KR20150026363A - 전계 방출 소자 및 전계 방출 소자의 게이트 전극의 제조 방법 - Google Patents

전계 방출 소자 및 전계 방출 소자의 게이트 전극의 제조 방법 Download PDF

Info

Publication number
KR20150026363A
KR20150026363A KR20130105097A KR20130105097A KR20150026363A KR 20150026363 A KR20150026363 A KR 20150026363A KR 20130105097 A KR20130105097 A KR 20130105097A KR 20130105097 A KR20130105097 A KR 20130105097A KR 20150026363 A KR20150026363 A KR 20150026363A
Authority
KR
South Korea
Prior art keywords
graphene
film
opening
emitter
electrode
Prior art date
Application number
KR20130105097A
Other languages
English (en)
Inventor
이동구
박상현
김용철
이창수
김도윤
Original Assignee
삼성전자주식회사
금오공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사, 금오공과대학교 산학협력단 filed Critical 삼성전자주식회사
Priority to KR20130105097A priority Critical patent/KR20150026363A/ko
Priority to US14/471,713 priority patent/US20150060757A1/en
Publication of KR20150026363A publication Critical patent/KR20150026363A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • H01J1/3046Edge emitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/065Field emission, photo emission or secondary emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30403Field emission cathodes characterised by the emitter shape
    • H01J2201/30423Microengineered edge emitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30461Graphite

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

개시된 전계 방출 소자는, 캐소드 전극과, 상기 캐소드 전극에 지지된 전자 방출원을 포함하는 에미터; 상기 에미터 주위에 마련되고 상기 전자 방출원으로부터 방출된 전자의 통로인 개구를 형성하는 절연 스페이서; 상기 개구를 덮는 그래핀 시트를 구비하는 게이트 전극;을 포함한다.

Description

전계 방출 소자 및 전계 방출 소자의 게이트 전극의 제조 방법{Field emission element and method of manufacturing gate electrode of field emission element}
전계 방출 소자 및 전계 방출 소자의 게이트 전극의 제조 방법이 개시된다.
고체 속의 전자가 외부로부터 일함수 이상의 에너지를 받아 고체 밖으로 빠져나가는 현상을 전자 방출이라 한다. 에너지는 열, 광, 전기장 등 다양한 형태로 제공될 수 있다. 전계 방출 효과, 즉 전기장을 가하여 도체로부터 냉전자를 방출하는 전계 방출 소자가 다양한 분야에 응용되고 있다. 예를 들어, 삼극관 구조를 채용하는 엑스선 발생 장치, 전계 방출 디스플레이(Field emission display), 면광원(Back light unit) 등에는 캐소드(cathode) 전극과 게이트(gate) 전극을 가지는 전계 방출 소자가 적용된다.
이러한 전계 방출 소자 분야에서는 낮은 게이트 전압 하에서 많은 전자를 좋은 효율로 이끌어내기 위한 연구가 수행되고 있다.
낮은 게이트 전압 하에서 좋은 효율로 많은 전자를 끌어낼 수 있는 전계 방출 소자 및 전계 방출 소자의 게이트 전극의 제조 방법을 제공하는 것을 목적으로 한다.
에미터에서 방출된 전자의 직진성을 향상시킬 수 있는 전계 방출 소자 및 전계 방출 소자의 게이트 전극의 제조 방법을 제공하는 것을 목적으로 한다.
게이트 전극을 통한 누설 전류를 줄일 수 있는 전계 방출 소자 및 전계 방출 소자의 게이트 전극의 제조 방법을 제공하는 것을 목적으로 한다.
일 측면에 따른 전계 방출 소자는, 캐소드 전극과, 상기 캐소드 전극에 지지된 전자 방출원을 포함하는 에미터; 상기 에미터 주위에 마련되고 상기 전자 방출원으로부터 방출된 전자의 통로인 개구를 형성하는 절연 스페이서; 상기 개구를 덮는 그래핀 시트를 구비하는 게이트 전극;을 포함한다.
상기 게이트 전극은 상기 개구 주위에 배치되는 전극부를 더 포함하며, 상기 그래핀 시트는 상기 전극부와 연결될 수 있다.
상기 그래핀 시트는 그래핀 단층막과 그래핀 다층막 중 어느 하나일 수 있다.
일 측면에 따른 전계 방출 소자는, 캐소드 전극과, 상기 캐소드 전극에 지지된 전자 방출원을 포함하는 에미터; 상기 에미터 주위에 마련되는 절연 스페이서; 상기 절연 스페이서에 지지되며, 상기 에미터로부터 방출된 전자의 방출 통로가 되는 개구를 정의하는 전극부와, 상기 개구를 덮으며 터널링 효과에 의하여 상기 전자를 통과시키는 터널링 부재를 구비하는 게이트 전극;을 포함한다.
상기 터널링 부재는 그래핀 연속막을 포함할 수 있다.
상기 그래핀 연속막은 상기 전극부에 연결될 수 있다.
상기 그래핀 연속막은 그래핀 단층막과 그래핀 다층막 중 어느 하나일 수 있다.
상기 전자 방출원은 상기 캐소드 전극에 세워진 상태로 지지된 다수의 그래핀 박막을 포함할 수 있다.
상기 그래핀 박막은 상기 캐소드 전극에 매립된 제1부분과, 상기 제1부분으로부터 연장되어 상기 캐소드 전극으로부터 노출된 제2부분을 포함할 수 있다.
상기 캐소드 전극은 상기 개구를 향하여 뽀족한 형태이며, 상기 다수의 그래핀 박막은 상기 개구를 향하여 전체적으로 뾰족하게 배치될 수 있다.
상기 그래핀 박막은 그래핀 단층막과 그래핀 다층막 중 어느 하나일 수 있다.
일 측면에 따른 게이트 전극의 제조 방법은, 도전성 필름의 일면에 그래핀 박막을 형성하는 단계; 도전성 필름의 타면에 상기 도전성 필름의 일부를 노출시키는 식각 개구를 가진 마스크층을 형성하는 단계; 상기 식각 개구를 통하여 상기 도전성 필름을 부분적으로 제거하여 상기 그래핀 박막을 부분적으로 노출시키는 단계; 상기 마스크층을 제거하는 단계;를 포함한다.
상기 그래핀 박막은 그래핀 연속막일 수 있다.
상기 그래핀 박막은 그래핀 단층막과 그래핀 다층막 중 어느 하나일 수 있다.
상술한 전계 방출 소자의 실시예들 및 그 게이트 전극의 제조 방법의 실시예들에 따르면 다음과 같은 효과를 얻을 수 있다.
전자 방출원과 게이트 전극과의 거리가 거의 균일하여 전자 방출원의 거의 모든 부분에 거의 균일한 전기장이 걸리게 된다. 따라서, 전자 방출원의 거의 모든 부분에서 거의 균일한 밀도로 전자가 방출될 수 있다.
터널링 효과에 의하여 전자를 통과시키는 그래핀 단층막 또는 다층막 형태의 그래핀 시트를 채용함으로써 전극부를 통한 누설 전류가 줄어들어 전계 방출 효율을 향상시킬 수 있다.
게이트 전압이 인가된 그래핀 시트를 채용함으로써 전자의 직진성을 향상시킬 수 있다.
전자 방출원으로서 큰 종횡비를 얻을 수 있는 세워진 형태의 그래핀 박막을 채용하여, 낮은 게이트 전압 조건에서도 많은 전자를 쉽게 끌어낼 수 있는 전계 방출 소자를 구현할 수 있다. 또한, 그래핀 박막과 캐소드 전극 사이에 우수한 전기적, 열적 계면특성을 얻을 수 있어, 전기적, 열적 요인에 의한 전계 방출 효율의 저하를 방지할 수 있다.
그래핀 박막이 캐소드 전극 내에 부분적으로 묻힌 형태이므로, 그래핀 박막과 캐소드 전극과의 접촉 면적을 증가시킬 수 있어서, 전기적, 열적 요인에 기인하는 전계 방출 효과의 손실을 더욱 줄일 수 있다.
도 1은 전계 방출 소자의 일 실시예의 구성도이다.
도 2는 그래핀 시트가 구비되지 않은 경우의 전자 방출 모습을 보여주는 도면이다.
도 3은 도 1에 도시된 전계 방출 소자의 일 실시예에 의한 전자 방출 모습을 보여주는 도면이다.
도 4a는 도전성 필름의 일면에 그래핀 박막이 형성된 모습을 보여주는 도면이다.
도 4b는 도전성 필름의 타면에 식각 개구를 가진 마스크층이 형성된 모습을 보여주는 도면이다.
도 4c는 식각 개구를 통하여 도전성 필름을 부분적으로 제거한 모습을 보여주는 도면이다.
도 4d는 마스크층을 제거함으로써 제조가 완료된 그래핀 시트를 보여주는 도면이다.
도 5는 도 1에 도시된 에미터의 일 실시예의 단면도이다.
도 6은 도 1에 도시된 에미터의 일 실시예의 평면도이다.
도 7는 도 1에 도시된 에미터의 일 실시예의 단면도이다.
도 8a는 그래핀 박막을 구비하는 그래핀 쉬트를 도시한 도면이다.
도 8b는 그래핀 박막이 적층된 형태의 그래핀 적층체를 도시한 도면이다.
도 8c는 그래핀 적층체를 도전성 분말과 함께 성형하는 모습을 설명하는 도면이다.
도 8d는 성형체를 소결처리하여 생성된, 도전체 내에 그래핀 박막이 간격을 두고 이격되게 배치된 소결체를 도시한 도면이다.
도 8e는 소결체를 필요한 크기로 전단하여 절단체를 형성하는 모습을 도시한 도면이다.
도 8f는 소결체 또는 절단체로부터 도전체의 그래핀 박막의 길이방향의 일부를 제거하여 그래핀 박막을 노출시키는 모습을 도시한 도면이다.
도 8g는 도 8a 내지 도 8f에 도시된 공정에 의하여 도 2에 도시된 에미터의 일 실시예가 제조된 모습을 도시한 도면이다.
도 8h는 도 8d에 도시된 소결체 또는 도 8e에 도시된 절단체를 그래핀 박막의 길이방향에 대하여 경사지게 절단하여 첨두체를 형성하는 모습을 도시한 도면이다.
도 8i는 첨두체로부터 도전체의 그래핀 박막의 길이방향의 일부를 제거하여 그래핀 박막을 노출시키는 모습을 도시한 도면이다.
도 8j는 도 8a 내지 도 8e, 도 8g, 및 도 8h에 도시된 공정에 의하여 도 7에 도시된 에미터의 일 실시예가 제조된 모습을 도시한 도면이다.
도 9는 도 1에 도시된 전계 방출 소자를 채용한 엑스선 촬상 장치의 개략적인 구성도이다.
도 10은 도 1에 도시된 전계 방출 소자를 채용한 면광원 장치(디스플레이 장치)의 일 실시예이다.
이하, 첨부된 도면을 참조하여 전계 방출 소자 및 그 게이트 전극의 제조 방법의 실시예들을 상세히 설명한다. 도면에서 동일한 참조부호는 동일한 구성요소를 지칭하며, 각 구성요소의 크기나 두께는 설명의 명료성을 위하여 과장되어 있을 수 있다.
도 1은 전계 방출 소자(1)의 일 실시예의 단면도이다. 도 1을 참조하면, 에미터(30)와 게이트 전극(40)이 도시되어 있다. 에미터(30)는 캐소드 전극(10)과, 이에 지지된 전자 방출원(20)을 포함한다. 에미터(30)는 기판(110) 상에 배치된다. 절연 스페이서(120)는 기판(110) 상에 에미터(30)의 주위를 에워싸는 형태로 배치된다. 기판(110)과 절연 스페이서(120)에 의하여 캐비티(130)와, 캐비티(130)를 외부와 연통시키는 개구(131)를 구비하는 몸체(100)가 형성된다. 에미터(30)에서 방출된 전자는 개구(131)를 통하여 외부로 방출된다. 게이트 전극(40)은 절연 스페이서(120)에 지지된다. 게이트 전극(40)은 도전체로 된 전극부(41)와, 전극부(41)와 연결되고 개구(131)를 덮는 그래핀 시트(터널링 부재: 42)를 포함한다. 전극부(41)는 절연 스페이서(120)에 지지된다. 그래핀 시트(42)는 전극부(41)와 연결되며 개구(131)를 덮는다. 전극부(41)는 개구(131) 주위에 형성된다. 전극부(41)는 개구(131)의 가장자리를 따라 형성될 수 있다. 또한, 전극부(41)는 개구(131)의 가장자리로부터 내측으로 연장된 형태일 수도 있다. 이 경우, 개구(131)는 전극부(41)에 의하여 정의되는 것으로 이해될 수도 있다.
에미터(30)는 캐비티(130) 내에 배치된다. 에미터(30)는 전자 방출원(20)이 개구(131)와 마주보도록 기판(110) 상에 배치된다. 게이트 전극(40)은 절연 스페이서(120)의 상면, 즉 절연 스페이서(120)의 개구(131) 측의 단부에 배치됨으로써, 개구(131)를 에워싸는 형태가 된다. 개구(131)는 전자 방출 통로가 된다. 개구(131)의 형태는 특별히 제한되지 않으며, 예를 들어 원형, 사각형, 오각형, 육각형 등 일 수 있다.
상술한 구성에 의하여, 게이트 전극(40)에 전압이 인가되면, 전자 방출원(20)에 강한 전기장이 가해지고, 전기장에 의하여 제공되는 에너지에 의하여 전자 방출원(20)으로부터 전자가 방출된다. 전자는 개구(131)를 통과하여 도 1에 점선으로 도시된 애노드 전극(2)을 향하여 이동된다. Mo, Ag, W, Cr, Fe, Co, Cu 등의 금속 또는 금속합금으로 형성된 애노드 전극(2)을 채용하면, X선을 방출시키는 X선 발생기가 구현될 수 있다. 또한 다수의 전계 방출 소자를 어레이 형태로 배치함으로써 3차원 이미지를 구현할 수 있는 X선 장치, 예를 들어 유방암을 진단할 수 있는 DBT(Digital Breast Tomo-synthesis)를 구현할 수 있다. 이외에도 전자 방출 소자는 디스플레이, 조명기구 등에 다양하게 적용될 수 있다.
게이트 전극(40)이 전극부(41)에 의하여 구현되고, 그래핀 시트(42)가 없는 경우, 즉 개구(131)가 개방되어 있는 경우의 전자 방출 모습이 도 2에 도시되어 있다. 게이트 전극(40)에 게이트 전압이 인가되면, 전자 방출원(20) 중에서 게이트 전극(40)에 가까운 부분에는 게이트 전극(40)으로부터 먼 부분에 비하여 상대적으로 강한 전기장이 걸린다. 그러면, 전자 방출원(20) 중에서 게이트 전극(40)에 가까운 부분의 전자 방출 밀도가 상대적으로 커져서 전자 방출 밀도가 불균일해질 수 있다. 또한, 전자 방출원(20) 중에서 게이트 전극(40)에 가까운 부분에서 방출된 전자(e)가 개구(131)를 통하여 방출되지 못하고 게이트 전극(40)을 통하여 빠져나가는 누설 전류가 발생되어 전자 방출 효율에 나쁜 영향을 미칠 수 있다.
본 실시예의 전자 방출 소자(1)에 따르면, 개구(131)가 전극부(41)와 연결된 그래핀 시트(42)에 의하여 덮여있다. 전극부(41)에 게이트 전압이 인가되면 그래핀 시트(42)에도 게이트 전압이 인가된다. 따라서, 전자 방출원(20)과 게이트 전극(40)과의 거리가 거의 균일하여 전자 방출원(20)의 모든 부분에 거의 균일한 전기장이 걸리게 된다. 따라서, 전자 방출원(20)의 모든 부분에서 거의 균일한 밀도로 전자가 방출될 수 있다.
그래핀 시트(42)는 그래핀 연속막이다. 여기서 연속막이라 함은 그래핀이 연속적으로 배열된 막을 말하며, 의도적으로 그래핀 입자 사이에 간격을 둔 단속막의 반대되는 개념을 의미한다. 그래핀 시트(42)는 그래핀 단층막일 수 있으며, 수 층의 그래핀 층으로 된 그래핀 다층막일 수도 있다. 그래핀 시트(42)는 그 두께가 단원자 두께인 수 옹스트롬 내지 단원자 두께의 수 배 내지 수십 배 정도에 불과한 초박막이므로 에미터(30)로부터 방출된 전자는 터널링에 의하여 그래핀 시트(42)를 통과한다. 따라서, 전극부(41)를 통한 누설 전류가 줄어들어 전계 방출 효율을 향상시킬 수 있다.
에미터(30)에서 방출된 전자는 게이트 전압이 인가된 그래핀 시트(42)를 향하여 거의 수직으로 진행되므로, 전자는 거의 수직으로 개구(131)를 통과한다. 따라서, 전자의 직진성을 향상시킬 수 있다.
이하에서, 도 4a 내지 도 5g을 참조하여 게이트 전극(40)의 제조 방법의 실시예를 설명한다.
[그래핀 박막 형성]
도 4a에 도시된 바와 같이, 도전성 필름(601)의 일면에 그래핀 박막(602)을 형성한다. 그래핀 박막(602)을 형성하는 방법은 특별히 제한되지 않으며, 알려진 다양한 방법이 적용될 수 있다. 예를 들어, 화학기상증착법에 의하여 도전성 필름(601) 위에 그래핀 원자층을 성장시킴으로써 그래핀 박막(602)을 형성할 수 있다. 화학기상증착법을 이용하면, 비교적 단시간 내에 대량의 그래핀을 형성할 수 있다. 도전성 필름(601)으로서 예를 들어 구리, 니켈, 코발트, 철, 백금, 금, 알루미늄, 크롬, 마그네슘, 망간, 몰리브덴, 로듐, 규소, 탄탈륨, 티타늄, 텅스텐 등의 금속 박막이 채용될 수 있다. 성장 가스로서는 예를 들어 수소와, 메탄, 에탄, 에틸렌, 에탄올, 아세틸렌, 프로판, 프로필렌, 부탄, 부타디엔, 펜탄, 펜텐, 사이클로펜타디엔, 헥산, 사이클로헥산, 벤젠, 톨루엔 등의 탄화수소(CxHy)가 채용될 수 있다. 반응기(미도시) 내에 도전성 필름(201)과 전술한 성장 가스를 공급하고, 열처리한다. 열처리 온도는 예를 들어 약 800~1000℃ 일 수 있으며, 열처리 시간은 예를 들어 약 30분~2시간 정도일 수 있다.
성장되는 그래핀의 층수는 다양한 방법에 의하여 조절될 수 있다. 한 가지 방법으로서, 도전성 필름(601)의 종류 또는 두께를 제어하는 방법이다. 예를 들어, 도전성 필름(601)으로서 구리 박막을 채용하면, 단층막 형태의 그래핀 박막(602)을 형성할 수 있으며, 도전성 필름(601)으로서 천이금속박막을 채용하면 다층막 형태의 그래핀 박막(602)을 형성할 수 있다. 다른 방법으로서, 열처리 시간 및/또는 열처리 속도를 제어하는 방법이 있다. 또 다른 방법으로서, 성장 가스의 농도를 제어하는 방법이 있다. 그래핀 박막(602)의 그래핀 층수는 전술한 어느 하나의 방법 또는 이들 중 둘 이상의 방법의 조합에 의하여 제어될 수 있다.
상술한 공정에 의하여 연속막 형태의 그래핀 박막(602)이 형성된다.
[도전성 필름의 식각]
도전성 필름(601)의 타면에 도전성 필름(601)을 부분적으로 노출시키는 식각개구(604)를 가진 마스크층(603)을 형성한다. 마스크층(603)은 예를 들어 금속을 부식시키는 부식액에 대하여 내부식성을 가지는 고분자재료로 형성될 수 있다. 마스크층(603)은 예를 들어 사진 식각법, 스크린 프린팅 기법 등의 알려진 방법에 의하여 형성될 수 있다.
마스크층(603)을 식각 마스크로 하여 부식액을 이용하여 도전성 필름(601)을 표면 식각한다. 부식액으로서는 예를 들어 황산(sulfuric acid), 염산(hydrochloric acid), 질산(nitric acid), 과황산암모늄(ammonium per-sulfate), 염화암모늄구리(copper ammonium chloride) 등이 사용될 수 있다. 그러면, 도 4c에 도시된 바와 같이, 도전성 필름(601)의 식각개구(604)를 통하여 노출된 부분이 부식되어 도전성 필름(601)에 관통부(605)가 형성된다. 그래핀은 금속을 부식시키는 대부분의 산용액에 대하여 강한 내부식성을 가지므로, 표면 식각 공정에 의하여 도전성 필름(601)만이 부분적으로 제거되며 그래핀 박막(602)은 그대로 남아서 관통부(605)를 통하여 부분적으로 노출된다.
[마스크층의 제거]
용제를 이용하여 마스크층(603)을 제거하면, 도 4d에 도시된 바와 같이, 전극부(41)에 지지된 그래핀 시트(42)를 구비하는 게이트 전극(40)이 제조될 수 있다.
전자 방출원(20)의 재료는 특별히 제한되지 않는다. 전자 방출원(20)의 재료로서는 게이트 전압에 의하여 냉전자를 방출할 수 있는 다양한 재료가 채용될 수 있다. 예를 들어, 탄소나노튜브가 전자 방출원(20)으로서 채용될 수 있다.
전자 방출원(20)으로부터 방출되는 전자의 밀도는 게이트 전극(40)에 인가되는 전압의 크기에 비례한다. 또한, 전자 방출원(20)의 종횡비(aspect ratio)가 클수록 전자 방출원(20)에 전계가 집중되는 전계강화효과를 얻을 수 있어서 전자 방출 밀도가 커진다.
탄소나노튜브를 포함하는 페이스트를 캐소드 전극(10)에 부착시키고, 접착 테이프 등을 페이스트에 접착시켰다가 떼어내는 방식으로 페이스트 표면의 누워있는 탄소나노튜브를 세울 수 있다. 이에 의하여, 큰 종횡비를 가진 침상(針狀)의 전자 방출원(20)을 형성할 수 있다.
전자 방출원(20)의 재료로서 그래핀이 채용될 수도 있다. 도 5는 에미터(30)의 일 실시예의 단면도이다. 도 6은 도 5에 도시된 에미터(30)의 일 실시예의 평면도이다. 도 5와 도 6을 참조하면, 에미터(30)는 도전체로 된 캐소드 전극(10)과, 캐소드 전극(10)에 개구(131)를 향하여 세워진 상태로 지지된 다수의 그래핀 박막(21)을 포함하는 전자 방출원(20)을 구비한다. 그래핀 박막(21)은 그래핀 단층막일 수 있으며, 그래핀 다층막일 수도 있다. 그래핀 단층막과 다층막은 그 두께(T)가 단원자 두께인 수 옹스트롬 내지 단원자 두께의 수배 내지 수십배 정도에 불과하여 큰 종횡비를 얻을 수 있다. 그러므로, 큰 전계 강화 효과를 얻을 수 있어, 낮은 게이트 전압 조건에서도 많은 전자를 쉽게 끌어낼 수 있다.
그래핀은 매우 큰 전기 전도성을 가지므로 캐소드 전극(10)과의 접촉 저항이 매우 작다. 또한, 그래핀은 우수한 열 전도성을 가진다. 따라서, 그래핀 박막(21)과 캐소드 전극(10) 사이에 우수한 전기적, 열적 계면특성을 얻을 수 있으며, 전기적, 열적 요인에 의한 전계 방출 효율의 저하를 방지할 수 있다.
도 5를 참조하면, 그래핀 박막(21)은 세워진 형태로서, 캐소드 전극(10)에 묻힌 제1부분(22)과, 제1부분(22)으로부터 연장되어 캐소드 전극(10)의 상면으로부터 돌출된 제2부분(23)을 포함한다. 이와 같은 구성에 의하면, 그래핀 박막(21)과 캐소드 전극(10)과의 접촉 면적을 증가시킬 수 있어서, 전기적, 열적 요인에 기인하는 전계 방출 효과의 손실을 더욱 줄일 수 있다.
도 7은 에미터(30)의 다른 실시예의 단면도이다. 도 7을 참조하면, 에미터(30)는 도전체로 된 캐소드 전극(10a)과, 그래핀 단층막(21a)이 세워진 형태의 전자 방출원(20a)을 포함하며, 그래핀 단층막 또는 그래핀 다층막인 그래핀 박막(21a)은 세워진 형태로서 캐소드 전극(10)에 묻힌 제1부분(22a)과 캐소드 전극(10a)의 상면으로부터 돌출된 제2부분(23a)을 포함하는 점에서 도 5에 도시된 실시예와 동일하다. 다만, 도 7에 도시된 에미터(30a)는 전체적으로 개구(131)를 향하여 뾰족한 형태이다. 즉, 캐소드 전극(10a)은 개구(131)를 향하여 뽀족한 형태이며, 다수의 그래핀 박막(21)은 개구(131)를 향하여 전체적으로 뾰족한 형태로 배치된다. 이러한 형태에 따르면, 전계 강화 효과를 극대화하여 전계 방출 효율을 더욱 향상시킬 수 있다.
이하에서, 도 8a 내지 도 8g을 참조하여 에미터(30)의 제조 방법의 실시예를 설명한다.
[그래핀 시트 형성]
도 8a에 도시된 바와 같이, 도전성 필름(201) 위에 그래핀 박막(202)이 형성된 그래핀 시트(200)를 형성한다. 그래핀 박막(202)을 형성하는 방법은 특별히 제한되지 않으며, 알려진 다양한 방법이 적용될 수 있다. 예를 들어, 화학기상증착법에 의하여 도전성 필름(201) 위에 그래핀 원자층을 성장시킴으로써 그래핀 박막(202)을 형성할 수 있다. 화학기상증착법을 이용하면, 비교적 단시간 내에 대량의 그래핀을 형성할 수 있다. 도전성 필름(201)으로서 예를 들어 구리, 니켈, 코발트, 철, 백금, 금, 알루미늄, 크롬, 마그네슘, 망간, 몰리브덴, 로듐, 규소, 탄탈륨, 티타늄, 텅스텐 등의 금속 박막이 채용될 수 있다. 성장 가스로서는 예를 들어 수소와, 메탄, 에탄, 에틸렌, 에탄올, 아세틸렌, 프로판, 프로필렌, 부탄, 부타디엔, 펜탄, 펜텐, 사이클로펜타디엔, 헥산, 사이클로헥산, 벤젠, 톨루엔 등의 탄화수소(CxHy)가 채용될 수 있다. 반응기(미도시) 내에 도전성 필름(201)과 전술한 성장 가스를 공급하고, 열처리한다. 열처리 온도는 예를 들어 약 800~1000℃ 일 수 있으며, 열처리 시간은 예를 들어 약 30분~2시간 정도일 수 있다.
성장되는 그래핀의 층수는 다양한 방법에 의하여 조절될 수 있다. 한 가지 방법으로서, 도전성 필름(201)의 종류 또는 두께를 제어하는 방법이다. 예를 들어, 도전성 필름(201)으로서 구리 박막을 채용하면, 단층막 형태의 그래핀 박막(202)을 형성할 수 있으며, 도전성 필름(201)으로서 천이금속박막을 채용하면 다층막 형태의 그래핀 박막(202)을 형성할 수 있다. 다른 방법으로서, 열처리 시간 및/또는 열처리 속도를 제어하는 방법이 있다. 또 다른 방법으로서, 성장 가스의 농도를 제어하는 방법이 있다. 그래핀 박막(202)의 그래핀 층수는 전술한 어느 하나의 방법 또는 이들 중 둘 이상의 방법의 조합에 의하여 제어될 수 있다.
[그래핀 적층체 형성]
도 8b에 도시된 바와 같이 그래핀 시트(200)를 다수회 접어, 그래핀 적층체(210)를 형성한다. 그래핀 박막(202)은 도전성 필름(201)의 두께 만큼 이격되게 적층된 형태가 된다. 그래핀 시트(200)를 접는 횟수는 에미터(30)에 형성하고자 하는 그래핀 박막(21)의 수를 감안하여 결정될 수 있다.
[소결체 형성]
그래핀 적층체(210)를 도전성 분말(P)과 함께 성형 및 소결한다. 도 8c를 참조하면, 금형(220) 내에 도전성 분말(P)을 충전하고 그 위에 그래핀 적층체(210)를 올려 놓는다. 이때, 그래핀 적층체(210)는 눕혀진 상태로 금형(220) 내에 삽입된다. 그래핀 적층체(210) 위에 다시 도전성 분말(P)을 충전한다. 그런 다음 피스톤으로 압력을 가하여 그래핀 적층체(210)를 도전성 분말(P)과 함께 성형하여 성형체를 형성한다. 그래핀 적층체(210)를 필요한 크기로 자른 후에 도전성 분말(P)과 함께 성형할 수도 있다. 그런 다음, 성형체를 금형(220)으로부터 꺼내어 진공 또는 환원성 분위기 하에서 예를 들어 약 800~1000℃의 온도에서 소결 처리한다. 그러면, 도 8d에 도시된 바와 같이 도전체(231)의 내부에 다수의 그래핀 박막(202)이 간격을 두고 적층된 형태의 소결체(230)를 얻을 수 있다. 소결 처리 과정을 통하여 그래핀 박막(202)을 형성할 때에 발생될 수 있는 그래핀의 결함을 줄이는 효과를 부수적으로 얻을 수 있다. 도전성 분말(P)은 예를 들어 구리, 니켈, 코발트, 철, 백금, 금, 알루미늄, 크롬, 마그네슘, 망간, 몰리브덴, 로듐, 규소, 탄탈륨, 티타늄, 텅스텐 등의 금속 분말일 수 있다. 소결 과정에서 치밀한 소결이 이루어질 수 있도록 도전성 분말(P)은 도전성 필름(201)과 동일한 금속의 분말일 수 있다.
[절단]
필요에 따라 도 8e에 도시된 바와 같이 소결체(230)를 적절한 크기로 절단하여 절단체(240)를 형성할 수도 있다.
[전자 방출원의 형성]
다음으로, 도 8f에 도시된 바와 같이, 소결체(230) 또는 절단체(240)로부터 그래핀 박막(202)의 길이방향을 따라 도전체(231)의 일부(232)를 제거하여 그래핀 박막(202)을 노출시킨다. 이에 의하여, 그래핀 박막(202)은 세워진 형태로 도전체(231)로부터 노출된다. 도전체(231)의 일부(232)를 제거하는 공정은 도전체(231)를 선택적으로 부식시키는 부식액을 이용한 표면 식각 공정에 의하여 수행될 수 있다. 부식액으로서는 예를 들어 황산(sulfuric acid), 염산(hydrochloric acid), 질산(nitric acid), 과황산암모늄(ammonium per-sulfate), 염화암모늄구리(copper ammonium chloride) 등이 사용될 수 있다. 그래핀은 금속을 부식시키는 대부분의 산용액에 대하여 강한 내부식성을 가지므로, 표면 식각 공정에 의하여 도전체(231)만이 일부(232) 제거될 수 있다.
상술한 공정에 의하여, 도 8f 및 도 8g에 도시된 바와 같이, 캐소드 전극(10)과, 세워진 형태로 캐소드 전극(10)에 묻힌 제1부분(22)과 캐소드 전극(10)의 상면으로부터 돌출된 제2부분(23)을 구비하는 그래핀 박막(21)을 포함하는 전자 방출원(20)을 구비하는 에미터(30)가 제조될 수 있다.
도 7에 도시된 뾰족한 형태의 에미터(30)는 다음의 제조 방법에 의하여 제조될 수 있다.
[첨두체의 형성]
먼저, 도 8a 내지 도 8d 또는 도 8e의 공정이 수행된다. 그런 다음, 소결체(230) 또는 절단체(240)를 그래핀 박막(202)의 길이방향으로 세운 후에, 길이방향에 대하여 경사지게 소결체(230) 또는 절단체(240)를 절단한다. 그러면, 도 8h에 도시된 바와 같이 도전체(231) 내에 간격을 두고 이격되게 적층된 그래핀 박막(202)을 포함하고, 그래핀 박막(202)의 길이방향의 일측이 뾰족한 첨두체(250)가 형성된다.
[전자 방출원의 형성]
다음으로, 도 8i에 도시된 바와 같이, 첨두체(240)로부터 그래핀 박막(202)의 길이방향을 따라 도전체(231)의 일부(233)를 제거하여 그래핀 박막(202)을 노출시킨다. 이에 의하여, 그래핀 박막(202)은 세워진 형태로 도전체(231)로부터 노출된다. 도전체(231)의 일부(233)를 제거하는 공정은 도전체(231)를 선택적으로 부식시키는 부식액을 이용한 표면 식각 공정에 의하여 수행될 수 있다. 부식액으로서는 예를 들어 황산(sulfuric acid), 염산(hydrochloric acid), 질산(nitric acid), 과황산암모늄(ammonium per-sulfate), 염화암모늄구리(copper ammonium chloride) 등이 사용될 수 있다. 그래핀은 금속을 부식시키는 대부분의 산용액에 대하여 강한 내부식성을 가지므로, 표면 식각 공정에 의하여 도전체(231)만이 일부(232) 제거될 수 있다.
상술한 공정에 의하여, 도 8i 및 도 8j에 도시된 바와 같이, 캐소드 전극(10a)과, 세워진 형태로 캐소드 전극(10a)에 묻힌 제1부분(22a)과 캐소드 전극(10)의 상면으로부터 돌출된 제2부분(23a)을 구비하는 그래핀 박막(21a)을 포함하는 전자 방출원(20a)을 구비하고, 전체적으로 뽀족한 형태인 에미터(30a)가 제조될 수 있다.
전술한 전계 방출 소자(1)는 다양한 전자 기기에 적용될 수 있다. 예를 들어, 도 9는 도 1에 도시된 전계 방출 소자(1)를 채용한 엑스선 촬상 장치(300)의 개략적인 구성도이다. 도 9를 참조하면, 본 실시예의 엑스선 촬상 장치(300)는 일 예로서, 엑스선 방출 장치(310)와, 이를 제어하는 제어부(320), 엑스선 방출 장치(310)에서 방출되어 대상체를 통과한 엑스선을 촬상하는 촬상부(330), 촬상부(330)에서 촬상된 영상 정보를 처리하는 영상 처리부(340), 사용자의 조작을 입력하는 입력부(350), 영상 처리된 정보를 출력하는 출력부(370), 및 영상정보를 포함한 각종 정보를 저장하는 데이터 저장부(360)를 포함할 수 있다. 전술한 바와 같이 도 1에서 애노드 전극(2)으로서 Mo, Ag, W, Cr, Fe, Co, Cu 등의 금속 또는 금속합금으로 형성된 애노드 전극(2)을 채용하면, 그 자체로서 X선을 방출시키는 X선 방출장치(310)가 구현될 수 있다. 엑스선 방출 장치(310)를 제외한 나머지 구성요소들은 공지의 것들이므로, 상세한 설명은 생략하기로 한다.
도 10은 면광원 장치(디스플레이 장치)(400)의 일 실시예이다. 도 10을 참조하면, 도 1에 도시된 전계 방출 소자(1)가 배열된 전자 방출 장치(410)의 상부에 애노드 전극층(420) 및 형광층(430)이 마련된 투명 기판(440)이 배치된다. 전자 방출 장치(410)에서 방출된 전자(e)는 애노드 전극층(420)을 통과하여 형광층(430)에 도달된다. 형광층(430)은 전자(e)에 의해 여기되어 가시광선을 발생시키는 CL(Cathode Luminescence)형 형광재료로 만들어진다. 따라서, 전자(e)는 형광층(430)에 부딪히면 가시광선으로 변환된다. 애노드 전극층(420)과 형광층(430)은 적층 위치가 서로 뒤바뀔 수도 있다.
이러한 면광원 장치(디스플레이 장치)(400)는 액정 표시장치(Liquid Crystal Display; LCD)와 같은 자체 발광하지 못하는 표시장치의 백라이트 유닛(Backlight Unit; BLU)이나 조명 장치의 면광원으로 사용될 수 있으며, 그 자체로도 화상 표시 장치로 사용될 수 있다. 가령, 전자 방출 장치(410)의 에미터(30)들이 일체로 구동되면, 면광원 장치가 될 수 있으며, 에미터(30)들이 화소별로 독립적으로 구동되는 화소 어레이를 형성하는 경우에는 그 자체로 화상을 표시하는 디스플레이 장치가 될 수 있다.
상기한 설명에서 많은 사항이 구체적으로 기재되어 있으나, 그들은 발명의 범위를 한정하는 것이라기보다, 실시 가능한 구성의 예시로서 해석되어야 한다. 따라서, 본 발명의 범위는 설명된 실시예에 의하여 정하여 질 것이 아니라 특허 청구범위에 기재된 기술적 사상에 의해 정하여져야 한다.
1...전계 방출 소자 2...에노우드 전극
10, 10a...캐소드 전극 20, 20a...전자 방출원
21, 21a...그래핀 박막 22, 22a...제1부분
23, 23a...제2부분 30, 30a...에미터
40...게이트 전극 41...전극부
42...그래핀 시트 100...몸체
110...기판 120...절연 스페이서
130...캐비티 131...개구
200...그래핀 시트 201, 601...도전성 필름
202, 602...그래핀 박막 210...그래핀 적층체
220...금형 230...소결체
231...도전체 240...절단체
250...첨두체

Claims (14)

  1. 캐소드 전극과, 상기 캐소드 전극에 지지된 전자 방출원을 포함하는 에미터;
    상기 에미터 주위에 마련되고 상기 전자 방출원으로부터 방출된 전자의 통로인 개구를 형성하는 절연 스페이서;
    상기 개구를 덮는 그래핀 시트를 구비하는 게이트 전극;을 포함하는 전계 방출 소자.
  2. 제1항에 있어서,
    상기 게이트 전극은 상기 개구 주위에 배치되는 전극부를 더 포함하며,
    상기 그래핀 시트는 상기 전극부와 연결되는 전계 방출 소자.
  3. 제2항에 있어서,
    상기 그래핀 시트는 그래핀 단층막과 그래핀 다층막 중 어느 하나인 전계 방출 소자.
  4. 캐소드 전극과, 상기 캐소드 전극에 지지된 전자 방출원을 포함하는 에미터;
    상기 에미터 주위에 마련되는 절연 스페이서;
    상기 절연 스페이서에 지지되며, 상기 에미터로부터 방출된 전자의 방출 통로가 되는 개구를 정의하는 전극부와, 상기 개구를 덮으며 터널링 효과에 의하여 상기 전자를 통과시키는 터널링 부재를 구비하는 게이트 전극;을 포함하는 전계 방출 소자.
  5. 제4항에 있어서,
    상기 터널링 부재는 그래핀 연속막을 포함하는 전계 방출 소자.
  6. 제5항에 있어서,
    상기 그래핀 연속막은 상기 전극부에 연결된 전계 방출 소자.
  7. 제6항에 있어서,
    상기 그래핀 연속막은 그래핀 단층막과 그래핀 다층막 중 어느 하나인 전계 방출 소자.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 전자 방출원은 상기 캐소드 전극에 세워진 상태로 지지된 다수의 그래핀 박막을 포함하는 전계 방출 소자.
  9. 제8항에 있어서,
    상기 그래핀 박막은 상기 캐소드 전극에 매립된 제1부분과, 상기 제1부분으로부터 연장되어 상기 캐소드 전극으로부터 노출된 제2부분을 포함하는 전계 방출 소자.
  10. 제9항에 있어서,
    상기 캐소드 전극은 상기 개구를 향하여 뽀족한 형태이며,
    상기 다수의 그래핀 박막은 상기 개구를 향하여 전체적으로 뾰족하게 배치되는 전계 방출 소자.
  11. 제8항에 있어서,
    상기 그래핀 박막은 그래핀 단층막과 그래핀 다층막 중 어느 하나인 전계 방출 소자.
  12. 도전성 필름의 일면에 그래핀 박막을 형성하는 단계;
    도전성 필름의 타면에 상기 도전성 필름의 일부를 노출시키는 식각 개구를 가진 마스크층을 형성하는 단계;
    상기 식각 개구를 통하여 상기 도전성 필름을 부분적으로 제거하여 상기 그래핀 박막을 부분적으로 노출시키는 단계;
    상기 마스크층을 제거하는 단계;를 포함하는 게이트 전극의 제조 방법.
  13. 제12항에 있어서,
    상기 그래핀 박막은 그래핀 연속막인 게이트 전극의 제조 방법.
  14. 제13항에 있어서,
    상기 그래핀 박막은 그래핀 단층막과 그래핀 다층막 중 어느 하나인 게이트 전극의 제조 방법.
KR20130105097A 2013-09-02 2013-09-02 전계 방출 소자 및 전계 방출 소자의 게이트 전극의 제조 방법 KR20150026363A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR20130105097A KR20150026363A (ko) 2013-09-02 2013-09-02 전계 방출 소자 및 전계 방출 소자의 게이트 전극의 제조 방법
US14/471,713 US20150060757A1 (en) 2013-09-02 2014-08-28 Field emission devices and methods of manufacturing gate electrodes thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130105097A KR20150026363A (ko) 2013-09-02 2013-09-02 전계 방출 소자 및 전계 방출 소자의 게이트 전극의 제조 방법

Publications (1)

Publication Number Publication Date
KR20150026363A true KR20150026363A (ko) 2015-03-11

Family

ID=52581843

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130105097A KR20150026363A (ko) 2013-09-02 2013-09-02 전계 방출 소자 및 전계 방출 소자의 게이트 전극의 제조 방법

Country Status (2)

Country Link
US (1) US20150060757A1 (ko)
KR (1) KR20150026363A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243752A1 (ko) * 2022-06-17 2023-12-21 엘지전자 주식회사 전계 방출 소자 및 그를 이용한 엑스레이 발생 장치

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785881B2 (en) 2008-05-06 2014-07-22 Massachusetts Institute Of Technology Method and apparatus for a porous electrospray emitter
US10125052B2 (en) 2008-05-06 2018-11-13 Massachusetts Institute Of Technology Method of fabricating electrically conductive aerogels
US10308377B2 (en) 2011-05-03 2019-06-04 Massachusetts Institute Of Technology Propellant tank and loading for electrospray thruster
US9358556B2 (en) 2013-05-28 2016-06-07 Massachusetts Institute Of Technology Electrically-driven fluid flow and related systems and methods, including electrospinning and electrospraying systems and methods
US9805900B1 (en) 2016-05-04 2017-10-31 Lockheed Martin Corporation Two-dimensional graphene cold cathode, anode, and grid
CN106229245B (zh) * 2016-09-13 2018-12-18 电子科技大学 一种爆发式石墨烯电子阴极及其生产方法
US10141855B2 (en) 2017-04-12 2018-11-27 Accion Systems, Inc. System and method for power conversion
US11545351B2 (en) 2019-05-21 2023-01-03 Accion Systems, Inc. Apparatus for electrospray emission
EP4024435A4 (en) * 2019-08-28 2023-08-09 Korea University Research and Business Foundation X-RAY SOURCE AND CONTROL METHOD THEREOF
JP2023084299A (ja) * 2021-12-07 2023-06-19 国立研究開発法人産業技術総合研究所 電界放出素子およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100365444B1 (ko) * 1996-09-18 2004-01-24 가부시끼가이샤 도시바 진공마이크로장치와이를이용한화상표시장치
JP4596878B2 (ja) * 2004-10-14 2010-12-15 キヤノン株式会社 構造体、電子放出素子、2次電池、電子源、画像表示装置、情報表示再生装置及びそれらの製造方法
CN102339699B (zh) * 2011-09-30 2014-03-12 东南大学 基于石墨烯的场发射三极结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243752A1 (ko) * 2022-06-17 2023-12-21 엘지전자 주식회사 전계 방출 소자 및 그를 이용한 엑스레이 발생 장치

Also Published As

Publication number Publication date
US20150060757A1 (en) 2015-03-05

Similar Documents

Publication Publication Date Title
KR20150026363A (ko) 전계 방출 소자 및 전계 방출 소자의 게이트 전극의 제조 방법
JP3768908B2 (ja) 電子放出素子、電子源、画像形成装置
JP2006224296A (ja) カーボンナノチューブ構造体及びその製造方法、並びにカーボンナノチューブ構造体を利用した電界放出素子及びその製造方法
EP1487004B1 (en) Electron emission device, electron source, and image display having dipole layer
US9991081B2 (en) Electron emitting device using graphene and method for manufacturing same
JP3907626B2 (ja) 電子源の製造方法、画像表示装置の製造方法、電子放出素子の製造方法、画像表示装置、特性調整方法、及び画像表示装置の特性調整方法
KR102040150B1 (ko) 전계 방출 소자 및 전계 방출 소자의 에미터의 제조 방법
US7492088B2 (en) Method of forming carbon nanotubes, field emission display device having carbon nanotubes formed through the method, and method of manufacturing field emission display device
KR101268625B1 (ko) 카본 나노 튜브 형성 방법
JP4611228B2 (ja) 電界電子放出装置およびその製造方法
KR20100086468A (ko) 전하 소산층을 갖는 언더게이트 전계 방출 트라이오드
JP3897794B2 (ja) 電子放出素子、電子源、画像形成装置の製造方法
JP3703459B2 (ja) 電子放出素子、電子源、画像表示装置
KR20080006484A (ko) 전자 방출 소자, 전자 방출 소자의 제조 방법, 및 전자방출 소자를 갖는 표시 장치
JP2007227091A (ja) 電子放出素子、電子放出素子の製造方法、及び電子放出素子を有する表示装置
JP2008053057A (ja) 電子放出素子、電子放出素子の製造方法、及び電子放出素子を有する表示装置
JP4875432B2 (ja) 冷陰極素子の製造方法及びこれを用いた冷陰極素子
Tyler et al. Back-gated milliampere-class field emission device based on carbon nanosheets
KR100907921B1 (ko) 산화아연 나노선 배열 기반 전계방출 소자
Yang et al. Field emission property of multi-cathode electron sources with vertically aligned CNT arrays
JP4489527B2 (ja) 炭素繊維の作製方法
KR100752509B1 (ko) 전자 방출 소자 및 그의 제조 방법 및 그를 이용한 전자방출 표시장치 및 그의 제조 방법
JP2012185942A (ja) 電界放出型発光装置およびその製造方法
JP5158809B2 (ja) 電子放出素子
JP5063002B2 (ja) 電子エミッタ

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application