KR20150130168A - 열전환장치 - Google Patents

열전환장치 Download PDF

Info

Publication number
KR20150130168A
KR20150130168A KR1020140057406A KR20140057406A KR20150130168A KR 20150130168 A KR20150130168 A KR 20150130168A KR 1020140057406 A KR1020140057406 A KR 1020140057406A KR 20140057406 A KR20140057406 A KR 20140057406A KR 20150130168 A KR20150130168 A KR 20150130168A
Authority
KR
South Korea
Prior art keywords
thermal conversion
semiconductor element
thermoelectric
substrate
heat
Prior art date
Application number
KR1020140057406A
Other languages
English (en)
Other versions
KR102111604B1 (ko
Inventor
이종민
김상곤
김숙현
김채훈
노명래
박중현
손형민
신종배
원부운
조용상
조윤경
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020140057406A priority Critical patent/KR102111604B1/ko
Priority to CN201510243486.6A priority patent/CN105895794B/zh
Priority to US14/710,946 priority patent/US20150333246A1/en
Publication of KR20150130168A publication Critical patent/KR20150130168A/ko
Application granted granted Critical
Publication of KR102111604B1 publication Critical patent/KR102111604B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

본 발명의 실시예들은 열전소자를 포함하는 열전환장치에 대한 것으로, 열전모듈을 구성하는 열전 반도체소자와 열변환모듈의 열전환기판이 직접 접촉하는 구조로 구현되어, 열전모듈을 구성하는 기판 부재를 제거하여 기판부재와 열전환기판 사이의 계면 접착층을 제거함으로써, 기판부재와 열전환기판을 접촉하기 위한 접착물질층의 존재로 이종 소재간 발생하는 열손실을 없애면서 열전소자의 성능을 향상시킬 수 있다.

Description

열전환장치{DEVICE USING THERMOELECTRIC MOUDULE}
본 발명의 실시예들은 열전소자를 포함하는 열전환장치에 대한 것이다.
일반적으로, 열전 변환 소자를 포함하는 열전 소자는 P형 열전 재료와 N형 열전 재료를 금속 전극들 사이에 접합시킴으로써, PN 접합 쌍을 형성하는 구조이다. 이러한 PN 접합 쌍 사이에 온도 차이를 부여하게 되면, 제벡(Seeback) 효과에 의해 전력이 발생함으로써 열전 소자는 발전 장치로서 기능 할 수 있다. 또한, PN 접합 쌍의 어느 한쪽은 냉각되고 다른 한쪽은 발열 되는 펠티어(Peltier) 효과에 의해, 열전 소자는 온도 제어 장치로서 이용될 수도 있다.
이러한 온도제어장치에 적용되는 열전소자는 대향하는 한 쌍의 기판 사이에 상술한 열전소자를 배치하고, 기판의 표면과 접촉하는 히트싱크(heat sink) 부재의 표면을 금속이 아닌 이종 접착재, 이를 테면, 접착성이 있는 열 중재 물질(TIM; thermal interface material)을 이용하여 접착을 하게 된다. 이러한 열 중재물질은 방열구리스(hermal Grease)와 같은 것을 예로 들 수 있으며, 이러한 열 중재물질의 존재로 인해 접착 계면에서 흡열과 발열의 작용이 구현되는 열전 반도체소자의 열전달 효율일 떨어져 열손실이 발생하게 되는 문제가 있다.
본 발명의 실시예들은 상술한 과제를 해결하기 위해 안출된 것으로, 특히 열전반도체소자와 히트싱크 구조물 사이에 열전모듈을 형성하는 기판 부재를 없애고, 히트싱크 구조물의 표면에 전극패턴을 형성하여 직접 열전소자와 접촉을 함으로써, 열 중재물질의 존재로 인한 열손실을 제거하여 열효율을 향상시킬 수 있는 열전환장치를 제공할 수 있도록 한다.
상술한 과제를 해결하기 위한 수단으로서, 본 발명의 실시예에서는 제1반도체소자 및 제2반도체소자를 포함하는 단위 열전모듈; 상기 열전모듈과 접촉하여 열변환을 수행하는 열변환모듈;을 포함하며, 상기 제1반도체소자 및 제2반도체소자의 일단 또는 타단 중 적어도 어느 하나는 상기 열변환모듈의 열전환기판의 일표면에 직접 접촉하는 열전환장치를 제공할 수 있도록 한다.
본 발명의 실시예에 따르면, 열전모듈을 구성하는 열전 반도체소자와 열변환모듈의 열전환기판이 직접 접촉하는 구조로 구현되어, 열전모듈을 구성하는 기판 부재를 제거하여 기판부재와 열전환기판 사이의 계면 접착층을 제거함으로써, 기판부재와 열전환기판을 접촉하기 위한 접착물질층의 존재로 이종 소재간 발생하는 열손실을 없애면서 열전소자의 성능을 향상시킬 수 있는 효과가 있다.
특히, 상술한 열전소자의 성능향상과 더불어 본 발명의 실시예에 따르면, 상술한 열전한 기판 상에 배치되는 방열 구조물의 구조를, 공기와 면접촉을 하는 열전환부재를 배치하되, 폴딩(folding) 구조로 다수의 유로를 형성하면서 접히는 구조의 열전환부재를 적용하여 공기와의 접촉면적을 극대화하여 열변환 효율을 극대화할 수 있는 효과가 있다. 또한, 폴딩 구조의 열전환부재로 인해 제한적인 열교환 장치의 면적에도 고효율의 열전환장치를 형성할 수 있으며, 제품 자체의 부피를 얇게 형성하여 범용적인 설계배치를 구현할 수 있는 효과도 있다.
이러한, 본 발명의 실시예에서의 열전환부재의 구조로 인해 발열부의 온도 상승 및 흡열부의 온도 감소 효과가 극대화됨은 물론, 폴딩구조로 인해 알루미늄 등의 열던달부재의 체적이 동일 부피 공간 대비 50% 이상 감소하기 때문에 제품 자체의 두께를 감소시킬 수 있다.
도 1은 본 발명의 실시예에 따른 열전환장치의 개념도이며, 도 2는 도 1의 열전환장치의 열전환기판 상의 전극패턴이 구현되는 예시도이다.
도 3은 도 1에서 상술한 제1반도체소자와 제2반소체소자, 열변환모듈의 열전환기판의 접촉구조를 도시한 요부 단면도이다.
도 4는 열전환기판에 직접 패터닝되는 전극패턴과 다수의 열전반도체소자의 접촉구조를 도시한 예시도이다.
도 5는 본 발명의 다른 실시예에 따른 열전환장치의 개념도를 도시한 것이다.
도 6 및 도 7은 도 5에서의 열전환부재의 예시도이다.
도 8은 본 발명의 실시예에 따른 열전환장치의 응용예이다.
이하에서는 첨부한 도면을 참조하여 본 발명에 따른 구성 및 작용을 구체적으로 설명한다. 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성요소는 동일한 참조부여를 부여하고, 이에 대한 중복설명은 생략하기로 한다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
도 1은 본 발명의 실시예에 따른 열전환장치의 개념도이며, 도 2는 도 1의 열전환장치의 열전환기판 상의 전극패턴이 구현되는 예시도이다.
도 1 및 도 2를 참조하면, 본 발명의 실시예에 따른 열전환장치는, 제1반도체소자(120) 및 제2반도체소자(130)를 포함하는 단위 열전모듈(Z)을 적어도 1 이상 포함하며, 상기 열전모듈과 접촉하여 열변환을 수행하는 열변환모듈(X, Y)을 적어도 1 이상 포함하는 구조로 구현되며, 특히 상기 제1반도체소자(120) 및 제2반도체소자(130)의 일단 또는 타단 중 적어도 어느 하나는 상기 열변환모듈의 열전환기판(110A, 110B)의 일 표면에 직접 접촉하도록 구현될 수 있다. 즉, 본 발명의 실시예에 따른 열전환장치는, 열전모듈을 구성하는 반도체소자 간에 전기적 연결을 구성하는 전극패턴이 별도의 기판 부재에 형성되는 것이 아니라, 상술한 상기 열변환모듈의 열전환기판(110A, 110B)의 일 표면에 전극패턴이 직접 형성되며, 여기에 상술한 제1반도체소자(120) 및 제2반도체소자(130)가 접촉하여 전기적 연결을 구현하는 구조로 구현될 수 있도록 한다.
상술한 제1반도체소자(120) 및 제2반도체소자(130)는 열변환모듈의 외표면(열전환기판)에 형성되는 전극패턴에 접촉하며, 서로 전기적으로 연결되어 배치되며, 상기 열전 반도체소자는 P형 반도체 와 N형 반도체가 쌍을 이루며 배치되며, 전류의 인가 시 펠티어 효과에 의해 상술한 한 쌍의 기판에 흡열부와 발열부를 구현하게 된다.
이러한 구조는 별도의 한 쌍의 기판을 마련하고, 기판 내면에 반도체 소자간 전기적 연결을 위한 전극패턴이 구현되며, 상술한 한 쌍의 기판 사이에 열전반도체소자가 배치되어 구성되는 열전모듈의 구조가 아닌, 전극패턴 자체를 발열과 흡열의 열변환을 구현하는 열전모듈(또는 장치)의 표면에 직접 형성하고, 여기에 열전 반도체소자가 접촉하는 구조로 구현하여, 별개의 구조물을 접착하기 위한 접합물질의 존재로 인한 열손실은 물론, 기판의 추가로 배치되어 발생하는 열전달의 비효율성을 개선할 수 있도록 한다.
구체적으로는, 도 1에 도시된 것과 같이, 제1반도체소자(120)과 제2반소체소자(130)를 포함하는 열전모듈이 흡열 및 발열의 대상이 되는 열전모듈(X, Y)의 열전환기판(110A, 110B)의 일 표면에 형성되는 전극패턴에 직접 접촉하는 구조로 구현될 수 있다. 도 1에 도시된 구조에서는 제1반도체소자(120)과 제2반소체소자(130)의 일단과 타단 양쪽 방향에 열전환기판(110A, 110B)이 배치되는 구조로 구성되는 것을 예로 들었으나, 이에 한정되는 것은 아니며, 어느 한쪽에만 열전환기판이 배치되는 구조로 구현되는 것도 가능함은 물론이다. 아울러, 제1반도체소자(120)과 제2반소체소자(130)가 결합되는 열전환기판(110A, 110B) 표면의 반대면에는 도시된 것과 같이 돌출되는 방열구조물(111, 112)이 배치되어 발열, 흡열의 기능을 극대화할 수 있다. 상술한 방열구조물은 돌출되는 기둥형상의 핀 구조물일 수도 있으며, 후술하는 판형의 곡률패턴을 구비한 구조물이 배치될 수도 있다.
도 2는 도 1에서의 제1반도체소자(120)과 제2반소체소자(130)가 결합되는 열전환기판(110A, 110B)의 전극패턴영역(R1, R2) 부분만을 분리하여 도시한 확대도이다.
도 2에 도시된 것과 같이, 열전환기판(110A, 110B)의 표면에는 전극패턴(160a, 160b)이 직접 패터닝 된 구조로 형성되며, 상기 전극패턴(160a, 160b)에 도 1에서 상술한 제1반도체소자(120)과 제2반소체소자(130)가 접촉하여 결합하게 된다. 이는 종래의 열전모듈의 구조에서 제1반도체소자(120)과 제2반소체소자(130)가 전극패턴을 구비하는 한 쌍의 기판 사이에 배치되어 구성되는 열전모듈의 구조에서, 전극패턴을 온도제어가 필요한 열전모듈 자체의 외표면에 형성하고, 여기에 제1반도체소자(120)과 제2반소체소자(130)를 직접 접촉 결합하는 구조로 형성함으로써, 장비의 두께를 박형화하는 것은 물론, 직접적인 열전달의 효율성을 높이며, 기판과 열전모듈을 접착하기 위한 방열 구리스 등의 이종 접합물질을 사용하지 않아 열손실을 제거할 수 있는 장점이 구현된다. 특히, 본 발명의 실시예에 따라 열변환모듈의 외표면 자체에 직접 열전반도체 소자가 접촉 형성되는 경우에는, 별도의 기판을 매개로 접촉(열구리스 접착물질 사용)이 이루어지는 경우와 비교하여, 열 손실을 없애면서 기존 열전 소자 성능(Qc, △T)의 2~5% 정도가 향상되는 효과가 구현되게 된다.
도 3은 도 1에서 상술한 제1반도체소자(120)과 제2반소체소자(130)와 열변환모듈의 열전환기판(110A, 110B)의 접촉구조를 도시한 요부 단면도이다.
도 3에 도시된 것과 같이, 제1반도체소자(120)과 제2반소체소자(130)는 별도의 기판 구조물 없이 열전모듈 자체의 열전환기판(110A, 110B) 표면에 직접 패터닝된 전극패턴(160a, 160b)에 접촉하여 전기적 연결을 구현하게 된다. 이 경우 열전환기판(110A, 110B) 자체가 알루미늄 등의 전도성 금속재질로 구성되는 경우에는 도 3과 같이, 별도의 절연층(170a, 170b)이 열전환기판(110A, 110B)과 전극패턴(160a, 160b) 사이에 배치될 수 있다. 물론, 열전환기판이 도전성이 아닌 경우에는 절연층 없이도 직접 패터닝되는 금속전극패턴이 형성되어 제1반도체소자(120)과 제2반소체소자(130)와 결합할 수 있다.
또한, 상기 절연층(170a, 170b)의 경우 고방열 성능을 가지는 유전소재로서 냉각용 열전모듈의 열전도도를 고려하면 5~10W/K의 열전도도를 가지는 물질을 사용하며, 두께는 0.01mm~0.15mm의 범위에서 형성될 수 있다. 이 경우, 두께가 0.01mm 미만에서는 절연효율(혹은 내전압 특성)이 크게 저하되며, 0.15mm를 초과하는 경우에는 열전전도도가 낮아져 방열효율이 떨어지게 된다. 상기 전극층(160a, 160b)은 Cu, Ag, Ni 등의 전극재료를 이용하여 제1반도체 소자 및 제2반도체 소자를 전기적으로 연결하며, 도시된 단위셀이 다수 연결되는 경우, 도 4에 도시된 것과 같이 인접하는 단위셀과 전기적으로 연결을 형성하게 된다. 상기 전극층의 두께는 0.01mm~0.3mm의 범위에서 형성될 수 있다. 전극 층의 두께가 0.01mm 미만에서는 전극으로서 기능이 떨어져 전기 전도율이 불량하게 되며, 0.3mm를 초과하는 경우에도 저항의 증가로 전도효율이 낮아지게 된다.
특히, 이 경우 단위셀을 이루는 열전소자는 본 발명의 실시형태에 따른 적층형 구조의 단위소자를 포함하는 열전소자를 적용할 수 있으며, 이 경우 한쪽은 제1반도체소자(120)로서 P형 반도체 와 제2반도체소자(130)로서 N형 반도체로 구성될 수 있으며, 상기 제1반도체 및 상기 제2반도체는 금속 전극 (160a, 160b)과 연결되며, 이러한 구조가 다수 형성되며 상기 반도체 소자에 전극을 매개로 전류가 공급되는 회로선(181, 182)에 의해 펠티어 효과를 구현하게 된다.
열전모듈 내의 반도체소자는 P 형 반도체 또는 N 형 반도체 재료를 적용할 수 있다. 이러한 P 형 반도체 또는 N 형 반도체 재료는 상기 N형 반도체소자는, 셀레늄(Se), 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga), 텔루륨(Te), 비스무트(Bi), 인듐(In)을 포함한 비스무트텔룰라이드계(BiTe계)로 이루어지는 주원료물질과, 상기 주원료물질의 전체 중량의 0.001~1.0wt%에 해당하는 Bi 또는 Te이 혼합된 혼합물을 이용하여 형성할 수 있다. 이를테면, 상기 주원료물질은 Bi-Se-Te 물질로 하고, 여기에 Bi 또는 Te를 Bi-Se-Te 전체 중량의 00.001~1.0wt%에 해당하는 중량을 더 추가하여 형성할 수 있다.즉, Bi-Se-Te의 중량이 100g이 투입되는 경우, 추가로 혼합되는 Bi 또는 Te는 0.001g~1.0g의 범위에서 투입하는 것이 바람직하다. 상술한 바와 같이, 상술한 주원료물질에 추가되는 물질의 중량범위는 0.001wt%~0.1wt% 범위 외에서는 열전도도가 낮아지지 않고 전기전도도는 하락하여 ZT값의 향상을 기대할 수 없다는 점에서 의의를 가진다.
상기 P형 반도체 재료는, 안티몬(Sb), 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga), 텔루륨(Te), 비스무트(Bi), 인듐(In)을 포함한 비스무트텔룰라이드계(BiTe계)로 이루어지는 주원료물질과, 상기 주원료물질의 전체 중량의 0.001~1.0wt%에 해당하는 Bi 또는 Te이 혼합된 혼합물을 이용하여 형성함이 바람직하다. 이를 테면, 상기 주원료물질은 Bi-Sb-Te 물질로 하고, 여기에 Bi 또는 Te를 Bi-Sb-Te 전체 중량의 0.001~1.0wt%에 해당하는 중량을 더 추가하여 형성할 수 있다. 즉, Bi-Sb-Te의 중량이 100g이 투입되는 경우, 추가로 혼합되는 Bi 또는 Te는 0.001g~1g의 범위에서 투입될 수 있다. 상술한 주원료물질에 추가되는 물질의 중량범위는 0.001wt%~0.1wt% 범위 외에서는 열전도도가 낮아지지 않고 전기전도도는 하락하여 ZT값의 향상을 기대할 수 없다는 점에서 의의를 가진다.
단위셀을 이루며 상호 대향 하는 제1반도체소자 및 제2반도체소자의 형상 및 크기는 동일하게 이루어지나, 이 경우 P 형 반도체소자의 전기전도도와 N 형 반도체 소자의 전기전도도 특성이 서로 달라 냉각효율을 저해하는 요소로 작용하게 되는 점을 고려하여, 어느 한쪽의 체적을 상호 대향 하는 다른 반도체소자의 체적과는 상이하게 형성하여 냉각성능을 개선할 수 있도록 하는 것도 가능하다.
즉, 상호 대향 하여 배치되는 단위셀의 반도체 소자의 체적을 상이하게 형성하는 것은, 크게 전체적인 형상을 다르게 형성하거나, 동일한 높이를 가지는 반도체소자에서 어느 한쪽의 단면의 직경을 넓게 형성하거나, 동일한 형상의 반도체 소자에서 높이나 단면의 직경을 다르게 하는 방법으로 구현하는 것이 가능하다. 특히 N형 반도체소자의 직경을 P형 반도체소자보다 더 크게 형성하여 체적을 증가시켜 열전효율을 개선할 수 있도록 한다.
도 5는 본 발명의 다른 실시예에 따른 열전환장치의 개념도를 도시한 것이다. 특히 도 5의 구조에서는 제1반도체소자(120) 및 제2반도체소자(130)을 포함하는 도 3에서의 열전모듈(Z)이 배치되며, 제1반도체소자(120) 및 제2반도체소자(130)가 직접 접촉하는 열변환모듈(X, Y)의 열전환기판(110A, 110B)이 배치되는 요지는 동일하다. 다만, 열변환모듈에서 발열, 흡열의 성능을 구현, 확대하는 별도의 열전달부재(220, 320)를 포함하는 점에서 상이하다. 본 실시예에서의 열전달부재(220, 320)은 중심부의 열전모듈(Z)의 발열 및 흡열의 기능에 따라 열변환모듈(X, Y)를 통과하는 유체(물, 공기)가 열전달부재(220, 320)에 접촉함으로써, 발열, 흡열의 기능을 극대화할 수 있도록 할 수 있다.
도 6은 도 5에서 상술한 본 발명의 다른 실시예에 따른 열변환모듈 내에 포함되는 열전환부재(220)의 구조의 일실시예를 도시한 것이며, 도 7는 상기 열전환부재(220)에서 하나의 유로패턴(220A)이 형성된 구조의 확대개념도이다.
도시된 것과 같이, 상기 열전환부재(220)는 공기와 면접촉을 수행할 수 있도록 제1평면(221)과 상기 제1평면(221)의 반대 면인 제2평면(222)의 평판형상의 기재에 일정한 공기의 이동로인 공기 유로(C 1)를 형성하는 적어도 하나의 유로패턴(220A)이 구현되는 구조로 형성될 수 있다.
상기 유로패턴(220A)은 도 6에 도시된 것과 같이, 일정한 피치(P 1, P 2)와 높이(T 1)를 가지는 곡률 패턴이 형성되도록 기재를 폴딩(folding) 구조, 즉 접는 구조로 형성하는 방식으로 구현하는 것도 가능하다. 즉, 본 발명의 실시예에 따른 열전환부재(220, 320)는 공기가 면접촉하는 평면을 2면을 구비하고, 접촉하는 표면적을 극대화하기 위한 유로패턴을 형성되는 구조로 구현될 수 있다.
도 6에 도시된 구조에서는, 공기가 유입되는 유입부의 유로(C 1)방향에서 유입되는 경우, 상술한 제1평면(221)과 상기 제1평면(221)의 반대 면인 제2평면(222)과 공기가 고르게 접촉하며 이동하여 유로의 말단(C 2)방향으로 진행될 수 있도록 하는바, 단순한 평판형상과의 접촉 면보다 동일 공간에서 훨씬 많은 공기와의 접촉을 유도할 수 있게 되는바, 흡열이나 발열의 효과가 더욱 증진되게 된다.
특히, 공기의 접촉면적을 더욱 증대하기 위해서, 본 발명의 실시예에 따른 열전환부재(220)는 도 6 및 도 7에 도시된 것과 같이, 기재의 표면에 저항패턴(223)을 포함하여 구성될 수 있다. 상기 저항패턴(223)은 단위 유로패턴을 고려할 때, 제1곡면(B1) 및 제2곡면(B2)에 각각 형성될 수 있다. 상기 저항패턴은 제1평면과 상기 제1평면에 대향 하는 제2평면 중 어느 하나의 방향으로 돌출되는 구조로 구현될 수 있다. 나아가, 상기 열전환부재(220)에는 상기 기재의 표면을 관통하는 다수의 유체 유동홈(224)을 더 포함할 수 있으며, 이를 통해 열전환부재(240)의 제1평면과 제2평면 사이에 공기 접촉과 이동을 더욱 자유롭게 구현할 수 있도록 할 수 있다.
특히, 도 7의 부분 확대도와 같이, 상기 저항패턴(224)은 공기가 진입하는 방향으로 경사각(θ)을 가지도록 기울어진 돌출구조물로 형성되어 공기와의 마찰을 극대화하는 할 수 있도록 하여 접촉면적이나 접촉효율을 더욱 높일 수 있도록 한다. 상기 경사각(θ)은 상기 저항패턴 표면의 수평연장선과 상기 기재의 표면의 연장선이 예각을 이루도록 함이 더욱 바람직하며, 이는 직각이나 둔각일 경우 저항의 효과가 절감되기 때문이다. 아울러, 상술한 유동홈(224)의 배치를 저항패턴과 상기 기재의 연결부에 배치되도록 하여 공기 등의 유체의 저항을 높게 함과 동시에 반대면으로 이동을 효율화할 수 있도록 할 수 있다. 구체적으로, 상기 저항패턴(223)의 앞 부분의 기재 면에 유동홈(224)을 형성하여, 상기 저항패턴(223)과 접촉하는 공기의 일부를 기재의 전면과 후면을 통과하여 접촉의 빈도나 면적을 더욱 높일 수 있도록 할 수 있다.
도 8은 본 발명의 열전환장치의 응용 적용예를 도시한 것이다.
본 발명의 요지는 열전모듈을 이용하는 열전환장치에서, 열전모듈 내의 열전 반도체소자를 별도의 기판 사이에 배치하는 구조가 아닌, 가열이나 냉각이 필요한 장치의 표면에 직접 전극패턴을 형성하고, 이 전극패턴에 열전 반도체소자를 직접 접촉하여 온도제어의 효율성을 높이고자 하는 것이다. 따라서, 이러한 응용예는 도 1 내지 도 7에서 상술한 다양한 구조의 실시예의 열전환장치를 적용함은 물론,도 8에서와 같이, 물이나 액체(W)의 냉각이나 발열이 필요한 대상장치의 외표면(100C)에 전극패턴영역(R1)을 구현하고, 여기에 열전반도체소자(120,130)을 직접 접촉시켜 열전달 효율을 높이며, 접촉 계면에서의 접착물질과 같은 이종 물질로 인한 열손실을 제거할 수 있도록 한다.
이러한 응용예로는 상술한 구조에 한정되는 것은 아니며, 열전소자를 이용한 모든 온도제어장치에도 적용될 수 있으며, 이를 테면, 히트싱크 구조물, 히트파이프, 저수조, 급수조, 냉온수기 등의 다양한 장비에 응용 가능함은 물론이다.
전술한 바와 같은 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였다. 그러나 본 발명의 범주에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능하다. 본 발명의 기술적 사상은 본 발명의 전술한 실시예에 국한되어 정해져서는 안 되며, 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
100A, 100B: 열전환기판
120: 열전소자
130: 열전소자
X, Y: 열변환모듈
Z: 열전모듈

Claims (10)

  1. 제1반도체소자 및 제2반도체소자를 포함하는 단위 열전모듈;
    상기 열전모듈과 접촉하여 열변환을 수행하는 열변환모듈;을 포함하며,
    상기 제1반도체소자 및 제2반도체소자의 일단 또는 타단 중 적어도 어느 하나는 상기 열변환모듈의 열전환기판의 일표면에 직접 접촉하는 열전환장치.
  2. 청구항 1에 있어서,
    상기 열변환모듈은,
    상기 열전환기판의 일표면에 상기 제1반도체소자 및 제2반도체소자가 전기적으로 연결되는 전극패턴;을 포함하는 열전환장치.
  3. 청구항 2에 있어서,
    상기 전극패턴과 상기 열전환기판의 일표면 사이에 절연층을 더 포함하는 열전환장치.
  4. 청구항 2에 있어서,
    상기 제1반도체소자 및 제2반도체소자와 상기 전극패턴 사이에 금속 솔더층을 더 포함하는 열전환장치.
  5. 청구항 1 내지 청구항 4 중 어느 한 항에 있어서,
    상기 열전환기판 상에 돌출되는 다수의 방열 구조물을 더 포함하는 열전환장치.
  6. 청구항 1 내지 청구항 4 중 어느 한 항에 있어서,
    상기 열전환기판의 표면과 접촉하며, 기재의 표면에 유체의 유로패턴이 구현되는 열전환부재를 더 포함하는 열전환장치.
  7. 청구항 6에 있어서,
    상기 열전환부재는,
    상기 기재의 길이방향으로 피치를 가지는 곡률패턴인 열전환장치.
  8. 청구항 7에 있어서,
    상기 유로패턴의 표면에 상기 기재의 표면에서 돌출되는 저항패턴;을 더 포함하는 열전환장치.
  9. 청구항 7에 있어서,
    상기 기재의 표면을 관통하는 다수의 유체 유동홈을 더 포함하는 열전환장치.
  10. 청구항 1 내지 청구항 4 중 어느 한 항에 있어서,
    상기 단위 열전모듈을 2 이상 포함하며, 상기 단위 열전모듈에 대응하는 전극패턴이 상기 열전환기판에 구현되는 열전환장치.
KR1020140057406A 2014-05-13 2014-05-13 열전환장치 KR102111604B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020140057406A KR102111604B1 (ko) 2014-05-13 2014-05-13 열전환장치
CN201510243486.6A CN105895794B (zh) 2014-05-13 2015-05-13 热转换装置
US14/710,946 US20150333246A1 (en) 2014-05-13 2015-05-13 Heat conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140057406A KR102111604B1 (ko) 2014-05-13 2014-05-13 열전환장치

Publications (2)

Publication Number Publication Date
KR20150130168A true KR20150130168A (ko) 2015-11-23
KR102111604B1 KR102111604B1 (ko) 2020-05-15

Family

ID=54539224

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140057406A KR102111604B1 (ko) 2014-05-13 2014-05-13 열전환장치

Country Status (3)

Country Link
US (1) US20150333246A1 (ko)
KR (1) KR102111604B1 (ko)
CN (1) CN105895794B (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180028160A (ko) * 2016-09-08 2018-03-16 엘지이노텍 주식회사 열전소자
KR20180104866A (ko) * 2017-03-14 2018-09-27 엘지이노텍 주식회사 히트 싱크 및 이를 포함하는 열전 소자
KR102103139B1 (ko) * 2018-12-17 2020-04-22 주식회사 에스랩 열전모듈을 활용한 냉온 패키지

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI570972B (zh) * 2016-01-20 2017-02-11 財團法人工業技術研究院 熱電轉換裝置以及熱電轉換器
KR101956983B1 (ko) * 2016-09-20 2019-03-11 현대자동차일본기술연구소 파워 모듈 및 그 제조 방법
KR102095242B1 (ko) * 2017-12-04 2020-04-01 엘지이노텍 주식회사 열변환장치
KR102095243B1 (ko) * 2018-04-04 2020-04-01 엘지이노텍 주식회사 열전소자
US10873116B2 (en) * 2018-05-18 2020-12-22 Lee Fei Chen Charging device having thermoelectric module
JP2022521437A (ja) * 2019-02-26 2022-04-07 エルジー イノテック カンパニー リミテッド 熱電モジュール
KR102220946B1 (ko) * 2019-06-18 2021-02-26 엘지이노텍 주식회사 열전소자

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669550A (ja) * 1992-08-18 1994-03-11 Nippondenso Co Ltd 熱電変換装置
JP2006121006A (ja) * 2004-10-25 2006-05-11 Denso Corp 熱電変換装置およびその熱電変換装置の製造方法
JP2006287067A (ja) * 2005-04-01 2006-10-19 Denso Corp 熱電変換装置およびその装置の製造方法
KR20060110348A (ko) * 2003-12-02 2006-10-24 바텔리 메모리얼 인스티튜트 열전 디바이스 및 그 응용 장치
KR20120057638A (ko) * 2009-08-28 2012-06-05 에미텍 게젤샤프트 퓌어 에미시온스테크놀로기 엠베하 열전기 장치
KR20140002158A (ko) * 2012-06-28 2014-01-08 엘지이노텍 주식회사 열전냉각모듈 및 이의 제조 방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144967A (ja) * 1996-11-06 1998-05-29 Nhk Spring Co Ltd 冷却用熱電素子モジュール
US6121539A (en) * 1998-08-27 2000-09-19 International Business Machines Corporation Thermoelectric devices and methods for making the same
JP2005093532A (ja) * 2003-09-12 2005-04-07 Toshiba Corp 熱電素子モジュール
US20050121065A1 (en) * 2003-12-09 2005-06-09 Otey Robert W. Thermoelectric module with directly bonded heat exchanger
CN101044638B (zh) * 2004-10-18 2012-05-09 株式会社明电舍 帕尔帖元件或塞贝克元件的结构及其制造方法
US20060207642A1 (en) * 2004-11-30 2006-09-21 Denso Corporation Method of manufacturing thermoelectric transducer, thermoelectric transducer, and method for forming corrugated fin used for the same
JP2008305987A (ja) * 2007-06-07 2008-12-18 Sumitomo Chemical Co Ltd 熱電変換モジュール
JP2009099686A (ja) * 2007-10-15 2009-05-07 Sumitomo Chemical Co Ltd 熱電変換モジュール
JP5335271B2 (ja) * 2008-04-09 2013-11-06 キヤノン株式会社 光電変換装置及びそれを用いた撮像システム
JP2011035305A (ja) * 2009-08-05 2011-02-17 Toyota Industries Corp 熱交換器
WO2012033904A1 (en) * 2010-09-08 2012-03-15 Duke University Identification of transmitted hepatitis c virus (hcv) genomes by single genome amplification
CA2887962C (en) * 2012-11-08 2017-06-06 B/E Aerospace, Inc. Thermoelectric cooling device including a liquid heat exchanger disposed between air heat exchangers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669550A (ja) * 1992-08-18 1994-03-11 Nippondenso Co Ltd 熱電変換装置
KR20060110348A (ko) * 2003-12-02 2006-10-24 바텔리 메모리얼 인스티튜트 열전 디바이스 및 그 응용 장치
JP2006121006A (ja) * 2004-10-25 2006-05-11 Denso Corp 熱電変換装置およびその熱電変換装置の製造方法
JP2006287067A (ja) * 2005-04-01 2006-10-19 Denso Corp 熱電変換装置およびその装置の製造方法
KR20120057638A (ko) * 2009-08-28 2012-06-05 에미텍 게젤샤프트 퓌어 에미시온스테크놀로기 엠베하 열전기 장치
KR20140002158A (ko) * 2012-06-28 2014-01-08 엘지이노텍 주식회사 열전냉각모듈 및 이의 제조 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180028160A (ko) * 2016-09-08 2018-03-16 엘지이노텍 주식회사 열전소자
KR20180104866A (ko) * 2017-03-14 2018-09-27 엘지이노텍 주식회사 히트 싱크 및 이를 포함하는 열전 소자
KR102103139B1 (ko) * 2018-12-17 2020-04-22 주식회사 에스랩 열전모듈을 활용한 냉온 패키지

Also Published As

Publication number Publication date
US20150333246A1 (en) 2015-11-19
CN105895794B (zh) 2020-08-28
CN105895794A (zh) 2016-08-24
KR102111604B1 (ko) 2020-05-15

Similar Documents

Publication Publication Date Title
KR102111604B1 (ko) 열전환장치
KR102281065B1 (ko) 열전모듈 및 이를 포함하는 냉각장치
WO2004061982A1 (ja) 熱電変換材料を利用した電子部品の冷却装置
KR102434261B1 (ko) 열변환장치
JP7171725B2 (ja) 熱変換装置
JP2015154082A (ja) 熱変換装置
KR20150130169A (ko) 열전환장치
US11903312B2 (en) Heat conversion apparatus
KR102146021B1 (ko) 단위열전모듈 및 이를 포함하는 열전모듈, 냉각장치
KR102510123B1 (ko) 열전소자
KR102330197B1 (ko) 열전환장치
KR20150123055A (ko) 열전환장치
US20140332048A1 (en) Thermoelectric device
KR102456680B1 (ko) 열전소자
KR102334189B1 (ko) 열변환 장치
KR20200034982A (ko) 열변환장치
KR102581613B1 (ko) 열전소자
CN216213539U (zh) 一种特殊连接方式的多层热电半导体模块
KR20170107273A (ko) 열전 모듈
KR102487432B1 (ko) 열변환장치
JP2007043075A (ja) 熱電変換装置
KR20220170179A (ko) 열전장치
KR20230010418A (ko) 열전장치
CN113964263A (zh) 一种特殊连接方式的多层热电半导体模块
KR20090020236A (ko) 열전모듈 열교환기

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant