KR20150023959A - 셀룰로오스 기재 상에 폴리비닐리덴 플루오라이드를 전기방사하고 세라믹을 코팅한 내열성 나노섬유 필터 및 이의 제조방법 - Google Patents

셀룰로오스 기재 상에 폴리비닐리덴 플루오라이드를 전기방사하고 세라믹을 코팅한 내열성 나노섬유 필터 및 이의 제조방법 Download PDF

Info

Publication number
KR20150023959A
KR20150023959A KR20130091645A KR20130091645A KR20150023959A KR 20150023959 A KR20150023959 A KR 20150023959A KR 20130091645 A KR20130091645 A KR 20130091645A KR 20130091645 A KR20130091645 A KR 20130091645A KR 20150023959 A KR20150023959 A KR 20150023959A
Authority
KR
South Korea
Prior art keywords
polyvinylidene fluoride
electrospinning
filter
ceramic coating
nonwoven fabric
Prior art date
Application number
KR20130091645A
Other languages
English (en)
Other versions
KR101650355B1 (ko
Inventor
박종철
Original Assignee
(주)에프티이앤이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에프티이앤이 filed Critical (주)에프티이앤이
Priority to KR1020130091645A priority Critical patent/KR101650355B1/ko
Priority to PCT/KR2014/001569 priority patent/WO2015016449A1/ko
Priority to US14/909,372 priority patent/US20160175748A1/en
Priority to EP14831150.9A priority patent/EP3029190A4/en
Publication of KR20150023959A publication Critical patent/KR20150023959A/ko
Application granted granted Critical
Publication of KR101650355B1 publication Critical patent/KR101650355B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4318Fluorine series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/559Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving the fibres being within layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/025Types of fibres, filaments or particles, self-supporting or supported materials comprising nanofibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0457Specific fire retardant or heat resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • B01D2239/0478Surface coating material on a layer of the filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0631Electro-spun
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

본 발명은 기존 필터의 낮은 내열성을 개선하기 위해, 셀룰로오스 기재 상에 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVDF)를 전기방사한 폴리비닐리덴 플루오라이드 나노섬유 부직포 상에 세라믹 코팅막을 구비하여 제조한 내열성 나노섬유 필터에 관한 것이다. 제조된 내열성 나노섬유 필터는 내열성 고분자인 폴리비닐리덴 플루오라이드와 세라믹 코팅막을 구비함으로써 내열성이 우수할 뿐만 아니라 필터의 효율도 우수한 것을 특징으로 한다.

Description

셀룰로오스 기재 상에 폴리비닐리덴 플루오라이드를 전기방사하고 세라믹을 코팅한 내열성 나노섬유 필터 및 이의 제조방법{Nanofiber filter for excellent heat-resisting property and its manufacturing method with Polyvinylidene fluoride electrospinning on cellulose substrate and ceramic coating}
본 발명은 내열성 나노섬유 필터 및 이의 제조방법에 관한 것으로, 보다 상세하게는 셀룰로오스 기재 위에 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVDF)를 전기방사하여 폴리비닐리덴 플루오라이드 나노섬유 부직포를 적층형성한 후, 상기 나노섬유 부직포 상에 세라믹 코팅막을 구비하여 내열성을 향상시킨 셀룰로오스 기재 상에 폴리비닐리덴 플루오라이드를 전기방사하고 세라믹을 코팅한 내열성 나노섬유 필터 및 이의 제조방법에 관한 것이다.
일반적으로, 집진기나 가스터빈에는 먼지가 많이 발생하는 작업장에 설치되어 공기 중 미세 먼지를 여과하는 필터가 구비된다. 특히 가스터빈이나 용광로 등의 경우에는 작업 온도가 높아 이를 견딜 수 있는 열 안정성이 높은 필터를 필요로 해왔다. 종래에는 폴리에스테르, 폴리에틸렌, 폴리프로필렌, 아크릴, 나일론, 노멕스 등이 사용되어 왔으나 내열성이 취약한 점이 있었다. 이를 해결하기 위해 대표적으로 유리섬유를 필터의 소재로 사용하여 이를 보완해왔다. 그러나, 유리섬유를 필터의 소재로 사용하는 경우 환경 오염 및 작업자의 건강의 위협으로 인하여 현재는 유리섬유의 사용을 규제하고 있다.
또한, 종래와 같은 필터는 정전기 방식에 의한 효율을 측정하였으나, 최근 유럽의 필터효율 표준인 EN779에서는 정전기 방식에 의한 에어필터의 사용을 규제하고 있는 실정이다.
따라서, 고온의 유체를 여과하는 곳에서도 견딜 수 있는 내열성이 충분히 확보되고 정전기 방식에도 문제가 없이 높은 효율을 유지할 수 있는 필터가 요구되고 있다.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로, 내열성 고분자인 폴리비닐리덴 플루오라이드 용액을 전기방사장치로 셀룰로오스 기재 상에 전기방사하여 폴리비닐리덴 플루오라이드 나노섬유 부직포를 제조하여 필터의 효율을 높이고, 세라믹 코팅막을 폴리비닐리덴 플루오라이드 나노섬유 부직포 상에 구비하여 제조된 내열성 필터를 구현할 수 있는 내열성 나노섬유 필터 및 이의 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 적절한 실시 형태에 따르면, 셀룰로오스 기재, 상기 셀룰로오스 기재의 일면에 전기방사에 의해 적층형성되는 폴리비닐리덴 플루오라이드 나노섬유 부직포 및 상기 폴리비닐리덴 플루오라이드 나노섬유 부직포의 일면에 형성되는 세라믹 코팅막을 포함하는 것을 특징으로 하는 내열성 나노섬유 필터를 제공한다.
본 발명의 다른 적절한 실시 형태에 따르면, 세라믹 코팅막은 SiO2, Al2O3, TiO2, Li3PO4, 제올라이트, MgO, CaO, BaTiO3, Li2O, LiF, LiOH, Li3N, BaO, Na2O, Li2CO3, CaCO3, LiAlO2, SiO, SnO, SnO2, PbO2,ZnO, P2O5, CuO, MoO, V2O5, B2O3, Si3N4, CeO2, Mn3O4, Sn2P2O7, Sn2B2O5, Sn2BPO6 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나로 구성되어 있는 것을 특징으로 하는 내열성 나노섬유 필터를 제공한다.
본 발명의 또 다른 적절한 실시 형태에 따르면, 셀룰로오스 기재 상에 폴리비닐리덴 플루오라이드를 유기 용매에 용해시켜 제조한 방사용액을 전기방사하여 폴리비닐리덴 플루오라이드 나노섬유 부직포를 형성하는 단계 및 상기 폴리비닐리덴 플루오라이드 나노섬유 부직포 상에 세라믹 코팅막을 형성하는 단계를 포함하는 내열성 나노섬유 필터의 제조방법을 제공한다.
본 발명의 다른 적절한 실시 형태에 따르면, 전기방사는 상향식 전기방사법을 사용하는 것을 특징으로 하는 내열성 나노섬유 필터의 제조방법을 제공한다.
본 발명의 또 다른 적절한 실시 형태에 따르면, 세라믹 코팅막은 SiO2, Al2O3, TiO2, Li3PO4, 제올라이트, MgO, CaO, BaTiO3, Li2O, LiF, LiOH, Li3N, BaO, Na2O, Li2CO3, CaCO3, LiAlO2, SiO, SnO, SnO2, PbO2,ZnO, P2O5, CuO, MoO, V2O5, B2O3, Si3N4, CeO2, Mn3O4, Sn2P2O7, Sn2B2O5, Sn2BPO6 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나로 구성되어 있는 것을 특징으로 하는 내열성 나노섬유 필터의 제조방법을 제공한다.
본 발명의 내열성 나노섬유 필터는 전기방사에 의해 셀룰로오스 기재 상에 적층형성된 폴리비닐리덴 플루오라이드 나노섬유 부직포와 세라믹 코팅층을 포함하고 있기 때문에 기존의 필터보다 우수한 내열성을 나타내며, 나노섬유를 필터 기재 상에 코팅함으로써 여과 효율이 우수하다는 등의 효과를 거둘 수 있다.
도 1은 본 발명에 의해 제조된 필터의 모식도이다.
도 2는 본 발명에 이용되는 전기방사장치를 나타내는 도면이다.
도 3은 본 발명에 이용되는 전기방사장치의 블록에 관한 도면이다.
도 4는 본 발명에 이용되는 전기방사장치의 노즐블럭 및 노즐에 관한 도면이다.
이하, 본 발명에 의한 바람직한 실시예를 첨부된 도면을 참조하면서 상세하게 설명한다. 또한, 본 실시예에서는 본 발명의 권리범위를 한정하는 것은 아니고, 단지 예시로 제시한 것이며, 그 기술적인 요지를 이탈하지 않는 범위 내에서 다양한 변경이 가능하다.
먼저, 본 발명은 셀룰로오스 기재 상에 폴리비닐리덴 플루오라이드를 유기 용매에 용해시켜 제조한 방사용액을 전기방사하여 폴리비닐리덴 플루오라이드 나노섬유 부직포를 형성하고, 상기 폴리비닐리덴 플루오라이드 나노섬유 부직포 상을 세라믹 코팅하여 세라믹 코팅막을 형성하는 단계를 포함하는 내열성이 향상된 나노섬유 필터 및 이의 제조방법을 제공한다.
본 발명에서는 기재를 내열성이 우수한 셀룰로오스 기재를 사용한다. 셀룰로오스 기재는 고온에서의 치수 안정성이 우수하고, 내열성이 높다는 특징이 있으며, 미세한 셀룰로오스 섬유가 미세한 다공 구조를 형성하고 있다는 점에서, 셀룰로오스 섬유가 고결정성, 고탄성률을 가지며, 본질적으로 고온에서의 치수 안정성이 매우 우수한(열팽창률이 낮은) 섬유이기 때문에, 얇게 또한 공극률을 높게 설계해도 높은 강도나 낮은 선팽창률을 기대할 수 있다는 등의 특징을 갖고 있다.
이들 특징에 의해, 셀룰로오스 기재는 고성능 필터, 기능지, 생활 제품(요리용 시트나 흡취성 시트 등), 반도체 장치나 배선 기판용 기판, 낮은 선팽창률 재료의 기재, 캐패시터와 같은 축전 장치용 세퍼레이터 등, 이들의 특성을 살릴 수 있는 모든 기술 분야에 적절하게 사용할 수 있다.
또한, 본 발명에 전기방사에 이용되는 폴리비닐리덴 플루오라이드(Polyvinylidene fluoride, PVDF)는 플루오로 계열의 고분자 중 하나로, 플루오로 수지는 플루오린을 함유하여 열적, 화학적 성질이 우수하다.
Figure pat00001
(반응식 1) 폴리비닐리덴 플루오라이드의 제조
폴리비닐리덴 플루오라이드는 상기 반응식 1과 같은 과정으로 제조되는데, 비닐리덴 클로라이드 단량체가 유리 라디칼 중합반응(free radical vinyl polymerization)에 의하여 폴리비닐리덴 플루오라이드를 제조한다.
또한 폴리비닐리덴 플루오라이드는 다른 플루오로 수지에 비해 녹는점과 밀도가 낮고, 가격이 저렴하며, 화학적으로 매우 안정되어 전기 절연체, 건물의 외벽을 바르는 고급 페인트 등에 사용된다.
또한 폴리비닐리덴 플루오라이드는 압전성을 나타내는 대표적인 유기물질로 1960년대부터 많은 연구가 진행되어 왔다. 폴리비닐리덴 플루오라이드 고분자 안에는 4가지의 결정이 혼재하고, 이것은 결정형태에 따라 α,β,γ그리고 δ형의 최소 4가지의 형태로 구분이 된다. 그 중 폴리비닐리덴 플루오라이드의 β형 결정은 트랜스형 분자쇄가 평행으로 충진된 것으로 모노머가 갖는 영구쌍극자가 모두 한 방향으로 배열되어 큰 자발 분극을 나타낸다. 이는 연신을 통하여 폴리비닐리덴 플루오라이드 분자를 규칙적으로 배열하여 집합상태에 이방성을 부여함으로써 압전성을 가질 수 있다는 것을 의미한다. 이러한 압전 특성을 향상시키기 위하여, 폴리비닐리덴 플루오라이드 섬유 내 β형 결정을 증가시키는 다양한 방법들이 연구되고 있다. 일반적으로 폴리비닐리덴 플루오라이드 섬유를 제조하기 위하여 용융방사 시스템이 적용되고 있다. 그런데 용융방사 장비 구축 시 고가의 비용이 들고, 용융방사에 의해 제조된 섬유의 사이즈도 제한적이다.
습식방사로 제조된 섬유는 습식방사의 응고 매커니즘으로 인하여 방사 초기 단계에서의 섬유 내 β형 결정비율이 α형태 결정비율에 비해 현저히 높고, 용융방사에 비해 방사속도가 느리지만, 방사구 수를 늘려 섬유 사이즈를 줄일 수 있는 이점도 가지고 있다. 또한 습식방사는 연속적인 후처리 공정(연신, 권축 등)을 통해물성을 향상시킬 수 있는 이점도 가지고 있다.
습식방사를 위해서는 중합체를 용매에 용해시켜 방사원액(Dope)을 만들고, 방사원액을 기어펌프와 방사노즐을 통해 용제를 함유한 수용액이 담긴 응고욕으로 토출시킨다. 토출된 방사액상과 응고욕 내부의 용매 및 침전제와의 상호확산이 일어남에 따라 방사액상으로 침전제가 침투하여, 폴리머 - 용매 - 침전제의 3 성분계에서 상분리와 침전이 발생하면서 필라멘트의 고화가 진행됨으로써 섬유가 얻어진다. 이러한 습식방사 시스템은 방사욕조 내에서 연신과 장력을 주어 사슬모양의 고분자를 섬유방향으로 배향시킴으로써 섬유의 기계적 성질 또한 향상시킬 수 있는 이점이 있다.
상기와 같은 폴리비닐리덴 플루오라이드는 적절한 유기 용매에 용해시킨 방사용액을 제조함에 있어서, 폴리비닐리덴 플루오라이드는 불화비닐리덴의 호모폴리머, 또는 불화비닐리덴을 몰비로 50% 이상 함유하는 공중합폴리머를 포함하는 것으로서, 폴리비닐리덴 플루오라이드 수지의 강도가 우수한 관점에서 호모폴리머인 것이 보다 바람직하며, 폴리비닐리덴 플루오라이드 수지가 공중합폴리머인 경우, 불화비닐리덴모노머와 공중합되는 다른 공중합 모노머로서는, 공지의 것을 적절하게 선택하여 이용할 수 있고, 특별히 한정되지 않지만, 예컨대, 불소계 모노머나 염소계 모노머 등을 적합하게 이용할 수 있다. 또한, 폴리비닐리덴 플루오라이드 수지의 중량 평균 분자량(Mw)은, 특별히 한정되지 않지만, 10,000 내지 500,000인 것이 바람직하고, 50,000 내지 500,000인 것이 보다 바람직하다.
폴리비닐리덴 플루오라이드 수지의 중량평균분자량이 10,000미만인 경우에는부직포를 이루기에 적합할 만큼의 물성을 얻을 수 없고, 500,000을 초과하는 경우에는 용액 취급이 용이하지 않으며, 공정성이 저하되어 균일한 나노섬유 부직포를 얻기 어렵다.
상기 유기 용매로서 프로필렌 카보네이트, 부틸렌 카보네이트, 1,4-부티로락톤, 디에틸 카보네이트, 디메틸 카보네이트, 1,2-디메톡시에탄, 1,3-디메틸-2-이미다졸리디논, 디메틸설폭사이드, 에틸렌 카보네이트, 에틸메틸 카보네이트, N,N-디메틸포름아미드, N,N-디메틸아세트아미드, N-메틸-2-피롤리돈, 폴리에틸렌설포란, 테트라에틸렌 글리콜 디메틀 에테르, 아세톤, 알코올 또는 이들의 혼합물 중에서 선택되는 하나 이상인 것이 바람직하며, 디메틸포름아미드(N,N-Dimethylformamide, 이하, 'DMF'라 한다.) 또는 디메틸아세트아미드(N,N-Dimethylacetamide, 이하, 'DMAc'라 한다.) 용매를 선택하는 것이 보다 바람직하다.
이하, 본 발명에 적용되는 전기방사장치를 도면을 참고하여 설명한다.
먼저, 도 1은 본 발명의 셀룰로오스 기재 상에 폴리비닐리덴 플루오라이드(PVDF)를 전기방사하고 세라믹을 코팅한 내열성 나노섬유 필터를 나타내는 도면이고, 도 2는 본 발명에 이용되는 전기방사장치를 나타내는 도면이며, 도 3은 본 발명에 이용되는 전기방사장치의 블록에 관한 도면이고, 도 4는 본 발명에 이용되는 전기방사장치의 노즐블럭 및 노즐에 관한 도면이다.
도면에서 도시하고 있는 바와 같이, 본 발명의 전기방사장치(10)는 방사용액이 내부에 충진되는 방사용액 주탱크(미도시)와 상기 방사용액 주탱크 내에 충진된 고분자 방사용액의 정량 공급을 위한 계량 펌프(도번 미도시)와 상기 방사용액 주탱크 내의 고분자 방사용액을 토출하되, 핀 형태로 이루어지는 노즐(2)이 다수 개 배열되는 노즐블록(3)과 상기 노즐의 하단에 위치하여 분사되는 고분자 방사용액을 집적하기 위하여 노즐(2)에서 일정간격 이격되는 컬렉터(4) 및 상기 컬렉터에 전압을 발생시키는 전압 발생장치(1)를 그 내부에 수용하는 블록(20) 및 블록(20) 내의 전도체 또는 부전도체로 이루어져 있는 케이스(8)를 포함하여 구성된다.
본 발명에서는 방사용액 주탱크(미도시)가 1개로 구성되어 있으나, 방사용액이 2가지 이상으로 구성되는 경우에는, 방사용액 주탱크를 2개 이상으로 구비하거나, 하나의 방사용액 주탱크 내부가 2개 이상의 공간으로 구획되고 각 구획된 공간에 2개 이상의 고분자 방사용액이 충진되어 공급하는 경우도 가능하다.
여기서, 본 발명에서는 상기 전기방사장치(10)가 방사용액을 상방향으로 분사하는 상향식 전기방사장치를 사용한다.
한편, 본 발명의 일 실시예에서는 전기방사장치로 방사용액을 상방향으로 분사하는 상향식 전기방사장치를 사용하나, 방사용액을 하방향으로 분사하는 하향식 전기방사장치도 사용될 수 있으며, 상향식과 하향식 전기방사장치가 함께 사용되는 복합식 전기방사장치도 사용될 수 있다.
상기한 바와 같은 구조에 의하여, 상기 전기방사장치(10)는 상기 블록(20)내의 방사용액 주탱크에 충진되는 방사용액이 계량 펌프를 통하여 높은 전압이 부여되는 다수의 노즐(2) 내에 연속적으로 정량 공급되고, 상기 노즐(2)로 공급되는 고분자의 방사용액은 노즐(2)를 통해 높은 전압이 걸려 있는 컬렉터(13) 상에 방사 및 집속되어 나노섬유 부직포(미도시)를 형성하며, 형성된 나노섬유 부직포를 라미네이팅하여 필터로 제조한다.
그리고, 전기방사장치(10) 전단에는 각 블록(20)에서 고분자 방사용액이 분사되어 나노섬유가 적층형성되는 장척시트를 공급하는 공급롤러(11)가 구비되고, 후단에는 나노섬유가 적층형성되는 장척시트를 권취하기 위한 권취롤러(12)가 구비된다.
상기 장척시트는 나노섬유의 처짐 방지 및 이송을 위하여 구비된다. 상기 장척시트는 전기방사장치(10)의 선단에 구비되는 공급롤러(11) 및 후단에 구비되는 권취롤러(12)에 그 일측과 타측이 권취된다.
한편, 각 블록(20)의 전기방사장치(10)는 컬렉터(4)를 기준으로 장척시트의 진행방향(a)으로 설치된다. 또한, 상기 컬렉터(4)와 장척시트 사이에 보조벨트(6)가 각각 구비되고, 각 보조벨트(6)를 통하여 각 컬렉터(4)에 집적되어 나노섬유가 적층형성되는 장척시트가 수평방향으로 이송된다. 즉, 상기 보조벨트(6)는 장척시트의 이송속도에 동기하여 회전하고, 보조벨트(6)를 구동하기 위한 보조벨트용 롤러(7)를 갖는다. 상기 보조벨트용 롤러(7)는 2개 이상의 마찰력이 극히 적은 자동 롤러이다. 상기 컬렉터(4)와 장척시트의 사이에 보조벨트(6)가 구비되기 때문에, 장척시트는 고전압이 인가되어 있는 컬렉터(4)에 끌어 당겨지는 일이 없이 부드럽게 이송되도록 이루어진다.
상기한 바와 같은 구조에 의하여, 상기 전기방사장치(10)의 블록(20) 내의 방사용액 주탱크 내에 충진된 방사용액이 노즐(2)을 통하여 컬렉터(4) 상에 위치한 장척시트상에 분사되고, 상기 장척시트 상에 분사된 방사용액이 집적되면서 나노섬유 부직포를 적층형성한다. 그리고 상기 컬렉터(4)의 양측에 구비되는 보조벨트용 롤러(7)의 회전에 의해 보조벨트(6)가 구동되어 장척시트가 이송되면서 전기방사장치(10) 후단에 있는 블록(20) 내에 위치되어 상기한 공정을 반복적으로 수행한다.
한편, 노즐블록(3)은 도 4에서 나타내는 바와 같이 방사용액을 토출구로부터 상향 배치되는 복수의 노즐(2), 노즐(2)이 일렬로 구성되는 관체(43), 방사용액 저장탱크(44) 및 방사용액 유통 파이프(45)로 구성된다.
먼저, 방사용액 주탱크와 연결되어 방사용액을 공급받아 저장하는 방사용액 저장탱크(44)는 용액의 토출량을 상기 계량 펌프(미도시)에 의해 방사용액 유통 파이프(45)를 통하여 노즐(2)에 방사용액을 공급하여 방사가 진행된다. 여기서, 복수의 노즐(2)이 일렬로 구성되는 관체(43)는 상기 방사용액 저장탱크(44)로부터 동일한 방사용액을 공급받지만, 방사용액 주탱크가 복수로 구비되고 각각에 서로 다른 종류의 고분자를 공급받아 관체(43)마다 서로 종류가 다른 방사용액이 공급되어 방사되는 것도 가능하다.
상기 복수의 노즐(2)의 토출구로부터 방사될 때, 방사되지 못하고 오버플로우된 용액은 오버플로우 용액 저장탱크(41)에 이동된다. 상기 오버플로우 용액 저장탱크(41)는 방사용액 주탱크에 연결되어 있어 오버플로우 용액은 방사에 재이용될 수 있다.
한편, 본 발명의 주제어장치(30)는 방사 전반의 과정에서 방사조건을 조절하는 장치로서, 노즐블록(3)에 공급되는 방사용액의 양을 제어하고, 각 블록(20)마다 전압발생장치(1)의 전압을 조절하며, 두께측정장치(9)에 의해 측정된 나노섬유 부직포 및 장척시트 기재의 두께에 따라서 각 블록(20)의 이송속도를 제어한다.
본 발명의 두께측정장치(9)는 블록(20)의 전단부 및 후단부에 위치하고 나노섬유 부직포가 적층형성된 장척시트를 사이에 두고 마주보게 설치되어 있다. 상기 두께측정장치(9)는 전기방사장치(10)의 방사조건을 조절하는 주제어장치(30)에 연결되어있어, 상기 두께측정장치(9)가 나노섬유 부직포 및 장척시트의 두께를 측정한 값을 기초로 하여 주제어장치(30)에서는 각 블록(20)의 이송속도를 제어하도록 한다. 예를 들면, 전기방사에 있어서, 전단부에 위치한 블록(20)에 토출된 나노섬유의 두께가 편차량이 얇게 측정이 되면, 후단부에 위치한 블록(20)의 이송속도를 감소시켜 나노섬유 부직포의 두께를 일정하게 조절한다. 또한 상기 주제어장치(30)가 노즐블록(3)의 토출양을 증가시키고 전압발생장치(1)의 전압의 세기를 조절하여 단위 면적당의 나노섬유의 토출량을 증대시켜 나노섬유 부직포의 두께를 균일하게 조절하는 것이 가능하다.
상기 두께측정장치(9)는 초음파 측정방식에 의해 상기 나노섬유 부직포가 적층 형성된 나노섬유 부직포 및 장척시트까지의 거리를 측정하는 한 쌍의 초음파 종파와 횡파의 측정방식으로 이루어지는 두께측정부를 구비하고, 상기 한 쌍의 초음파 측정장치에 의해 측정된 거리를 기초로 하여 상기 나노섬유 부직포 및 장척시트의 두께를 산출하는 것이다. 보다 상세하게는, 나노섬유가 적층된 장척시트에 초음파 종파와 횡파를 함께 투사하여 종파와 횡파의 각 초음파 신호가 상기 나노섬유가 적층된 장척시트에서 왕복 이동하는 시간, 즉 종파와 횡파의 각 전파시간을 측정한 뒤, 상기 측정된 종파와 횡파의 전파시간과 나노섬유가 적층된 장척시트의 기준온도에서 종파와 횡파의 전파속도 및 전파속도의 온도상수를 이용하는 소정의 연산식으로부터 피검사체의 두께를 계산하는 두께측정장치이다.
본 발명에 이용되는 전기방사장치(10)는 나노섬유 부직포의 두께 편차량이 소정의 값 미만인 경우에는 이송속도를 초기 값으로부터 변화시키지 않고, 상기 편차량이 소정값 이상인 경우에는 이송속도를 초기 값으로부터 변화시키도록 제어하는 것도 가능하기 때문에, 이송속도 제어장치에 의한 이송속도의 제어를 단순화하는 것이 가능해진다. 또한, 이송속도의 제어 외에도 노즐블록(3)의 토출양과 전압의 세기도 조절할 수 있어서, 두께 편차량이 소정의 값 미만인 경우에는 노즐블록(3) 토출양과 전압의 세기를 초기 값으로부터 변화시키지 않고, 상기 편차량이 소정의 값 이상인 경우에는 노즐블록(3)의 토출양과 전압의 세기를 초기 값으로부터 변화시키도록 제어하는 것이 가능하기 때문에, 노즐블록(3) 토출양과 전압의 세기의 제어를 단순화하는 것이 가능해진다.
한편, 전기방사장치(10)의 블록(20)은 방사위치에 따라 전단부에 위치한 블록(20)과 후단부에 위치한 블록(20)으로 구분된다. 본 발명의 일 실시예에서는 블록의 개수를 2개로 한정하고 있으나, 2개 이상 혹은 1개로 구성되는 것도 가능하다.
또한, 본 발명에서는 각 블록(20)에서 종류가 다른 고분자 방사용액을 방사하고 있으나, 어느 한 블록 내에서 2가지 이상의 다른 고분자 방사용액이 방사되는 것도 가능하며, 각 블록(20)마다 동일한 종류의 고분자 방사용액을 각각 방사하는 경우도 가능하다.
한편, 본 발명의 전기방사장치(10)의 후단부에서는 라미네이팅 장치(19)가 설치되어 있다. 상기 라미네이팅 장치(19)는 열과 압력을 부여하며, 이를 통하여 장척시트와 나노섬유 부직포가 접착되고, 이후 권취롤러(12)에 권취되어 필터가 제조된다.
상기 전기방사장치(10)는 포집면적을 넓혀 나노섬유의 집적 밀도를 균일하게 할 수 있으며, 드롭렛(Droplet) 현상을 효과적으로 방지하여 나노섬유의 품질을 향상시킬 수 있고, 전기력에 의한 섬유형성 효과가 높아져 나노섬유 및 그의 나노섬유를 대량 생산할 수 있다. 아울러 다수개의 핀으로 구성되는 노즐(2)이 구비된 블록(20)에서 전기방사함에 있어서 소재 및 전기방사 조건을 다르게 조절할 수 있으므로 부직포 및 필라멘트의 폭 및 두께를 자유롭게 변경 및 조절할 수 있다.
또한, 상기와 같이 고분자를 방사하는 경우 고분자 물질에 따라 상이하나 온도 허용범위는 30 내지 40℃, 습도는 40 내지 70%의 환경조건에서 방사를 하는 것이 가장 바람직하다.
본 발명에서 나노섬유의 직경은 30 내지 1000nm인 것이 바람직하며 더욱 바람직하게는 50 내지 500nm이다.
이하, 전기방사장치를 이용하여 셀룰로오스 기재 상에 폴리비닐리덴 플루오라이드(PVDF)를 전기방사하고 세라믹을 코팅한 내열성 나노섬유 필터의 제조방법을 설명한다.
먼저, 본 발명에서는 방사용액의 고분자로 폴리비닐리덴 플루오라이드를 이용하고, 장척시트로 셀룰로오스 기재(100)를 사용한다.
폴리비닐리덴 플루오라이드를 유기 용매에 녹인 폴리비닐리덴 플루오라이드 용액을 전기방사장치(10)의 방사용액 주탱크에 공급하고 계량 펌프를 통하여 높은 전압이 부여되는 노즐블럭(3)의 노즐(2) 내에 연속적으로 정량 공급된다. 상기 각 노즐(2)로부터 공급되는 폴리비닐리덴 플루오라이드 용액은 노즐(2)을 통해 높은 전압이 걸려있는 컬렉터(4) 상에 방사 및 집속되면서 셀룰로오스 기재(100)에 분사되어 폴리비닐리덴 플루오라이드 나노섬유 부직포를 형성한다.
여기서, 상기 전기방사장치(10)의 전단부에 위치한 블록(20) 내에서 폴리비닐리덴 플루오라이드 나노섬유가 적층되는 셀룰로오스 기재는 모터(미도시)의 구동에 의해 동작하는 공급롤러(11) 및 상기 공급롤러(11)의 회전에 의해 구동하는 보조벨트(6)의 회전에 의해 전단부에 위치한 블록에서 후단부에 위치한 블록 내로 이송되어 상기한 공정을 반복하면서 셀룰로오스 기재(100) 상에 폴리비닐리덴 플루오라이드 나노섬유 부직포가 형성된다.
한편, 상기 셀룰로오스 기재(100)를 설명하면 다음과 같다. 셀룰로오스 기재(100)는 고온에서의 치수 안정성이 우수하고, 내열성이 높다는 특징이 있다. 미세한 셀룰로오스 섬유는 미세한 다공 구조를 형성하고 있다는 점에서 고결정성, 고탄성률을 가지며, 본질적으로 고온에서의 치수 안정성이 매우 우수한 섬유이다. 이러한 특징에 의해 셀룰로오스 기재(100)는 고성능 필터, 기능지, 요리용 시트나 흡취성 시트 등의 생활 제품, 반도체 장치나 배선 기판용 기판, 낮은 선팽창률 재료의 기재, 캐패시터와 같은 축전장치용 세퍼레이터 등의 기술분야에 사용되고 있다.
본 발명의 일 실시예에서는 장척시트를 대신하여 셀룰로오스 기재(100)를 사용하였으나, 이에 한정하지 아니한다.
여기서, 상기 전기방사장치(10)의 각 블록(20)에 부여되는 방사전압은 1kV 이상, 바람직하게는 20kV이상인 것이 좋다.
상기와 같은 전기방사를 통해 셀룰로오스 기재(100) 상에 폴리비닐리덴 플루오라이드 나노섬유 부직포(200)를 적층형성한 후, 상기 폴리비닐리덴 플루오라이드 나노섬유 부직포(200) 상에 세라믹 코팅막(300)을 제조함으로서 내열성 나노섬유 필터를 제조한다.
세라믹 코팅막(300)은 상기 폴리비닐리덴 플루오라이드 나노섬유 부직포 상에 무기물 입자와 바인더 수지를 아세톤에 첨가하여 제조된 슬러리를 코팅하여 제조될 수 있다.
상기 세라믹 코팅막(300)의 구성인 무기물 입자는 SiO2, Al2O3, TiO2, Li3PO4, 제올라이트, MgO, CaO, BaTiO3, Li2O, LiF, LiOH, Li3N, BaO, Na2O, Li2CO3, CaCO3, LiAlO2, SiO, SnO, SnO2, PbO2,ZnO, P2O5, CuO, MoO, V2O5, B2O3, Si3N4, CeO2, Mn3O4, Sn2P2O7, Sn2B2O5, Sn2BPO6 및 이들의 혼합물로 이루어진 것을 특징으로 하며, 특히 SiO2, Al2O3인 것이 바람직하다.
또한, 상기 바인더는 폴리비닐리덴 플루오라이드(PVDF), 폴리메틸메타크릴레이트(PMMA), 폴리비닐알코올(PVA), 및 카복시메틸셀룰로오스(CMC) 등으로 구성된 군에서 선택된 어느 하나 이상인 것을 특징으로 하며, 상기 무기물 입자를 폴리비닐리덴 플루오라이드 나노섬유 부직포 상에 코팅 및 부착시키는데 이용한다.
또한, 상기 세라믹 코팅막(300)을 형성하기 위한 코팅 방법은 화학기상증착(Chemical vapor deposition, CVD), 물리증착(Physical vapor deposition, PVD), 용사코팅, 딥(Dip)코팅, 스핀(Spin)코팅, 캐스팅법 등 다양한 코팅방법을 사용할 수 있으며, 특히 캐스팅법에 의한 코팅이 바람직하다.
따라서, 셀룰로오스 기재(100) 상에 폴리비닐리덴 플루오라이드 나노섬유 부직포(200)가 적층형성된 이후 세라믹 코팅막(300)이 적층형성되어 본 발명의 필터가 제조된다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예들은 여러가지 다른 형태로 변형 될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어져서는 안된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되어지는 것이다.
실시예1
중량평균 분자량(Mw)이 50,000인 폴리비닐리덴 플루오라이드를 디메틸아세트아미드(N,N-Dimethylacetamide, DMAc)에 용해시켜 방사용액을 제조하고, 상기 방사용액을 평량 30gsm인 셀룰로오스 기재 상에 전극과 컬렉터 간의 거리를 40cm, 인가 전압 20kV, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건에서 전기방사하여 3㎛ 두께의 폴리비닐리덴 플루오라이드 나노섬유 부직포를 적층형성한다. 이후 0.5㎛ 크기의 Al2O3 무기물 입자와 바인더인 폴리메틸메타크릴레이트(Poly(methyl metacrylate), PMMA)(LG IG840)를 9:1 중량비로 아세톤에 첨가하여 제조된 슬러리를 폴리비닐리덴 플루오라이드 나노섬유 부직포 상에 캐스팅 방법으로 2㎛ 두께로 코팅한다.
실시예2
0.5㎛ 크기의 Al2O3 무기물 입자와 바인더인 폴리메틸메타크릴레이트(Poly(methyl metacrylate), PMMA)(LG IG840)를 8:2 중량비로 변경하는 것을 제외하고는 실시예 1과 동일한 방법으로 제조하였다.
비교예1
나일론 6을 포름산에 용해시켜 나일론 6 용액을 제조하고 상기 나일론 6 용액을 방사용액 주탱크에 투입하였다. 인가전압 20kV, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%의 조건으로 컬렉터 상에 위치된 평량 30gsm인 셀룰로오스 기재 상에 5㎛ 두께로 전기방사를 실시하여 나일론 6 나노섬유 필터를 제조하였다.
비교예2
기존의 PET 기재를 필터 여재로 사용하였다.
(1) 열 수축율 측정
5cm × 2.5cm 의 크기의 나노섬유 필터를 두 장의 슬라이드 글라스 사이에 넣고 클립으로 조인 후, 150℃에서 30분 간 방치한 후 수축율을 측정하고 표 1에 평가 결과를 나타내었다.
실시예1 실시예2 비교예1
열 수축율(%) 3 4 10
이와 같이 실시예는 비교예에 비해 내열 안정성이 우수함을 알 수 있다.
(2) 여과효율 측정
상기 제조된 나노섬유 필터의 효율을 측정하기 위해 DOP 시험방법을 이용하였다. DOP 시험방법은 티에스아이 인코퍼레이티드(TSI Incorporated)의 TSI 3160의 자동화 필터 분석기(AFT)로 디옥틸프탈레이트(DOP) 효율을 측정하는 것으로서, 필터 미디어 소재의 필터 효율을 측정할 수 있다.
상기 자동화 분석기는 DOP를 원하는 크기의 입자를 만들어 필터 시트 위에 투과하여 공기의 속도, DOP 여과 효율, 공기 투과도(통기성) 등을 계수법으로 자동으로 측정하는 장치이며 고효율 필터에 아주 중요한 기기이다.
DOP % 효율은 다음과 같이 정의된다:
DOP % 효율 = 1 - 100 (DOP농도 하류/DOP 농도 상류)
여기에서는 0.35㎛ 입자 크기의 DOP를 이용하여 실시예1,2 및 비교예2의 여과효율을 측정하였다.
실시예1 실시예2 비교예2
0.35㎛ DOP
여과 효율(%)
90 89 50
표 2의 결과를 확인하면 종래의 필터에 비하여 나노섬유를 구비한 본 발명의 필터의 여과 효율이 매우 우수함을 확인할 수 있다.
이와 같이, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다
1: 전압발생장치, 2: 노즐,
3: 노즐블록, 4: 컬렉터,
6: 보조벨트, 7: 보조벨트용 롤러,
8: 케이스, 9: 두께측정장치,
10: 전기방사장치, 11: 공급롤러,
12: 권취롤러, 19: 라미네이팅 장치,
20: 블록, 30: 주제어장치,
41: 오버플로우 용액 저장탱크, 43: 관체,
44: 방사용액 저장탱크, 45: 방사용액 유통 파이프,
100: 셀룰로오스 기재,
200: 폴리비닐리덴 플루오라이드 나노섬유 부직포,
300: 세라믹 코팅막.

Claims (5)

  1. 셀룰로오스 기재;
    상기 셀룰로오스 기재의 일면에 전기방사에 의해 적층형성되는 폴리비닐리덴 플루오라이드 나노섬유 부직포; 및
    상기 폴리비닐리덴 플루오라이드 나노섬유 부직포의 일면에 형성되는 세라믹 코팅막;
    을 포함하는 것을 특징으로 하는 내열성 나노섬유 필터.
  2. 제 1항에 있어서,
    상기 세라믹 코팅막은 SiO2, Al2O3, TiO2, Li3PO4, 제올라이트, MgO, CaO, BaTiO3, Li2O, LiF, LiOH, Li3N, BaO, Na2O, Li2CO3, CaCO3, LiAlO2, SiO, SnO, SnO2, PbO2,ZnO, P2O5, CuO, MoO, V2O5, B2O3, Si3N4, CeO2, Mn3O4, Sn2P2O7, Sn2B2O5, Sn2BPO6 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나로 구성되는 것을 특징으로 하는 내열성 나노섬유 필터.
  3. 셀룰로오스 기재 상에 폴리비닐리덴 플루오라이드를 유기 용매에 용해시켜 제조한 방사용액을 전기방사하여 폴리비닐리덴 플루오라이드 나노섬유 부직포를 형성하는 단계; 및
    상기 폴리비닐리덴 플루오라이드 나노섬유 부직포 상에 세라믹 코팅막을 형성하는 단계;
    를 포함하는 것을 특징으로 하는 내열성 나노섬유 필터의 제조방법.
  4. 제 3항에 있어서,
    상기 전기방사는 상향식 전기방사법을 사용하는 것을 특징으로 하는 내열성 나노섬유 필터의 제조방법.
  5. 제 3항에 있어서,
    상기 세라믹 코팅막은 SiO2, Al2O3, TiO2, Li3PO4, 제올라이트, MgO, CaO, BaTiO3, Li2O, LiF, LiOH, Li3N, BaO, Na2O, Li2CO3, CaCO3, LiAlO2, SiO, SnO, SnO2, PbO2,ZnO, P2O5, CuO, MoO, V2O5, B2O3, Si3N4, CeO2, Mn3O4, Sn2P2O7, Sn2B2O5, Sn2BPO6 및 이들의 혼합물로 이루어진 군에서 선택된 어느 하나로 구성되는 것을 특징으로 하는 내열성 나노섬유 필터의 제조방법.
KR1020130091645A 2013-08-01 2013-08-01 셀룰로오스 기재 상에 폴리비닐리덴 플루오라이드를 전기방사하고 세라믹을 코팅한 내열성 나노섬유 필터 및 이의 제조방법 KR101650355B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020130091645A KR101650355B1 (ko) 2013-08-01 2013-08-01 셀룰로오스 기재 상에 폴리비닐리덴 플루오라이드를 전기방사하고 세라믹을 코팅한 내열성 나노섬유 필터 및 이의 제조방법
PCT/KR2014/001569 WO2015016449A1 (ko) 2013-08-01 2014-02-26 내열성이 향상된 다층 나노섬유 필터 및 이의 제조방법
US14/909,372 US20160175748A1 (en) 2013-08-01 2014-02-26 Multi-layered nanofiber filter having improved heat resistance, and method for manufacturing same
EP14831150.9A EP3029190A4 (en) 2013-08-01 2014-02-26 MULTILAYER NANOFIBRE FILTERS WITH IMPROVED HEAT RESISTANCE AND METHOD FOR THE MANUFACTURE THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130091645A KR101650355B1 (ko) 2013-08-01 2013-08-01 셀룰로오스 기재 상에 폴리비닐리덴 플루오라이드를 전기방사하고 세라믹을 코팅한 내열성 나노섬유 필터 및 이의 제조방법

Publications (2)

Publication Number Publication Date
KR20150023959A true KR20150023959A (ko) 2015-03-06
KR101650355B1 KR101650355B1 (ko) 2016-08-23

Family

ID=53020774

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130091645A KR101650355B1 (ko) 2013-08-01 2013-08-01 셀룰로오스 기재 상에 폴리비닐리덴 플루오라이드를 전기방사하고 세라믹을 코팅한 내열성 나노섬유 필터 및 이의 제조방법

Country Status (1)

Country Link
KR (1) KR101650355B1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200052093A (ko) * 2018-11-06 2020-05-14 충남대학교산학협력단 정렬된 나노섬유 기반의 미세먼지 차단용 필터 제조방법
KR102262276B1 (ko) * 2021-02-16 2021-06-07 황소희 세라믹 담체와 유효성분을 포함하는 필터 및 부직포
CN113289500A (zh) * 2021-05-24 2021-08-24 湖南澳维新材料技术有限公司 一种高通量反渗透膜的制备方法及所得高通量反渗透膜
CN114388979A (zh) * 2022-01-14 2022-04-22 惠州市赛能电池有限公司 复合陶瓷涂覆纤维隔膜及其制备方法、锂电池
CN115414786A (zh) * 2022-08-31 2022-12-02 哈尔滨工业大学水资源国家工程研究中心有限公司 基于原位共铸的抗污染有机-无机复合超滤膜的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070047872A (ko) * 2005-11-03 2007-05-08 김학용 나노섬유층을 갖는 섬유 적층체의 제조방법
KR101072183B1 (ko) * 2008-07-25 2011-10-10 주식회사 효성 나노웹 필터의 제조방법 및 그에 의해서 제조된 나노웹필터
KR101283013B1 (ko) * 2010-02-12 2013-07-05 주식회사 아모그린텍 고내열성 및 고강도 초극세 섬유상 분리막 및 그의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070047872A (ko) * 2005-11-03 2007-05-08 김학용 나노섬유층을 갖는 섬유 적층체의 제조방법
KR101072183B1 (ko) * 2008-07-25 2011-10-10 주식회사 효성 나노웹 필터의 제조방법 및 그에 의해서 제조된 나노웹필터
KR101283013B1 (ko) * 2010-02-12 2013-07-05 주식회사 아모그린텍 고내열성 및 고강도 초극세 섬유상 분리막 및 그의 제조방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200052093A (ko) * 2018-11-06 2020-05-14 충남대학교산학협력단 정렬된 나노섬유 기반의 미세먼지 차단용 필터 제조방법
KR102262276B1 (ko) * 2021-02-16 2021-06-07 황소희 세라믹 담체와 유효성분을 포함하는 필터 및 부직포
KR102289041B1 (ko) * 2021-02-16 2021-08-10 황소희 세라믹 담체와 유효성분을 포함하는 필터 및 부직포
CN113289500A (zh) * 2021-05-24 2021-08-24 湖南澳维新材料技术有限公司 一种高通量反渗透膜的制备方法及所得高通量反渗透膜
CN114388979A (zh) * 2022-01-14 2022-04-22 惠州市赛能电池有限公司 复合陶瓷涂覆纤维隔膜及其制备方法、锂电池
CN115414786A (zh) * 2022-08-31 2022-12-02 哈尔滨工业大学水资源国家工程研究中心有限公司 基于原位共铸的抗污染有机-无机复合超滤膜的制备方法

Also Published As

Publication number Publication date
KR101650355B1 (ko) 2016-08-23

Similar Documents

Publication Publication Date Title
KR101479762B1 (ko) 내열성이 향상된 기재 사이에 다층의 나노섬유층이 구비된 필터여재 및 이의 제조방법
KR101650354B1 (ko) 내열성이 향상된 기재 양면 나노섬유가 구비된 필터여재 및 이의 제조방법
KR101650355B1 (ko) 셀룰로오스 기재 상에 폴리비닐리덴 플루오라이드를 전기방사하고 세라믹을 코팅한 내열성 나노섬유 필터 및 이의 제조방법
US20160175748A1 (en) Multi-layered nanofiber filter having improved heat resistance, and method for manufacturing same
US20160193555A1 (en) Multi-layered nanofiber medium using electro-blowing, melt-blowing or electrospinning, and method for manufacturing same
KR101479755B1 (ko) 내열성이 향상된 다층 나노섬유 필터 및 이의 제조방법
KR101479756B1 (ko) 내열성이 향상된 다층 나노섬유 필터 및 이의 제조방법
KR20180007817A (ko) 나노섬유 웹을 포함하는 2층 미세먼지 차단용 필터 및 이의 제조방법
KR101479753B1 (ko) 폴리아미드 나노섬유 필터 및 이의 제조방법
KR101479759B1 (ko) 내열성이 향상된 무기 고분자 나노섬유 필터 및 이의 제조방법
KR101484510B1 (ko) 내열성이 향상된 기재 양면 나노섬유 필터여재 및 이의 제조방법
KR101479758B1 (ko) 내열성이 향상된 폴리이미드 나노섬유 필터 및 이의 제조방법
KR101527499B1 (ko) 폴리비닐리덴 플루오라이드 나노섬유와 이성분 기재를 포함하는 필터 및 이의 제조방법
KR101635037B1 (ko) 나노섬유 필터 및 이의 제조방법
KR101527497B1 (ko) 내열성이 향상된 다층 필터여재 및 이의 제조방법
KR101479761B1 (ko) 내열성이 향상된 다층 필터여재 및 이의 제조방법
KR101579933B1 (ko) 일렉트로블로운과 일렉트로스피닝을 이용한 다층 나노섬유 필터여재 및 이의 제조방법
KR20160071760A (ko) 폴리비닐리덴 플루오라이드 나노섬유와 이성분 기재를 포함하는 필터 및 이의 제조방법
KR101479760B1 (ko) 내열성이 향상된 다층 필터여재 및 이의 제조방법
KR101479752B1 (ko) 내열성이 향상된 나노섬유 필터 및 이의 제조방법
KR101479757B1 (ko) 내열성이 향상된 폴리에테르설폰 나노섬유 필터 및 이의 제조방법
KR101416614B1 (ko) 내열성이 향상된 폴리이미드 나노섬유 필터 및 이의 제조방법
KR101527498B1 (ko) 나일론 나노섬유와 이성분 기재를 포함하는 필터 및 이의 제조방법
KR20180007821A (ko) 나노섬유 웹을 포함하는 다층 미세먼지 차단용 필터 및 이의 제조방법
KR20150023960A (ko) 멜트블로운과 전기방사를 이용한 필터여재 및 이의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20150303

Effective date: 20160628

Free format text: TRIAL NUMBER: 2015101001202; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20150303

Effective date: 20160628

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 4