코폴리머(들)"는 서로 대체하여 사용될 수 있고 동일한 의미를 가진다.
"위에(above)", "아래에(below)", "상부(top)", "하부(bottom)" 등과 같은 방향을 가리키는 용어는 3D 부품의 인쇄 축을 따른 방향을 참조하여 기재된다. 인쇄 축이 수직한 z-축을 따르는 실시 형태에서, 상기 층 인쇄 방향은 수직한 z-축을 따라 위쪽을 향한 방향이다. 이들 실시형태에서, "위에(above)", "아래에(below)", "상부(top)", "하부(bottom)" 등과 같은 용어는 수직한 z-축에 근거하고 있다. 그러나 3D 부품의 층들이 다른 축을 따라 인쇄되는 실시형태에서, "위에(above)", "아래에(below)", "상부(top)", "하부(bottom)" 등과 같은 용어는 주어진 축에 대해 상대적인 방향을 의미한다.
"재료를 제공하는 단계"에서와 같이 "제공하는 단계(providing)"라는 용어는, 청구항에 기재되었을 때 상기 제공되는 아이템에 대해 특별히 전달 또는 수령될 것을 요하는 것은 아니다. 상기 "제공하는 단계"라는 용어는 단지 읽기에 명확하고 용이하도록 할 목적에서 청구항의 후속 요소들에서 언급될 아이템을 인용하는데 사용된다.
다르게 특정되지 않는 한, 여기서 언급되는 온도는 대기압(즉, 1기압)에 기초한다.
약(about)" 및 "실질적으로(substantially)"라는 용어는 이 분야의 기술자들에게 알려진 예견되는 변동(예를 들면, 측정 한계 및 가변성)으로 인해 측정가능한 값 및 범위와 관련하여 사용된다.
도 1은 본 발명의 부품 및 지지 재료로부터 3D 부품 및 지지 구조를 인쇄하기 위한 예시적인 전자사진 기반 적층제조 시스템의 정면도,
도 2는 부품 및 지지 재료의 층들을 현상하기 위한 시스템의 한 쌍의 전자사진 엔진에 대한 개략적인 정면도,
도 3은 중간 드럼 또는 벨트를 포함하는 선택적인 전자사진 엔진에 대한 개략적인 정면도,
도 4는 현상된 층으로 레이어 트랜스퓨전 단계를 수행하기 위한 시스템의 레이어 트랜스퓨전 어셈블리에 대한 개략적인 정면도,
도 5는 본 발명의 예시적인 부품재료에 대한 동적 점도(dynamic viscosity) 대 온도를 나타내는 그래프로, 부품재료의 용융 레올로지(rheology) 거동을 나타낸다.
도 2는 부품 및 지지 재료의 층들을 현상하기 위한 시스템의 한 쌍의 전자사진 엔진에 대한 개략적인 정면도,
도 3은 중간 드럼 또는 벨트를 포함하는 선택적인 전자사진 엔진에 대한 개략적인 정면도,
도 4는 현상된 층으로 레이어 트랜스퓨전 단계를 수행하기 위한 시스템의 레이어 트랜스퓨전 어셈블리에 대한 개략적인 정면도,
도 5는 본 발명의 예시적인 부품재료에 대한 동적 점도(dynamic viscosity) 대 온도를 나타내는 그래프로, 부품재료의 용융 레올로지(rheology) 거동을 나타낸다.
본 발명은 부품 및 지지 재료와 같은 소모성 재료에 관한 것으로, 이들은 고해상도와 빠른 인쇄 속도로 3D 부품 및 지지 구조를 인쇄하기 위한 전자사진 기반 적층제조 시스템에 사용되기 위해 제조된다. 인쇄 작업 중에, 전자사진(electrophotography, EP) 엔진은 전자사진 프로세스를 이용하여 부품 및 지지 재료의 각 층을 현상 또는 이미지화할 수 있다. 그 다음 상기 현상된 층들은, 하나 이상의 3D 부품 및 지지구조를 적층 방식으로 인쇄하기 위하여, 레이어 트랜스퓨전 어셈블리로 전달되고 거기서 트랜스퓨즈(transfuse)된다.
인쇄 용지에 전위차를 둠으로써 현상된 토너 입자가 정전기적으로 인쇄 용지에 전사될 수 있는 2D 인쇄와 비교하여, 3D 환경에서 인쇄된 다중의 층들은 주어진 수의 층들이 인쇄된 후에 부품 및 지지 재료의 정전기적 전사를 실질적으로 방지한다. 그 대신, 각 층은 상승된 전사 온도로 가열되고, 이전에 인쇄된 층에 대해 (또는 생성 플랫폼에 대해) 가압되어 트랜스퓨전 단계에서 상기 층들을 함께 트랜스퓨즈할 수 있다. 이것은 3D 부품 및 지지 구조의 다수의 층들이, 그렇지 않을 경우 정전기적 전사를 통해 얻어질 수 있는 것 이상으로, 수직방향으로 생성될 수 있도록 허용한다.
다음에 설명되는 바와 같이, 부품재료는 제한적 응집 공정(limited coalescence process)로 제조될 수 있는 파우더계 아크릴로니트릴-부타디엔-스티렌(ABS) 부품재료이다. ABS 부품재료는 ABS 코폴리머, 전하 조절제(예를 들면, 내부 마찰전기 전하 조절제), 바람직하게는 열 흡수제(예를 들면, 적외선 흡수제), 및 선택적으로 유동성 조절제와 같은 하나 이상의 첨가제를 포함하고, 상기 첨가제는 외부 표면-처리 마찰전기 전하 조절제 및/또는 마찰전기 개질 첨가제로 기능할 수도 있다. ABS 부품재료는 높은 부품 해상도 및 양호한 물리적 특성(예컨대, 양호한 부품 강도, 밀도, 내약품성, 사용 가능한 온도 범위 등)을 가지는 3D 부품을 인쇄하기 위해 전자사진 기반 적층제조 시스템에 사용되도록 설계된다. 이것은 결과적인 3D 부품이 원하면 최종 용도의 부품으로서 기능하도록 허용한다.
도 1-4는 본 발명의 ABS 부품재료로부터 3D 부품과 희생(sacrificial) 지지 재료로부터 관련 지지 구조를 인쇄하기 위한 전자사진 기반 적층제조시스템인 시스템(10)을 나타낸다. 하기에 더 설명되는 바와 같이, ABS 부품재료와 함께 사용되는 바람직한 지지 재료는 미국 특허출원 13/944,478호(Martin)에 개시된 바와 같은 용해성 지지 재료를 포함한다.
도 1에 도시된 바와 같이, 시스템(10)은 한 쌍의 EP 엔진(12p, 12s), 벨트 전사 어셈블리(14), 바이어싱 매커니즘(16, 18) 및 레이어 트랜스퓨전 어셈블리(20)를 포함한다. 시스템(10)에 대한 적절한 구성요소 및 기능적 동작의 예시로는 한손 등의 미국 출원공개공보 2013/0077996호 및 2013/0077997호, 콤 등의 미국 출원공개공보 2013/0186549호 및 2013/0186558호에 개시된 것들이 포함된다.
EP 엔진(12p, 12s)은 부품 및 지지 재료의 층들을 각각 이미징 또는 현상하기 위한 이미징 엔진이고, 상기 부품 및 지지 재료는 각각 특정의 EP 엔진(12p) 또는 EP 엔진(12s) 아키텍처와 사용되도록 제조된다. 하기에 설명되는 바와 같이, 그 다음 상기 이미지화된 층들은 바이어싱 매커니즘(16, 18)을 이용하여 벨트 전사 어셈블리(14)(또는 다른 전사 매체)로 전달되고, 레이어 트랜스퓨전 어셈블리(20)로 이송되어 3D 부품 및 관련 지지 구조를 적층 방식으로 인쇄한다.
도시된 실시예에서, 벨트 전사 어셈블리(14)는 전사 벨트(22), 벨트 구동 매커니즘(24), 벨트 드래그 매커니즘(26), 루프 리미트 센서(28), 아이들러 롤러(30) 및 벨트 클리너(32)를 포함하고, 이들은 벨트(22)가 화살표(34)의 회전방향으로 회전하는 동안 벨트(22) 상에 장력을 유지하도록 구성된다. 특히, 벨트 구동 매커니즘(24)은 벨트(22)와 결합하여 벨트를 구동시키며, 벨트 드래그 매커니즘(26)은 브레이크로서 기능할 수 있어, 루프 리미트 센서(28)를 통해 모니터링된 읽혀진 수치에 기초하여, 벨트(22)를 인장응력에 대해 보호하기 위한 서비스 루프 설계를 제공한다.
또한, 시스템(10)은 하나 이상의 제어 회로, 마이크로프로세서 기반 엔진 제어 시스템, 및/또는 디지털 제어 래스터 이미징 프로세서 시스템인 콘트롤러(36)를 포함하고, 이는 시스템(10)의 구성요소들이 호스트 컴퓨터(38)로부터 수신된 인쇄 명령에 근거하여 동기화된 방식으로 동작하도록 구성된다. 호스트 컴퓨터(38)는 인쇄 명령(및 다른 작동 정보)을 제공하기 위해 콘트롤러(36)와 통신하도록 이루어진 하나 이상의 컴퓨터 기반 시스템이다. 예를 들면, 호스트 컴퓨터(38)는 3D 부품 및 지지 구조의 분할된 층들과 관련한 정보를 콘트롤러(36)에 전달할 수 있고, 이로써 시스템(10)이 3D 부품 및 지지 구조를 적층 방식으로 인쇄하도록 허용한다.
시스템(10)의 구성요소들은 프레임(40)과 같은 하나 이상의 프레임 구조에 의해 수용될 수 있다. 부가적으로, 시스템(10)의 구성요소들은 바람직하게는, 작업 중에 시스템(10)의 구성요소로 주변의 빛이 전달되는 것을 방지하는 밀폐가능한 하우징(미도시) 내에 수용된다.
도 2는 EP 엔진(12p, 12s)을 나타내고, 여기서 EP 엔진(12s)(즉, 벨트(22)의 회전 방향에 대해 상류 EP 엔진)은 지지 재료의 층들을 현상하고, EP 엔진(12p)(즉, 벨트(22)의 회전 방향에 대해 하류 EP 엔진)은 부품재료의 층들을 현상한다. 선택적 실시형태에서, EP 엔진(12p, 12s)은 역으로 배치되어, EP 엔진(12p)이 벨트(22)의 회전 방향에 대해 EP 엔진(12s)으로부터 상류에 배치될 수도 있다. 추가적인 선택적 실시형태에서, 시스템(10)은 추가 재료로 층들을 인쇄하기 위해 세 개 이상의 EP 엔진을 포함할 수 있다.
도시된 실시형태에서, EP 엔진(12p, 12s)은 전도성 드럼체(44)와 광도전성 표면(46)을 가지는 광전도체 드럼(42) 등 동일한 구성요소를 포함할 수 있다. 전도성 드럼체(44)는 전기적으로 접지되어 있고 샤프트(48) 둘레로 회전하도록 구성된, 전기적으로 도전성인 드럼(예를 들면, 구리, 알루미늄, 주석 등으로 제조됨)이다. 샤프트(48)는 구동 모터(50)에 대응하여 연결되어 있고, 상기 구동 모터는 화살표(52) 방향으로 일정한 속도로 샤프트(48)(및 광도전체 드럼(42))를 회전시키도록 구성된다.
광전도성 표면(46)은 전도성 드럼체(44)의 원주면 둘레로 연장된 얇은 필름이고, 바람직하게는 비정질 실리콘, 셀레늄, 산화아연, 유기 재료 등과 같은 하나 이상의 광전도성 재료로 이루어진다. 하기에 설명되는 바와 같이, 표면(46)은 3D 부품 또는 지지 구조의 분할된 층들에 대한 잠재 하전 이미지(latent-charged images)(또는 네거티브 이미지)를 수용하고, 본 발명의 부품 또는 지지 재료의 하전 입자들을 하전 또는 방전 이미지 영역으로 끌어당기도록 구성됨으로써, 3D 부품 또는 지지 구조를 생성한다.
더 도시된 바와 같이, EP 엔진(12p, 12s)은 또한 대전유도체(charge inducer)(54), 이미저(56), 현상 스테이션(58), 클리닝 스테이션(60) 및 방전기(62)를 포함하고, 이들 각각은 콘트롤러(36)와 함께 통신할 수 있다. 구동 모터(50) 및 샤프트(48)가 화살표(52) 방향으로 광도전체 드럼(42)을 회전시킴에 따라, 대전 유도체(54), 이미저(56), 현상 스테이션(58), 클리닝 스테이션(60) 및 방전기(62)는 표면(46)에 대해 이미지 형성 어셈블리를 정의한다.
도시된 실시예에서, EP 엔진(12s)의 표면(46)에 대한 이미지 형성 어셈블리는 지지 재료(지지 재료(66s)로 언급)의 층들(64s)을 형성하는데 사용되고, 여기서 지지 재료(66s)의 공급물은 캐리어 입자들과 함께 (EP 엔진(12s)의) 현상 스테이션(58)에 의해 수용될 수 있다. 유사하게, EP 엔진(12p)의 표면(46)에 대한 이미지 형성 어셈블리는 부품재료(부품재료(66p)로 언급)의 층들(64p)을 형성하는데 사용되고, 부품재료(66p)의 공급물은 캐리어 입자들과 함께 (EP 엔진(12p)의) 현상 스테이션(58)에 의해 수용될 수 있다.
대전 유도체(54)는 표면(46)이 대전 유도체(54)를 지나 화살표(52) 방향으로 회전할 때, 표면(46) 상에 균일한 정전하를 생성하도록 구성된다. 대전 유도체(54)로 적절한 장치로는 코로트론(corotrons), 스코로트론(scorotrons), 대전 롤러 및 다른 정전기 대전 장치 등이 포함된다.
이미저(56)는 표면(46)이 이미저(56)를 지나 화살표(52) 방향으로 회전할 때, 표면(46) 상의 균일한 정전하를 향하여 전자기 방사선을 선택적으로 방출하도록 구성된, 디지털 제어형 픽셀방식(pixel-wise) 노광 장치이다. 표면(46)으로의 전자기 방사선의 선택적 노출은 콘트롤러(36)에 의해 지시되고, 제거(즉, 그라운드로 방전)될 정전하의 비연속 픽셀방식 배치(discrete pixel-wise locations)를 유도함으로써, 표면(46) 상의 잠상 전하 패턴(latent image charge patterns)을 형성한다.
이미저(56)로 적절한 장치로는 스캐닝 레이저(예컨대, 가스 또는 고체 레이저) 광원, 발광다이오드(LED) 어레이 노광장치 및 기타 2D 전자사진 시스템에 사용되는 일반적인 노광장치가 포함된다. 선택적인 실시형태에 있어서, 대전 유도체(54) 및 이미저(56)로 적절한 장치는 표면(46)에 하전이온 또는 전자를 선택적으로 직접 증착하여 잠상 하전 패턴을 형성하도록 구성된 이온 증착 시스템을 포함한다. 따라서, 여기서 사용되는 "전자사진(electrophotography)"이라는 용어는 이오노그래피(ionography)를 포함한다.
각각의 현상 스테이션(58)은 캐리어 입자와 함께 부품재료(66p) 또는 지지 재료(66s)의 공급물을, 바람직하게는 파우더 형태로 보관하는 카트리지 또는 정전기 및 자기 현상 스테이션이다. 현상 스테이션(58)은 2D 전자사진 시스템에 사용되는 토너 카트리지 및 단일 또는 이중 컴포넌트 현상 시스템에 유사한 방식으로 기능한다. 예를 들면, 각각의 현상 스테이션(58)은 부품재료(66p) 또는 지지 재료(66s) 및 캐리어 입자를 수용하는 인클로저를 포함할 수 있다. 교반시키면, 상기 캐리어 입자는 마찰 전하를 생성하여 부품재료(66p) 또는 지지 재료(66s) 파우더를 끌어 당기고, 상기 끌려온 파우더를 하기에 설명되는 바와 같이 원하는 부호(sign) 및 크기(magnitude)로 대전시킨다.
또한, 각각의 현상 스테이션(58)은 대전된 부품재료(66p) 또는 지지 재료(66s)를 표면(46)으로 전사하기 위해, 컨베이어, 퍼 브러쉬(fur brushes), 패들 휠(paddle wheels), 롤러 및/또는 마그네틱 브러쉬와 같은 하나 이상의 장비를 포함할 수 있다. 예를 들면, (잠재 하전 이미지를 포함하는) 표면(46)이 이미저(56)로부터 현상 스테이션(58)으로 화살표(52) 방향으로 회전함에 따라, (사용되는 전자사진 모드에 따라) 하전 영역 현상(development) 또는 방전 영역 현상 중 하나를 이용하여, 대전된 부품재료(66p) 또는 지지 재료(66s)는 표면(46) 위의 적절히 대전된 잠상 영역으로 끌어 당겨진다. 이것은 광전도체 드럼(42)이 연속하여 화살표(52) 방향으로 회전함에 따라, 연속적인 층들(64p 또는 64s)을 생성시키고, 상기 연속적인 층들(64p 또는 64s)은 3D 부품 또는 지지 구조에 대한 디지털 표현의 연속적인 분할 층들에 해당한다.
그 다음 연속적인 층들(64p 또는 64s)은 화살표(52) 방향으로 표면(46)과 함께 층들(64p 또는 64s)이 광전도체 드럼(42)에서 벨트(22)로 연속적으로 전달되는 전사 영역으로 회전된다. 광전도체 드럼(42)과 벨트(22) 사이의 직접적 결합으로 설명되었지만, 일부 바람직한 실시형태에서 EP 엔진(12p, 12s)은, 하기에 더 설명되는 바와 같이, 중간 전사 드럼 및/또는 벨트를 포함할 수도 있다.
주어진 층(64p 또는 64s)이 광전도체 드럼(42)에서 벨트(22)(또는 중간 전사 드럼 또는 벨트)로 전사된 후에, 구동 모터(50) 및 샤프트(48)는 광전도체 드럼(42)을 화살표(52) 방향으로 계속 회전시켜 이전에 층(64p 또는 64s)을 유지하였던 표면(46) 영역이 클리닝 스테이션(60)을 통과하도록 한다. 클리닝 스테이션(60)은 잔여물이나 전사되지 않은 부품 또는 지지 재료(66p, 66s) 등을 제거하도록 구성된 스테이션이다. 클리닝 스테이션(60)으로 적절한 장치로는 블래이드(blade) 클리너, 브러쉬 클리너, 정전기 클리너, 진공기반 클리너 및 이들의 조합이 포함된다.
클리닝 스테이션(60)을 통과한 후에, 표면(46)은 다음 사이클을 시작하기 이전에, 화살표(52) 방향으로 계속 회전함으로써 깨끗해진 표면(46) 영역이 방전기(62)를 통과하여 표면(46)상에 남아있을 수 있는 정전하가 제거된다. 방전기(62)로 적절한 장치로는 광학 시스템, 고전압 교류 코로트론(corotrons) 및/또는 스코로트론(scorotrons), 하나 이상의 고전압 교류가 인가되는 전도성 코어를 가지는 하나 이상의 유전체 회전 롤러 및 이들의 조합이 포함된다.
전사 벨트(22)는 현상된 연속적인 층들(64p, 64s)을 광전도체 드럼(42)(또는 중간 전사 드럼 또는 벨트)로부터 레이어 트랜스퓨전 어셈블리(16)로 전달하기 위한 전달 매체이다. 벨트(22)로 적절한 전사 벨트의 예시로는 콤 등의 미국 출원공개 2013/0186549호 및 2013/0186558호에 개시된 것들이 포함된다. 벨트(22)는 전면(22a)과 후면(22b)을 포함하고, 전면(22a)은 광전도체 드럼(42)의 표면(46)과 마주하고, 후면(22b)은 바이어싱 매커니즘(16, 18)과 접촉하고 있다.
바이어싱 매커니즘(16, 18)은 EP 엔진(12p, 12s)으로부터 벨트(22)로 층들(64p, 64s)을 정전기적으로 끌어당기기 위해 벨트(22)에 걸쳐 전위를 유도하도록 구성된다. 층들(64p, 64s)은 각각 프로세스 중 이 시점에서 두께에 있어서 단일의 층 증가분에 해당되므로, 정전기적 인력은 EP 엔진(12p, 12s)으로부터 벨트(22)로 층들(64p, 64s)을 전달하기에 적합하다.
콘트롤러(36)는 바람직하게는 EP 엔진(12p, 12s)의 광전도체 드럼(36)을 벨트(22)의 선 속도 및/또는 임의의 중간 전사 드럼 또는 벨트와 동기화된 동일한 회전 속도로 회전시킨다. 이것은 시스템(10)이 서로 협력하여 층들(64p, 66s)을 각각의 현상 이미지로부터 현상하도록 허용한다. 특히, 도시된 바와 같이, 각각의 부품 층(64p)은 적합한 레지스트레이션으로 각각의 지지 층(64s)과 함께 벨트(22)로 전사될 수 있고, 바람직하게는 결합된 부품 및 지지 재료 층을 형성할 수 있다. 이것은 부품 및 지지 재료가 유사하거나 실질적으로 동일한 열 특성 및 용융 레올로지를 가질 경우, 층들(64p, 64s)이 서로 트랜스퓨즈(transfused)되도록 허용한다. 이해될 수 있듯이, 레이어 트랜스퓨전 어셈블리(20)로 전달되는 일부 층들은 특정 지지 구조 및 3D 부품의 기하학적 구조 및 층 분할에 따라, 지지 재료(66s)만을 포함하거나 또는 부품재료(66p) 만을 포함할 수 있다.
선택적 및 덜 선호되는 실시형태에서, 부품 층들(64p)과 지지 층들(64s)은 교번 층들(64p, 64s)과 같이 선택적으로 현상되어 벨트(22)를 따라 각각 전사될 수 있다. 이들 연속적인, 교번 층들(64p, 64s)은 그 다음 레이어 트랜스퓨전 어셈블리(20)로 전달될 수 있고, 여기서 3D 부품 및 지지 구조를 인쇄하기 위해 각각 트랜스퓨즈될 수 있다.
일부 바람직한 실시예에서, EP 엔진(12p, 12s) 중 하나 또는 모두는 광전도체 드럼(42)과 벨트(22) 사이에 하나 이상의 중간 전사 드럼 및/또는 벨트를 포함할 수도 있다. 예를 들면, 도 3에 도시된 바와 같이, EP 엔진(12p)은 모터(50a)의 회전력으로 화살표(52a)로 도시된 바와 같이, 화살표(52)로부터 대향하는 회전 방향으로 회전하는 중간 드럼(42a)을 포함할 수도 있다. 중간 드럼(42a)은 광전도체 드럼(42)과 결합하여 현상된 층들(64p)을 광전도체 드럼(42)으로부터 수신하고, 그 다음 상기 수신한 현상 층들(64p)을 운반하여 벨트(22)로 전달한다.
EP 엔진(12s)은 현상된 층들(64s)을 광전도체 드럼(42)으로부터 벨트(22)로 운반하기 위해 동일한 배치의 중간 드럼(42a)을 포함할 수 있다. EP 엔진(12p, 12s)에 대해 그와 같은 중간 전사 드럼 또는 벨트를 사용하는 것은, 원한다면 광전도체 드럼(42)을 벨트(22)로부터 열적으로 절연시키는데 유익하다.
도 4는 레이어 트랜스퓨전 어셈블리(20)에 대한 예시적인 실시형태를 나타낸다. 도시된 바와 같이, 레이어 트랜스퓨전 어셈블리(20)는 생성 플랫폼(68), 닙 롤러(70), 히터(72, 74), 포스트-퓨즈(post-fuse) 히터(76) 및 에어 제트(78)(또는 다른 냉각 장치)를 포함한다. 생성 플랫폼(68)은 3D 부품 및 지지 구조(3D 부품(80) 및 지지 구조(82)로 지칭)를 적층 방식으로 인쇄하기 위한, 가열된 결합 층들(64)(또는 개별 층들(64p, 64s))을 받도록 구성된 시스템의 플랫폼 어셈블리 또는 플래튼이다. 일부 실시형태에서, 생성 플랫폼(68)은 상기 인쇄 층들(64)을 수용하기 위한 제거 가능한 필름 기판(미도시)을 포함할 수 있고, 여기서 상기 제거 가능한 필름 기판은 임의의 적절한 기술(예컨대, 진공 배기(vacuum drawing), 제거가능한 접착제, 기계적 파스터 등)을 이용하여 생성 플랫폼에 대해 구속될 수 있다.
생성 플랫폼(68)은 갠트리(84)에 의해 지지되고, 상기 갠트리는 생성 플랫폼(68)을 z-축 및 x-축을 따라 왕복 직사각형 패턴을 형성하도록 이동시키도록 구성된 갠트리 매커니즘이고, 기본적인 움직임은 (파선(86)으로 도시된) x-축을 따른 전후방 이동이다. 갠트리(84)는 콘트롤러(36)로부터의 명령에 기초하여 모터(88)에 의해 작동될 수 있으며, 여기서 모터(88)는 전기 모터, 유압 시스템, 공압 시스템 등일 수 있다.
도시된 실시형태에서, 생성 플랫폼(68)은 가열부(90)(예컨대, 전기 히터)로 가열할 수 있다. 가열부(90)는 콤 등의 미국 출원공개 2013/0186549호 및 2013/0186558호에 설명된 바와 같이, 3D 부품(80) 및/또는 지지 구조(82)의 바람직한 평균 부품온도와 같이, 실온(25℃)보다 높은 상승된 온도로 생성 플랫폼(68)을 가열 및 유지할 수 있도록 구성된다. 이는 생성 플랫폼(68)이 상기 평균 부품 온도로 3D 부품(80) 및/또는 지지 구조(82)를 유지하도록 도모할 수 있게 해준다.
닙 롤러(70)는 예시적인 가열 가능한 요소 또는 가열 가능한 레이어 트랜스퓨전 요소로서, 벨트(22)의 이동에 따라 고정된 축 둘레로 회전하도록 구성된다. 특히, 닙 롤러(70)는 벨트(22)가 화살표(34) 방향으로 회전하는 동안 화살표(92) 방향으로 후면(22b)에 대해 돌아가도록 구성된다. 도시된 실시형태에서, 닙 롤러(70)는 가열부(94)(예컨대, 전기 히터)로 가열할 수 있다. 가열부(94)는 닙 롤러(70)를 층(64)에 대한 바람직한 전사온도와 같이, 실온(25℃)보다 높은 상승된 온도로 가열 및 유지할 수 있도록 구성된다.
히터(72)는 바람직하게는 닙 롤러(70)에 도달하기 이전에, 적어도 부품 및 지지 재료의 융합 온도와 같은, 부품 및 지지 재료의 의도된 전사 온도 부근의 온도로, 층(64)을 가열하도록 구성된 하나 이상의 가열 장치(예컨대, 적외선 히터 및/또는 가열 에어 제트)이다. 각 층(64)은 층(64)이 의도된 전사 온도로 가열되기에 충분한 체류 시간 동안 히터(72) 곁을(또는 관통하여) 지나간다. 히터(74)는 히터(72)와 동일한 방식으로 기능할 수 있고, 지지 구조(82)와 3D 부품(80)의 상부 표면을 가열된 층(64)과 동일한 전사 온도(또는 다른 적절한 상승된 온도)와 같이, 상승된 온도로 가열한다.
위에서 언급된 바와 같이, 지지 구조(82)를 인쇄하는데 사용되는 지지 재료(66s)는 바람직하게는, 3D 부품(80)을 인쇄하는데 사용되는 부품재료(66p)의 용융 레올로지 및 열 특성과 유사 또는 실질적으로 동일한 용융 레올로지 및 열 특성(예컨대, 유리전이온도)을 가진다. 이는 부품 및 지지 재료 층(64p, 64s)이 히터(74)를 이용하여 실질적으로 동일한 전사 온도로 함께 가열되도록 허용하고, 또한 3D 부품(80) 및 지지 구조(82)의 상부 표면에서 부품 및 지지 재료가 히터(74)를 이용하여 실질적으로 동일한 온도로 가열되도록 허용한다. 따라서, 부품 층(64p)과 지지 층(64s)은 3D 부품(80) 및 지지 구조(82)의 상부 표면에 단일의 트랜스퓨전 단계에서 결합된 층(64)으로 함께 트랜스퓨즈될 수 있다. 상기 결합된 층(64)을 트랜스퓨즈하기 위한 상기 단일의 트랜스퓨전 단계는, 부품 및 지지 재료의 용융 레올로지 및 열적 특성을 매칭함이 없이는 실현불가능한 것으로 여겨졌다.
포스트-퓨즈 히터(76)는 닙 롤러(70)의 하류 및 에어 제트(78)의 상류에 위치하고, 트랜스퓨즈된 층을 포스트-퓨즈(post-fuse) 또는 열경화(heat-setting) 단계에서 상승된 온도로 가열하도록 구성된다. 다시, 부품 및 지지 재료의 상기 유사한 열 특성 및 용융 레올로지는 포스트-퓨즈 히터(76)가 3D 부품(80) 및 지지 구조(82)의 상부 표면을 단일의 포스트-퓨즈 단계에서 함께 후 가열(post-heat)하도록 허용한다.
3D 부품(80) 및 지지 구조(82)를 인쇄하기 전에, 생성 플랫폼(68)과 닙 롤러(70)는 그들의 바람직한 온도로 가열될 수 있다. 예를 들면, 생성 플랫폼(68)은 (부품 및 지지 재료의 유사한 용융 레올로지로 인하여) 3D 부품(80) 및 지지 구조(82)의 평균 부품 온도로 가열될 수 있다. 이에 비해, 닙 롤러(70)는 (역시 부품 및 지지 재료의 유사한 열 특성 및 용융 레올로지로 인하여) 층(64)의 바람직한 전사 온도로 가열될 수 있다.
인쇄 작업 중에, 벨트(22)는 층(64)을 히터(72)를 지나 운반하고, 이는 층(64) 및 벨트(22)의 관련 영역을 전사 온도로 가열할 수 있다. 부품 및 지지 재료의 적절한 전사 온도는 부품 및 지지 재료의 유리전이온도를 초과하는 온도를 포함하고, 이는 바람직하게는 유사 또는 실질적으로 동일하며, 이 온도(예컨대, ABS 부품재료에 대해 대략 140℃ 에서 대략 180℃ 범위의 온도)에서 층(64)의 부품 및 지지 재료는 연화되지만 용융되지는 않는다.
도 4에 더 나타낸 바와 같이, 작업 중에 갠트리(84)는 생성 플랫폼(68)을 (3D 부품(80) 및 지지 구조(82)와 함께) 왕복 직사각형 패턴(86)으로 이동시킬 수 있다. 특히, 갠트리(84)는 생성 플랫폼(68)을 x-축을 따라, 히터(74)의 하방, 히터를 따라 또는 히터를 관통하여 이동시킬 수 있다. 히터(74)는 3D 부품(80) 및 지지 구조(82)의 상부 표면을 부품 및 지지 재료의 전사 온도와 같이, 상승된 온도로 가열한다. 콤 등의 미국 출원공개 2013/0186549호 및 2013/0186558호에 설명된 바와 같이, 히터(72, 74)는 층(64) 및 3D 부품(80)과 지지 구조(82)의 상부 표면을 대략 동일한 온도로 가열하여 일정한 트랜스퓨전 계면 온도를 제공할 수 있다. 선택적으로, 히터(72, 74)는 층(64) 및 3D 부품(80)과 지지 구조(82)의 상부 표면을 다른 온도로 가열하여, 원하는 트랜스퓨전 계면 온도가 얻어지도록 할 수도 있다.
벨트(22)의 계속되는 회전과 생성 플랫폼(68)의 이동은 가열된 층(64)을 3D 부품(80) 및 지지 구조(82)의 가열된 상부 표면과 x-축을 따라 적절한 레지스트레이션으로 정렬시킨다. 갠트리(84)는 생성 플랫폼(68)을 x-축을 따라, 화살표(34) 방향의 벨트(22)의 회전속도와 동기화된 속도로 (즉, 동일한 방향과 속도로), 계속하여 이동시킨다. 이는 벨트(22)의 후면(22b)이 닙 롤러(70) 둘레로 회전하여 벨트(22)와 가열된 층(64)을 3D 부품(80)과 지지 구조(82)의 상부 표면에 대해 닙(nip)하도록 초래한다. 이는 3D 부품(80)과 지지 구조(82)의 가열된 상부 표면들 사이에 가열된 층(64)을 닙 롤러(70)의 위치에서 가압하여, 적어도 부분적으로 가열된 층(64)을 3D 부품(80) 및 지지 구조(82)의 상부 층에 트랜스퓨즈한다.
트랜스퓨즈된 층(64)이 닙 롤러(70)의 닙(nip)을 통과할 때, 벨트(22)는 닙 롤러(70) 둘레를 감싸 생성 플랫폼(68)으로부터 분리 및 떼어 낸다. 이는 트랜스퓨즈된 층(64)이 3D 부품(80) 및 지지 구조(82)에 부착된 채 남아있도록 허용하면서, 트랜스퓨즈된 층(64)을 벨트(22)로부터 분리되는 것을 도모한다. 트랜스퓨전 계면온도를 부품 및 지지 재료의 유리전이온도보다 더 높지만 그들의 용합 온도보다 낮은 전사 온도로 유지하는 것은, 가열된 층(64)이 벨트(22)로부터 용이하게 분리되기에 충분히 차가우면서, 3D 부품(80) 및 지지 구조(82)에 부착되기에 충분히 뜨겁도록 허용한다. 또한, 위에서 설명된 바와 같이, 부품 및 지지 재료의 유사한 열 특성 및 용융 레올로지는 그들이 동일한 단계에서 트랜스퓨즈되는 것을 허용한다.
분리 후에, 갠트리(84)는 이어서 생성 플랫폼(68)을 x-축을 따라 포스트-퓨즈 히터(76)로 이동시킨다. 포스트-퓨즈 히터(76)에서, (트랜스퓨즈된 층(64)을 포함하여) 3D 부품(80) 및 지지 구조(82)의 최상부 층은 포스트-퓨즈 또는 열경화 단계에서 적어도 부품과 지지 재료의 융합 온도로 가열될 수 있다. 이는 트랜스퓨즈된 층(64)의 부품 및 지지 재료를 높은 수준의 융합 가능한 상태로 용융시켜, 트랜스퓨즈된 층(64)의 폴리머 분자가 3D 부품(80) 및 지지 구조(82)와 높은 수준의 계면 얽힘(interfacial entanglement)을 달성하기 위해, 신속하게 서로 섞이도록 한다.
부가적으로, 갠트리(84)가 계속하여 생성 플랫폼(68)을 x-축을 따라 포스트-퓨즈 히터(76)를 지나 에어 제트(78)로 이동시킬 때, 에어 제트(78)는 3D 부품(80) 및 지지 재료(82)의 상부 층을 향해 냉각 공기를 송풍한다. 이는 콤 등의 미국 출원공개 2013/0186549호 및 2013/0186558호에 설명된 바와 같이, 상기 트랜스퓨즈된 층(64)을 평균 부품 온도 아래로 능동적으로 냉각한다.
3D 부품(80) 및 지지 구조(82)를 평균 부품 온도로 유지하는 것을 도모하기 위해, 일부 바람직한 실시형태에서, 히터(74) 및/또는 포스트 히터(post-heater)(76)는 3D 부품(80) 및 지지 구조(82)의 최상부 층들만을 가열하도록 동작할 수 있다. 예를 들면, 히터(72, 74, 76)가 적외선 복사를 방출하도록 구성된 실시형태에서, 3D 부품(80) 및 지지 구조(82)는 적외선 파장이 최상부 층 내부로 침투하는 것을 제한하도록 이루어진 열 흡수제 및/또는 다른 착색제를 포함할 수 있다. 선택적으로, 히터(72, 74, 76)는 3D 부품(80) 및 지지 구조(82)의 상부 표면에 걸쳐 가열 공기를 송풍하도록 구성될 수 있다. 어느 경우든, 3D 부품(80) 및 지지 구조(82)로의 열 침투를 제한하는 것은, 3D 부품(80) 및 지지 구조(82)를 평균 부품 온도로 유지하는데 필요한 냉각량을 감소시키면서, 최상부 층이 충분히 트랜스퓨즈되는 것을 허용한다.
그 다음 갠트리(84)는 왕복 직사각형 패턴(86)을 따라, 생성 플랫폼(68)을 하방으로 작동시키고, 생성 플랫폼(68)을 x-축을 따라 후방으로 시작 위치로 이동시킨다. 생성 플랫폼(68)은 바람직하게는 다음 층(64)에 적절한 레지스트레이션을 위한 시작 위치에 도달한다. 일부 실시예에서, 갠트리(84)는 다음 층(64)에 적절한 레지스트레이션을 위해 생성 플랫폼(68)과 3D 부품(80)/지지 구조(82)를 상방으로 작동시킬 수도 있다. 그 다음 동일한 프로세스가 3D 부품(80) 및 지지 구조(82)의 각각의 남아있는 층(64)에 대해 반복될 수 있다.
일부 바람직한 실시형태에서는, 도 4에 도시된 바와 같이, 결과적인 3D 부품(80)이 측면(즉, 생성 평면에 대해 수평)으로 지지 구조(82)로 둘러싸인다. 이것은 왕복운동하는 생성 플래튼(68)과 닙 롤러(70)를 사용하면서, 3D 부품(80)에 대한 양호한 치수 완전성과 표면 품질을 제공한다고 여겨진다.
인쇄 작업이 완료된 후에, 결과적인 3D 부품(80) 및 지지 구조(82)는 시스템(10)으로부터 제거되고 하나 이상의 인쇄 후 작업을 거칠 수 있다. 예를 들면, 본 발명의 지지 재료로부터 유래된 지지 구조(82)는, 수용성 용액(예컨대, 알칼리 수용액) 등을 사용하여 3D 부품(30)으로부터 제거될 수 있다. 예를 들면, ABS 부품재료와 사용되기 바람직한 지지 재료의 예시로는 마틴의 미국 특허출원 13/944,478호에 개시된 바와 같은 용해성 지지 재료가 포함된다. 이러한 바람직한 용해 기법하에, 지지 구조(82)는 적어도 부분적으로 용액 중에 용해되어, 3D 부품(80)으로부터 핸즈프리 방식으로 분리된다.
이에 비해, ABS 부품재료와 같은 부품재료는 알칼리 수용액에 대해 화학적으로 내성이 있다. 이것은 3D 부품(80)의 형상이나 품질을 저하시키지 않고, 희생(sacrificial) 지지 구조(82)를 제거하는데 알칼리 수용액을 사용할 수 있도록 허용한다. 지지 구조(82)를 이러한 방식으로 제거하는데 적절한 시스템 및 기술의 예시로는 스완슨 등의 미국 특허 8,459,280호, 홉킨스 등의 미국 특허 8,246,888호 및 던 등의 미국 출원공개 2011/0186081호에 개시된 것들이 포함되고, 이들 개시 내용은 본 발명과 상충되지 않는 범위로 본원에 참조하여 포함되었다.
또한, 지지 구조(82)가 제거된 후에, 3D 부품(80)은 표면 처리 공정과 같은 하나 이상의 부가적인 인쇄 후 공정을 거칠 수 있다. 적절한 표면 처리 공정의 예시로는 프리드만 등의 미국특허 8,123,999호 및 지니일 등의 미국 출원공개 2008/0169585호에 개시된 것들이 포함된다.
위에서 간단히 설명된 바와 같이, 여기서 "ABS 부품재료"로 지칭된 본 발명의 부품재료는, 조성적으로 아크릴로니트릴-부타디엔-스티렌(ABS) 코폴리머, 전하 제어제, 바람직하게는 열 흡수제(예컨대, 적외선 흡수제), 선택적으로 유동성 조절제와 같은 하나 이상의 첨가 재료를 포함한다. 위에서 언급된 바와 같이, 상기 ABS 부품재료는 바람직하게는 EP 엔진(12p)의 특정 아키텍쳐와 사용되도록 제조된다.
상기 ABS 코폴리머는 바람직하게는 아크릴로니트릴, 부타디엔 및 스티렌과 같은 방향족 모노머를 포함하는 모노머로부터 중합된다. 아크릴로니트릴 모노머의 예시는 다음의 구조를 가진다:
여기서, 일부 실시형태에서는, 화학식 1의 수소원자는 독립적으로, 1-3개의 탄소 원자를 가지는 알킬 또는 에테르기와 같은, 하나 이상의 선택적인 저 원자량기로 치환될 수 있다. 또한, 일부 실시형태에서, 상기 에틸렌성 불포화기(ethylenically-unsaturated group) 및 시아노기는 1-8개의 탄소 원자를 가지는 탄화수소 또는 에테르 결합과 같은, 선택적 체인 결합에 의해 분리될 수 있다. 보다 바람직하게, 상기 아크릴로니트릴 모노머는, 시아노기로부터 직접 연장되는 에틸렌성 불포화 비닐기(ethylenically-unsaturated vinyl group)를 갖는, 상기 화학식 1에서 보여진 구조를 포함한다.
부타디엔 모노머의 예시는 다음의 구조를 가진다:
여기서, 일부 실시형태에서는, 화학식 2에서 수소 원자는 독립적으로, 1-3 탄소 원자를 가지는 알킬 또는 에테르기와 같은, 하나 이상의 선택적 저 원자량 그룹으로 치환될 수 있다. 또한, 일부 실시형태에서, 에틸렌성 불포화기의 쌍은, 1-8 탄소 원자를 가지는 탄화수소 또는 에테르 결합과 같은, 선택적 체인 결합에 의해 분리될 수 있다. 보다 바람직하게, 상기 부타디엔 모노머는, 서로 직접 연장되는 에틸렌성 불포화 비닐기 쌍을 갖는, 상기 화학식 2에 보여진 구조를 포함한다.
방향족 모노머의 예시는 다음의 구조를 가진다:
일부 실시형태에서는, 여기서 화학식 3의 수소 원자는 독립적으로, 1-3 개의 탄소 원자를 가지는 알킬 또는 에테르기와 같은, 하나 이상의 선택적 저 원자량 그룹으로 치환될 수 있다. 또한, 일부 실시형태에서, 상기 에틸렌성 불포화기 및 방향족기는, 1-8개의 탄소 원자를 가지는 탄화수소 또는 에테르 결합과 같은, 선택적 체인 결합에 의해 분리될 수 있다. 일부 추가적인 실시형태에서, 상기 방향족기의 하나 이상의 수소 원자는 독립적으로, 1-3개의 탄소 원자를 가지는 알킬 또는 에테르기와 같은, 하나 이상의 선택적 저 원자량 그룹으로 치환될 수 있다. 보다 바람직하게, 상기 방향족 모노머는 방향족기(즉, 스티렌)로부터 직접 연장되는 에틸렌성 불포화 비닐기를 갖는, 상기 화학식 3에 나타낸 구조를 포함한다.
모노머는 임의의 적절한 자유 라디칼 개시제를 사용하여 자유 라디칼 중합 반응으로 중합될 수 있다. 예를 들면, 부타디엔 모노머의 적어도 일부는 초기에 중합되어 폴리부타디엔을 생성할 수 있다. 그 다음, 아크릴로니트릴 및 방향족 모노머가 폴리부타디엔의 존재하에 중합되어 기다란 폴리부타디엔 체인을 생성하고, 상기 체인은 아크릴로니트릴 및 방향족 모노머로부터 더 짧은 체인으로 연결되어 있다(예, 폴리(스티렌-아크릴로니트릴) 체인). 인접하는 체인의 니트릴기는 체인들을 서로 끌어당기고 구속함으로써, 결과적인 ABS 코폴리머에 대해 양호한 강도를 제공하는 것으로 여겨진다. 상기 ABS 코폴리머는, 중합된 아크릴로니트릴 및 방향족 모노머의 연속적인 상(continuous phase) 및 분산되거나 상기 연속적인 상에 분포된 폴리부타디엔의 분산된 상(dispersed phase)을 가지는, 비정질의 두 개의 상(two-phase)의 시스템으로 존재할 수 있다.
ABS 코폴리머를 제조하는데 사용되는 아크릴로니트릴 모노머는, ABS 코폴리머를 제조하는데 사용되는 모노머의 전체 중량에 대하여, 약 10 중량%에서 약 45 중량%, 보다 바람직하게는 약 15 중량%에서 약 35 중량%를 구성할 수 있다. 부타디엔 모노머는 ABS 코폴리머를 제조하는데 사용되는 전체 모노머의 중량에 대하여, 약 1 중량%에서 약 50 중량%, 보다 바람직하게는 약 5 중량%에서 약 35 중량%를 구성할 수 있다. 유사하게, 방향족 모노머(예컨대, 스티렌)는 ABS 코폴리머를 제조하는데 사용되는 전체 모노머의 중량에 대하여, 약 30 중량%에서 약 75 중량%, 보다 바람직하게는 약 40 중량%에서 약 60 중량%를 구성할 수 있다.
일부 실시형태에서, ABS 코폴리머를 중합하는데 사용되는 모노머는, 바람직하게는 ABS 코폴리머의 강도, 화학적 또는 열적 특성을 실질적으로 손상시키지 않는, 하나 이상의 추가 모노머 화합물을 포함할 수 있다. 예를 들면, ABS 코폴리머는 폴리부타디엔 백본 및/또는 폴리(스티렌-아크릴로니트릴) 체인에 대해 체인 연장 유닛(예, 에틸렌 유닛)으로 기능하는 모노머를 포함할 수 있다.
이에 따라, 상기 추가 모노머는 ABS 코폴리머를 제조하는데 사용되는 모노머의 전체 중량에 대하여, 집합적으로 0 중량%에서 약 10 중량%를 구성할 수 있다. 일부 실시형태에서, 상기 추가적인 모노머는 ABS 코폴리머를 제조하는데 사용되는 모노머의 전체 중량에 대하여, 약 0.1 중량%에서 약 5 중량%를 구성할 수 있다. 이에 따라, ABS 코폴리머를 중합하는데 사용되는 모노머의 나머지는 상기 설명된 아크릴로니트릴 모노머, 부타디엔 모노머 및 방향족 모노머(예, 스티렌)로 구성된다.
다른 바람직한 실시형태에서, ABS 코폴리머를 중합하는데 사용되는 모노머는 필수적으로 또는 전적으로 아크릴로니트릴 모노머, 부타디엔 모노머 및 방향족 모노머(예컨대, 스티렌)로 구성된다. 보다 바람직한 실시형태에서, ABS 코폴리머를 중합하는데 사용되는 모노머는 필수적으로 또는 전적으로 상기 화학식 1-3에 나타낸 구조를 가지는 모노머로 구성된다.
부가적으로, 일부 실시형태에서는 충격 저항, 거칠기 및/또는 열 저항을 조정하기 위해, ABS 코폴리머를 제조할 때 변경이 가해질 수 있다. 예를 들면, 충격 저항은 아크릴로니트릴 및 방향족 모노머에 대해 부타디엔 모노머의 비율을 증가시킴으로써 증가될 수 있다.
ABS 코폴리머는 바람직하게는 3D 부품(예컨대, 3D 부품(80))을 인쇄하기 위한 EP 기반 적층제조 시스템(예컨대, 시스템(10))에 사용되기 위해 적절한 용융 레올로지를 제공하는 분자량을 가지고, 이는 ABS 코폴리머의 유리전이온도(glass transition temperature), 용융 유량(melt flow rate) 및/또는 동적 점도(dynamic viscosity)에 의해 특징 지워질 수 있다. ABS 코폴리머에 대한, 바람직한 유리전이온도의 예시는 약 100℃ 에서 약 115℃, 보다 바람직하게는 약 105℃에서 약 110℃ 범위이다.
180℃에서 ABS 코폴리머의 적절한 동적 점도는 약 17 킬로파스칼-초(kilopascal-seconds)에서 약 24 킬로파스칼-초(kilopascal-seconds) 범위이고, 190℃에서는 약 6 킬로파스칼-초(kilopascal-seconds)에서 약 10 킬로파스칼-초(kilopascal-seconds), 200℃에서는 약 3.5 킬로파스칼-초(kilopascal-seconds)에서 약 4.5 킬로파스칼-초(kilopascal-seconds)이다. 여기서 말하는 동적 점도(dynamic viscosities)는 다음에 설명되는 용융 레올로지(Melt Rheology) 테스트에 따라 결정된다.
위에서 설명된 바와 같이, ABS 부품재료는 3D 부품(예컨대, 3D 부품(80))을 인쇄하기 위한 EP 기반 적층제조 시스템(예컨대, 시스템(10))에 사용되도록 제조된다. 따라서, ABS 부품재료는 EP 엔진(12p)으로 층을 현상하고, 상기 현상된 층을 EP 엔진(12p)으로부터 레이어 트랜스퓨전 어셈블리(20)로 전사하고, 레이어 트랜스퓨전 어셈블리(20)로 상기 현상된 층을 트랜스퓨즈하는 것을 도모하기 위한 하나 이상의 물질을 포함할 수도 있다.
예를 들면, 시스템(10)을 이용한 전자사진 공정에서, 상기 ABS 부품재료는 바람직하게는 현상 스테이션(58)에서 캐리어 입자를 이용하여 마찰 접촉 대전시키는 매커니즘을 통해 마찰 전기적으로 대전된다. ABS 부품재료의 이러한 대전은, 질량에 대한 마찰 전하량(triboelectric charge-to-mass)(Q/M) 비율로 표시될 수 있고, 이는 양 또는 음 전하일 수 있고 원하는 크기를 가진다. 상기 Q/M 비율은, 단위 면적당 질량으로 표시되는 ABS 부품재료의 파우더 밀도(M/A)에 반비례한다. 주어진 적용 현상 영역에서, ABS 부품재료의 Q/M 비율의 값이 주어진 값으로부터 증가됨에 따라, ABS 부품재료의 M/A 값은 감소되고, 그 역도 성립한다. 따라서, 부품재료의 각 현상된 층에 대한 파우더 밀도(powder density)는 ABS 부품재료의 Q/M 비율의 함수이다.
현상 드럼(44) 상에 ABS 부품재료의 성공적 그리고 신뢰성 높은 현상(development)을 제공하고, 레이어 트랜스퓨전 어셈블리(20)로 (예컨대, 벨트(22)를 통해) 전달하여, 양호한 재료 밀도를 가진 3D 부품(80)을 인쇄하기 위해, 상기 ABS 부품재료는 바람직하게는 벨트(22)와 EP 엔진(12p)의 특정 아키텍쳐에 대해 적절한 Q/M 비율을 가진다. ABS 부품재료에 대한 바람직한 Q/M 비율의 실시예는 약 -5 마이크로-쿨롱/그램(μC/g)에서 약 -50 마이크로-쿨롱/그램(μC/g), 보다 바람직하게는 약 -10 마이크로-쿨롱/그램(μC/g)에서 약 -40 마이크로-쿨롱/그램(μC/g), 더더욱 바람직하게는 약 -15 마이크로-쿨롱/그램(μC/g)에서 -35 마이크로-쿨롱/그램(μC/g), 보다 더욱 바람직하게는 약 -25 마이크로-쿨롱/그램(μC/g)에서 약 -30 마이크로-쿨롱/그램(μC/g) 범위이다.
이 실시형태에서, Q/M 비율은 음의 마찰전기 전하에 기초한다. 그러나 선택적인 실시형태에서, 시스템(10)은 ABS 부품재료의 Q/M 비율이 상기 설명된 크기로 양의 마찰전기 전하를 가지도록 작동할 수 있다. 둘 중 어느 실시형태에서도, 상기한 Q/M 비율의 크기는 ABS 부품재료를 캐리어 표면에 구속시키는 정전기력이 과도하게 되는 것을 방지하고, 임의 레벨의 "잘못된 부호(wrong sign)" 파우더가 최소화되도록 한다. 이것은 EP 엔진(12p)에서의 ABS 부품재료의 현상에 있어서 비효율을 감소시켜, 바람직한 M/A 값으로 각 층(64p)의 현상 및 전사를 촉진시킨다.
또한, 3D 부품(80)의 일정한 재료 밀도를 희망할 경우, 바람직한 Q/M 비율(및 대응하는 M/A 값)은 시스템(10)을 이용한 전체 인쇄 작업 동안 안정적인 수준으로 유지되는 것이 바람직하다. 그러나 시스템(10)을 이용하여 연장된 인쇄 작업을 거치면서, EP 엔진(12p)의 현상 스테이션(58)에 ABS 부품재료의 추가적인 양이 보충될 필요가 있을 수 있다. 이것은 문제가 될 수 있는데, 그 이유는 보충 목적을 위해 ABS 부품재료의 추가량을 현상 스테이션(58)에 도입할 때, 상기 ABS 부품재료는 캐리어 입자와 혼합할 때까지는 초기에 대전되지 않은 상태이기 때문이다. 따라서, 시스템(10)으로 연속적인 인쇄 작업을 유지하기 위해서, ABS 부품재료는 또한 빠른 속도로 바람직한 Q/M 비율로 대전되어야 한다.
따라서, 인쇄 작업의 개시 중에, 그리고 인쇄 작업이 지속되는 동안, Q/M 비율을 조절하고 유지하는 것은 결과적인 속도(rate) 및 ABS 부품재료의 M/A 값의 일관성을 조절할 것이다. 바람직한 Q/M 비율을 재현성 있게 안정적으로 얻기 위해서, 그리하여 바람직한 M/A 값을 얻기 위해서는, 상기 ABS 부품재료는 바람직하게는 하나 이상의 전하 조절제를 포함하고, 이것은 ABS 부품재료의 제조 공정 중에 ABS 코폴리머에 첨가될 수 있다.
ABS 부품재료의 Q/M 비율이 음 전하값인 실시형태에서, ABS 부품재료에 사용되기 적절한 전하 조절제로는 산성 금속 착체(acid metal complexes)(예를 들면, 크롬, 아연, 알루미늄의 옥시 카르복실산 착체(oxy carboxylic acid complexes)), 아조 금속 착체(azo metal complexes)(예를 들면, 크롬 아조 착체(chromium azo complexes) 및 철 아조 착체(iron azo complexes)), 이들의 혼합물 등이 포함된다.
선택적으로, ABS 부품재료의 Q/M 비율이 양 전하값인 실시형태에서, ABS 부품재료에 사용되기 적절한 전하 조절제로는 아진계 화합물(azine-based compounds), 및 4차 암모늄염(quaternary ammonium salts), 이들의 혼합물 등이 포함된다. 이들 물질은 적절한 캐리어 입자에 대해 마찰 접촉 대전될 때, ABS 코폴리머를 양으로 대전시킬 때 효과적이다.
전하 조절제는, ABS 부품재료의 전체 중량에 대하여, 바람직하게는 ABS 부품재료의 약 0.1 중량%에서 약 5 중량%, 보다 바람직하게는 약 0.5 중량%에서 약 2 중량%, 그리고 더더욱 바람직하게는 약 0.75 중량%에서 약 1.5 중량%를 구성한다. 위에서 설명된 바와 같이, 이들 전하 조절제는 바람직하게 캐리어에 대한 ABS 코폴리머의 대전 속도를 증가시키고, 시스템(10)을 이용한 인쇄 작업의 연장된 연속적인 시기에 걸쳐 Q/M 비율을 안정화시킨다.
많은 상황에 있어서, 시스템(10)은 인쇄 작업이 계속되는 동안 실질적으로 일정한 재료 밀도로 층들(64p)을 인쇄한다. 조절되고 일정한 Q/M 비율의 ABS 부품재료가 구비되는 것은 이를 달성하도록 허용한다. 그러나 어떤 상황에서는, 동일한 인쇄 작업에서 여러 층들(64p) 사이에 재료 밀도를 조절하는 것이 바람직할 수 있다. 예를 들면, 시스템(10)은 원할 경우, 3D 부품(80)의 하나 이상의 부분에 대해, 감소된 재료 밀도의 그레이스케일 방식으로 실행하도록 작동될 수 있다.
전하 조절제를 포함시키는 것에 부가하여, EP 엔진(12p)의 효율적인 작동을 위하여, 그리고 ABS 부품재료의 보충 중에 신속하고 효율적인 마찰전기 대전을 보장하기 위하여, ABS 부품재료의 혼합물은 바람직하게는 양호한 파우더 유동 특성(powder flow properties)을 나타낸다. 이는 ABS 부품재료가 현상 스테이션(58)의 현상 섬프(development sump)(예컨대, 호퍼) 내로 오거(auger), 중력 또는 다른 유사한 매커니즘에 의해 공급되기 때문에 선호되고, 여기서 상기 ABS 부품재료는 캐리어 입자와 혼합 및 마찰 접촉 대전(frictional contact charging) 처리된다.
이해될 수 있는 바와 같이, 보충 공급 중에 ABS 부품재료의 막힘 또는 유동 제한은 ABS 부품재료의 캐리어 입자에의 공급을 방해할 수 있다. 마찬가지로, ABS 부품재료 부분은 현상 스테이션(58)의 숨겨진 공동(cavities)에 갇혀지면 안된다. 이러한 각각의 상황은 캐리어 입자에 대한 ABS 부품재료의 비율을 변경시킬 수 있고, 위에서 설명된 바와 같이, 상기 비율은 대전된 ABS 부품재료에 대해 바람직한 Q/M 비율을 제공하기 위해 바람직하게는 일정한 레벨로 유지된다.
예를 들면, 상기 ABS 부품재료는 ABS 부품재료와 캐리어 입자가 결합된 중량에 대하여, 약 1 중량%에서 약 30 중량%를, 보다 바람직하게는 약 5 중량%에서 약 20 중량%를, 더더욱 바람직하게는 약 5 중량%에서 약 10 중량%를 구성한다. 이에 따라 상기 캐리어 입자는 결합된 중량의 나머지를 구성한다.
ABS 부품재료의 파우더 유동 특성(powder flow properties)은 무기 산화물과 같은 하나 이상의 유동성 조절제의 사용으로 개선 또는 변경될 수 있다. 적절한 무기 산화물의 예시로는 흄드 실리카(fumed silica), 흄드 티타티아(fumed titania), 흄드 알루미나(fumed alumina), 이들의 혼합물 등과 같은 소수성 흄드 무기 산화물이 포함된다. 여기서, 흄드 산화물(fumed oxides)은 실란(silane) 및/또는 실록산 처리(siloxane-treatment) 공정에 의해 소수성으로 될 수 있다. ABS 부품재료에 사용하기 위한 상업적으로 입수가능한 무기 산화물의 예시로는 독일 에센의 에보닉 인더스트리 사(Evonik Industries AG)의 "AEROSIL"이라는 상품명의 것들이 포함된다.
유동성 조절제(예를 들면, 무기 산화물)은 ABS 부품재료의 전체 중량에 대해, 바람직하게는 ABS 부품재료의 약 0.1 중량%에서 약 10 중량%를, 더욱 바람직하게는 약 0.2 중량%에서 약 5 중량%를, 더더욱 바람직하게는 약 0.3 중량%에서 약 1.5 중량%를 구성한다.
위에서 설명된 바와 같이, 하나 이상의 전하 조절제는 ABS 코폴리머를, EP 엔진(12p)에서 ABS 부품재료의 층을 현상하고, 상기 현상된 층(예를 들면, 층(64))을 레이어 트랜스퓨전 어셈블리(20)로 (예컨대, 벨트(22)를 통해) 전달하기 위한, 바람직한 Q/M 비율로 대전시키기에 적절하다. 그러나 3D 환경에서 다수의 인쇄된 층들은, 주어진 수의 층들이 인쇄된 이후에 ABS 부품재료의 정전기적 전사를 유효하게 방해한다. 대신, 레이어 트랜스퓨전 어셈블리(20)는 트랜스퓨전 단계에서 상기 현상된 층들을 함께 트랜스퓨즈하기 위해 열과 압력을 이용한다.
특히, 히터(72 및/또는 74)는 층들(64)과 3D 부품(80) 및 지지 구조(82)의 상부 표면을, 닙 롤러(70)에 도달하기 이전에 적어도 ABS 부품재료의 융합 온도와 같이, ABS 부품재료의 목적하는 전사 온도 부근의 온도로 가열한다. 유사하게, 포스트-퓨즈 히터(76)가 닙 롤러(70)의 하류 및 에어 제트(78)의 상류에 위치되어, 트랜스퓨즈된 층들을 포스트-퓨즈 또는 열경화 단계에서 상승된 온도로 가열하도록 구성된다.
이에 따라, ABS 부품재료는 또한 히터(72), 히터(74) 및/또는 포스트-히터(76)에 노출될 때 ABS 부품재료가 가열되는 속도를 증가시키도록 이루어진 하나 이상의 열 흡수제를 포함할 수 있다. 예를 들면, 히터(72, 74, 76)가 적외선 히터인 실시형태에서, ABS 부품재료에 사용되는 상기 열 흡수제는 (근적외선을 포함하는) 하나 이상의 적외선 파장 흡수 물질일 수 있다. 하기에 설명된 바와 같이, 이들 열 흡수제는 ABS 부품재료의 제조 중에 ABS 코폴리머 입자에 포함될 수 있다. 적외선의 흡수는 에너지의 무방사 감쇠(radiationless decay)가 입자들 내에서 일어나도록 유도하고, 이는 ABS 부품재료에 열을 발생시킨다.
상기 열 흡수제는 바람직하게는, 다음에 설명되는 바와 같이, 제한적 응집 공정(limited coalescence process)으로 ABS 부품재료를 제조하는데 사용되는 용매화된(solvated) ABS 코폴리머에 용해되거나 분산시킬 수 있다. 부가하여, 상기 열 흡수제는 또한, 바람직하게는 제조 프로세스 중에 ABS 코폴리머 입자의 형성 또는 이들 입자의 안정화에 간섭하지 않는다. 또한, 상기 열 흡수제는 제조 프로세스 중에 바람직하게는 ABS 코폴리머 입자의 입자 크기 및 입자 크기 분포, 또는 ABS 코폴리머 입자의 수율 제어에 간섭하지 않는다.
ABS 부품재료에 사용하기 위한 적절한 적외선 흡수 물질은 원하는 ABS 부품재료의 색에 따라 달라질 수 있다. 적절한 적외선 흡수 물질의 예시로는 약 650 나노미터(nm)에서 약 900 나노미터(nm) 범위의 파장의 흡수를 나타내는 것, 약 700 나노미터(nm)에서 약 1,050 나노미터(nm) 범위의 파장의 흡수를 나타내는 것, 약 800 나노미터(nm)에서 약 1,200 나노미터(nm) 범위의 파장의 흡수를 나타내는 것과 같은, 다양한 종류의 적외선 흡수 안료 및 염료뿐 아니라, 카본블랙(ABS 부품재료에 대한 검은색 안료로 기능할 수도 있음)이 포함된다. 이들 안료 및 염료 종류의 예시로는 안트라퀴논(anthraquinone) 염료, 폴리시아닌(polycyanine) 염료, 메탈 디티올렌(metal dithiolene) 염료 및 안료, 트리스 아미늄(tris aminium) 염료, 테트라키스 아미늄(tetrakis aminium) 염료, 이들의 혼합물 등이 포함된다.
또한, 상기 적외선 흡수 물질은 바람직하게는, ABS 코폴리머의 온도 프로파일(temperature profile)에 대한 제로 전단 점도(zero shear viscosity)와 같이, ABS 코폴리머의 용융 레올로지를 실질적으로 강화시키거나 변경시키지 않는다. 예를 들면, 이것은 ABS 코폴리머에 비해 낮은 농도로, 비 강화(non-reinforcing) 유형의 카본 블랙 또는 "저구조(low structure)" 유형의 카본 블랙을 사용함으로써 달성될 수 있다. 따라서, ABS 부품재료에 대한 적절한 동적 점도(dynamic viscosities)로는 180℃, 190℃, 200℃에서 ABS 코폴리머에 대해 위에서 설명된 것들이 포함된다.
따라서, 열 흡수제가 포함된 실시형태에서, 열 흡수제(예를 들면, 적외선 흡수제)는 ABS 부품재료의 전체 중량에 대하여, 바람직하게는 ABS 부품재료의 약 0.5 중량%에서 약 10 중량%를, 보다 바람직하게는 약 1 중량%에서 약 5 중량%를, 일부 더욱 바람직한 실시형태에서는 약 2 중량%에서 약 3 중량%를 구성한다.
ABS 부품재료는 또한, 바람직하게는 제한적 응집 공정(limited coalescence process)로 ABS 부품재료를 제조하는데 사용되는 용매화된(solvated) ABS 코폴리머에 용해되거나 분산시킬 수 있고, 바람직하게는 제조 프로세스 중에 ABS 코폴리머 입자의 형성 또는 이들 입자의 안정화에 간섭하지 않으며, 바람직하게는 제조 프로세스 중에 ABS 코폴리머 입자의 입자 크기 및 입자 크기 분포, 또는 ABS 코폴리머 입자의 수율 제어에 간섭하지 않는, 하나 이상의 부가적인 첨가제를 포함할 수 있다.
적절한 부가적인 첨가제의 예시로는 착색제(예를 들면, 열 흡수제에 부가하여 또는 열 흡수제를 대체한, 안료 및 염료), 폴리머 안정화제(예를 들면, 산화 방지제, 광 안정화제, 자외선 흡수제, 및 내오존제(antiozonants)), 생분해성 첨가제 및 이들의 조합이 포함된다. 부가적인 첨가제가 포함된 실시형태에서, 부가적인 첨가제는 ABS 부품재료의 전체 중량에 대하여, 집합적으로 ABS 부품재료의 약 0.1 중량%에서 약 20 중량%를, 보다 바람직하게는 약 0.2 중량%에서 약 10 중량%를, 더더욱 바람직하게는 약 0.5 중량%에서 약 5 중량%를 구성한다.
전자사진 기반 적층제조시스템(예컨대, 시스템(10))에 사용되기 위하여, ABS 부품재료는, 하기 입자 크기 및 입자 크기 분포 표준(Particle Sizes and Particle Size Distributions standard)에 설명된 바와 같이, 바람직하게는 조절된 평균 입자 크기 및 좁은 입자 크기 분포를 가진다. 예를 들면, 바람직한 D50 입자 크기는 원할 경우 약 100 마이크로미터까지의 것들을 포함하고, 보다 바람직하게는 약 10 마이크로미터에서 약 30 마이크로미터까지, 보다 더 바람직하게는 10 마이크로미터에서 20 마이크로미터까지, 더더욱 바람직하게는 약 10 마이크로미터에서 약 15 마이크로미터까지의 것들이 포함될 수 있다.
또한, 상기 입자 크기 분포는, D90/D50 입자 크기 분포 및 D50/D10 입자 크기 분포 파라미터에 의해 구체화된 바와 같이, 각각 바람직하게는 약 1.00 에서 1.40, 보다 바람직하게는 약 1.10에서 약 1.35, 더더욱 바람직하게는 약 1.15에서 약 1,25까지의 범위를 가진다. 또한, 입자 크기 분포는 바람직하게는 기하 표준 편차(geometric standard deviation)(σg)가 다음의 식 1에 따른 기준을 충족하도록 설정된다:
즉, D90/D50 입자 크기 분포 및 D50/D10 입자 크기 분포는 바람직하게는 동일한 값, 또는 서로 약 10% 이내, 더욱 바람직하게는 서로 약 5% 이내로 동일한 값에 가깝다.
ABS 부품재료는 바람직하게는 중합에 의해 또는 ABS 코폴리머를 제공하는 것에 의해, 그 다음 ABS 코폴리머(및 다른 구성요소)로부터 상기 설명된 입자 크기 및 입자 크기 분포로 ABS 부품재료를 형성하는 것에 의해 제조된다. ABS 코폴리머는 양호한 충격 저항 및 단단함(toughness)을 나타낸다. 그러나 이와 같이 바람직한 특성(engineering properties)은 상기 코폴리머를 EP 엔진(12p)의 전자사진 현상 프로세스에 유용한 작은 크기, 특히 상기 설명된 입자 크기 및 입자 크기 분포로, 잘게 부수는 것을 어렵게 한다. 일반적인 그라인딩(grinding) 및 분쇄(pulverization) 방식은 전형적으로 대략 30-60 마이크로미터의 입자 크기만을, 낮은 수율 및 생산 비용면에서 비효율적인 방식으로 얻게 할 수 있다.
ABS 코폴리머가 액체 질소, 드라이 아이스(고체 이산화탄소)를 이용하여 물러지게 한 후 기계적으로 분쇄(pulverization)되는 극저온 그라인딩(cryogenic grinding) 및 밀링(milling), 및 펠렛의 프리그라인딩(pregrinding) 이후에 에어 제트 밀링(air jet milling) 처리하는 것과 같은, 다양한 다른 제조 방법이 이 문제를 해결하기 위해 조사되어 왔다. 이들 기술을 이용하는 것도 그라인딩 속도가 특히 느릴 경우에는 비용면에서 비효율적인 것으로 판명되었다.
대신, 상기 ABS 부품재료는 바람직하게는, 베넷 등의 미국 특허 5,354,799호에 개시된 바와 같은, 제한적 응집 공정을 이용하여 ABS 코폴리머로부터 제조된다. 예를 들면, ABS 부품재료의 구성성분(예컨대, ABS 코폴리머, 전하 조절제, 열 흡수제 및/또는 부가적인 첨가제)은 유기 용매에, 유기 용매 중 ABS 코폴리머의 중량기준으로 약 10 중량%에서 약 20 중량%까지의 적절한 농도 범위로, 용해 또는 현탁될 수 있다. 적절한 유기 용매의 예시로는 에틸아세테이트, 프로필아세테이트, 부틸아세테이트, 디클로로메탄, 메틸에틸케톤, 시클로헥산, 톨루엔, 이들의 혼합물 등이 포함될 수 있다.
독립적으로, 산성 완충 수용액(buffered acidic aqueous solution)이 콜로이달 실리카(colloidal silica), 바람직하게는 폴리(아디프산-코-메틸아미노에탄올)(poly(acid-co-methylaminoethanol))과 같은 물-액적 계면 촉진제(water-droplet interface promoter)와 같은 분산제를 함유시켜 제조될 수 있다. 그 다음, 전체 혼합물을 균질기(homogenizer) 등으로 고 전단 혼합(high shear mixing)되도록 하면서,상기 산성 완충 수용액에 유기 용매 용액이 서서히(예를 들면, 점차 증가시켜) 첨가될 수 있다. 이것은 조절된 크기와 크기 분포의 유기 상(organic phase) 액적을 생성하고, 액상의 콜로이달 실리카에 의해 안정화된다.
안정화 용매화된 액적 서스펜션(stabilized solvated droplet suspension)은 그 다음 플래시 증발기(flash evaporator)로 전달될 수 있고, 여기서 유기 용매는 진공을 인가하여 응축 탱크(condensate tank)로 제거될 수 있다. 액상에 분산된 상태로 남아있는, 결과적인 ABS 부품재료의 고체 입자는 그 다음 교반된 보관 용기(stirred holding vessel)로 전달될 수 있고, 콜로이달 실리카는 수산화나트륨 수용액, 여과 및 물의 사용 등으로 제거될 수 있다.
그 다음 ABS 부품재료는 파우더 형태로 제조하기 위해 건조될 수 있다. 필요한 경우, 입자 크기 분석 후에, ABS 부품재료의 건조 파우더는 과대 입자를 제거하기 위한 추가 체질(sieving) 및/또는 시스템(10)에서의 후속 성능에 해롭다고 여겨지는 어느 수준의 미세분을 제거하기 위한 분류작업(classification)을 거칠 수 있다. 이 공정은 일반적으로 적용된 ABS 코폴리머의 원래 양을 기준으로, 약 90 중량%에서 약 99 중량% 범위의 수율로 ABS 부품재료를 생산한다.
또한, ABS 부품재료는 위에서 설명된 바와 같은 입자 크기 및 입자 크기 분포를 가진다. 일부 실시예에서, 결과적인 ABS 부품재료는, ABS 부품재료의 파우더 유동 특성을 증가시키기 위해, 위에서 설명된 바와 같이, 하나 이상의 표면(external) 유동성 조절제로 표면 처리될 수 있다. 예컨대, ABS 부품재료는, 바람직하게는 25℃에서, 하나 이상의 표면 유동성 조절제를 이용하여, 고속 및 고 전단 사이클론 혼합 장치(high speed and high shear cyclonic mixing apparatus)에서 건조 혼합될 수 있다. 이것은 ABS 부품재료의 입자 크기 또는 입자 크기 분포를 크게 변경시키지 않으면서, ABS 부품재료의 개개 입자 내에 유동성 조절제를 균일하게 분포, 피복, 부분적으로 매립시킨다.
제조된 ABS 부품재료는 그 다음 시스템(10)의 EP 엔진(12p)에 사용되기 위해 카트리지 또는 다른 적절한 용기에 충진될 수 있다. 예를 들면, 제조된 ABS 부품재료는 카트리지에 공급될 수 있고, 카트리지는 현상 스테이션(58)의 호퍼에 교체가능하게 연결될 수 있다. 이 실시형태에서, 상기 제조된 ABS 부품재료는, 현상 스테이션(58)에 수용되어 있을 수 있는 캐리어 입자와 혼합되기 위해, 현상 스테이션(58)에 충진될 수 있다. 또한, 현상 스테이션(58)은 하우징, 전달 매커니즘, 통신 회로 등과 같은 일반적인 토너 현상 카트리지 구성요소를 포함할 수 있다.
현상 스테이션(58)에서 캐리어 입자는, 폴리머로 코팅된 스트론튬 페라이트 코어(strontium ferrite cores)를 가지는 캐리어 입자와 같이, ABS 부품재료를 대전하기 위한 임의의 적절한 자화 가능한(magnetizable) 캐리어 입자일 수 있다. 상기 코어는 일반적으로 ABS 부품재료의 입자 크기보다 커서, 평균적으로 약 20 마이크로미터에서 약 25 마이크로미터의 직경을 가진다. 폴리머 코팅은 원하는 ABS 부품재료의 Q/M 비율에 따라 달라질 수 있다. 적절한 폴리머 코팅의 예시는 음의 대전에 대해 폴리(메틸메타크릴레이트)(poly(methyl methacrylate), PMMA), 또는 양의 대전에 대해 폴리(비닐리덴 플루오라이드)(poly(vinylidene fluoride), PVDF)을 포함한다. 현상 스테이션 또는 카트리지(58)에서 캐리어 입자에 대한 ABS 부품재료의 적절한 중량 비율은 위에서 설명된 것들을 포함한다.
선택적으로, 현상 스테이션(58)은 그 자체가 ABS 부품재료인 공급물을 수용하는 교체가능한 카트리지일 수 있다. 추가적인 선택적 실시형태에서, EP 엔진(12p)은 그 자체가 ABS 부품재료인 공급물을 수용하는 교체가능한 장치일 수 있다.
ABS 부품재료가 시스템(10)에 장전되면, 그 다음 시스템(10)은, 바람직하게는 적절한 지지 구조(예컨대, 지지 구조(82))와 함께, 3D 부품(즉, 3D 부품(80))을 인쇄하기 위해, ABS 부품재료로 인쇄 작업을 수행한다. 예를 들면, 지지 구조(82)의 층들(64s)은 EP 엔진(12s)을 이용하여 지지 재료(66s)로부터 현상되고, 현상된 부품재료(66p)와 함께 벨트(22)를 통해서 레이어 트랜스퓨전 어셈블리(20)로 전달될 수 있다. 레이어 트랜스퓨전 어셈블리에 도달하면, (층(64p)과 층(64s)의) 결합된 층(64)은 적층제조 기술을 이용하여 3D 부품(80)과 지지 구조(82)를 적층 방식으로 인쇄하기 위해 가열되고 트랜스퓨즈된다.
조성적으로, 결과적인 3D 부품(예컨대, 3D 부품(80))은 ABS 코폴리머, 전하 조절제, 열 흡수제, 유동성 조절제 및/또는 임의의 추가적인 첨가제 등으로 이루어지는 ABS 부품재료를 포함한다. 또한, 레이어 트랜스퓨전 어셈블리(20)를 이용한 트랜스퓨전 단계는, 미국 미네소타주 에덴 프래리 소재의 스트라타시스 사에 의해 개발된 상품명 "FUSED DEPOSITION MODELING" 및 "FDM"인 압출 기반 기술과 같은, 다른 융합 기반 적층제조 기술을 이용하여 ABS 코폴리머로부터 얻을 수 있는 것보다 더 큰 부품 밀도를 제공할 수 있다.
예를 들면, 생성 평면의 방향에서, 결과적인 3D 부품은 약 5,000 파운드/스퀘어-인치(psi)보다 큰, 보다 바람직하게는 약 5,300 프사이(psi)보다 큰 피크 인장 응력(peak tensile stress)을 나타낼 수 있다. 일부 실시예에서, 3D 부품은 생성 평면 방향에서 약 5,800 프사이(psi)보다 큰 피크 인장 응력을 나타낼 수 있다. 여기서 사용된, 피크 인장 응력은 ASTM D638-10에 따라 측정된다. 따라서, 인쇄된 3D 부품은 높은 부품 해상도 및 양호한 물리적 특성(예를 들면, 양호한 부품 강도, 밀도, 화학적 내성, 가용 온도 범위 등)을 가질 수 있어, 원할 경우, 그들을 최종 사용 부품으로 기능할 수 있도록 한다.
특성 분석 및 특성화 절차
(PROPERTY ANALYSIS AND CHARACTERIZATION PROCEDURES)
여기 설명된 부품 및 지지 재료의 다양한 특성과 특징이 하기에 설명된 다양한 테스트 절차에 의해 평가될 수 있다:
1. 유리전이온도( Glass Transition Temperature )
유리전이온도는 시차 주사 열량계(Differential Scanning Calorimetry)(DSC) ASTM D3418-12e1을 사용하는 고전적인 ASTM 방법을 사용하여 결정되고, 섭씨 온도로 기록된다. 테스트는 일본 도쿄의 세이코 인스트루먼트 사의 상품명 "SEIKO EXSTAR 6000"으로 상업적으로 입수할 수 있는 DSC 분석기로, 지지 재료 코폴리머 10 밀리그램 시료를 이용하여 수행되었다. 데이터는 역시 일본 도쿄의 세이코 인스트루먼트 사의 상품명 "DSC Measurement V 5.7" 및 "DSC Analysis V5.5"로 상업적으로 입수할 수 있는 소프트웨어를 이용하여 분석되었다. 테스트를 위한 온도 프로파일은, (i) 25℃에서 160℃로의 가열 속도 10 칼빈/분(Kelvin/minute)(제1 가열기), (ii) 160℃에서 20℃로의 냉각속도 10 칼빈/분(Kelvin/minute), 및 (iii) 20℃에서 260℃로의 가열 속도 10 칼빈/분(Kelvin/minute)(제2 가열기)를 포함한다. 유리전이온도는 제2 가열기(iii)의 열 흐름 특성(heat flow characteristics)만을 이용하여 결정된다.
2. 입자 크기 및 입자 크기 분포
입자 크기 및 입자 크기 분포는 미국 캘리포니아주 브레아 소재 베크만 쿨터 사의 상품명 "COULTER MULTISIZER II ANALYZER"로 상업적으로 입수할 수 있는 입자 크기 분석기를 사용하여 측정된다. 입자 크기는 D50 입자 크기, D10 입자 크기 및 D90 입자 크기 파라미터에 기초하여 체적 기준(volumetric-basis)으로 측정된다. 예를 들면, 입자 시료에 대해 10.0 마이크로미터의 D50 입자 크기는, 시료 중 입자의 50%가 10.0 마이크로미터보다 크고, 시료 중 입자의 50%는 10.0 마이크로미터보다 작다는 것을 의미한다. 마찬가지로, 입자 시료에 대해 9.0 마이크로미터의 D10 입자 크기는, 시료 중 입자의 10%는 9.0 마이크로미터보다 작다는 것을 의미한다. 또한, 입자 시료에 대해 12.0 마이크로미터의 D90 입자 크기는, 시료 중 입자의 90%는 12.0 마이크로미터보다 작다는 것을 의미한다.
입자 크기 분포는 D90/D50 분포 및 D50/D10 분포에 기초하여 결정된다. 예를 들면, 10.0 마이크로미터의 D50 입자 크기, 9.0 마이크로미터의 D10 입자 크기 및 12.0 마이크로미터의 D90 입자 크기는, D90/D50 분포 1.2 및 D50/D10 분포 1.1을 제공한다.
위에 설명된 바와 같이, 기하 표준 편차 σg는 바람직하게는 상기 수학식 1에 따른 기준을 충족시키고, 여기서 D90/D50 분포 및 D50/D10 분포는 바람직하게는 동일 또는 동일한 값에 가깝다. D90/D50 분포와 D50/D10 분포의 근접도는 분포 비율에 의해 결정된다. 예를 들면, D90/D50 분포 1,2 및 D50/D10 분포 1.1은 1.2/1.1=1.09의 비율 또는 대략 9% 차이를 제공한다.
3. 마찰전기적 대전
시스템(10)과 같은 전자사진 기반 적층제조 시스템에 사용하기 위한 파우더계 재료의 마찰전기 또는 정전기 대전 특성(charging properties)은 다음의 기술로 결정될 수 있다. 파우더계 재료의 테스트 시료 7 중량부가 캐리어 입자 93 중량부와 함께 깨끗한 건조 유리병에서 교반된다. 캐리어 입자는 자화된 22-마이크로미터 코어의 스트론튬 페라이트를 포함하고, 스트론튬 페라이트는 폴리머 코팅제 1.25 중량%로 코팅되는데 음의 대전(negative charging)을 위해서는 폴리(메틸 메타아크릴레이트)(PMMA)로, 양의 대전(positive charging)을 위해서는 폴리(비닐리덴 플루오라이드)(PVDF)로 코팅된다.
파우더계 재료와 캐리어 입자의 혼합물은 캐리어 입자와 파우더계 재료의 완전한 혼합 및 Q/M 비율의 평형을 보장하기 위해 25℃에서 45분간 자 롤러(jar roller)에서 교반된다. 상기 혼합과정은 부품 및 지지 재료가 캐리어 입자에 부가될 때 전자사진 엔진의 현상 스테이션에서 발생하는 혼합 공정을 시뮬레이션하는 것이다.
그 다음 혼합물 시료는 TEC-3 마찰전기 전하 분석기(TEC-3 Triboelectric Charge Analyzer)(미국 뉴욕 페어포트 소재의 토리 파인즈 리서치(Torrey Pines Research)로부터 시판)로 정량적으로 분석된다. 상기 분석기는 캐리어 입자 표면으로부터 정전기성(electrostatic) 파우더를 떼어내기 위해 전기장을 이용하고, 하부 전극에 (자화가능한 또는 영구적으로 자화된) 캐리어 비드(beads)를 구속하기 위해 회전하는 고강도 평면 다극 자석(rotating high-strength, planar multi-pole magnet)을 사용한다.
(시료 파우더과 캐리어 입자의) 혼합물 시료 0.7 그램이 깨끗한 스테인레스 스틸 디스크 상에 놓여지고, 상기 디스크는 인가된 전계의 영향하에, 갭을 가로질러 정전 플레이트-아웃 실험(electrostatic plate-out experiment across a gap)에서 하부 전극으로 기능한다. 상기 하부 전극은 회전하는 다극 자석 위에 위치 및 장착되고, 깨끗한 상부 플레이트 디스크 전극이 상기 하부 플레이트의 위에, 그것에 평행하게, 전극들의 주변에 절연 폴리테트라플루오로에틸렌(polytetrafluoroethylene)(상품명 "TEFLON"의 PTFE) 스페이서를 사용하여, 상부 및 하부 전극 플레이트 사이에 5 밀리미터로 조절된 갭을 제공하도록, 단단히 장착된다.
파우더가 음으로 대전될 예정인 경우, +1,500 볼트의 직류 전압이 전극에 인가되고, 자석 교반기(magnetic stirrer)가 1500rpm으로 회전하도록 작동되어, 테스트 하의 캐리어와 파우더를 측정 중에 하부 전극 상에 제한하면서도 다소 교반되도록, 완만하게 유지한다. 선택적으로, 파우더가 양으로 대전될 예정인 경우, 음의 바이어스 전압 -1,500 볼트가 인가된다. 어느 경우이던지, 정해진 시간에 걸쳐 상기 인가된 전계는 파우더/캐리어 혼합물에서 파우더가 캐리어로부터 스트립되고, 상부 전극으로 이동하도록 유도한다.
테스트에서 스트립된 파우더는 상부 전극에 증착되고, 상부 플레이트 상에 유도된 축적 전하는 전위계를 이용하여 측정된다. 상부 전극으로 이동된 파우더의 중량이 측정되고, 원래의 캐리어 파우더 혼합물에서의 이론적 퍼센티지와 비교된다. 캐리어는 그것을 구속하는 자기력으로 인해 하부 플레이트 상에 남아 있다.
상부 플레이트 상의 전체 전하량과 이동된 정전기 파우더의 알고 있는 중량은 테스트 파우더의 Q/M 비율을 계산하고, 캐리어 비드와 혼합된 원래의 이론적인 양에 따라, 모든 정전 파우더가 캐리어로부터 이동되었는지 확인하는데 사용된다. 또한, 상부 플레이트로 파우더가 완전히 이동하는데 걸린 시간과, 파우더 이동 과정의 퍼센트 효율이 측정된다.
4. 파우더 유동성( Powder Flowability )
위에서 설명된 바와 같이, 본 발명의 부품 및 지지 재료는 양호한 파우더 유동 특성을 나타낸다. 이는 보충 공급 중에 부품 또는 지지 재료의 막힘 또는 유동 제한을 감소 또는 방지할 수 있고, 그렇지 않으면 현상 스테이션에서 캐리어 입자에 부품 또는 지지 재료의 공급이 방해될 수 있다. 시료 재료의 파우더 유동성은 "양호한 흐름" 또는 매우 양호한 흐름"을 가진다고 평가되는, 2차원 전자사진 공정에서 사용되는 상업적으로 입수할 수 있는 토너와 비교하여, 시각적으로 파우더의 유동성을 관찰함으로써 정성적으로(qualitatively) 측정될 수 있다.
5. 용융 레올로지 ( Melt Rheology )
바람직하게는, 부품 및 지지 재료의 용융 레올로지는 실질적으로 그들의 각각의 코폴리머의 용융 레올로지와 동일하며, 바람직하게는 다른 첨가제에 의해 불리하게 영향을 받지 않는다. 또한, 위에서 설명된 바와 같이, 전자사진 기반 적층제조 시스템(예컨대, 시스템(10))에 사용하기 위한 부품 및 지지 재료는 바람직하게는 유사한 용융 레올로지를 가진다.
본 발명의 부품 및 지지 재료, 및 그들 각각의 코폴리머의 용융 레올로지는 어떤 온도 범위에 걸친 그들의 용융 유동 지수(melt flow indices)에 기초하여 측정된다. 상기 용융 유동 지수는 일본 도쿄의 시마쯔 사(Shimadzu Corporation)의 상품명 "SHIMADZU CFT-500D" 플로우테스터 캐필러리 레오미터(Flowtester Capillary Rheometer)로 상업적으로 입수할 수 있는 레오미터를 사용하여 측정된다. 각 테스트 동안, 2 그램의 시료가 레오미터의 표준 작동법에 따라 레오미터에 장전되고, 시료의 경미한 압착(slight compacting)을 유발하기 위해 시료의 온도가 50℃까지 증가된다.
그 다음 온도가 50℃에서 5℃/min의 속도로 증가되어, 시료가 먼저 연화되면서 유동할 수 있도록 한다. 레오미터는 레오미터의 피스톤이 실린더를 관통하면서 구동될 때, 작은 다이 오리피스(die orifice)를 관통하여 흐르는 용융물질의 흐름 저항을 이용하여 시료의 점도를 측정한다. 레오미터는 실린더가 시료 용융물질을 모두 배출할 때까지, 흐름이 시작되는 온도와 온도 증가의 결과로 흐름이 증가되는 비율(rate)인 연화 점(softening point)을 기록한다. 또한, 레오미터는 램프(ramp)의 각 온도 지점에서 겉보기 점도(apparent viscosity)를 파스칼-초(Pascal-seconds)로 계산한다. 이 데이터로부터, 예를 들면 도 5에 도시된 바와 같이 겉보기 점도 대 온도 프로파일이 결정될 수 있다.
실시예
본 발명이 다음의 실시예에 더욱 구체적으로 설명되지만, 본 발명의 범위 내에 속하는 다양한 수정 및 변형이 이 분야의 기술자에게 명백할 것이므로, 이들 실시예는 예시 목적으로만 제시된다.
1. 실시예 1
실시예 1의 ABS 부품재료는 제한적 응집 공정(limited coalescence process)를 이용하여 제조되었고, 실시예 1은 ABS 코폴리머를 포함하였지만, 전하 조절제, 유동성 조절제 또는 적외선 흡수제는 포함하지 않았다. 상기 ABS 코폴리머가 유기 용매(에틸 아세테이트)에 15 중량%의 농도로 용해되었다.
개별적으로, 산성 완충 수용액(buffered acidic aqueous solution)이 콜로이달 실리카(colloidal silica)와 폴리(아디프산-코-메틸아미노에탄올)(poly(adipic acid-co-methylaminoethanol))을 함유하도록 제조되었다. pH는 희석된 염산을 사용하여 pH 4.0으로 조절되었다. 그 다음 전체 혼합물을 균질기로 고 전단 혼합(high shear mixing)되도록 하면서, 상기 산성 완충 수용액에 용매 용액(solvent solution)이 서서히 첨가되었다. 이는 조절된 크기와 크기 분포의 유기 상(organic phase) 액적을 생성하였고, 액상의 콜로이달 실리카에 의해 안정화되었다.
유기상 액적 크기는 최종 크기 11 마이크로미터의 건조 ABS 부품재료를 제공하도록 목표설정되었다. 안정화된 용매화 액적 서스펜션은 그 다음 플래시 증발기로 전달되었고, 여기서 유기 용매는 적용된 진공을 이용하여 응축 탱크로 제거되었다.
결과적인 ABS 부품재료인 고체 입자는, 액상에 분산된 채로, 그 다음 교반된 보관 용기로 이동되었다. 그 다음 0.1% 수산화나트륨 용액이 콜로이달 실리카를 제거하기 위해 첨가되었다. 결과적인 수분을 함유한(aqueous) 슬러리는 그 다음 입자 여과장치를 통하도록 펌핑되었고, 필터 상에서 0.1% 수산화나트륨에 이어 탈염수로 세척되어, 남아있을 수 있는 콜로이달 실리카 입자가 제거되도록 하였다.
전하 조절제, 유동성 조절제 또는 적외선 흡수제를 포함하지 않았던, 결과적인 무색의 ABS 부품재료가 그 다음 트레이 건조 장치에서 열풍을 사용하여 건조되었다. 원래의 ABS 코폴리머 양에 대해 94%의 수율로 제조되었고, 입자 크기 및 입자 크기 분포는 다음의 표 1과 같다.
표 1 | |
입자 크기/입자 크기 분포 | 실시예 1 |
D50 입자 크기(마이크로미터) | 10.42 |
D90 입자 크기(마이크로미터) | 13.02 |
D10 입자 크기(마이크로미터) | 8.92 |
D90/D50 분포 | 1.25 |
D50/D10 분포 | 1.14 |
2. 실시예 2
실시예 2의 ABS 부품재료는 실시예 1에 대해 설명된 동일한 제한적 응집 공정을 사용하여 제조되었고, 실시예 2의 ABS 부품재료는 ABS 코폴리머에 부가하여 전하 조절제(디-티-부틸 살리실레이트(di-t-butyl salicylate)의 아연 착체)를 포함하였지만, 유동성 조절제 또는 적외선 흡수제는 포함하지 않았다. 상기 제한적 응집 공정은 실시예 1에 대해 위에서 설명된 것과 동일한 단계를 따랐고, 전하 조절제는 ABS 코폴리머와 유기 용매에도 첨가되었다.
결과적인 ABS 부품재료 파우더는 ABS 코폴리머 및 1 중량%의 전하 조절제를 포함하였다. 이것은 원래의 ABS 코폴리머 양에 대해 93%의 수율로 제조되었고, 입자 크기 및 입자 크기 분포는 다음의 표 2와 같다.
표 2 | |
입자 크기/ 입자 크기 분표 | 실시예 2 |
D50 입자 크기 (마이크로미터) | 11.69 |
D90 입자 크기 (마이크로미터) | 13.95 |
D10 입자 크기 (마이크로미터) | 9.66 |
D90/D50 분포 | 1.19 |
D50/D10 분포 | 1.21 |
3. 실시예 3
실시예 3의 ABS 부품재료는 실시예 1에 대해 설명된 것과 동일한 제한적 응집 공정을 사용하여 제조되었고, 실시예 3의 ABS 부품재료는 ABS 코폴리머에 부가하여 또 다른 전하 조절제(디-티-부틸 살리실레이트(di-t-butyl salicylate)의 크롬 착체)를 포함하였지만, 유동성 조절제 또는 적외선 흡수제는 포함하지 않았다. 상기 제한적 응집 공정은 실시예 1에서 설명된 것과 동일한 단계를 따랐고, 상기 전하 조절제는 ABS 코폴리머와 유기 용매에도 첨가되었다.
결과적인 ABS 부품재료 파우더는 ABS 코폴리머와 1 중량%의 전하 조절제를 포함하였다. 이것은 원래의 ABS 코폴리머의 양에 대해 93%의 수율로 제조되었고, 입자 크기 및 입자 크기 분포는 다음의 표 3과 같다.
표 3 | |
입자 크기/입자 크기 분포 | 실시예 3 |
D50 입자 크기(마이크로미터) | 11.49 |
D90 입자 크기(마이크로미터) | 13.77 |
D10 입자 크기(마이크로미터) | 9.46 |
D90/D50 분포 | 1.20 |
D50/D10 분포 | 1.21 |
4. 실시예 4
실시예 4의 ABS 부품재료는 실시예 1에 대해 위에서 설명된 것과 동일한 제한적 응집 공정을 이용하여 제조되었고, 실시예 4의 ABS 부품재료는 ABS 코폴리머에 부가하여 실시예 2의 전하 조절제(디-티-부틸 살리실레이트의 아연 착체)와 카본블랙 적외선 흡수제를 포함하였지만, 유동성 조절제는 포함하지 않았다.
상기 제한적 응집 공정은 실시예 1에 대해 설명된 것과 동일한 단계를 따랐고, 상기 전하 조절제와 카본블랙은 ABS 코폴리머와 유기 용매에도 첨가되었다. 특히, 카본블랙은 미국 메사추세츠 보스톤 소재의 카봇 사(Cabot Corporation)의 상품명 "REGAL 330"으로 상업적으로 입수할 수 있는 것이었고, 유기 용매 용액 중에 분산시키기 위해 미세유동화기(microfluidizer)를 통과시켰다. 부가적으로, 유기상 액적 크기(organic phase droplet size)는 최종 크기 12 마이크로미터의 건조 ABS 부품재료를 제공하도록 목표설정되었다.
결과적인 ABS 부품재료의 파우더는 ABS 코폴리머, 1 중량%의 전하 조절제 및 2.5 중량%의 카본블랙을 포함하였다. 이것은 원래의 ABS 코폴리머의 양에 대해 97%의 수율로 제조되었고, 입자 크기 및 입자 크기 분포는 다음의 표 4와 같다.
표 4 | |
입자 크기/입자 크기 분포 | 실시예 4 |
D50 입자 크기(마이크로미터) | 12.09 |
D90 입자 크기(마이크로미터) | 14.38 |
D10 입자 크기(마이크로미터) | 10.00 |
D90/D50 분포 | 1.19 |
D50/D10 분포 | 1.21 |
5. 실시예 5
실시예 4의 ABS 부품재료는 300마이크로미터 메쉬를 통한 체질(sieving) 및 13,000rpm으로 동작하는 분류기(classifier)를 사용한 분류작업을 더 거쳤고, 상기 분류기는 영국 체셔 소재 호소카와 미크론 사(Hosokawa Micron Ltd.)로부터 상업적으로 입수할 수 있었다. 체질 및 분류 후에, 결과적인 수율은 체질 및 분류작업을 거친 원래의 ABS 부품재료의 양에 대해 92%였다. 결과적인 입자 크기 및 입자 크기 분포는 다음의 표 5에서와 같다.
표 5 | |
입자 크기/입자 크기 분포 | 실시예 5 |
D50 입자 크기(마이크로미터) | 12.11 |
D90 입자 크기(마이크로미터) | 14.20 |
D10 입자 크기(마이크로미터) | 10.23 |
D90/D50 분포 | 1.18 |
D50/D10 분포 | 1.18 |
결과적인 ABS 부품재료는 그 다음 유동성 조절제로 표면 처리되었고, 유동성 조절제는 독일 에센 소재의 에보니크 인더스트리 사(Evonik Industries AG)로부터 상품명 "AEROSIL R972"로 시판되는 디메틸디클로로실란 처리된 흄드 실리카(dimethyldichlorosilane-treated fumed silica)이었다. 이는 ABS 코폴리머, 1 중량%의 전하 조절제, 0.5 중량%의 유동성 조절제 및 2.5 중량%의 카본블랙을 포함하는 실시예 5의 ABS 부품재료를 생성하였다.
6. 실시예 6
실시예 6의 ABS 부품재료는 실시예 1에 대해 위에서 설명된 것과 동일한 제한적 응집 공정을 사용하여 제조되었고, 실시예 6의 ABS 부품재료는 ABS 코폴리머에 부가하여 실시예 4의 카본블랙 적외선 흡수제를 포함하였지만 어떠한 전하 조절제 또는 유동성 조절제도 포함하지 않았다. 유기상 액적 크기는 최종 크기 11 마이크로미터의 건조 ABS 부품재료를 제공하도록 목표설정되었다.
결과적인 ABS 부품재료 파우더는 ABS 코폴리머 및 2.5 중량% 카본블랙을 포함하였다. 이는 원래의 ABS 코폴리머의 양에 대해 96%의 수율로 제조되었고, 입자 크기 및 입자 크기 분포는 표 6에서와 같다.
표 6 | |
입자 크기/입자 크기 분포 | 실시예 6 |
D50 입자 크기(마이크로미터) | 10.52 |
D90 입자 크기(마이크로미터) | 12.68 |
D10 입자 크기(마이크로미터) | 8.81 |
D90/D50 분포 | 1.21 |
D50/D10 분포 | 1.19 |
7. 실시예 7
실시예 7의 ABS 부품재료는 실시예 1에 대해 설명된 것과 동일한 제한적 응집 공정을 사용하여 제조되었고, 실시예 7의 ABS 부품재료는 ABS 코폴리머에 부가하여 실시예 4의 카본블랙 적외선 흡수제를 포함하였지만, 전하 조절제 또는 유동성 조절제는 포함하지 않았다. 이 실시예에서, 카본블랙 농도는 실시예 6과 비교해서 두 배였다. 유기상 액적 크기는 최종 크기 12 마이크로미터의 건조 ABS 부품재료를 제공하도록 목표설정되었다.
결과적인 ABS 부품재료 파우더는 ABS 코폴리머 및 카본블랙 2.5 중량%를 포함하였다. 이는 원래의 ABS 코폴리머의 양에 대해 93% 수율로 제조되었고, 입자 크기 및 입자 크기 분포는 표 7에서와 같다.
표 7 | |
입자 크기/입자 크기 분포 | 실시예 7 |
D50 입자 크기(마이크로미터) | 10.18 |
D90 입자 크기(마이크로미터) | 12.30 |
D10 입자 크기(마이크로미터) | 8.51 |
D90/D50 분포 | 1.21 |
D50/D10 분포 | 1.20 |
표 1-7에 나타낸 바와 같이, 실시예 1-7의 ABS 부품재료를 제조하는데 사용된 제한적 응집 공정은 입자 크기 및 입자 크기 분포를 양호하게 제어하였고, 전반적으로 ABS 파우더 포뮬레이션의 변화에 독립적이었다. 입자 크기 중간값은 목표 값의 약 0.5 마이크로미터 이내였고, 입자 크기 분포는 D90/D50 및 D50/D10 면에 있어서 목표 사양 이내에 있었다. 다음의 표 8은 실시예 1-7의 부품재료에 대한 포뮬레이션 요약을 나타내고, 여기서 수치는 중량 퍼센트에 기반한다.
표 8 | ||||
실시예 | ABS 코폴리머 | 전하 조절제 | 유동성 조절제 | 카본블랙 |
실시예 1 | 100.0 | 0.0 | 0.0 | 0.0 |
실시예 2 | 99.0 | 1.0 | 0.0 | 0.0 |
실시예 3 | 99.0 | 1.0 | 0.0 | 0.0 |
실시예 4 | 96.5 | 1.0 | 0.0 | 2.5 |
실시예 5 | 96.0 | 1.0 | 0.5 | 2.5 |
실시예 6 | 97.5 | 0.0 | 0.0 | 2.5 |
실시예 7 | 95.0 | 0.0 | 0.0 | 5.0 |
8. 실시예 1-7에 대한 마찰전기 대전 테스트( Triboelectric Charging Testing)
실시예 1-7의 ABS 부품재료는 위에서 설명한 마찰전기 대전 테스트에 따라 마찰전기 대전 분석을 거쳤다. 각 시료는 음의 전하를 제공하는 PMMA 코팅을 가지는 캐리어 입자로 테스트되었다. 또한, 추가적으로, 실시예 1의 시료는 양의 전하를 제공하는 PVDF 코팅을 가지는 캐리어 입자로도 테스트되었다. 표 9는 실시예 1-7의 ABS 부품재료에 대한 마찰전기 대전 테스트의 결과를 나타낸다.
표 9 | ||||
실시예 | 캐리어 입자 코팅 | Q/M 비율(℃/g) | 이행 시간 (초) | 이행 효율 |
실시예 1 | PMMA | - 28 ± 1 | > 360 | 90% |
실시예 1 | PVDF | + 24 ± 1 | > 300 | 95% |
실시예 2 | PMMA | - 22 ± 1 | 120 | 95% |
실시예 3 | PMMA | - 25 ± 1 | 120 | 95% |
실시예 4 | PMMA | - 18 ± 1 | 45 | 98% |
실시예 5 | PMMA | - 27 ± 1 | 30 | 100% |
실시예 6 | PMMA | - 12 ± 1 | 60 | 94% |
실시예 7 | PMMA | - 9 ± 1 | 60 | 96% |
표 9에 나타낸 바와 같이, ABS 부품재료의 Q/M 비율은 사용된 캐리어 입자의 유형에 의존한다. 또한, 가장 빠른 이행 시간(transit times) 및 가장 큰 파우더 이행 효율(transit efficiencies)은 내부 첨가제로서 전하 조절제와 카본블랙의 조합과 파우더 유동 표면 첨가제로서 유동성 조절제를 사용(즉, 실시예 5)하여 획득되었다.
또한, Q/M 비율 및 파우더 유동성의 장기간 안정성이 상기 혼합물을 파우더 현상 스테이션(예를 들면, 현상 스테이션(58))에서 수 시간 이동시킴으로써(by exercising) 조사되었다. 표 9에도 나타낸 바와 같이, Q/M 비율 및 파우더 유동성의 가장 큰 안정성은 실시예 5의 ABS 부품재료가 나타내었다.
9. 실시예 1-7에 대한 파우더 유동성 테스트( Powder Flowability Testing )
실시예 1-7의 ABS 부품재료에 대해 위에서 설명된 파우더 유동성 테스트에 따른 파우더 유동성이 정성적으로 측정되었다. 표 10은 실시예 1-7의 ABS 부품재료에 대한 파우더 유동성 테스트 결과를 나타낸다.
표 10 | |
실시예 | 파우더 유동성 결과 |
실시예 1 | 매우 불량한 흐름 |
실시예 2 | 불량한 흐름 |
실시예 3 | 불량한 흐름 |
실시예 4 | 양호한 흐름 |
실시예 5 | 매우 양호한 흐름 |
실시예 6 | 보통 흐름 |
실시예 7 | 보통 흐름 |
표 10에 도시된 바와 같이, 카본블랙을 포함한 실시예 4-7의 ABS 부품재료는 적절한 수준의 파우더 유동성을 나타내었다. 특히, 실시예 4의 ABS 부품재료(1% 전하 조절제 및 2.5% 카본블랙)는 양호한 유동성을 나타내었고, 실시예 5의 ABS 부품재료(1% 전하 조절제, 0.5% 유동성 조절제 및 2.5% 카본블랙)는 매우 양호한 유동성을 나타내었다.
따라서, 카본블랙과 전하 조절제, 그리고 보다 중요하게는 유동성 조절제의 포함은 ABS 부품재료의 파우더 유동성을 증가시키기 위해 결합될 수 있다. 위에 설명된 바와 같이, 이것은 보충 공급 동안 ABS 부품재료의 흐름 제한 또는 막힘을 감소 또는 방지하고, 그렇지 않을 경우 현상 스테이션에서 ABS 부품재료의 캐리어 입자에의 공급이 방해될 수 있다.
10. 실시예 1, 4, 6 및 7에 대한 용융 레올로지 테스트( Melt Rheology Testing)
실시예 1, 4, 6 및 7의 ABS 부품재료는 또한, 전하 조절제 및 카본 블랙과 같은 첨가제가 ABS 코폴리머의 용융 레올로지에 어떤 불리한 영향을 미치는지를 결정하기 위해, 위에서 설명된 용융 레올로지 테스트에 따라 테스트되었다. 도 5는 테스트 결과 동적 점도(dynamic viscosities) 대 온도의 그래프이고, ABS 코폴리머 공급 원료에 대한 결과 또한 비교를 위해 테스트되었다.
도 5에 도시된 바와 같이, 전하 조절제(1 중량%) 및 카본블랙(2.5 중량% 및 5.0 중량%)의 포함은 ABS 코폴리머의 용융 레올로지에 어떠한 의미있는 불리한 영향도 미치지 않는다. 따라서, 전자사진 기반 적층제조 시스템에서 사용하기에 효과적이라고 보여지는 농도로 전하 조절제 및 카본블랙을 포함시키는 것은 결과적인 ABS 부품재료가 ABS 코폴리머 공급 원료와 실질적으로 동일한 용융 레올로지 거동을 가지도록 허용한다.
11. 실시예 5에 대한 인쇄 실행
또한, 관련 지지 재료와 함께 또는 관련 지지 재료 없이, (히터(74)가 없는) 시스템(10)에 해당하는 전자사진 기반 적층제조 시스템을 이용하여, 실시예 5의 ABS 부품재료가 다양한 기하학적 구조의 여러 3D 부품을 인쇄하는데 사용되었다. 지지 재료와 함께 인쇄 실행하는데 있어서, 상기 부품재료는 마틴의 미국 특허출원 13/944,478호의 실시예 16에 설명된 바와 같이, 스티렌-부틸 아크릴레이트-메타크릴산의 열가소성 코폴리머, 2.5 중량%의 카본블랙 열 흡수제, 1 중량%의 전하 조절제, 2.5 중량%의 카본블랙 열 흡수제 및 0.5 중량%의 유동성 조절제를 포함하였다.
주어진 인쇄 실행시간 동안, 3D 부품의 디지털 모형은 여러 층으로 분할되었고, 그 다음 상기 3D 부품의 돌출 영역을 지지하도록 지지 층들이 생성되었다. 분할된 층들에 대한 인쇄 정보가 그 다음 전자사진 기반 적층제조 시스템으로 전달되었고, 그 다음 3D 부품을 인쇄하도록 작동되었다.
인쇄 실행 동안, ABS 부품재료 및 지지 재료는 각각 대전되어 시스템의 EP 엔진을 이용하여 여러 연속한 층들로 현상되었고, 여기서 현상 드럼은 각각 -500볼트로 충전(charged)되었다. 전하 조절제 및 유동성 조절제는 층들을 양호한 재료 밀도로 현상하기에 충분하였다. 현상된 층들은 그 다음 +450 볼트로 충전된 중간 드럼으로 전달되었고, +2,000 볼트로 충전된 바이어싱 롤러를 이용하여 시스템의 전사 벨트로 전달되었다. 그 다음 부품 및 지지 재료 층들이 함께 시스템의 레이어 트랜스퓨전 어셈블리로 이송되었고, 여기서 부품 및 지지 재료의 Q/M 비율 역시 현상된 층들을 상기 벨트에 유지하기에 충분하였다.
예열기(히터(72)에 해당)에서, 각 층은 약 180℃에서 약 200℃까지 범위의 적외선 방사에 의해 가열되었다. 그 다음 상기 가열된 층들은 닙 롤러와 왕복 생성 플래튼 사이에서 (이전에 인쇄된 3D 부품의 층들과 함께) 가압되었고, 여기서 닙 롤러는 200℃의 온도, 평균 닙(nip) 압력은 약 40 파운드/스퀘어-인치(psi)로 유지되었다. 각 층은 연속적으로 벨트로부터 전사되었고 3D 부품/지지 구조의 상부 표면에 부착 유지되었다. 닙 롤러를 통과한 후에, 3D 부품/지지 구조의 상부 표면은 층들을 더 트랜스퓨즈하기 위해 포스트-히터(post-heater)(포스트-가열기(76))에 해당)로 가열되었고, 그 다음 에어 제트로 냉각되었다. 이후 상기 프로세스는 3D 부품/지지 구조의 각 층에 대해 반복되었다.
인쇄 작업이 완료된 후에, 상기 3D 부품/지지 구조는 시스템으로부터 이동되었고, 육안 검사시 양호한 부품 해상도(resolutions)를 나타내었다. 이후에 3D 부품/지지 구조는, 미국 미네소타 에덴 프래리 소재의 스트라타시스 사(Stratasys, Inc.)의 상품명 "WAVEWASH"로 시판되는, 지지물 제거 시스템에 놓여졌다. 지지물 제거 시스템은 상기 결합된 3D 부품/지지 구조를 기준 작동 시간 동안 교반하에 알칼리 수용액 처리되도록 하였다. 완료 시, (실시예 16의 지지 재료로부터의) 지지 구조는 ABS 부품재료의 3D 부품으로부터 떨어져 용해되었다.
이에 따라, 전자사진 기반 적층제조 시스템은 실시예 5의 ABS 부품재료 및 지지 재료로부터 3D 부품 및 지지 구조를 성공적으로 인쇄하였다. 이것은 부분적으로는 부품 및 지지 재료의 거의 동일한 용융물 점도(melt viscosity) 대 온도 프로파일, 거의 동일한 유리전이온도 및 거의 동일한 마찰전기 대전 특성 덕분으로 여겨진다. 또한, 3D 부품 및 지지 구조가 짧은 인쇄 시간 및 얇은 층으로 인쇄되도록 허용하는 한편, 층들은 빠른 인쇄 속도로 양호한 접착력을 가지고 현상 및 트랜스퓨즈 되었다.
실시예 5의 ABS 부품재료로부터 인쇄된 추가적인 3D 부품도 생성 평면 인장 하중(tensile loads)에 대한 그들의 저항을 결정하는 피크 스트레스(peak stresses)에 대해 테스트되었다. 표 11은 실시예 5의 ABS 부품재료의 4개의 다른 시료에 대한 피크 스트레스를 나타낸다.
표 11 | ||
실시예 | 피크 스트레스 (pounds/square-inch) | 피크 스트레스 (megapascals) |
실시예 5A | 6469 | 44.6 |
실시예 5B | 5437 | 37.5 |
실시예 5C | 5534 | 38.1 |
실시예 5D | 6048 | 41.7 |
표 11에 나타낸 바와 같이, 실시예 5의 ABS 부품재료는 생성 평면의 인장 하중에 대해 양호한 저항력을 가지는 3D 부품을 성공적으로 인쇄하였다. 이는 연속한 층들 사이에 얻어질 수 있는 재료 밀도 및 양호한 트랜스퓨전(transfusion)에 기인한 것으로 여겨진다. 또한, 양호한 트랜스퓨전은 부분적으로 2.5 중량%의 카본블랙 적외선 흡수제의 포함에 기인한 것으로 여겨지고, 이것은 층들을 함께 트랜스퓨즈하기 위해 ABS 부품재료가 히터로 신속하게 가열되도록 허용하였다.
본 발명이 바람직한 실시예를 참조하여 설명되었지만, 이 분야에서 숙련된 기술자라면 본 발명의 사상 및 범위를 벗어나지 않고 형태 및 세부사항이 변경될 수 있다는 것을 인식할 것이다.
Claims (20)
- 전자사진 기반 적층제조 시스템으로 3차원 부품을 인쇄하기 위한 부품재료로서, 상기 부품재료는,
아크릴로니트릴 유닛, 부타디엔 유닛 및 방향족 유닛을 포함하는 코폴리머;
전하 조절제; 및
열 흡수제를 포함하는 조성물을 포함하여 이루어지고,
상기 부품재료는 약 5 마이크로미터에서 약 30 마이크로미터까지 범위의 D50 입자 크기를 가지는 파우더 형태로 제공되며,
상기 부품재료는 3차원 부품을 적층 방식(layer-by-layer manner)으로 인쇄하기 위한 레이어 트랜스퓨전 어셈블리(layer transfusion assembly)를 가지는 전자사진 기반 적층제조 시스템에 사용되도록 구성된 것을 특징으로 하는 부품재료.
- 청구항 1에 있어서,
상기 방향족 유닛은 스티렌 유닛을 포함하는 것을 특징으로 하는 부품재료.
- 청구항 2에 있어서,
상기 코폴리머는 아크릴로니트릴-부타디엔-스티렌(ABS) 코폴리머를 포함하는 것을 특징으로 하는 부품재료.
- 청구항 1에 있어서,
상기 D50 입자 크기는 약 10 마이크로미터에서 약 20 마이크로미터까지의 범위인 것을 특징으로 하는 부품재료.
- 청구항 1에 있어서,
상기 파우더 형태는 각각 약 1.00에서 약 1.40까지의 범위인 D90/D50 입자 크기 분포 및 D50/D10 입자 크기 분포를 가지는 것을 특징으로 하는 부품재료.
- 청구항 1에 있어서,
상기 전하 조절제는 크롬 옥시 카르복실산 착체(chromium oxy carboxylic acid complexes), 아연 옥시 카르복실산 착체(zinc oxy carboxylic acid complexes), 알루미늄 옥시 카르복실산 착체(aluminum oxy carboxylic acid complexes) 및 그들의 혼합물로 이루어지는 군에서 선택되는 것을 특징으로 하는 부품재료.
- 청구항 1에 있어서,
상기 전하 조절제는 부품재료의 약 0.1 중량%에서 약 5중량%를 구성하는 것을 특징으로 하는 부품재료.
- 청구항 1에 있어서,
상기 열 흡수제는 부품재료의 약 0.5 중량%에서 약 10중량%를 구성하는 것을 특징으로 하는 부품재료.
- 청구항 1에 있어서,
부품재료의 약 0.1 중량%에서 약 10 중량%를 구성하는 유동성 조절제를 더 포함하는 것을 특징으로 하는 부품재료.
- 전자사진 기반 적층제조 시스템으로 3차원 부품을 인쇄하기 위한 부품재료로서, 상기 부품재료는,
아크릴로니트릴-부타디엔-스티렌(ABS) 코폴리머;
부품재료의 약 0.1 중량%에서 약 5 중량%를 구성하는 전하 조절제;
부품재료의 약 0.1 중량%에서 약 10 중량%를 구성하는 유동성 조절제; 및
부품재료의 약 0.5 중량%에서 약 10 중량%를 구성하는 열 흡수제를 구비하는 조성물을 포함하고,
상기 부품재료는 약 5 마이크로미터에서 약 30 마이크로미터 범위의 D50 입자 크기와, 각각 약 1.00에서 약 1.40까지의 범위인 D90/D50 입자 크기 분포 및 D50/D10 입자 크기 분포를 가지는 파우더 형태로 제공되는 것을 특징으로 하고,
상기 부품재료는 3차원 부품을 적층 방식으로 인쇄하기 위한 레이어 트랜스퓨전 어셈블리(layer transfusion assembly)를 가지는 전자사진 기반 적층제조 시스템에 사용되도록 이루어진 것을 특징으로 하는 부품재료.
- 청구항 10에 있어서,
상기 부품재료는 적어도 부분적으로 제한적 응집 공정(limited coalescence process)을 이용하여 제조되는 것을 특징으로 하는 부품재료.
- 청구항 10에 있어서,
상기 D50 입자 크기는 약 10 마이크로미터에서 약 20 마이크로미터까지의 범위인 것을 특징으로 하는 부품재료.
- 청구항 10에 있어서,
상기 ABS 코폴리머는 약 100℃에서 약 115℃ 까지 범위의 유리전이온도를 가지는 것을 특징으로 하는 부품재료.
- 청구항 10에 있어서,
상기 전하 조절제는 크롬 옥시 카르복실산 착체(chromium oxy carboxylic acid complexes), 아연 옥시 카르복실산 착체(zinc oxy carboxylic acid complexes), 알루미늄 옥시 카르복실산 착체(aluminum oxy carboxylic acid complexes) 및 그들의 혼합물로 이루어지는 군에서 선택되는 것을 특징으로 하는 부품재료.
- 전자사진 엔진, 전사 매체 및 레이어 트랜스퓨전 어셈블리를 구비하는 전자사진 기반 적층제조 시스템으로 3차원 부품을 인쇄하는 방법으로서, 상기 방법은,
전하 조절제, 열 흡수제, 아크릴로니트릴 유닛, 부타디엔 유닛 및 방향족 유닛을 가지는 코폴리머를 조성적으로 포함하며 파우더 형태를 가지는 부품재료를 전자사진 기반 적층제조 시스템에 제공하는 단계;
상기 부품재료를 음의 전하 또는 양의 전하와, 약 5 마이크로-쿨롱/그램에서 약 50 마이크로-쿨롱/그램 범위의 크기를 가지는 Q/M 비율로 마찰전기적으로 대전시키는 단계;
상기 대전된 부품재료로부터 전자사진 엔진을 이용하여 3차원 부품의 층들을 현상하는 단계;
상기 현상된 층들을 상기 전자사진 엔진으로부터 상기 전사 매체로 정전기적으로 끌어당기는 단계;
상기 끌려온 층들을 상기 전사 매체를 이용하여 레이어 트랜스퓨전 어셈블리로 이동시키는 단계;
상기 이동된 층들을 레이어 트랜스퓨전 어셈블리를 이용하여 3차원 부품의 이전에 인쇄된 층들에 트랜스퓨즈(transfuse)하는 단계를 구비하는 것을 특징으로 하는 방법.
- 청구항 15에 있어서,
상기 코폴리머는 아크릴로니트릴-부타디엔-스티렌(ABS) 코폴리머를 포함하는 것을 특징으로 하는 방법.
- 청구항 15에 있어서,
상기 ABS 코폴리머는 약 100℃에서 약 115℃ 범위의 유리전이온도를 가지는 것을 특징으로 하는 방법.
- 청구항 15에 있어서,
상기 부품재료의 파우더 형태는 약 5 마이크로미터에서 약 30 마이크로미터 범위의 D50 입자 크기와, 각각 약 1.00에서 약 1.40 범위의 D90/D50 입자 크기 분포 및 D50/D10 입자 크기 분포를 가지는 것을 특징으로 하는 방법.
- 청구항 15에 있어서,
상기 전하 조절제는 부품재료의 약 0.1 중량%에서 약 5 중량%를 구성하고, 상기 열 흡수제는 부품재료의 약 0.5 중량%에서 약 10 중량%를 구성하는 것을 특징으로 하는 방법.
- 청구항 15에 있어서,
상기 부품재료는 부품재료의 약 0.1 중량%에서 약 10 중량%를 구성하는 유동성 조절제를 더 포함하는 것을 특징으로 하는 방법.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/944,472 | 2013-07-17 | ||
US13/944,472 US9023566B2 (en) | 2013-07-17 | 2013-07-17 | ABS part material for electrophotography-based additive manufacturing |
PCT/US2014/046798 WO2015009788A1 (en) | 2013-07-17 | 2014-07-16 | Abs part material for electrophotography-based additive manufacturing |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20160030576A true KR20160030576A (ko) | 2016-03-18 |
KR101774450B1 KR101774450B1 (ko) | 2017-09-04 |
Family
ID=51300844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020167003933A KR101774450B1 (ko) | 2013-07-17 | 2014-07-16 | 전자사진 기반 적층 제조를 위한 abs 부품재료 |
Country Status (7)
Country | Link |
---|---|
US (3) | US9023566B2 (ko) |
EP (2) | EP3022609B1 (ko) |
JP (2) | JP6367329B2 (ko) |
KR (1) | KR101774450B1 (ko) |
CN (2) | CN110561746B (ko) |
DK (1) | DK3467592T3 (ko) |
WO (1) | WO2015009788A1 (ko) |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9523934B2 (en) * | 2013-07-17 | 2016-12-20 | Stratasys, Inc. | Engineering-grade consumable materials for electrophotography-based additive manufacturing |
US9023566B2 (en) | 2013-07-17 | 2015-05-05 | Stratasys, Inc. | ABS part material for electrophotography-based additive manufacturing |
CN105916663B (zh) | 2014-01-16 | 2019-03-05 | 惠普发展公司,有限责任合伙企业 | 产生三维对象 |
JP6353547B2 (ja) | 2014-01-16 | 2018-07-04 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. | 3次元物体の生成 |
US10889059B2 (en) | 2014-01-16 | 2021-01-12 | Hewlett-Packard Development Company, L.P. | Generating three-dimensional objects |
US10452038B2 (en) * | 2014-01-16 | 2019-10-22 | Hewlett-Packard Development Company, L.P. | Build material profile |
WO2016020817A1 (en) | 2014-08-07 | 2016-02-11 | Orbotech Ltd. | Lift printing system |
EP4380323A3 (en) | 2014-10-19 | 2024-09-25 | Orbotech Ltd. | Lift printing of conductive traces onto a semiconductor substrate |
WO2016072966A1 (en) * | 2014-11-03 | 2016-05-12 | Hewlett-Packard Development Company, L.P. | Thermally decomposing material for three-dimensional printing |
JP6568218B2 (ja) | 2014-12-23 | 2019-08-28 | ブリヂストン アメリカズ タイヤ オペレーションズ、 エルエルシー | 化学線硬化型高分子混合物、硬化高分子混合物、及び関連するプロセス |
KR102282860B1 (ko) | 2015-01-19 | 2021-07-28 | 오르보테크 엘티디. | 희생 지지부를 가진 3차원 금속 구조물의 프린팅 |
EP3310560A4 (en) * | 2015-06-19 | 2018-12-26 | Applied Materials, Inc. | Selective depositing of powder in additive manufacturing |
KR20180030609A (ko) | 2015-07-09 | 2018-03-23 | 오르보테크 엘티디. | Lift 토출 각도의 제어 |
US20180354191A1 (en) * | 2015-07-23 | 2018-12-13 | Hewlett-Packard Development Company, L.P. | Three-dimensional (3d) printing method |
US10611089B2 (en) | 2015-07-28 | 2020-04-07 | Hewlett-Packard Development Company, L.P. | Three-dimensional object property determination |
WO2017019102A1 (en) * | 2015-07-30 | 2017-02-02 | Hewlett-Packard Development Company, L.P. | Three-dimensional object production |
US10328525B2 (en) | 2015-08-25 | 2019-06-25 | General Electric Company | Coater apparatus and method for additive manufacturing |
US10786966B2 (en) | 2015-10-05 | 2020-09-29 | Raytheon Technologies Corporation | Additive manufactured conglomerated powder removal from internal passages |
US10232414B2 (en) | 2015-11-20 | 2019-03-19 | United Technologies Corporation | Additive manufactured conglomerated powder removal from internal passages |
US10220444B2 (en) | 2015-11-20 | 2019-03-05 | United Technologies Corporation | Additive manufactured conglomerated powder removal from internal passages |
US10688692B2 (en) | 2015-11-22 | 2020-06-23 | Orbotech Ltd. | Control of surface properties of printed three-dimensional structures |
US10150255B2 (en) | 2015-12-02 | 2018-12-11 | General Electric Company | Direct metal electrophotography additive manufacturing methods |
US9566647B1 (en) | 2015-12-02 | 2017-02-14 | General Electric Company | Direct metal electrophotography additive manufacturing machine |
US11097531B2 (en) | 2015-12-17 | 2021-08-24 | Bridgestone Americas Tire Operations, Llc | Additive manufacturing cartridges and processes for producing cured polymeric products by additive manufacturing |
WO2017112723A1 (en) * | 2015-12-22 | 2017-06-29 | Structured Polymers, Inc. | Systems and methods for producing consumable powder |
US20170216921A1 (en) | 2016-02-01 | 2017-08-03 | United Technologies Corporation | Additive manufactured conglomerated powder removal from internal passages |
US10940510B2 (en) | 2016-02-01 | 2021-03-09 | Raytheon Technologies Corporation | Additive manufactured conglomerated powder removal from internal passages with co-built ultrasonic horns |
US10005230B2 (en) | 2016-05-10 | 2018-06-26 | Xerox Corporation | Electrostatic 3-D printer controlling layer thickness using feedback loop to transfer device |
US10183443B2 (en) | 2016-05-10 | 2019-01-22 | Xerox Corporation | Electrostatic 3-D printer controlling layer thickness using feedback loop to development device |
US10005228B2 (en) | 2016-05-10 | 2018-06-26 | Xerox Corporation | Electrostatic 3-D printer controlling layer thickness using feedback loop to exposure device |
US10118337B2 (en) * | 2016-06-06 | 2018-11-06 | Xerox Corporation | Electrostatic 3-D printer controlling layer topography using aerosol applicator |
US10293547B2 (en) | 2016-06-07 | 2019-05-21 | Xerox Corporation | Electrostatic 3-D printer using layer and mechanical planer |
US20170368744A1 (en) * | 2016-06-27 | 2017-12-28 | Xerox Corporation | Multisize printing material for electrophotographic additive manufacturing |
US11124644B2 (en) * | 2016-09-01 | 2021-09-21 | University Of Florida Research Foundation, Inc. | Organic microgel system for 3D printing of silicone structures |
US9857710B1 (en) * | 2016-09-07 | 2018-01-02 | Xerox Corporation | Support material comprising polyvinylalcohol and its use in xerographic additive manufacturing |
US10814391B2 (en) * | 2016-09-13 | 2020-10-27 | General Electric Company | Additive manufacturing material analysis system and related method |
US10787920B2 (en) | 2016-10-12 | 2020-09-29 | General Electric Company | Turbine engine inducer assembly |
EP3532537B1 (en) | 2016-10-25 | 2023-02-15 | Hewlett-Packard Development Company, L.P. | Material set for 3-dimensional printing, 3-dimensional printing system and 3-dimensional printed part |
WO2018081053A1 (en) | 2016-10-27 | 2018-05-03 | Bridgestone Americas Tire Operations, Llc | Processes for producing cured polymeric products by additive manufacturing |
EP3519164B1 (en) | 2017-02-06 | 2021-06-30 | Hewlett-Packard Development Company, L.P. | Fusing agent including a metal bis(dithiolene) complex |
WO2018194542A1 (en) | 2017-04-17 | 2018-10-25 | Hewlett-Packard Development Company, L.P. | Fusing agent(s) |
WO2018144054A1 (en) | 2017-02-06 | 2018-08-09 | Hewlett-Packard Development Company, L.P. | 3d printing |
US11104041B2 (en) | 2017-03-20 | 2021-08-31 | Stratasys, Inc. | Consumable feedstock for 3D printing and method of use |
TW201901887A (zh) | 2017-05-24 | 2019-01-01 | 以色列商奧寶科技股份有限公司 | 於未事先圖樣化基板上電器互連電路元件 |
JP6958184B2 (ja) * | 2017-09-27 | 2021-11-02 | 富士フイルムビジネスイノベーション株式会社 | 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法 |
US11273608B2 (en) * | 2018-06-07 | 2022-03-15 | Sakuu Corporation | Multi-material three-dimensional printer |
US11426818B2 (en) | 2018-08-10 | 2022-08-30 | The Research Foundation for the State University | Additive manufacturing processes and additively manufactured products |
US11203156B2 (en) | 2018-08-20 | 2021-12-21 | NEXA3D Inc. | Methods and systems for photo-curing photo-sensitive material for printing and other applications |
KR102356021B1 (ko) * | 2018-10-08 | 2022-02-09 | 사쿠 코포레이션 | 3차원 적층 제조 시스템 및 3차원 물체를 제조하는 방법 |
US11167480B2 (en) | 2018-10-08 | 2021-11-09 | Sakuu Corporation | Three-dimensional, additive manufacturing system, and a method of manufacturing a three-dimensional object |
WO2020097299A2 (en) | 2018-11-09 | 2020-05-14 | NEXA3D Inc. | Three-dimensional printing system |
JP7190093B2 (ja) * | 2018-12-04 | 2022-12-15 | サクウ コーポレーション | 三次元印刷システム |
KR102442534B1 (ko) | 2019-03-18 | 2022-09-14 | 넥사3디 인코포레이티드 | 적층 제조 방법 및 시스템 |
US10967573B2 (en) | 2019-04-02 | 2021-04-06 | NEXA3D Inc. | Tank assembly and components thereof for a 3D printing system |
WO2020264293A1 (en) * | 2019-06-26 | 2020-12-30 | Evolve Additive Solutions, Inc. | Thermoplastic elastomer material for selective deposition- based additive manufacturing and method of making same |
JP2022538445A (ja) * | 2019-07-03 | 2022-09-02 | エボルブ アディティブ ソリューションズ, インコーポレイテッド | 異種材料を使用する選択的堆積ベースの付加製造 |
US11260581B2 (en) | 2020-06-03 | 2022-03-01 | Sakuu Corporation | Jetted material printer with pressure-assisted fluid extraction |
CN111621118A (zh) * | 2020-07-17 | 2020-09-04 | 珠海光林新材料科技有限公司 | 一种可用于制造5g分纤箱的abs复合材料及其制备方法 |
US20230020717A1 (en) * | 2021-07-14 | 2023-01-19 | Sakuu Corporation | Three-dimensional ("3d") printing apparatus with counter-rotating roller |
US12005640B2 (en) | 2022-06-03 | 2024-06-11 | Sakuu Corporation | Method and system of using gradual drying in multi-material 3D printing |
KR102674735B1 (ko) | 2024-04-08 | 2024-06-14 | 일산기업 주식회사 | 친환경 무취 바닥재 조성물 및 이를 이용한 바닥재 시공방법 |
Family Cites Families (92)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2297691A (en) | 1939-04-04 | 1942-10-06 | Chester F Carlson | Electrophotography |
JPS565554A (en) * | 1979-06-27 | 1981-01-21 | Hitachi Metals Ltd | Magnetic toner |
WO1990003893A1 (en) | 1988-10-05 | 1990-04-19 | Michael Feygin | An improved apparatus and method for forming an integral object from laminations |
DE68917128T2 (de) | 1989-06-28 | 1994-12-08 | Agfa Gevaert Nv | Toner-empfangende Druckplatte. |
US5088047A (en) | 1989-10-16 | 1992-02-11 | Bynum David K | Automated manufacturing system using thin sections |
US4988602A (en) | 1990-04-18 | 1991-01-29 | Minnesota Mining And Manufacturing Co. | Liquid electrophotographic toner with acid containing polyester resins |
US5099288A (en) | 1990-11-19 | 1992-03-24 | Lexmark International, Inc. | Fixing device with selectable finish |
US5594652A (en) | 1991-01-31 | 1997-01-14 | Texas Instruments Incorporated | Method and apparatus for the computer-controlled manufacture of three-dimensional objects from computer data |
US6175422B1 (en) | 1991-01-31 | 2001-01-16 | Texas Instruments Incorporated | Method and apparatus for the computer-controlled manufacture of three-dimensional objects from computer data |
JPH05165350A (ja) | 1991-12-17 | 1993-07-02 | Konica Corp | 定着装置 |
US5354799A (en) | 1992-11-16 | 1994-10-11 | Eastman Kodak Company | Limited coalescence process |
US5990268A (en) | 1992-11-23 | 1999-11-23 | Dtm Corporation | Sinterable semi-crystalline powder and near-fully dense article formed therewith |
US5514232A (en) | 1993-11-24 | 1996-05-07 | Burns; Marshall | Method and apparatus for automatic fabrication of three-dimensional objects |
US6206672B1 (en) | 1994-03-31 | 2001-03-27 | Edward P. Grenda | Apparatus of fabricating 3 dimensional objects by means of electrophotography, ionography or a similar process |
KR0149702B1 (ko) | 1994-09-08 | 1998-12-15 | 김광호 | 전자사진 프로세서 카트리지 |
US6887640B2 (en) | 2002-02-28 | 2005-05-03 | Sukun Zhang | Energy activated electrographic printing process |
US5593531A (en) | 1994-11-09 | 1997-01-14 | Texas Instruments Incorporated | System, method and process for fabrication of 3-dimensional objects by a static electrostatic imaging and lamination device |
EP0712051A3 (en) | 1994-11-09 | 1997-06-18 | Texas Instruments Inc | Manufacture of three-dimensional objects |
JPH08281808A (ja) | 1995-04-17 | 1996-10-29 | Ricoh Co Ltd | 立体形状の製造方法 |
JP3154088B2 (ja) | 1995-05-02 | 2001-04-09 | キヤノン株式会社 | 静電荷像現像用トナー |
US6270335B2 (en) | 1995-09-27 | 2001-08-07 | 3D Systems, Inc. | Selective deposition modeling method and apparatus for forming three-dimensional objects and supports |
JP4068191B2 (ja) | 1996-09-11 | 2008-03-26 | 株式会社リコー | 電子写真用トナー及びその製造方法 |
JP3765896B2 (ja) | 1996-12-13 | 2006-04-12 | Jsr株式会社 | 光学的立体造形用光硬化性樹脂組成物 |
CN1300642C (zh) | 1997-02-12 | 2007-02-14 | 东丽工程株式会社 | 静电潜象显影用调色剂组合物 |
EP0871082B1 (en) | 1997-04-07 | 2008-05-07 | Punch Graphix International N.V. | Electrostatographic printer and method |
SE509088C2 (sv) | 1997-04-30 | 1998-12-07 | Ralf Larsson | Sätt och anordning för framställning av volymkroppar |
US5866058A (en) | 1997-05-29 | 1999-02-02 | Stratasys Inc. | Method for rapid prototyping of solid models |
US6066285A (en) | 1997-12-12 | 2000-05-23 | University Of Florida | Solid freeform fabrication using power deposition |
US5910387A (en) | 1998-01-13 | 1999-06-08 | Xerox Corporation | Toner compositions with acrylonitrile and processes |
JP2000258951A (ja) * | 1999-03-11 | 2000-09-22 | Fuji Xerox Co Ltd | 電子写真用トナー及びそれを用いた画像形成方法 |
US7754807B2 (en) * | 1999-04-20 | 2010-07-13 | Stratasys, Inc. | Soluble material and process for three-dimensional modeling |
JP2001075376A (ja) | 1999-09-06 | 2001-03-23 | Canon Inc | 画像形成装置 |
JP2001150556A (ja) | 1999-09-14 | 2001-06-05 | Minolta Co Ltd | 三次元造形装置および三次元造形方法 |
US6509128B1 (en) | 2000-10-25 | 2003-01-21 | 3M Innovative Properties Company | Imagewise printing of adhesives and limited coalescence polymerization method |
US20020093115A1 (en) | 2001-01-12 | 2002-07-18 | Jang B. Z. | Layer manufacturing method and apparatus using a programmable planar light source |
US6376148B1 (en) | 2001-01-17 | 2002-04-23 | Nanotek Instruments, Inc. | Layer manufacturing using electrostatic imaging and lamination |
US6780368B2 (en) | 2001-04-10 | 2004-08-24 | Nanotek Instruments, Inc. | Layer manufacturing of a multi-material or multi-color 3-D object using electrostatic imaging and lamination |
JP2002347129A (ja) | 2001-05-25 | 2002-12-04 | Konica Corp | 立体造形装置および立体造形方法 |
US7314696B2 (en) | 2001-06-13 | 2008-01-01 | Eastman Kodak Company | Electrophotographic toner and development process with improved charge to mass stability |
US20030087176A1 (en) | 2001-07-25 | 2003-05-08 | Ezenyilimba Matthew C. | Chemically prepared toners of controlled particle shape |
JP2003053849A (ja) | 2001-08-16 | 2003-02-26 | Konica Corp | 積層造形装置及び積層造形方法 |
JP2003071940A (ja) | 2001-09-03 | 2003-03-12 | Konica Corp | 積層造形装置及び積層造形方法 |
US7011783B2 (en) | 2001-10-24 | 2006-03-14 | 3D Systems, Inc. | Cooling techniques in solid freeform fabrication |
JP2003195683A (ja) * | 2001-12-25 | 2003-07-09 | Konica Corp | 積層造形装置及び積層造形方法 |
KR100938451B1 (ko) | 2002-04-17 | 2010-01-25 | 스트래터시스,인코포레이티드 | 층상 증착 모델링용 평활법 |
JP4220967B2 (ja) | 2002-12-20 | 2009-02-04 | ユニバーシティ オブ サザン カリフォルニア | 選択的焼結防止(sis)による粉末廃棄物の削減方法 |
EP1459871B1 (de) | 2003-03-15 | 2011-04-06 | Evonik Degussa GmbH | Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Objekten mittels Mikrowellenstrahlung sowie dadurch hergestellter Formkörper |
US6815636B2 (en) | 2003-04-09 | 2004-11-09 | 3D Systems, Inc. | Sintering using thermal image feedback |
JP2005062860A (ja) | 2003-07-31 | 2005-03-10 | Tokai Rubber Ind Ltd | 電子写真用無端ベルトの製法 |
US7261542B2 (en) | 2004-03-18 | 2007-08-28 | Desktop Factory, Inc. | Apparatus for three dimensional printing using image layers |
US8119053B1 (en) | 2004-03-18 | 2012-02-21 | 3D Systems, Inc. | Apparatus for three dimensional printing using imaged layers |
JP4368711B2 (ja) | 2004-03-18 | 2009-11-18 | 株式会社リコー | 転写定着装置とそれを備えた画像形成装置及び転写定着方法 |
US7435763B2 (en) | 2004-04-02 | 2008-10-14 | Hewlett-Packard Development Company, L.P. | Solid freeform compositions, methods of application thereof, and systems for use thereof |
DE102004020453A1 (de) | 2004-04-27 | 2005-11-24 | Degussa Ag | Polymerpulver mit Polyamid, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Polymerpulver |
EP1763703A4 (en) | 2004-05-12 | 2010-12-08 | Massachusetts Inst Technology | MANUFACTURING METHOD, SUCH AS A THREE DIMENSIONAL PRINTING, INCLUDING FORMATION OF FILMS USING SOLVENT VAPOR AND THE LIKE |
US7208257B2 (en) | 2004-06-25 | 2007-04-24 | Xerox Corporation | Electron beam curable toners and processes thereof |
DE102004047876A1 (de) | 2004-10-01 | 2006-04-06 | Degussa Ag | Pulver mit verbesserten Recyclingeigenschaften, Verfahren zu dessen Herstellung und Verwendung des Pulvers in einem Verfahren zur Herstellung dreidimensionaler Objekte |
JP2006182813A (ja) | 2004-12-24 | 2006-07-13 | Sumitomo Rubber Ind Ltd | 導電性シームレスベルト、導電性シームレスベルトの製造方法、及び該導電性シームレスベルトを備えた画像形成装置 |
DE102005033379A1 (de) | 2005-07-16 | 2007-01-18 | Degussa Ag | Verwendung von cyclischen Oligomeren in einem formgebenden Verfahren und Formkörper, hergestellt nach diesem Verfahren |
WO2007114895A2 (en) | 2006-04-06 | 2007-10-11 | Z Corporation | Production of three-dimensional objects by use of electromagnetic radiation |
US8765045B2 (en) | 2007-01-12 | 2014-07-01 | Stratasys, Inc. | Surface-treatment method for rapid-manufactured three-dimensional objects |
US7731887B2 (en) | 2007-01-17 | 2010-06-08 | 3D Systems, Inc. | Method for removing excess uncured build material in solid imaging |
US20080226346A1 (en) | 2007-01-17 | 2008-09-18 | 3D Systems, Inc. | Inkjet Solid Imaging System and Method for Solid Imaging |
US8221671B2 (en) | 2007-01-17 | 2012-07-17 | 3D Systems, Inc. | Imager and method for consistent repeatable alignment in a solid imaging apparatus |
US7614866B2 (en) | 2007-01-17 | 2009-11-10 | 3D Systems, Inc. | Solid imaging apparatus and method |
JP5165350B2 (ja) | 2007-01-26 | 2013-03-21 | 三菱樹脂株式会社 | ポリエステル系熱収縮性フィルムロール |
GB2446386A (en) | 2007-02-06 | 2008-08-13 | Univ Montfort | Electrostatic printing method and its use in rapid prototyping |
DE102007029142A1 (de) | 2007-06-25 | 2009-01-02 | 3D-Micromac Ag | Schichtauftragsvorrichtung zum elektrostatischen Schichtauftrag eines pulverförmigen Werkstoffes sowie Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes |
SE0701934L (sv) | 2007-08-27 | 2009-02-28 | Sintermask Technologies Ab | Tonerkomposition, framkallare innefattande tonerkompositionen och förfarande vid framställning av en volymkropp |
JP4404136B2 (ja) | 2007-12-17 | 2010-01-27 | 富士ゼロックス株式会社 | 静電荷像現像用トナー及びその製造方法、並びに静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ及び画像形成装置 |
DE102008000755B4 (de) | 2008-03-19 | 2019-12-12 | Evonik Degussa Gmbh | Copolyamidpulver und dessen Herstellung, Verwendung von Copolyamidpulver in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Copolyamidpulver |
CN101310964B (zh) | 2008-07-10 | 2010-08-11 | 华南理工大学 | 医用植入体蜡模的选区激光熔化快速成型方法及装置 |
US8246888B2 (en) | 2008-10-17 | 2012-08-21 | Stratasys, Inc. | Support material for digital manufacturing systems |
US8147910B2 (en) | 2009-02-24 | 2012-04-03 | Objet Ltd. | Method and apparatus for three-dimensional printing |
US8249480B2 (en) | 2009-06-25 | 2012-08-21 | Eastman Kodak Company | Fusing apparatus for high speed electrophotography system |
DE102009037815B4 (de) | 2009-08-18 | 2016-06-09 | Sintermask Gmbh | Verfahren und Vorrichtung zur Herstellung eines dreidimensionalen Objektes |
CN102033284A (zh) * | 2009-09-28 | 2011-04-27 | 鸿富锦精密工业(深圳)有限公司 | 镜片卡合结构及应用该结构的镜头模组 |
GB0917936D0 (en) | 2009-10-13 | 2009-11-25 | 3D Printer Aps | Three-dimensional printer |
WO2011065920A1 (en) | 2009-11-26 | 2011-06-03 | Yu En Tan | Process for building three-dimensional objects |
EP2521625A2 (en) | 2010-01-05 | 2012-11-14 | Stratasys, Inc. | Support cleaning system |
DE102010045679A1 (de) | 2010-09-17 | 2012-03-22 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur chemischen Tonerfixierung |
DE102011003610A1 (de) | 2011-02-03 | 2012-08-09 | Evonik Degussa Gmbh | Vorrichtung zur besseren Inertisierung von Lasersinteranlagen |
US8568951B2 (en) | 2011-03-16 | 2013-10-29 | Ricoh Company, Ltd. | Toner, method of manufacturing toner, image forming method, image forming apparatus, and process cartridge |
US9017591B2 (en) | 2011-04-27 | 2015-04-28 | Canon Kabushiki Kaisha | Method for manufacturing seamless belt for electrophotography |
US20130186549A1 (en) | 2011-09-23 | 2013-07-25 | Stratasys, Inc. | Layer transfusion for additive manufacturing |
US8488994B2 (en) | 2011-09-23 | 2013-07-16 | Stratasys, Inc. | Electrophotography-based additive manufacturing system with transfer-medium service loops |
US9904223B2 (en) * | 2011-09-23 | 2018-02-27 | Stratasys, Inc. | Layer transfusion with transfixing for additive manufacturing |
US8459280B2 (en) | 2011-09-23 | 2013-06-11 | Stratasys, Inc. | Support structure removal system |
US8879957B2 (en) | 2011-09-23 | 2014-11-04 | Stratasys, Inc. | Electrophotography-based additive manufacturing system with reciprocating operation |
US20130186558A1 (en) | 2011-09-23 | 2013-07-25 | Stratasys, Inc. | Layer transfusion with heat capacitor belt for additive manufacturing |
US9023566B2 (en) * | 2013-07-17 | 2015-05-05 | Stratasys, Inc. | ABS part material for electrophotography-based additive manufacturing |
US9029058B2 (en) * | 2013-07-17 | 2015-05-12 | Stratasys, Inc. | Soluble support material for electrophotography-based additive manufacturing |
-
2013
- 2013-07-17 US US13/944,472 patent/US9023566B2/en active Active
-
2014
- 2014-07-16 KR KR1020167003933A patent/KR101774450B1/ko active IP Right Grant
- 2014-07-16 EP EP14750062.3A patent/EP3022609B1/en active Active
- 2014-07-16 DK DK18201672.5T patent/DK3467592T3/da active
- 2014-07-16 WO PCT/US2014/046798 patent/WO2015009788A1/en active Application Filing
- 2014-07-16 CN CN201910988547.XA patent/CN110561746B/zh active Active
- 2014-07-16 EP EP18201672.5A patent/EP3467592B1/en active Active
- 2014-07-16 CN CN201480050804.0A patent/CN105556393B/zh active Active
- 2014-07-16 JP JP2016527059A patent/JP6367329B2/ja active Active
-
2015
- 2015-04-20 US US14/691,318 patent/US9482974B2/en active Active
-
2016
- 2016-09-08 US US15/259,507 patent/US9933718B2/en active Active
-
2018
- 2018-07-03 JP JP2018126852A patent/JP2018200469A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
CN110561746A (zh) | 2019-12-13 |
EP3467592A1 (en) | 2019-04-10 |
EP3467592B1 (en) | 2021-09-01 |
US20150227070A1 (en) | 2015-08-13 |
EP3022609A1 (en) | 2016-05-25 |
CN105556393A (zh) | 2016-05-04 |
US9482974B2 (en) | 2016-11-01 |
US9023566B2 (en) | 2015-05-05 |
US20150024319A1 (en) | 2015-01-22 |
WO2015009788A1 (en) | 2015-01-22 |
JP2016532891A (ja) | 2016-10-20 |
EP3022609B1 (en) | 2018-11-21 |
JP2018200469A (ja) | 2018-12-20 |
CN105556393B (zh) | 2019-10-22 |
KR101774450B1 (ko) | 2017-09-04 |
US9933718B2 (en) | 2018-04-03 |
CN110561746B (zh) | 2022-04-15 |
US20160378004A1 (en) | 2016-12-29 |
DK3467592T3 (da) | 2021-11-15 |
JP6367329B2 (ja) | 2018-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101774450B1 (ko) | 전자사진 기반 적층 제조를 위한 abs 부품재료 | |
US11150570B2 (en) | Method of printing parts with a high-performance consumable materials with electrophotography based additive manufacturing system | |
US10061221B2 (en) | Engineering-grade consumable materials for electrophotography-based additive manufacturing system | |
US10018937B2 (en) | Soluble support material for electrophotography-based additive manufacturing | |
US9785064B2 (en) | Semi-crystalline consumable materials for electrophotography-based additive manufacturing system | |
US10065371B2 (en) | Method for printing 3D parts and support structures with electrophotography-based additive manufacturing | |
US10557056B2 (en) | ABS/polycarbonate/poly(styrene-co-maleimide) part material for electrophotography-based additive manufacturing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |