KR20150053790A - 메사 및 개선된 전류 전도를 갖는 algalnn 반도체 레이저 - Google Patents
메사 및 개선된 전류 전도를 갖는 algalnn 반도체 레이저 Download PDFInfo
- Publication number
- KR20150053790A KR20150053790A KR1020157008722A KR20157008722A KR20150053790A KR 20150053790 A KR20150053790 A KR 20150053790A KR 1020157008722 A KR1020157008722 A KR 1020157008722A KR 20157008722 A KR20157008722 A KR 20157008722A KR 20150053790 A KR20150053790 A KR 20150053790A
- Authority
- KR
- South Korea
- Prior art keywords
- layer
- waveguide
- blocking
- layers
- blocking layer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/2004—Confining in the direction perpendicular to the layer structure
- H01S5/2018—Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
- H01S5/2031—Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers characterized by special waveguide layers, e.g. asymmetric waveguide layers or defined bandgap discontinuities
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/2004—Confining in the direction perpendicular to the layer structure
- H01S5/2009—Confining in the direction perpendicular to the layer structure by using electron barrier layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/305—Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
- H01S5/3054—Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure p-doping
- H01S5/3063—Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure p-doping using Mg
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/3211—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
- H01S5/3215—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities graded composition cladding layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/323—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/32308—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
- H01S5/32341—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34333—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/2054—Methods of obtaining the confinement
- H01S5/2081—Methods of obtaining the confinement using special etching techniques
- H01S5/209—Methods of obtaining the confinement using special etching techniques special etch stop layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/3211—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4031—Edge-emitting structures
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Geometry (AREA)
- Semiconductor Lasers (AREA)
Abstract
본 발명은 반도체 레이저를 생성하기 위한 방법, 및 중첩된 층들을 갖는 층 구조를 포함하는 반도체 층(1)에 관한 것으로, 중첩된 층들은 적어도: a. n-도핑 외부층(10), b. 제 3 도파관층(11), c. 액티브 존(6) ― 액티브 존(6)에 광 발생 구조물들이 배열됨 ―, d. 제 2 도파관층(13), e. 블록킹층(14), f. 제 1 도파관층(15), g. p-도핑 외부층(16)의 층 구조를 갖고, 제 1, 제 2, 및 제 3 도파관층들(15, 13, 11)은 적어도 AlxInyGa(1-x-y)N을 갖고, x는 0 내지 1의 값들로 가정될 수 있고, y는 0 내지 1의 값들로 가정될 수 있고, x와 y의 합은 0 내지 1의 값들로 가정될 수 있고, 블록킹층(14)은, 인접한 제 1 도파관층(15)의 Al 함량보다 적어도 2% 더 높은 Al 함량을 갖고, 블록킹층(14)의 Al 함량은 제 1 도파관층(15)부터 제 2 도파관층(13)을 향해 증가되고, 층 구조는 양면 그래듀에이션(9)을 갖고, 양면 그래듀에이션(9)은 블록킹층(14)의 높이로 배열되어서, 블록킹층(14)의 적어도 하나의 부분 또는 전체 블록킹층(14)이 제 1 도파관층(15)보다 폭이 더 크다. 본 발명은 추가로, 반도체 레이저를 생성하기 위한 방법에 관한 것이다.
Description
본 발명은 특허 청구항 제 1 항에서 청구되는 바와 같은 반도체 레이저 및 특허 청구항 제 11 항에서 청구되는 바와 같은 반도체 레이저를 생성하기 위한 방법에 관한 것이다.
본 특허 출원은 독일 특허 출원들 DE 10 2012 217 662.4 및 10 2012 220 911.5를 우선권들로 주장하고, 앞서의 독일 특허 출원들의 개시 내용은 이로써 인용에 의해 본원에 포함된다.
종래 기술은 리지 도파관 기하학적 구조(ridge waveguide geometry)를 갖는 반도체 레이저(semiconductor laser)를 방출하는 에지(edge)를 개시한다. 반도체 레이저는 바람직하게, III-V 반도체 재료로부터 생성된다. 반도체 레이저는 X-Z-평면에 배열된 층들의 형태로 구성된다. 층들은 Y-축을 따라, 하나의 층이 다른 층 위에 배열된다. Y-Z-평면에서, 반도체 레이저는 더 좁은 상부 구역으로부터 더 넓은 하부 구역을 향하는 계단식 그래듀에이션(stepped graduation)을 갖는다. 반도체 레이저의 층 시퀀스는 P-형 클래딩층(P-type cladding layer), 도파관, 액티브 존(active zone) 및 제 2 도파관 및 제 2 클래딩층을 포함한다. 계단식 그래듀에이션은 상부 도파관에 인접하는 방식으로 구현된다.
본 발명의 목적은 반도체 레이저의 액티브 존에서 개선된 전류 전도를 달성하는 것이다.
본 발명의 목적은 청구항 제 1 항에서 청구된 바와 같은 반도체 레이저 및 청구항 제 11 항에서 청구된 바와 같은 방법에 의해 달성된다.
추가의 유리한 실시예들은 종속 청구항들에서 명시된다.
반도체 레이저는, 블록킹층의 구역에서 2차원 전하 캐리어 가스(two-dimensional charge carrier gas)의 감쇠에 의해 개선된 전류 전도가 달성된다는 이점을 갖는다. 더욱이, 적어도, 블록킹층에 인접하는 방식의 층 구조의 계단식 그래듀에이션의 어레인지먼트 때문에, 전류 집중(current constriction)이 부가적으로 지원된다. 그 결과, 계단식 그래듀에이션은 블록킹층의 상부 측 상에 또는 블록킹층에 배열될 수 있다. 더욱이, 예상과 달리, 반도체 레이저의 성능은 계단식 그래듀에이션과 협력하는 제 1 도파관의 제공에 의해 개선된다. 그 결과, 종래 기술과 비교하여, 증가된 전류 밀도가 액티브 존에서 달성된다.
전류 집중은 또한, 블록킹층에서 알루미늄 농도가 제 2 도파관층의 방향으로, 즉, 액티브 존의 방향으로 증가된다는 사실에 의해 지원된다.
설명된 어레인지먼트는 반도체 레이저의 레이저 데이터, 특히, 임계치 및 기울기를 개선하기 위해 이용될 수 있다. 이는, 반도체 구조, 즉, 액티브 존으로의 전하 캐리어들의 주입 효율을 최적화함으로써 달성된다. 이는, 모바일 전자(mobile electron)들이 포지티브로 도핑된 구역들에 도달하여 거기에서 비방사성으로(non-radiatively) 재결합되는 상황을 회피한다.
설명된 블록킹층의 도움으로, 알루미늄 농도의 과도하게 큰 점프(jump)가 회피되고, 이에 의해, 도파관층과 블록킹층 사이의 계면에서 2차원 정공 가스(two-dimensional hole gas)의 형성이 감소된다. 2차원 정공 가스의 정공들의 높은 가로 전도도(transverse conductivity)는, 측방향 에지 구역들로의 전류 확산(current spreading)이 결과되는 단점을 초래한다. 이러한 이점들은 극성 및 비극성 층(polar and non-polar layer)들에 대해 달성된다.
개선된 층 시퀀스 및 그에 적응된 계단식 그래듀에이션의 어레인지먼트의 도움으로, 정공 주입 효율의 개선이 달성되고, 우수한 전자 주입 효율이 유지된다.
추가의 실시예에서, 매우 높은 알루미늄 농도를 갖는 개별 층 대신에, 상이한 알루미늄 농도들을 갖는 복수의 층들의 도입의 결과로서, 블록킹층은, 액티브 존에서의 정공 수송이 개선되고 현저한 2차원 정공 가스들의 발생이 감소 또는 방지되는 방식으로 형성된다. 예로서, 블록킹층은 AlGaN, AlInGaN 또는 AlInN을 포함할 수 있고; 특히, 블록킹층은 AlGaN 층으로서 및/또는 AlInGaN 층으로서 및/또는 AlInN 층으로서 구현될 수 있다.
액티브 존의 방향으로 p-도핑 측으로부터 비롯되는 알루미늄 농도의 증가는, 복수의 작은 배리어들 또는 정공들에 대한 상승 배리어(rising barrier)를 산출한다. 결과적으로, 정공들의 수송은 계단식의 또는 상승하는 알루미늄 농도의 증가에 의해 용이해진다. 더욱이, 밴드 에지(band edge)의 높이가 점프되고, 따라서, 결과적으로 2차원 정공 가스의 징후가 감소된다.
일 실시예에서, 블록킹층은 제 1 및 제 2 블록킹층의 형태로 구현되고, 알루미늄 농도는 2개의 블록킹층들에서 상이하고, 제 2 도파관층에 면하는 블록킹층에서, 알루미늄 농도는 제 2 블록킹층의 알루미늄 농도보다 적어도 1% 더 높다. 상이한 알루미늄 농도들을 갖는 블록킹층들의 실시예는, 블록킹층에서의 2차원 전하 캐리어 가스의 정의된 감쇠를 초래한다.
선택되는 실시예에 따라, 블록킹층의 알루미늄 농도는 30%의 최댓값을 가질 수 있다. 결과적으로, 2차원 정공 가스의 큰 감쇠가 달성된다.
선택되는 실시예에 따라, 양면 계단식 그래듀에이션(two-side stepped graduation)은 제 1 도파관층에 더 근접하게 또는 제 2 도파관층에 더 가깝게, 그러나, 블록킹층에 인접하게 또는 블록킹층 내에 배열된다. 계단식 그래듀에이션이 제 2 도파관층에 더 가까울수록, 즉, 액티브 존에 더 가까울수록, 더 큰 전류 집중 및 이에 따른 액티브 존의 전류 밀도는 더욱 더 높다.
추가의 실시예에서, 블록킹층은 일체형 층(integral layer)으로서 구현되고, 알루미늄 농도는 제 1 도파관층으로부터 진행하여 제 2 도파관층의 방향으로 증가된다. 그 증가는 예를 들어, 선형으로 구현될 수 있다. 더욱이, 제 2 도파관층의 방향으로 제공되는 알루미늄 농도의 증가는 선형 증가보다 더 크게 증가될 수 있다. 알루미늄 농도의 증가의 유형 및 알루미늄 농도의 값에 의해, 전류 집중이 개별적으로 설정될 수 있다. 더욱이, 액티브 존에서 전류 밀도의 적응된 집중은 또한, 블록킹층의 구역에서의 계단식 그래듀에이션의 포지션에 의해 달성될 수 있다.
추가의 실시예에서, 제 1 및 제 2 블록킹층들 그리고 제 1 및 제 2 도파관들은 포지티브로 도핑되고, 평균 도핑 농도는, 제 1 블록킹층의 평균 도핑 농도가 제 2 블록킹층의 평균 도핑 농도보다 더 높은 방식으로 선택되고, 제 1 도파관층의 평균 도핑 농도는 제 2 블록킹층의 도핑 농도보다 더 높도록 또는 제 2 블록킹층의 도핑 농도와 동일하도록 선택된다. 더욱이, 제 2 도파관층의 도핑 농도는 제 1 도파관층의 도핑 농도 미만이다. 예로서, 제 2 도파관층은 또한 도핑되지 않을 수 있다. 추가의 실시예에서, 제 1 블록킹층의 평균 도핑 농도는 제 2 블록킹층의 평균 도핑 농도보다 더 높다. 더욱이, 제 2 블록킹층의 평균 도핑 농도는 제 1 도파관층의 평균 도핑 농도보다 더 높다. 더욱이, 제 1 도파관층의 평균 도핑 농도는 제 2 도파관층의 평균 도핑 농도보다 더 높다. 예를 들어, 마그네슘이 도펀트로서 이용될 수 있다.
추가의 실시예에서, p-형 클래딩층의 도핑 농도는 제 1 도파관층의 도핑 농도보다 더 높다. 더욱이, 선택되는 실시예에 따라, 개별 층들 내에서 도핑 농도의 단차(step)들 또는 도핑 농도의 구배(gradient)들이 가능하다. 도핑 농도의 감소의 결과로서, 액티브 존에 의해 발생되는 광의 광학 모드(optical mode)의 흡수성(absorption)은 더 작아진다.
선택되는 실시예에 따라, 적어도 하나의 부가적인 층이 제 1 도파관층과 제 2 도파관층 사이에 제공될 수 있다. 부가적인 층이 예를 들어, 제 1 블록킹층과 제 2 블록킹층 사이에 제공될 수 있다. 부가적인 층은 예를 들어, 갈륨 질화물로 이루어질 수 있고, 반도체 레이저의 기능을 지원하거나, 적어도 손상시키지 않을 수 있다.
본 발명의 앞서 설명한 특성들, 특징들, 및 이점들과, 이들이 달성되는 방식은, 도면들과 관련하여 더 상세하게 설명되는 예시적인 실시예들의 다음의 설명과 관련하여 더 명백해지고 더 명백하게 이해될 것이며, 도면들에서,
도 1은 반도체 레이저의 개략적인 사시도를 도시하고,
도 2는 반도체 레이저의 일 실시예의 개략적인 단면도를 도시하고,
도 3은 도 2로부터의 반도체 레이저의 전류 전도의 개략도를 도시하고,
도 4 및 도 5는 2개의 블록킹층들 및 상이한 높이 포지션들의 양면 계단식 그래듀에이션(double-side stepped graduation)을 포함하는 반도체 레이저의 추가의 실시예들을 도시하고,
도 6 및 도 7은 복수의 블록킹층들을 포함하는 반도체 레이저의 추가의 실시예들을 도시하고,
도 8은 알루미늄 구배를 갖는 블록킹층을 포함하는 반도체 레이저의 일 실시예를 도시하고,
도 9는 알루미늄 구배의 개략도를 도시하고,
도 10은 개별 층들의 마그네슘 도핑의 표시와 함께 반도체 레이저의 개략도를 도시하고,
도 11은 제 1 도파관층과 제 2 도파관층 사이에 중간층을 포함하는 반도체 레이저의 추가의 실시예를 도시하고,
도 12 내지 도 15는 반도체 레이저의 추가의 실시예들을 도시한다.
도 1은 반도체 레이저의 개략적인 사시도를 도시하고,
도 2는 반도체 레이저의 일 실시예의 개략적인 단면도를 도시하고,
도 3은 도 2로부터의 반도체 레이저의 전류 전도의 개략도를 도시하고,
도 4 및 도 5는 2개의 블록킹층들 및 상이한 높이 포지션들의 양면 계단식 그래듀에이션(double-side stepped graduation)을 포함하는 반도체 레이저의 추가의 실시예들을 도시하고,
도 6 및 도 7은 복수의 블록킹층들을 포함하는 반도체 레이저의 추가의 실시예들을 도시하고,
도 8은 알루미늄 구배를 갖는 블록킹층을 포함하는 반도체 레이저의 일 실시예를 도시하고,
도 9는 알루미늄 구배의 개략도를 도시하고,
도 10은 개별 층들의 마그네슘 도핑의 표시와 함께 반도체 레이저의 개략도를 도시하고,
도 11은 제 1 도파관층과 제 2 도파관층 사이에 중간층을 포함하는 반도체 레이저의 추가의 실시예를 도시하고,
도 12 내지 도 15는 반도체 레이저의 추가의 실시예들을 도시한다.
도 1은 X-축, Y-축, Z-축의 좌표계를 도시하고, 축들은 각각의 경우에서 서로 수직한다. 도 1은 메인 몸체(2) 및 계단식 부착부(stepped attachment)(3)를 갖는 반도체 레이저(1)의 개략적인 사시도를 도시한다. 반도체 레이저(1)는 Z-X-평면들에 배열된 층들의 형태로 구성되고, 층들은 Y-축을 따라 하나의 층이 다른 층의 위에 배열된다. 부착부(3)는 p-형 접촉층(4)으로 종결되고, 메인 몸체(2)는 n-형 접촉층(5)으로 맞은편에 종결된다. 액티브 존(6)은 p-형 접촉층(4)과 n-형 접촉층(5) 사이에서 메인 몸체(2)에 배열되고, 상기 액티브 존은 광을 발생시키도록 설계된다. 액티브 존(6)은 Z-축을 따라 측방향으로 연장된다. 제 1 및 제 2 공진기 미러(resonator mirror)가 대향 측 표면들(7, 8)에 배열된다. 부착부(3)는 X-축에서, 양면 계단식 그래듀에이션(9)을 통해 메인 몸체(2)에 병합되고, 메인 몸체(2)는 X-축에서 더 넓도록 구현된다. 레이저 광은 2개의 공진기 미러들 중 하나를 통해 커플링 아웃(couple out)된다.
도 2는 Y-X-평면에서의, 반도체 레이저(1)를 통한 개략적인 단면을 도시한다. n-도핑 클래딩층(10)은 n-형 접촉층(5)에 인접한다. 제 3 도파관층(11)은 n-도핑 클래딩층(10) 상에 배열된다. 액티브 존(6)은 제 3 도파관층(11) 상에 적용된다. 제 2 도파관층(13)은 액티브 존(6) 상에 배열된다. 블록킹층(14)은 제 2 도파관층(13) 상에 적용된다. 제 1 도파관층(15)은 블록킹층(14) 상에 배열된다. p-형 클래딩층(16)은 제 1 도파관층(15) 상에 배열된다. p-형 접촉층(4)은 p-형 클래딩층(16) 상에 적용된다. 도시된 예시적인 실시예에서, 블록킹층(14)은 제 1 블록킹층(17) 및 제 2 블록킹층(18)의 형태로 구현된다. 제 1 및 제 2 블록킹층들(17, 18)은 적어도 밴드 갭(band gap)에 있어서 상이하고, 밴드 갭은 예를 들어, 알루미늄 농도에 의해 영향받는다. 제 1 블록킹층(17)은 제 2 도파관층(13)에 면하고, 특히 제 2 도파관층 상에 적용된다. 제 2 블록킹층(18)은 제 1 도파관층(15)에 면하고, 예를 들어, 제 1 도파관층(15) 및 제 1 블록킹층(17)에 바로 인접하는 방식으로 구현된다. n-도핑 및 p-도핑 클래딩층들은 갈륨 및 질소, AlInGaN, AlGaN 또는 AlInN을 포함하고, 예를 들어, AlInGaN 층들로서 구성된다.
제 1, 제 2, 및 제 3 도파관층들(15, 13, 11)은 그들의 조성에 있어서 상이할 수 있다. 제 1 및/또는 제 2 및/또는 제 3 도파관층은 AlxInyGa(1-x-y)N을 포함하고, 여기서 x는 0 내지 1의 값들로 가정될 수 있고, y는 0 내지 1의 값들로 가정될 수 있고, 합(x+y)은 0 내지 1의 값들로 가정될 수 있다.
더욱이, 도파관층들(15, 13, 11)은 평균적으로, p-형 클래딩층(16) 또는 n-형 클래딩층(10)보다 더 큰 굴절률을 갖는다. 우수한 특성들은 0 ㎚ 내지 300 ㎚의 두께를 갖는 제 1 도파관층(15)을 이용하여 달성된다. 더 우수한 특성들은 20 ㎚ 내지 200 ㎚의 두께를 갖는 제 1 도파관층(15)을 이용하여 달성된다. 심지어 더 우수한 특성들은 40 ㎚ 내지 100 ㎚의 두께를 갖는 제 1 도파관층(15)을 이용하여 달성된다. 제 1 도파관층(15)은 AlxInyGa1 -x- yN으로 구성되고, 여기서 x는 0% 내지 20%일 수 있다. 추가의 실시예에서, x는 0% 내지 6%일 수 있다. 추가의 실시예에서, x는 0% 내지 3%일 수 있다. Y는 0% 내지 10%의 값들로 가정될 수 있다.
제 2 도파관층(13)은, 예를 들어, AlxInyGa1 -x- yN으로 구성되고 3 ㎚ 내지 300 ㎚의 두께를 갖는 방식으로 구현된다. x는 0% 내지 5%의 값들로 가정될 수 있고, y는 0% 내지 12%의 값들로 가정될 수 있다. 예로서, x는 0% 내지 2%의 값들로 가정될 수 있고, y는 0% 내지 7%의 값들로 가정될 수 있다.
블록킹층(14)은 알루미늄-함유 층을 구성한다. 블록킹층(14)은 개별 층들에서 상이한 알루미늄 농도들을 갖는 다층화된 방식으로, 또는 알루미늄 농도의 구배를 갖는 단일 층으로서, 또는 상이한 알루미늄 농도들을 갖는 복수의 층들 및 알루미늄 구배를 갖는 적어도 하나의 층을 포함하는 조합으로 구현될 수 있다. 블록킹층(14)의 알루미늄 농도는 제 1 도파관층(15)의 알루미늄 농도보다 더 높다. 예로서, 제 1 도파관층(15)에 인접하는 구역에서의 블록킹층의 알루미늄 농도는 제 1 도파관층(15)의 알루미늄 농도보다 적어도 2% 더 높다. 선택되는 실시예에 따라, 제 1 도파관층(15)에 인접하는 블록킹층(14)의 알루미늄 농도는 제 1 도파관층(15)의 알루미늄 농도보다 적어도 4% 더 높을 수 있다. 블록킹층(14)은 알루미늄 갈륨 질화물 층, 알루미늄 인듐 갈륨 질화물 층, 및/또는 알루미늄 인듐 질화물 층을 포함할 수 있다. 더욱이, 블록킹층(14)은 AlGaN 층으로서 또는 AlInGaN 층으로서 또는 AlInN 층으로서 구현될 수 있다. 인듐의 비율은 20% 미만, 바람직하게는 5% 미만일 수 있고, 블록킹층(14)의 두께는 예를 들어, 10 ㎚ 내지 100 ㎚일 수 있다. 선택되는 실시예에 따라, 블록킹층(14)은 20 ㎚ 내지 60 ㎚의 두께를 가질 수 있다.
제 1 블록킹층(17)의 형태의 그리고 제 2 블록킹층(18)의 형태의 블록킹층(14)의 실시예의 경우에서, 제 1 블록킹층(17)은 제 2 블록킹층(18)보다 더 높은 평균 알루미늄 농도를 갖는다. 제 1 및 제 2 블록킹층들의 알루미늄 농도들은 예를 들어, 1%만큼 또는 그 초과만큼, 예를 들어, 6% 만큼 또는 15%만큼 상이하다. 더욱이, 이러한 실시예의 제 2 블록킹층(18)은 블록킹층(14)에 대해 앞서 언급된 값들로 가정될 수 있다. 양면 계단식 그래듀에이션(9)의 높이 포지션은, 적어도 블록킹층(14)에 인접하는 방식으로, 그리고 특히 블록킹층(14) 내에 배열된다. 도 2의 예시적인 실시예에서, 계단식 그래듀에이션(9)은 제 2 블록킹층(18)의 구역에 배열된다.
도 3은, 화살표들의 형태의 개략도로, p-형 접촉부(4)로부터 n-형 접촉부(5)의 방향으로의 전류 전도(19)를 도시한다. 제 1 도파관층(15)에 비해 증가된 알루미늄 농도를 갖고 부가적으로 알루미늄 농도에 있어서 계단식 증가 또는 알루미늄 농도의 증가되는 구배를 갖는 블록킹층(14)의 어레인지먼트는, 액티브 존(6)의 방향으로 효과가 나타나는 전류 흐름(19)의 집중(constriction)을 초래하고, 상기 전류 흐름은 화살표들의 형태로 도시된다. 계단식 그래듀에이션(9) 및 유리하게 구현된 블록킹층(14)의 어레인지먼트의 결과로서, 감쇠된 2차원 정공 가스(12)가 블록킹층(14) 내에 생성된다. 정공 가스(12)는 도 3에서 점선들의 형태로 개략적으로 도시된다.
도 4는, 실질적으로 도 2의 실시예에 따라 구현되지만, 도 2와 비교하여 계단식 그래듀에이션(9)이 더 깊게 배열되고 제 1 블록킹층(17)의 구역에 형성되는 반도체 레이저(1)의 추가의 실시예를 통한 X-Y-평면의 단면을 개략도로 도시한다.
도 5는, 실질적으로 도 2의 실시예에 따라 구현되지만, 계단식 그래듀에이션(9)이 제 1 도파관층(15)과 제 2 블록킹층(18) 사이의 경계 구역에서 제 2 블록킹층(18)의 상부 에지에 배열되는 반도체 레이저의 추가의 실시예를 도시한다.
도 6은, 실질적으로 도 2의 어레인지먼트에 따라 구현되지만, 도 2의 어레인지먼트와 대조적으로, 제 1 및 제 2 블록킹층(17, 18) 대신에 제 1, 제 2, 및 제 3 블록킹층(17, 18, 20)이 제공되는 반도체 레이저의 추가의 실시예의 X-Y-평면의 단면을 개략도로 도시한다. 3개의 블록킹층들은 상이한 알루미늄 농도들을 갖는데, 예를 들면, 제 3 블록킹층(20)의 알루미늄 농도는 제 2 블록킹층(18)의 알루미늄 농도 미만이고, 제 2 블록킹층(18)의 알루미늄 농도는 제 1 블록킹층(17)의 알루미늄 농도 미만이다. 제 1 블록킹층(17)은 예를 들어, 최대 30%의 알루미늄 농도를 갖는다. 더욱이, 제 3 블록킹층(20)의 알루미늄 농도는 제 1 도파관층(15)의 알루미늄 농도보다 적어도 2% 더 높다. 바람직하게, 제 3 블록킹층(20)의 알루미늄 농도는 제 1 도파관층(15)의 알루미늄 농도보다 적어도 4% 더 높다. 도 6의 예시적인 실시예에서, 계단식 그래듀에이션(9)은 제 1 블록킹층(17)과 제 2 블록킹층(18) 사이의 경계 구역에 배열된다.
도 7은, 실질적으로 도 6의 실시예에 따라 구현되지만, 계단식 그래듀에이션(9)이 제 1 블록킹층(17)의 구역에, 특히, 제 1 블록킹층(17)의 높이의 절반부에 배열되는 추가의 실시예를 도시한다. 선택되는 실시예에 따라, 상이한 및/또는 동일한 알루미늄 농도를 갖는 3개보다 많은 수의 블록킹층들을 제공하는 것이 또한 가능하다. 제 1 블록킹층(17)은 예를 들어, 40 ㎚ 내지 60 ㎚, 특히 예를 들어, 50 ㎚의 두께를 가질 수 있다. 계단식 그래듀에이션(9)은 제 1 블록킹층의 0 내지 30 ㎚의 깊이, 예를 들어, 20 ㎚의 깊이에 배열될 수 있다.
도 8은, 실질적으로 도 2의 어레인지먼트에 따라 구현되지만, 블록킹층(14)이, 제 2 도파관층(13)의 방향으로 제 1 도파관층(15)으로부터 진행하여 제 2 도파관층(13)의 방향으로 증가되는 알루미늄 농도를 갖는 일체형 블록킹층(integral blocking layer)으로서 구현되는, X-Y-평면을 통한 반도체 레이저의 추가의 실시예의 단면을 개략도로 도시한다. 도 9는 블록킹층(14) 내의 제 2 도파관층(13)의 방향으로의 알루미늄 농도의 증가를 개략도로 도시한다. 더욱이, 블록킹층(14)은 적어도, 제 1 도파관층(15)에 대한 경계 구역에서, 제 1 도파관층(15)의 알루미늄 농도보다 2% 더 높은 알루미늄 농도를 갖는다. 더욱이, 추가의 실시예에서, 블록킹층(14)은 제 1 도파관층(15)에 대한 경계 구역에서, 제 1 도파관층(15)의 알루미늄 농도보다 적어도 4% 더 높은 알루미늄 농도를 이미 갖고 있을 수 있다. 도시된 예시적인 실시예에서, 알루미늄 농도는 도 9에 도시된 바와 같이, 제 2 도파관층(13)의 방향으로 선형으로 증가된다. 선택되는 실시예에 따라, 알루미늄 농도는 또한, 제 2 도파관층(13)의 방향으로 불연속적으로 또는 기하급수적으로 증가될 수 있다. 도시된 예에서, 계단식 그래듀에이션(9)은 블록킹층(14)의 하부 1/3 부분에(lower third) 형성된다.
도 10은, 도 2로부터의 반도체 레이저(1)의, X-Y-평면을 통한 단면을 개략도로 도시하고, p-도핑 클래딩층의, 제 1 도파관층(15)의, 제 1 및 제 2 블록킹층들(17, 18)의, 그리고 제 2 도파관층(13)의 마그네슘 도핑의 예가 부가적으로 표시된다.
추가의 실시예에서, 제 1 및 제 2 블록킹층들 그리고 제 1 및 제 2 도파관층들은 마그네슘으로 p-도핑되는데, 평균 마그네슘 농도는, 제 1 블록킹층의 평균 마그네슘 농도가 제 2 블록킹층의 마그네슘 농도보다 더 높은 방식으로 선택되고, 제 1 도파관층의 평균 마그네슘 농도는 제 2 블록킹층의 마그네슘 농도보다 더 높도록 또는 제 2 블록킹층의 마그네슘 농도와 동일하도록 선택된다. 더욱이, 제 2 도파관층의 마그네슘 농도는 제 1 도파관층의 마그네슘 농도 미만이다. 제 2 도파관층은 또한 도핑되지 않을 수 있다.
추가의 실시예에서, p-형 클래딩층의 마그네슘 농도는 제 1 도파관층의 마그네슘 농도보다 더 높다. 더욱이, 선택되는 실시예에 따라, 개별 층들 내에서 마그네슘 농도의 단차들 또는 마그네슘 농도의 구배들이 가능하다. Mg 농도의 감소의 결과로서 광학 모드의 흡수성은 더 작아진다. 마그네슘을 이용한 도핑은 , 바람직하게는 의 범위에 있다. 마그네슘 대신에, 예를 들어, 탄소, 베릴륨, 아연, 카드뮴 또는 칼슘을 도펀트로서 이용하는 것이 또한 가능하다.
도 11은, 실질적으로 도 2의 실시예에 따라 구현되는, X-Y-평면에서의, 반도체 레이저의 추가의 실시예의 단면을 개략도로 도시한다. 그러나, 도 2의 실시예에 부가하여, 중간층(21)이 제 1 블록킹층(17)과 제 2 블록킹층(18) 사이에 형성된다. 중간층(21)은 예를 들어, 갈륨 질화물을 포함하거나 갈륨 질화물로 이루어질 수 있다. 선택되는 실시예에 따라, 중간층(21)은 예를 들어, 20 ㎚ 미만의 층 두께를 가질 수 있다.
더욱이, 중간층(21)은 또한, 제 1 도파관층(15)과 제 2 블록킹층(18) 사이 및/또는 제 2 도파관층(13)과 제 1 블록킹층(17) 사이에 배열될 수 있다. 선택되는 실시예에 따라, 복수의 중간층들(21)이 제 1 도파관층(15)과 제 2 도파관층(13) 사이에 제공되는 것이 또한 가능하다. 더욱이, 대응하는 중간층들은 또한, 알루미늄 구배를 갖는 일체형 블록킹층(14) 내에 배열될 수 있다. 계단식 그래듀에이션(9)은, 예를 들어, 대응하는 에지 구역들이 에칭 제거(etch away)되는 것에 의해, 반도체 레이저에 도입된다. 이러한 경우, 계단식 그래듀에이션(9)의 높이는, 시간들에 의해, 그렇지 않으면 에칭된 층의 조성의 신호 식별에 의해 획득된다. 이러한 경우, 에칭 레이트들은 층의 조성 및 이용되는 에칭 프로세스에 따른다.
예를 들어, RIE(reactive ion etching) 또는 CAIBE(chemically assisted ion beam etching)와 같은 건식-화학적 제거 방법(dry-chemical removal method)들이 계단식 그래듀에이션(9)을 도입하기 위해 이용될 수 있다.
액티브 존은 예를 들어, 교번하는 인듐 갈륨 질화물 층들 및 갈륨 질화물 층들의 형태로 양자 우물 구조(quantum well structure)들을 포함할 수 있다. 그러나, 광을 발생시키기 위해 다른 유형들의 액티브 존들을 이용하는 것이 또한 가능하다.
본 발명이 바람직한 예시적인 실시예에 의해 더 구체적으로 도시되고 상세하게 설명되었지만, 그럼에도 불구하고 본 발명은 개시된 예들로 한정되지 않으며, 당업자에 의해, 본 발명의 보호의 범주로부터 벗어남이 없이, 개시된 예들로부터 다른 변형들이 도출될 수 있다.
도 12는 반도체 레이저의 추가의 실시예를 도시하고, 계단식 그래듀에이션(9)에 부가하여 부착부(3)에 대해 측방향으로, 추가의 블록킹층(23)이 메인 몸체(2)의 상부 측 상에 제공된다. 부착부(3)와 추가의 계단식 그래듀에이션(23) 사이의 거리들은 양쪽 측들 상에서 상이한 매그니튜드(magnitude)들일 수 있다. 거리들은 0.1 ㎛보다 더 큰, 예를 들어, 2 ㎛보다 더 큰, 바람직하게는 10 ㎛보다 더 큰 범위로 구현될 수 있다. 도 12의 어레인지먼트는, 메사 트렌치(mesa trench)를 갖는 리지 레이저(ridge laser)를 구성할 수 있는 예를 개략적으로 도시한다.
도 13은 서로 나란히 배열된 복수의 반도체 레이저들을 포함하는 레이저 바아(laser bar)의 예를 도시하고, 메인 몸체는 복수의 부착부들(3)을 가질 수 있고, 대응하는 계단식 그래듀에이션들(9) 및 추가의 계단식 그래듀에이션들(23)이 복수의 부착부들(3) 사이에 놓인다. 추가의 계단식 그래듀에이션들(23)은 이른바 메사 트렌치들을 구성한다. 부착부(3)는 반도체 레이저를 나타낸다.
도 14는 반도체 레이저의 추가의 실시예를 도시하고, 반도체 레이저에서 추가의 부착부들(3)이 부착부(3)에 대해 측방향으로 제공되지만, 상기 추가의 부착부들은 예를 들어, 전기적으로 접촉되지 않는다. 거리들, 즉, 계단식 그래듀에이션들(9)의 폭들(24, 25)은 > 0.1 ㎛, 예를 들어, > 2 ㎛, 바람직하게는 > 10 ㎛의 범위에 있다.
도 15는 반도체 레이저의 추가의 실시예를 도시하고, 반도체 레이저에서 부착부(3)는 반도체 재료의 계단식 그래듀에이션(9)에 의해 측방향으로 범위지정(delimit)된다. 더욱이, 필링 재료(filling material)(26)가 부착부(3)에 대해 측방향으로 제공되고, 상기 필링 재료는 메인 몸체(2)를 커버링하고, 도시된 예시적인 실시예에서, 부착부(3)와 동일한 높이를 갖는다. 그 결과, 계단식 그래듀에이션(3)이 필링 재료(28)에 임베딩된다. 도 15로부터의 예는 매립형 헤테로 구조 레이저(buried heterostructure laser)를 구성할 수 있다.
1 : 반도체 레이저
2 : 메인 몸체
3 : 부착부
4 : p-형 접촉부
5 : n-형 접촉부
6 : 액티브 존
7 : 제 1 측 표면
8 : 제 2 측 표면
9 : 계단식 그래듀에이션
10 : n-형 클래딩층
11 : 제 3 도파관층
12 : 정공 가스
13 : 제 2 도파관층
14 : 블록킹층
15 : 제 1 도파관층
16 : p-형 클래딩층
17 : 제 1 블록킹층
18 : 제 2 블록킹층
19 : 전류 흐름
20 : 제 3 블록킹층
21 : 중간층
23 : 추가의 계단식 그래듀에이션
24 : 제 1 거리
25 : 제 2 거리
26 : 필링 재료
2 : 메인 몸체
3 : 부착부
4 : p-형 접촉부
5 : n-형 접촉부
6 : 액티브 존
7 : 제 1 측 표면
8 : 제 2 측 표면
9 : 계단식 그래듀에이션
10 : n-형 클래딩층
11 : 제 3 도파관층
12 : 정공 가스
13 : 제 2 도파관층
14 : 블록킹층
15 : 제 1 도파관층
16 : p-형 클래딩층
17 : 제 1 블록킹층
18 : 제 2 블록킹층
19 : 전류 흐름
20 : 제 3 블록킹층
21 : 중간층
23 : 추가의 계단식 그래듀에이션
24 : 제 1 거리
25 : 제 2 거리
26 : 필링 재료
Claims (15)
- 층들을 포함하는 층 구조를 포함하는 반도체 레이저(semiconductor laser)(1)로서,
상기 층들은 적어도,
a. n-도핑 클래딩층(n-doped cladding layer)(10),
b. 제 3 도파관층(11),
c. 액티브 존(active zone)(6) ― 상기 액티브 존(6)에 광 발생 구조물들이 배열됨 ―,
d. 제 2 도파관층(13),
e. 블록킹층(blocking layer)(14),
f. 제 1 도파관층(15),
g. p-도핑 클래딩층(16)
의 층 시퀀스로, 하나의 층이 다른 층의 상부에 놓이는 식으로 배열되고,
상기 제 1, 제 2, 및 제 3 도파관층들(15, 13, 11)은 적어도 AlxInyGa(1-x-y)N을 포함하고, 여기서 x는 0 내지 1의 값들로 가정될 수 있고, y는 0 내지 1의 값들로 가정될 수 있고, x와 y의 합은 0 내지 1의 값들로 가정될 수 있고,
상기 블록킹층(14)은, 인접한 제 1 도파관층(15)의 Al 농도보다 적어도 2% 더 높은 Al 농도를 갖고,
상기 블록킹층(14)은, 상기 제 1 도파관층(15)부터 상기 제 2 도파관층(13)의 방향으로 Al 농도가 증가하며,
상기 층 구조는 양면 계단식 그래듀에이션(double-side stepped graduation)(9)을 갖고,
상기 양면 계단식 그래듀에이션(9)은 상기 블록킹층(14)의 레벨에 배열되어서, 상기 블록킹층(14)의 적어도 하나의 부분 또는 전체 블록킹층(14)이 상기 제 1 도파관층(15)보다 더 큰 폭을 갖는,
층들을 포함하는 층 구조를 포함하는 반도체 레이저. - 제 1 항에 있어서,
상기 Al 농도는 상기 제 1 도파관층(15)으로부터 진행하여 상기 제 2 도파관층(13)의 방향으로 계단식으로 증가되고,
상기 블록킹층(14)은 제 1 및 제 2 블록킹층(17, 18)으로 세분되고,
상기 제 2 블록킹층(18)은 상기 제 1 도파관층(15)에 면하고,
상기 제 1 블록킹층(17)은 상기 제 2 도파관층(13)에 면하고,
상기 제 1 블록킹층(17)의 Al 농도는 상기 제 2 블록킹층(18)의 Al 농도보다 적어도 1% 더 높은,
층들을 포함하는 층 구조를 포함하는 반도체 레이저. - 제 1 항 또는 제 2 항에 있어서,
상기 제 1 도파관층(15)은 평균적으로, 인접한 p-도핑 클래딩층(16)의 굴절률보다 더 높은 굴절률을 갖고,
상기 제 3 도파관층(11)은 평균적으로, 인접한 n-도핑 클래딩층(10)의 굴절률보다 더 높은 굴절률을 갖는,
층들을 포함하는 층 구조를 포함하는 반도체 레이저. - 제 2 항 또는 제 3 항에 있어서,
상기 양면 계단식 그래듀에이션은 상기 제 2 블록킹층(18)의 구역에 또는 상기 제 1 블록킹층(17)의 구역에 배열되는,
층들을 포함하는 층 구조를 포함하는 반도체 레이저. - 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
상기 블록킹층(14)의 Al 농도는 상기 제 1 도파관층으로부터 진행하여 상기 제 2 도파관층의 방향으로, 특히 선형으로 증가되는,
층들을 포함하는 층 구조를 포함하는 반도체 레이저. - 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
상기 제 1 및 제 2 도파관층들(15, 13) 및 상기 블록킹층(14)은 포지티브로 도핑되고,
상기 블록킹층(14)의 도핑은 상기 제 1 도파관층(15)의 도핑보다 더 높거나, 상기 제 1 도파관층(15)의 도핑과 동일하고,
상기 제 2 도파관층(13)의 도핑은 상기 제 1 도파관층(15)의 도핑보다 더 낮고,
상기 제 2 도파관층(13)은 또한 도핑되지 않을 수 있는,
층들을 포함하는 층 구조를 포함하는 반도체 레이저. - 제 2 항 내지 제 5 항 중 어느 한 항에 있어서,
상기 제 1 블록킹층(17)은 상기 제 1 도파관층(15)보다 더 높은 포지티브 도핑을 갖고,
특히, 상기 제 2 블록킹층(18)은 포지티브 도핑을 갖고,
특히, 상기 제 1 블록킹층(17)의 도핑은 상기 제 2 블록킹층(18)의 도핑보다 더 높고,
특히, 상기 제 2 블록킹층의 도핑은 상기 제 1 도파관층(15)의 도핑보다 더 높거나, 상기 제 1 도파관층(15)의 도핑과 동일하고,
특히, 상기 제 2 도파관층(13)의 도핑은 상기 제 1 도파관층(15)의 도핑보다 더 낮은,
층들을 포함하는 층 구조를 포함하는 반도체 레이저. - 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,
상기 p-도핑 클래딩층(16)은 상기 제 1 도파관층(15)의 도핑보다 더 높은 도핑을 갖는,
층들을 포함하는 층 구조를 포함하는 반도체 레이저. - 제 1 항 내지 제 8 항 중 어느 한 항에 있어서,
상기 제 1 도파관층(15)과 상기 제 2 도파관층(13) 사이에, 특히, 상기 제 1 블록킹층(17)과 상기 제 2 블록킹층(18) 사이에 중간층(21)이 제공될 수 있는,
층들을 포함하는 층 구조를 포함하는 반도체 레이저. - 제 1 항 내지 제 9 항 중 어느 한 항에 있어서,
상기 블록킹층은 적어도 하나의 AlGaN 층 및/또는 AlInGaN 층 및/또는 AlInN 층을 포함하는,
층들을 포함하는 층 구조를 포함하는 반도체 레이저. - 층들을 포함하는 층 구조를 포함하는 반도체 레이저를 생성하기 위한 방법으로서,
상기 층들은 Y-축을 따라, 하나의 층이 다른 층의 상부에 놓이는 식으로 배열되고,
상기 층들은 Z-축 및 X-축에 의해 정의되는 평면들로 연장되고,
상기 X-축, Z-축, 및 Y-축은 각각의 경우에서 서로 수직하고,
상기 Y-축은 상기 층 구조의 높이를 나타내고(identify), 상기 X-축은 상기 층 구조의 폭을 나타내고, 상기 Z-축은 상기 층 구조의 길이를 나타내며,
적어도,
a. n-도핑 클래딩층,
b. 제 3 도파관층,
c. 액티브 존 ― 상기 액티브 존에 광 발생 구조물들이 배열됨 ―,
d. 제 2 도파관층,
e. 블록킹층,
f. 제 1 도파관층,
g. p-도핑 클래딩층
의 층 시퀀스가 상기 Y-축을 따라 생성되고,
상기 제 1, 제 2, 및 제 3 도파관층들은 AlxInyGa(1-x-y)N으로 구성되고, 여기서 x는 0 내지 1의 값들로 가정될 수 있고, y는 0 내지 1의 값들로 가정될 수 있고, x와 y의 합은 0 내지 1의 값들로 가정될 수 있고,
상기 제 1 도파관층에는 평균적으로, 인접한 p-도핑 클래딩층의 굴절률보다 더 높은 굴절률이 제공되고,
상기 제 3 도파관층에는 평균적으로, 인접한 n-도핑 클래딩층의 굴절률보다 더 높은 굴절률이 제공되고,
상기 블록킹층에는, 인접한 제 1 도파관층의 Al 농도보다 적어도 2% 더 높은 Al 농도가 제공되고,
상기 블록킹층은, 상기 제 1 도파관층부터 상기 제 2 도파관층의 방향으로 Al 농도가 증가하고,
Y/X-평면에서의 상기 층 구조에는 양면의 대칭적 계단식 그래듀에이션(double-side, symmetrical stepped graduation)이 제공되고,
상기 양면 계단식 그래듀에이션은 상기 블록킹층 내에 또는 상기 블록킹층에 인접하게 상기 블록킹층의 레벨에 배열되어서, 상기 블록킹층의 적어도 하나의 부분은 상기 제 1 도파관층보다 더 큰 폭을 갖는,
층들을 포함하는 층 구조를 포함하는 반도체 레이저를 생성하기 위한 방법. - 제 11 항에 있어서,
상기 Al 농도는 상기 제 3 도파관층으로부터 진행하여 상기 제 2 도파관층의 방향으로 계단식으로 증가되고,
상기 블록킹층은 제 1 및 제 2 블록킹층으로 세분되고,
상기 제 2 블록킹층은 상기 제 1 도파관층에 면하고,
상기 제 1 블록킹층은 상기 제 2 도파관층에 면하고,
상기 제 1 블록킹층에는 상기 제 2 블록킹층보다 적어도 1% 더 많은 알루미늄이 제공되는,
층들을 포함하는 층 구조를 포함하는 반도체 레이저를 생성하기 위한 방법. - 제 11 항 또는 제 12 항에 있어서,
상기 양면 계단식 그래듀에이션은 상기 제 1 또는 제 2 블록킹층의 구역에 배열되는,
층들을 포함하는 층 구조를 포함하는 반도체 레이저를 생성하기 위한 방법. - 제 11 항 내지 제 13 항 중 어느 한 항에 있어서,
상기 블록킹층의 Al 농도는 상기 제 1 도파관층으로부터 진행하여 상기 제 2 도파관층의 방향으로 증가되고, 특히 선형으로 증가되는,
층들을 포함하는 층 구조를 포함하는 반도체 레이저를 생성하기 위한 방법. - 제 11 항 내지 제 14 항 중 어느 한 항에 있어서,
상기 제 1 및 제 2 도파관층들 및 상기 블록킹층은 포지티브로 도핑되고,
상기 블록킹층의 도핑은 상기 제 1 도파관층의 도핑보다 더 높도록 또는 상기 제 1 도파관층의 도핑과 동일하도록 정의되고,
상기 제 2 도파관층의 도핑은 상기 제 1 도파관층의 도핑보다 더 낮도록 정의되는,
층들을 포함하는 층 구조를 포함하는 반도체 레이저를 생성하기 위한 방법.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012217662.4 | 2012-09-27 | ||
DE102012217662 | 2012-09-27 | ||
DE102012220911.5A DE102012220911A1 (de) | 2012-09-27 | 2012-11-15 | Halbleiterlaser mit verbesserter Stromführung |
DE102012220911.5 | 2012-11-15 | ||
PCT/EP2013/068176 WO2014048687A1 (de) | 2012-09-27 | 2013-09-03 | Algainn halbleiterlaser mit einem mesa und verbesserter stromführung |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20150053790A true KR20150053790A (ko) | 2015-05-18 |
KR101695794B1 KR101695794B1 (ko) | 2017-01-12 |
Family
ID=49083701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020157008722A KR101695794B1 (ko) | 2012-09-27 | 2013-09-03 | 메사 및 개선된 전류 전도를 갖는 algalnn 반도체 레이저 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9373937B2 (ko) |
JP (1) | JP6049888B2 (ko) |
KR (1) | KR101695794B1 (ko) |
CN (1) | CN104782005B (ko) |
DE (1) | DE102012220911A1 (ko) |
TW (1) | TWI508400B (ko) |
WO (1) | WO2014048687A1 (ko) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014107385A1 (de) * | 2014-05-26 | 2015-11-26 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterchip und Verfahren zu dessen Herstellung |
DE102015106722A1 (de) * | 2015-04-30 | 2016-11-03 | Osram Opto Semiconductors Gmbh | Kantenemittierender Halbleiterlaser mit Tunnelkontakt |
CN106602404A (zh) * | 2016-12-30 | 2017-04-26 | 中国工程物理研究院应用电子学研究所 | 一种半导体激光器及其制作方法 |
JP7221593B2 (ja) * | 2018-03-12 | 2023-02-14 | スタンレー電気株式会社 | 半導体発光素子 |
JP7323786B2 (ja) | 2019-01-17 | 2023-08-09 | 日亜化学工業株式会社 | 半導体レーザ素子 |
CN111404024B (zh) * | 2020-03-27 | 2021-05-11 | 中国科学院半导体研究所 | 具有复合波导层的氮化镓基近紫外激光器 |
CN114976875A (zh) * | 2022-04-27 | 2022-08-30 | 厦门三安光电有限公司 | 一种半导体激光器及其显示装置 |
WO2023206123A1 (zh) * | 2022-04-27 | 2023-11-02 | 厦门三安光电有限公司 | 一种半导体激光器及其显示装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000091705A (ja) * | 1998-09-11 | 2000-03-31 | Nec Corp | 窒化ガリウム系半導体発光素子 |
JP2011077393A (ja) * | 2009-09-30 | 2011-04-14 | Sumitomo Electric Ind Ltd | Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法 |
JP2012164981A (ja) * | 2011-01-24 | 2012-08-30 | Soraa Inc | 基板部材上に構成された複数のエミッタを有するレーザーパッケージ |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000151023A (ja) * | 1998-11-05 | 2000-05-30 | Fujitsu Ltd | 半導体発光装置 |
US6586762B2 (en) | 2000-07-07 | 2003-07-01 | Nichia Corporation | Nitride semiconductor device with improved lifetime and high output power |
JP2003332688A (ja) * | 2002-03-08 | 2003-11-21 | Toyoda Gosei Co Ltd | Iii族窒化物系化合物半導体レーザ |
WO2003077391A1 (fr) | 2002-03-08 | 2003-09-18 | Matsushita Electric Industrial Co., Ltd. | Laser a semi-conducteur et procede de fabrication de ce laser |
JP4089446B2 (ja) | 2003-01-23 | 2008-05-28 | ソニー株式会社 | 半導体レーザ素子の製造方法 |
US6990132B2 (en) * | 2003-03-20 | 2006-01-24 | Xerox Corporation | Laser diode with metal-oxide upper cladding layer |
DE102006029724B4 (de) * | 2006-06-28 | 2008-12-04 | Siemens Ag | Verfahren und Ofen zum Schmelzen von Stahlschrott |
US20080137701A1 (en) * | 2006-12-12 | 2008-06-12 | Joseph Michael Freund | Gallium Nitride Based Semiconductor Device with Reduced Stress Electron Blocking Layer |
JP2008300418A (ja) * | 2007-05-29 | 2008-12-11 | Sharp Corp | 窒化物半導体レーザ素子 |
KR20080105818A (ko) * | 2007-06-01 | 2008-12-04 | 엘지전자 주식회사 | 반도체 레이저 소자 |
JP2009123772A (ja) * | 2007-11-12 | 2009-06-04 | Sanyo Electric Co Ltd | 半導体レーザ素子 |
US8144743B2 (en) * | 2008-03-05 | 2012-03-27 | Rohm Co., Ltd. | Nitride based semiconductor device and fabrication method for the same |
DE102008021674A1 (de) | 2008-03-31 | 2009-10-01 | Osram Opto Semiconductors Gmbh | Halbleiterbauelement und Verfahren zur Herstellung eines Halbleiterbauelements |
JP2010177651A (ja) * | 2009-02-02 | 2010-08-12 | Rohm Co Ltd | 半導体レーザ素子 |
DE102009015314B4 (de) | 2009-03-27 | 2023-04-27 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Halbleiterlaservorrichtung |
JP5412943B2 (ja) * | 2009-05-11 | 2014-02-12 | 住友電気工業株式会社 | 窒化物半導体発光素子、及びエピタキシャル基板 |
JP2011238678A (ja) * | 2010-05-07 | 2011-11-24 | Panasonic Corp | 半導体発光装置 |
US8897329B2 (en) * | 2010-09-20 | 2014-11-25 | Corning Incorporated | Group III nitride-based green-laser diodes and waveguide structures thereof |
-
2012
- 2012-11-15 DE DE102012220911.5A patent/DE102012220911A1/de active Pending
-
2013
- 2013-09-03 JP JP2015533509A patent/JP6049888B2/ja active Active
- 2013-09-03 WO PCT/EP2013/068176 patent/WO2014048687A1/de active Application Filing
- 2013-09-03 US US14/430,685 patent/US9373937B2/en active Active
- 2013-09-03 CN CN201380050658.7A patent/CN104782005B/zh active Active
- 2013-09-03 KR KR1020157008722A patent/KR101695794B1/ko active IP Right Grant
- 2013-09-14 TW TW102133349A patent/TWI508400B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000091705A (ja) * | 1998-09-11 | 2000-03-31 | Nec Corp | 窒化ガリウム系半導体発光素子 |
JP2011077393A (ja) * | 2009-09-30 | 2011-04-14 | Sumitomo Electric Ind Ltd | Iii族窒化物半導体レーザ素子、及びiii族窒化物半導体レーザ素子を作製する方法 |
JP2012164981A (ja) * | 2011-01-24 | 2012-08-30 | Soraa Inc | 基板部材上に構成された複数のエミッタを有するレーザーパッケージ |
Also Published As
Publication number | Publication date |
---|---|
CN104782005A (zh) | 2015-07-15 |
TWI508400B (zh) | 2015-11-11 |
CN104782005B (zh) | 2018-07-10 |
JP6049888B2 (ja) | 2016-12-21 |
US20150255956A1 (en) | 2015-09-10 |
KR101695794B1 (ko) | 2017-01-12 |
JP2015530753A (ja) | 2015-10-15 |
TW201417427A (zh) | 2014-05-01 |
US9373937B2 (en) | 2016-06-21 |
WO2014048687A1 (de) | 2014-04-03 |
DE102012220911A1 (de) | 2014-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101695794B1 (ko) | 메사 및 개선된 전류 전도를 갖는 algalnn 반도체 레이저 | |
US9048631B2 (en) | Laser light source | |
US11437780B2 (en) | Semiconductor laser device, semiconductor laser module, and welding laser light source system | |
US8279906B2 (en) | Laser diode and method of manufacturing the same | |
US20120287958A1 (en) | Laser Diode Assembly and Method for Producing a Laser Diode Assembly | |
JP2007036298A (ja) | 半導体発光素子 | |
JP2021193756A (ja) | 光半導体素子、光モジュール及び光半導体素子の製造方法 | |
JP2013149665A (ja) | 量子カスケード半導体レーザ | |
US8526480B2 (en) | Semiconductor laser device | |
EP2346124B1 (en) | Semiconductor laser element | |
KR100271674B1 (ko) | 반도체 레이저 소자 | |
JP6926541B2 (ja) | 半導体レーザ | |
US9203216B2 (en) | Semiconductor laser device | |
KR100789309B1 (ko) | 반도체 레이저 | |
US8660160B2 (en) | Semiconductor laser element and method of manufacturing the same | |
KR100678555B1 (ko) | 반도체 레이저 소자 및 그 제조 방법 | |
JP2009076640A (ja) | 半導体発光素子 | |
JPH05259506A (ja) | 超発光半導体ダイオード及びその製造方法 | |
US10181695B2 (en) | Laser diode | |
US20050152418A1 (en) | Semiconductor laser device and method of fabricating the same | |
JP2007201031A (ja) | 半導体レーザ装置 | |
KR100590562B1 (ko) | 다중 양자장벽 클래드층 구조를 지닌 반도체 레이저다이오드 | |
KR20000035300A (ko) | 반도체 레이저 | |
JP2024518703A (ja) | 発光半導体チップを製造する方法および発光半導体チップ | |
JP2020088182A (ja) | 半導体レーザアレイ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |