KR101527497B1 - 내열성이 향상된 다층 필터여재 및 이의 제조방법 - Google Patents

내열성이 향상된 다층 필터여재 및 이의 제조방법 Download PDF

Info

Publication number
KR101527497B1
KR101527497B1 KR1020130091651A KR20130091651A KR101527497B1 KR 101527497 B1 KR101527497 B1 KR 101527497B1 KR 1020130091651 A KR1020130091651 A KR 1020130091651A KR 20130091651 A KR20130091651 A KR 20130091651A KR 101527497 B1 KR101527497 B1 KR 101527497B1
Authority
KR
South Korea
Prior art keywords
meta
filter
aramid
nanofibers
electrospinning
Prior art date
Application number
KR1020130091651A
Other languages
English (en)
Other versions
KR20150015795A (ko
Inventor
박종철
Original Assignee
(주)에프티이앤이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)에프티이앤이 filed Critical (주)에프티이앤이
Priority to KR1020130091651A priority Critical patent/KR101527497B1/ko
Priority to PCT/KR2014/001569 priority patent/WO2015016449A1/ko
Priority to US14/909,372 priority patent/US20160175748A1/en
Priority to EP14831150.9A priority patent/EP3029190A4/en
Publication of KR20150015795A publication Critical patent/KR20150015795A/ko
Application granted granted Critical
Publication of KR101527497B1 publication Critical patent/KR101527497B1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/08Filter cloth, i.e. woven, knitted or interlaced material
    • B01D39/083Filter cloth, i.e. woven, knitted or interlaced material of organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/0255Discharge apparatus, e.g. electrostatic spray guns spraying and depositing by electrostatic forces only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/14Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration
    • B29C48/142Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration using force fields, e.g. gravity or electrical fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/15Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor incorporating preformed parts or layers, e.g. extrusion moulding around inserts
    • B29C48/154Coating solid articles, i.e. non-hollow articles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • D01D5/0084Coating by electro-spinning, i.e. the electro-spun fibres are not removed from the collecting device but remain integral with it, e.g. coating of prostheses
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/025Types of fibres, filaments or particles, self-supporting or supported materials comprising nanofibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/0604Arrangement of the fibres in the filtering material
    • B01D2239/0631Electro-spun
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/18Polymers of nitriles
    • B29K2033/20PAN, i.e. polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2601/00Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, for preformed parts, e.g. for inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/14Filters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/30Flame or heat resistance, fire retardancy properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

본 발명의 내열성이 향상된 기재상 다층 나노섬유 필터는 기존의 나노섬유 필터가 가지는 낮은 열적 안정성의 문제를 해결하기 위해, 전기방사법을 통해 기재상에 내열성 나노섬유를 다층으로 적층하여 필터를 제조하는 것이다. 기재상 다층 나노섬유 필터는 메타아라미드 나노섬유를 메타아라미드 기재상에 적층하고 상기 메타아라미드 나노섬유상에 폴리이미드 나노섬유를 연속적으로 전기방사하여 제조함으로써, 필터효율과 가격 경쟁력을 갖춘 고효율 및 내열성이 보장되는 기능성 필터를 제조하는 것을 특징으로 한다.

Description

내열성이 향상된 다층 필터여재 및 이의 제조방법 {Multi-Nanofiber filter for excellent heat-resisting property and its manufacturing method}
본 발명은 내열성이 향상된 필터용 다층 필터여재 및 이의 제조방법에 관한것으로, 자세하게는 내열성 특징을 가진 메타아라미드 나노섬유와 폴리이미드 나노섬유를 내열성 기재인 메타아라미드 기재상에 적층함으로써 가스터빈이나 발전소 같이 높은 온도에서 사용가능한 내열성이 향상된 다층 필터여재 및 이의 제조방법에 관한 것이다.
일반적으로 화력발전소에서 사용하는 가스터빈은 외부로부터 정화된 공기를 흡입하여 압축한 뒤, 압축된 공기를 연료와 함께 연소기 내로 분사하여 혼합하고, 혼합된 공기와 연료를 연소시켜 고온, 고압의 연소가스를 얻은 다음, 이 고온, 고압의 연소가스를 터빈의 베인에 분사하여 회전력을 얻는 회전식 내연기관의 일종이다.
이러한 가스터빈은 매우 정밀한 부품으로 구성되어 있기 때문에 주기적인 계획 예방정비를 실시하며, 이때 압축기로 유입되는 대기중의 공기를 정화시켜 주기위한 전처리용으로 에어필터를 사용한다.
에어필터는 가스터빈으로 흡입되는 연소용 공기를 대기 중에서 취할 때 대기 중에 포함된 먼지, 분진 등의 이물질을 제거하여 깨끗이 정화시킨 다음 가스터빈에 공급하는 역할을 하는 것으로, 현재 가스터빈에 사용되는 필터는 높은 온도에 약하며, 이물질이 잘 제거되지 않는 문제점이 있다.
또한, 통상적으로 제조되고 있는 대부분의 마이크로 섬유는 용융방사, 건식방사, 습식방사 등과 같은 방사방식, 요컨대 그 고분자 용액을 기계적인 힘으로 미세구멍을 통해 강제 압출방사시킴으로써 제조된다. 하지만, 이러한 방식으로 제조되는 나노섬유의 직경은 대략 5 내지 500㎛ 범위를 가지며, 1㎛ 이하의 나노급 섬유를 제조하는 것에는 곤란함이 있다. 그러므로 이렇게 직경이 큰 섬유로 구성된 필터로는 직경이 큰 오염입자는 필터링할 수 있지만, 나노사이즈의 미세 오염입자를 필터링하는 것은 사실상 불가능하다.
상기한 문제점을 해결하기 위하여 나노사이즈의 섬유(부직포)를 제조하기 위한 다양한 방식들이 개발 및 사용되고 있으며, 그 중 유기 나노섬유를 형성하는 방법은 블록 세그먼트에 의한 나노구조 물질 형성, 자기조립에 의한 나노구조 물질형성, 실리카 촉매를 이용한 중합에 의한 나노섬유 형성, 용융방사 후 탄화공정에 의한 나노섬유 형성, 고분자 용액 또는 용융체의 전기방사에 의한 나노섬유 형성 등이 있다.
이와 같이 제조되는 나노섬유를 이용하여 나노섬유 필터를 구현할 경우, 직경이 큰 나노섬유 필터에 비해서 비표적이 매우 크고, 표면 작용기에 대한 유연성도 좋으며, 나노급 기공사이즈를 가지므로 유해한 입자나 가스 등을 효율적으로 제거할 수 있다.
하지만, 나노섬유를 이용한 필터 구현은 적지 않은 생산비용이 발생하며, 생산을 위한 여러가지 조건 등을 조절하기가 쉽지 않으므로, 나노섬유를 이용한 필터를 낮은 단가에 생산보급하지 못하게 하는 실정이며, 현재 가스터빈, 용광로 등에 사용되는 필터는 내열성을 요구하고 있다.
일반적으로 필터는 유체 속의 이물질을 걸러내는 여과장치로서 액체필터와 에어필터로 나뉜다. 그 중 에어필터는 첨단산업의 발달과 함께 첨단제품의 불량방지를 위해 공기 중의 먼지 등 미립자, 세균이나 곰팡이 등의 생물입자, 박테리아 등과 같은 생물학적으로 유해한 것이 완벽하게 제거된 클린룸(Clean room)의 사용처가 날로 확산되면서 그 수요가 점차 증가하는 추세이다. 클린룸이 적용되는 분야로는 반도체 제조, 전산기기 조립, 테이프 제조, 인쇄도장, 병원, 약품제조, 식품가공공장, 농림수산분야 등 광범위하게 사용된다.
에어필터는 필터 여재의 표면에 미세다공 구조의 기공층을 형성시킴으로 분진이 여재 내로 침투하지 못하게 하는 기능을 수행하며 여과를 한다. 하지만, 큰 입자들은 필터 여재 표면에 필터 케이크(Filter Cake)로 형성되고, 미세한 입자들은 1차 표면층을 통과하여 필터 여재에 점차 쌓이게 되어 필터의 기공을 막는다. 결국 필터의 기공을 막은 큰 입자들 및 미세 입자들은 필터의 압력손실을 높이고 필터의 수명을 저하시킬 뿐 아니라, 기존의 필터 여재로는 1미크론 이하 나노사이즈의 미세 오염입자를 필터링하는 것에 어려움이 있었다.
한편, 기존의 에어필터는 필터 여재를 구성하는 섬유집합체에 정전기를 부여하여 입자가 정전기력에 의해 포집되는 원리에 의해 효율이 측정되었다. 그러나, 최근 유럽의 에어필터 분류 표준인 EN779는 2012년에 정전기 효과에 의한 필터의 효율을 배제하기로 결정함에 따라 기존의 필터의 실제 효율은 20%이상 저하되는 것이 밝혀졌으며, 또한 기존의 내열성 필터의 소재로 사용되었던 유리섬유가 환경에 미치는 악영향으로 인해 유럽과 미국에서는 환경안정성을 위해 유리섬유의 이용을 규제하고 있는 실정이다.
상기한 문제점을 해결하기 위하여 나노사이즈의 섬유를 제조하여 필터에 적용하는 다양한 방식들이 개발되고 있다. 나노섬유를 필터에 구현할 경우, 직경이 큰 기존의 필터 여재에 비해서 비표적이 매우 크고, 표면 작용기에 대한 유연성도 좋으며, 나노급 기공사이즈를 가지므로, 유해한 미세입자나 가스 등을 효율적으로 제거할 수 있게 되었다.
하지만, 나노섬유를 이용한 필터 구현은 생산비용이 크게 발생하며, 생산을 위한 여러 가지 조건 등을 조절하기가 쉽지 않는 등 대량생산에 어려움이 있으므로 나노섬유를 이용한 필터는 상대적으로 낮은 단가로 생산보급하지 못하는 실정이다. 더 나아가 현재 가스터빈, 용광로 등에 사용되는 필터는 내열성을 요구하고 있다.
본 발명은 노즐이 구비되는 노즐블록이 수평방향을 향하여 2개의 구간으로 구획되고, 각각의 구획된 구간에 고분자를 공급하는 제1공급장치 및 제2공급장치로 구비되어 컬렉터 상에 고분자를 방사하는 전기방사장치의 필터여재의 제조방법에 있어서, 상기 전기방사장치의 제1공급장치에 내열성 고분자 메타아라미드를 유기용매에 용해시켜 제조한 용액을 컬렉터 상에 전기방사하여 메타아라미드 나노섬유를 형성하는 단계와 상기 전기방사장치의 제2공급장치에 제1공급장치와는 다른 내열성 폴리머인 폴리이미드 전구체를 유기용매에 용해시켜 제조한 용액을 상기 메타아라미드 나노섬유 상에 방사하여 폴리이미드 전구체 나노섬유를 적층하는 단계와 상기 적층된 나노섬유층을 가열하여 폴리이미드 전구체 나노섬유를 이미드화 시켜서 폴리이미드 나노섬유를 제조하는 단계를 포함하는 필터용 다층 필터여재의 제조방법 및 이에 의해 제조된, 메타아라미드/폴리이미드 나노섬유를 포함하여 이루어지는 필터용 다층 필터여재에 관한 것이다.
본 발명은 내열성 고분자인 메타아라미드와 폴리이미드를 이용하므로 내열성이 우수하며, 연속적인 전기방사법을 이용함으로 제조공정이 효율적이고 가격경쟁력을 갖출 뿐 아니라, 나노섬유를 구비하므로 고효율 필터로서 사용이 가능하다.
도 1은 다층 나노섬유필터의 모식도이다.
도 2는 연속식 전기방사장치에 관한 공정모식도이다.
도 3은 전기방사장치의 블록에 관한 공정모식도이다.
도 4는 두께측정장치의 모식도이다.
도 5는 노즐블록의 모식도이다.
본 발명의 내열성 고분자인 메타아라미드 및 폴리이미드를 메타아라미드 기재상에 전기방사하여 다층 필터여재를 제조하는 방법을 살펴본다.
본 발명에서 필터여재의 기재는 내열성이 우수한 메타아라미드 기재를 사용한다.
메타아라미드는 벤젠고리가 메타 위치에서 아미드기와 결합된 것으로 강도와 신도는 보통의 나일론과 비슷하나 열에 대한 안정성이 대단히 좋으며, 다른 내열성용 소재에 비하여 가볍고 흡수도 어느 정도 가능한 장점을 가지고 있다. 이는 고온의 작동조건일수록 필터 안정성을 확보할 수 있기 때문에 필터 기재로 적절하게 사용할 수 있다.
본 발명의 바람직한 실시예들을 첨부한 도면을 참조하여 상세히 설명한다. 도면들 중 동일한 구성요소들은 가능한 어느 곳에서든지 동일한 부호들을 나타내고 있음에 유의해야 한다. 또한 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다.
도2과 도3은 본 발명의 실시예에 따른 전기방사장치의 구성의 모식도이다.
도면에서 도시하고 있는 바와 같이, 도2의 연속식 전기방사장치 모식도는 방사용액이 내부에 충진되는 방사용액 주탱크(미도시)와 상기 방사용액 주탱크 내에 충진된 고분자 방사용액의 정량 공급을 위한 계량 펌프(도번 미도시)와 상기 방사용액 주탱크 내의 고분자 방사용액을 토출하되, 핀 형태로 이루어지는 노즐(2)이 다수 개 배열되는 노즐블록(3)과 상기 노즐의 하단에 위치하여 분사되는 고분자 방사용액을 집적하기 위하여 노즐(2)에서 일정간격 이격되는 컬렉터(4) 및 상기 컬렉터에 전압을 발생시키는 전압 발생장치(1)를 그 내부에 수용하는 블록(20) 및 블록(20) 내의 전도체 또는 부전도체로 이루어져 있는 케이스(8)를 포함하여 구성된다.
본 발명에서는 방사용액 주탱크(미도시)가 1개로 구성되어 있으나, 방사용액이 2가지 이상으로 구성되는 경우에는, 방사용액 주탱크를 2개 이상으로 구비하거나, 하나의 방사용액 주탱크 내부가 2개 이상의 공간으로 구획되고 각 구획된 공간에 2개 이상의 고분자 방사용액이 충진되어 공급하는 경우도 가능하다.
여기서, 본 발명에서는 상기 전기방사장치(10)가 방사용액을 상방향으로 분사하는 상향식 전기방사장치를 사용한다.
한편, 본 발명의 실시예에서는 전기방사장치로 방사용액을 상방향으로 분사하는 상향식 전기방사장치를 사용하나, 방사용액을 하방향으로 분사하는 하향식 전기방사장치가 사용될 수 있으며, 상향식과 하향식 전기방사장치가 함께 사용되는 복합식 전기방사장치가 사용될 수 있으며, 이에 한정하지 아니한다.
상기한 바와 같은 구조에 의하여, 상기 전기방사장치(10)는 상기 블록(20)내의 방사용액 주탱크에 충진되는 방사용액이 계량 펌프를 통하여 높은 전압이 부여되는 다수의 노즐(2) 내에 연속적으로 정량 공급되고, 상기 노즐(2)로 공급되는 고분자의 방사용액은 노즐(2)를 통해 높은 전압이 걸려 있는 컬렉터(13) 상에 방사 및 집속되어 나노섬유(미도시)를 형성하며, 형성된 나노섬유를 라미네이팅하여 필터로 제조한다.
그리고 전기방사장치(10) 전단에는 각 블록(20)에서 고분자 방사용액이 분사되어 나노섬유가 적층형성되는 장척시트를 공급하는 공급롤러(11)가 구비되고, 후단에는 나노섬유가 적층형성되는 장척시트를 권취하기 위한 권취롤러(12)가 구비된다.
상기 장척시트는 나노섬유의 처짐 방지 및 이송을 위하여 구비되는 것으로서 본 발명에서는 장척시트로 필터 기재(5)를 사용하며, 필터 기재(5) 상에 고분자 방사용액이 적층 분사되어 나노섬유가 형성된다.
본 발명의 실시예에서는 필터 기재(5)가 장척시트로 사용되었으나, 이형지나 부직포 등이 사용될 수 있으며, 이에 한정하지 아니한다.
즉, 본 발명에서 장척시트로 이용되는 필터 기재(5)는 전기방사장치(10)의 선단에 구비되는 공급롤러(11) 및 후단에 구비되는 권취롤러(12)에 그 일측과 타측이 권취된다.
한편, 각 블록(20)의 전기방사장치는 컬렉터(4)를 기준으로 각각 방사의 진행방향(a)으로 설치된다. 또한, 상기 각 컬렉터(4)와 필터 기재(5) 사이에 보조벨트(6)가 각각 구비되고, 각 보조벨트(6)를 통하여 각 컬렉터(4)에 집적되어 나노섬유가 적층형성되는 필터 기재(5)가 수평방향으로 이송된다. 즉, 보조벨트(6)는 필터 기재의 이송속도(V)에 동기하여 회전하고, 보조벨트(6)를 구동하기 위한 보조벨트용 롤러(7)를 갖는다. 보조벨트용 롤러(7)는 2개 이상의 마찰력이 극히 적은 자동 롤러이다. 컬렉터와 필터 기재(5)와의 사이에 보조벨트(6)가 구비되기 때문에, 필터 기재(5)는 고전압이 인가되어 있는 컬렉터에 끌어 당겨지는 일이 없이 부드럽게 이송되도록 이루어진다.
상기한 바와 같은 구조에 의하여, 상기 전기방사장치(10)의 블록(20) 내의 방사용액 주탱크 내에 충진된 방사용액이 노즐(2)을 통하여 컬렉터(4) 상에 위치한 필터 기재(5) 상에 분사되고, 상기 필터 기재(5) 상에 분사된 방사용액이 집적되면서 나노섬유를 적층형성한다. 그리고 상기 컬렉터(4)의 양측에 구비되는 보조벨트용 롤러(7)의 회전에 의해 보조벨트(6)가 구동되어 필터 기재(5)가 이송되면서 전기방사장치(10) 후단에 있는 블록(20) 내에 위치되어 상기한 공정을 반복적으로 수행한다.
한편, 노즐블록(3)은 도 5에서 나타내는 바와 같이 방사용액을 토출구로부터 상향 배치되는 복수의 노즐(2), 노즐(2)이 일렬로 구성되는 관체(43), 방사용액 저장탱크(44) 및 방사용액 유통 파이프(45)로 구성된다.
먼저, 방사용액 주탱크와 연결되어 방사용액을 공급받아 저장하는 방사용액 저장탱크(44)는 용액의 토출량을 상기 계량 펌프(미도시)에 의해 방사용액 유통 파이프(45)를 통하여 노즐(2)에 방사용액을 공급하여 방사가 진행된다. 여기서, 복수의 노즐(2)이 일렬로 구성되는 관체(43)는 상기 방사용액 저장탱크(44)로부터 동일한 방사용액을 공급받지만, 방사용액 저장탱크가 복수로 구비되고 각각에 서로 다른 종류의 고분자를 공급받아 관체(43)마다 서로 종류가 다른 방사용액이 공급되어 방사되는 것도 가능하다.
상기 복수의 노즐(2)의 토출구로부터 방사될 때, 방사되지 못하고 오버플로우된 용액은 오버플로우 용액 저장탱크(41)에 이동된다. 상기 오버플로우 용액 저장탱크(41)는 방사용액 주탱크(미도시)에 연결되어 있어 오버플로우 용액은 방사에 재이용될 수 있다.
주제어장치(30)는 방사 전반의 과정에서 방사조건을 조절하는 장치로서, 노즐블록(3)에 공급되는 방사용액의 양을 제어하고, 각 블록(20)마다 전압공급장치(1)의 전압을 조절하며, 두께측정장치(9)에 의해 측정된 나노섬유 및 필터 기재의 두께에 따라서 각 블록의 이송속도(V)를 제어할 수 있다.
본 발명의 두께측정장치(9)는 블록(20)의 전단부 및 후단부에 위치하고 나노섬유가 적층형성된 필터 기재(5)를 사이에 두고 마주보게 설치되어 있다. 상기 두께측정장치(9)는 전기방사장치(10)의 방사조건을 조절하는 주제어장치(30)에 연결되어 있어, 상기 두께측정장치(9)가 나노섬유 및 필터 기재(5)의 두께를 측정한 값을 기초로 하여 주제어장치(30)에서는 각 블록(20)의 이송속도(V)를 제어하도록 한다. 예를 들면, 전기방사에 있어서 각 블록(20)마다 토출된 나노섬유의 두께 측정치의 편차량이 얇게 측정되면, 후단부에 위치한 블록(20)의 이송속도(V)를 감소시켜 나노섬유의 두께를 일정하게 조절한다. 또한 상기 주제어장치(30)가 노즐블록(3)의 토출량을 증가시키고 전압발생장치(1) 전압의 세기를 조절하여 단위 면적당의 나노섬유의 토출량을 증대시켜 나노섬유의 두께를 균일하게 조절하는 것이 가능하다.
상기 두께측정장치(9)는 초음파 측정방식에 의해 상기 나노섬유가 적층 형성된 나노섬유 및 필터 기재(5)까지의 거리를 측정하는 한 쌍의 초음파 종파와 횡파의 측정방식으로 이루어지는 두께측정부를 구비하고, 상기 한 쌍의 초음파 측정장치에 의해 측정된 거리를 기초로 하여 상기 나노섬유 및 필터 기재(5)의 두께를 산출하는 것으로 이는 도 7에 도시되어 있다. 보다 상세하게는, 나노섬유가 적층된 필터 기재(5)에 초음파 종파와 횡파를 함께 투사하여 종파와 횡파의 각 초음파 신호가 필터 기재(5)에서 왕복 이동하는 시간, 즉 종파와 횡파의 각 전파시간을 측정한 뒤, 상기 측정된 종파와 횡파의 전파시간과 나노섬유가 적층된 필터 기재(5)의 기준온도에서 종파와 횡파의 전파속도 및 전파속도의 온도상수를 이용하는 소정의 연산식으로부터 피검사체의 두께를 계산하는 두께측정장치이다.
본 발명에 이용되는 전기방사장치(10)는 나노섬유의 두께 편차량(P)이 소정의 값 미만인 경우에는 이송속도(V)를 초기 값으로부터 변화시키지 않고, 상기 편차량(P)이 소정값 이상인 경우에는 이송속도(V)를 초기 값으로부터 변화시키도록 제어하는 것도 가능하기 때문에, 이송속도(V) 제어장치에 의한 이송속도(V)의 제어를 단순화하는 것이 가능해진다. 또한, 이송속도(V)의 제어 외에도 노즐블록(3)의 토출량과 전압의 세기도 조절할 수 있어서, 두께 편차량(P)이 소정의 값 미만인 경우에는 노즐블록(3) 토출량과 전압의 세기를 초기 값으로부터 변화시키지 않고, 상기 편차량(P)이 소정의 값 이상인 경우에는 노즐블록(3)의 토출량과 전압의 세기를 초기 값으로부터 변화시키도록 제어하는 것이 가능하기 때문에, 노즐블록(3) 토출량과 전압의 세기의 제어를 단순화하는 것이 가능해진다.
한편, 전기방사장치(10)의 블록(20)은 방사위치에 따라 전단부에 위치한 전단부 블록(20a)과 후단부에 위치한 후단부 블록(20b)으로 구분된다. 본 발명의 일 실시예에서는 블록의 개수를 2개로 한정하고 있으나, 2개 이상 혹은 1개로 구성되는 것도 가능하다.
또한, 본 발명에서는 각 블록(20a, 20b)에서 같은 고분자 방사용액을 방사하고 있으나, 각 블록마다 서로 다른 종류의 고분자 방사용액을 각각 방사하는 경우도 가능하며, 어느 한 블록 내에서 2가지 이상의 다른 고분자 방사용액이 방사되는 것도 가능하다. 각 블록(20)마다 적어도 2종 이상의 서로 다른 종류의 방사용액을 각각 공급하여 방사하는 경우에는 서로 다른 종류의 고분자 나노섬유가 연속적으로 적층형성되는 것이 가능하다.
이외에도, 사용되는 방사용액의 고분자 종류를 2가지 이상으로 구성하여 하이브리드 나노섬유를 제조하는 것도 가능할 것이다.
또한, 각 블록(20)마다 부여하는 전압의 세기를 달리하여 섬유직경이 서로 다른 나노섬유가 연속적으로 적층형성되는 것도 가능하며, 한 블록(20) 내에서도 노즐블록(3)의 위치하는 노즐(2)마다 서로 다른 고분자 방사용액을 공급하여 2가지 이상의 고분자가 함께 전기방사되어 적층형성되는 하이브리드 나노섬유를 형성하는 것도 가능할 것이다.
한편, 본 발명의 전기방사장치(10)의 후단부에서는 라미네이팅 장치(19)가 설치되어 있다. 상기 나노섬유가 퇴적된 메타아라미드 기재(5)는 가열장치(19)를 통해 나노섬유의 제조가 마무리되며, 가열온도는 메타아라미드 기재나 나노섬유의 종류에 따라 각각 다르게 설정될 수 있으며, 본 발명에서는 이미드화를 위하여 150 내지 350℃로 가열한다. 이와 같이 상기 라미네이팅 장치(19)는 열과 압력을 부여하며 이를 통하여 나노섬유가 적층형성된 필터 기재, 즉 나노섬유 필터는 권취롤러(12)에 권취되어 나노섬유 필터가 형성된다.
상기 전기방사 방법으로 전기방사를 실시하여, 도 1에서 도시된 것과 같이 제조된 나노섬유는 공기의 유입 방향에 따라 나노섬유층을 상이하게 보이고 있다.
내열성 고분자 수지는 온도가 지속적 상승하더라도 나노섬유가 용융에 의해 붕괴가 일어나지 않도록 융점이 180℃ 이상인 내열성 수지들이다. 예를 들면, 내열성 고분자 초극세 섬유층을 구성하는 내열성 고분자 수지는 폴리아마이드, 폴리이미드, 폴리아마이드이미드, 폴리(메타-페닐렌 이소프탈아미이드), 폴리설폰, 폴리에테르케톤, 폴리에테르이미드, 폴리에틸렌텔레프탈레이트, 폴리트리메틸렌텔레프탈레이트, 폴리에틸렌 나프탈레이트 등과 같은 방향족 폴리에스터, 폴리테트라플루오로에틸렌, 폴리디페녹시포스파젠, 폴리비스[2-(2-메톡시에톡시)포스파젠]과 같은 폴리포스파젠류, 폴리우레탄 및 폴리에테르우레탄을 포함하는 폴리우레탄 공중합체, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트, 셀룰로오스 아세테이트 프로피오네이트 등과 같이 융점이 180℃ 이상이거나 융점이 없는 수지들이다. 융점이 없는 수지라 함은 온도가 180℃ 이상으로 올라가더라도 녹는 과정을 겪지 않고 타버리는 수지를 말한다. 본 발명에서 사용되는 내열성 고분자 수지는 전기방사와 같은 초극세 섬유화를 위하여 유기용매에 용해될 수 있으면 바람직하다.
본 발명에서는 메타아라미드 기재 위에 내열성 고분자 용액을 다층 전기방사하여 내열성 고분자 다층 나노섬유를 적층형성시킨다. 본 발명에서 사용하는 내열성 고분자는 메타아라미드 및 폴리이미드이다.
메타아라미드는 최초의 고내열성 아라미드 섬유로서, 단시간내에는 350℃, 연속 사용시에는 210℃에서 사용이 가능하며, 이 이상의 온도에 노출되면 다른 섬유와 같이 녹거나 연소되지 않고 탄화되는 성질을 가지고 있다. 무엇보다 방염이나 내화처리를 한 다른 제품들과는 달리, 탄화시에도 유독가스나 유해물질을 배출하지 않아 친환경 섬유로도 우수한 성질을 지니고 있다.
또한 메타아라미드는 섬유를 구성하는 분자 자체가 매우 견고한 분자구조를 가지고 있기 때문에, 본래 가지고 있는 강도가 강할 뿐만 아니라 방사단계에서 섬유 축방향으로 분자가 쉽게 배향되어 결정성을 향상시켜 섬유의 강도를 높일 수 있다.
일반적으로 메타아라미드의 비중은 1.3 내지 1.4인 것을 특징으로 하며 중량평균 분자량이 300,000 내지 1,000,000인 것이 바람직하다. 가장 바람직한 중량평균분자량은 3,000 내지 500,000이다. 메타-배향된 합성 방향족 폴리아미드를 포함한다. 중합체는 섬유-형성 분자량을 가져야 하며, 주로 방향족인 폴리아미드 단일중합체, 공중합체 및 그 혼합물을 포함할 수 있으며, 여기서 아미드(-CONH-) 결합의 적어도 85%는 2개의 방향족 고리에 직접 부착된다. 고리는 비치환되거나 치환될 수 있다. 중합체는 2개의 고리 또는 라디칼이 분자 쇄를 따라 서로에 대하여 메타 배향될 때 메타-아라미드가 된다. 바람직하게는, 공중합체는 중합체를 형성하는 데 사용된 일차 다이아민을 치환한 10% 이하의 다른 다이아민, 또는 중합체를 형성하는 데 사용된 일차 이산(diacid) 클로라이드를 치환한 10% 이하의 다른 이산 클로라이드를 가진다. 바람직한 메타-아라미드는 폴리(메타-페닐렌 아이소프탈아미드)(MPD-I) 및 그 공중합체이다. 하나의 그러한 메타-아라미드 섬유는 미국 델라웨어주 윌밍턴 소재의 이. 아이. 듀폰 디 네모아 앤드 컴퍼니(E. I. du Pont de Nemours and Company)로부터 입수가능한 노멕스(Nomex)(등록상표) 아라미드 섬유이지만, 메타-아라미드 섬유는 일본 도쿄 소재의 테이진 리미티드(Teijin Ltd.)로부터 입수가능한 상표명 테이진코넥스(Tejinconex)(등록상표); 중국 산동성 소재의 얀타이 스판덱스 컴퍼니 리미티드(Yantai Spandex Co. Ltd)로부터 입수가능한 뉴 스타(NewStar)(등록상표) 메타아라미드; 및 중국 광동의 신후이 소재의 광동 차밍 케미칼 컴퍼니 리미티드(Guangdong Charming Chemical Co. Ltd.)로부터 입수 가능한 친퍼넥스(Chinfunex)(등록상표) 아라미드 1313 등으로 다양한 스타일이 입수가능하다.
상기 유기 용매는 고분자를 충분히 용해할 수 있고, 전하유도 방사법에 적용 가능한 용매이면 특별히 제한되지 아니할 뿐만 아니라, 전하유도 방사법에 의해 다공성 고분자 나노섬유를 제조할 때, 유기용매는 거의 제거되기 때문에 전지의 특성에 영향을 미치는 것도 사용될 수 있다. 예를 들어 프로필렌카보네이트, 부틸렌카보네이트, 1,4-부티로락톤, 디에틸카보네이트, 디메틸카보네이트, 1,2-디메톡시에탄, 1,3-디메틸-2-이미다졸리디논, 디메틸설폭사이드, 에틸렌카보네이트, 에틸메틸카보네이트, N,N-디메틸포름아마이드, N,N-디메틸아세트아마이드, N-메틸-2-피롤리돈, 폴리에틸렌설포란, 테트라에틸렌글리콜디메틸에테르, 아세톤, 알코올 또는 이들의 혼합물 중 어느 하나 이상을 선택하여 사용할 수 있으며, 보다 바람직하게는 디메틸포름아마이드(Dimethylformamide, DMF) 또는 디메틸아세트아마이드(Dimethylacetamide, DMAc)를 사용하는 것이 바람직하다.
폴리이미드는 폴리이미드 전구체를 테트라하이드로퓨란(Tetrahydrofuran, THF)/디메틸아세트아마이드(Dimethylacetamide, DMAc) 혼합용매(THF/DMAc)에 용해시킨 방사용액을 제조하여 전기방사한 후, 전구체를 이미드화하여 제조한다.
본 발명에서는 폴리아믹산(Poly(amic acid), PAA)을 합성하고, 테트라하이드로퓨란(Tetrahydrofuran, THF)과 디메틸아세트아마이드(Dimethylacetamide, DMAc)의 혼합용매(THF/DMAc)에 녹여 폴리아믹산 도프(Dope)를 제조하고, 전기방사를 이용한 폴리아믹산 나노섬유를 제조한 후, 이미드화(Imidization)를 통한 폴리이미드(Polyimide, PI) 나노섬유를 제조할 수 있다.
상기 폴리이미드는 2단계 반응에 의해 제조된다.
제1단계는 폴리아믹산의 제조단계로서, 폴리아믹산는 다이아민(Diamine)이 용해된 반응용액에 디안하이드라이드(Dianhydride)를 첨가하여 진행되며, 중합도를 높이기 위해서는 반응온도, 용매의 수분 함유량 및 단량체의 순도 조절 등이 요구된다. 이 단계에서 사용되는 용매로는 디메틸아세트아마이드(DMAc), 디메틸포름아마이드(DMF) 및 엔-메틸-2-피롤리돈(NMP)의 유기 극성 용매가 주로 사용된다. 상기 무수물로는 피로메릴틱디안하이드라이드(Pyromellyrtic dianhydride, PMDA), 벤조페논테트라카복시디안하이드라이드(Benzophenonetetracarboxylicdianhydride, BTDA), 4,4'-옥시디프탈릭안하이드라이드(4,4'-oxydiphthalic anhydride, ODPA), 바이페닐테트라카복실릭디안하이드라이드(biphenyltetracarboxylic dianhydride, BPDA) 및 비스(3,4'-디카복시페닐)디메틸실란디안하이드라이드(bis(3,4-dicarboxyphenyl) dimethylsilane dianhydride, SIDA) 중 적어도 하나를 포함하는 것을 사용할 수 있다. 또한, 상기 디아민으로는 4,4'-옥시디아닐린(4,4'-oxydianiline, ODA), 파라페닐렌디아민(p-penylene diamine, p-PDA) 및 오르쏘페닐렌디아민(o-penylenediamine, o-PDA) 중 적어도 하나를 포함하는 것을 사용할 수 있다.
Figure 112013070014583-pat00001
반응식 1. 폴리아믹산의 제조
제2단계는 폴리아믹산로부터 폴리이미드를 제조하는 탈수, 폐환 반응 단계로서 다음의 4가지 방법이 대표적이다.
재침법은 과량의 빈용매(Poor solvent)에 폴리아믹산 용액을 투입하여 고체상의 폴리아믹산를 얻는 방법으로, 재침 용매로는 주로 물을 이용하지만, 톨루엔 또는 에테르 등을 공용매로 사용한다.
화학적 이미드화법은 아세틱안하이드라이드/피리딘(Acetic anhydride/pyridine) 등의 탈수 촉매를 이용하여 화학적으로 이미드화 반응을 수행하는 방법으로, 폴리이미드 필름의 제조에 유용하다.
열적 이미드화 방법은 폴리아믹산용액을 150 내지 200℃로 가열하여 열적으로 이미드화하는 방법으로, 가장 간단한 공정이나 결정화도가 높고, 아민계 용제를 사용할 시 아민교환반응이 일어나기 때문에 중합체가 분해되는 단점이 있다.
이소시아네이트(Isocyanate)법은 디아민 대신 디이소시아네이트를 단량체로 사용하며, 단량체 혼합물을 120℃ 이상의 온도로 가열하면 CO2가스가 발생하면서 폴리이미드가 제조되는 방법이다.
Figure 112013070014583-pat00002
반응식 2. 폴리이미드의 제조
상기 내열성 고분자 수지인 메타아라미드 및 폴리이미드를 사용하여 필터여재를 제조하는 방법을 상세하게 설명한다.
먼저, 메타아라미드를 유기 용매에 녹여 제1방사용액을 제조한다. 제1방사용액을 전기방사장치(10)의 방사용액 주탱크에 공급하고, 상기 방사용액 주탱크에 공급하고, 제1방사용액은 계량 펌프를 통하여 높은 전압이 부여되는 노즐블록(3)의 다수의 노즐(2) 내에 연속적으로 정량 공급된다.
상기 각 노즐(2) 공급되는 메타아라미드 용액은 노즐(2)을 통해 높은 전압이 걸려있는 컬렉터(4)상에 방사 및 집속되면서 메타아라미드 기재(5)에 분사되어 메타아라미드 나노섬유를 형성한다. 여기서 상기 전기방사장치(10)의 전단부 블록(20a) 내에서 메타아라미드 나노섬유가 적층되는 기내는 모터(미도시)의 구동에 의해 동작되는 공급 롤러(11) 및 상기 공급롤러(11)의 회전에 의해 구동하는 보조벨트(6)의 회전에 의해 전단부 블록(20a)에서 후단부 블록(20b) 내로 이송된다.
후단부 블록(20b)에서 폴리이미드 전구체 용액이 주입되어 있는 주탱크에 공급되는 제2방사용액은 계량 펌프를 통하여 높은 전압이 부여되는 노즐블록(3)의 다수의 노즐(2) 내에 연속적으로 정량 공급된다.
이 때, 전단부 블록(20a)는 제1공급장치라고 하며, 후단부 블록(20b)은 제2공급장치라고 한다.
더욱더 상세하게는, 본 발명의 전기방사의 방사용액을 보관하는 제1주탱크에는 메타아라미드 방사액을 제2주탱크에는 폴리이미드 전구체 수지의 방사액을 각각 보관하며, 상기 제1및 2공급장치는 전체적으로 밀폐된 원통의 형상을 갖도록 설계되어 방사액 주탱크로부터 연속적으로 주입되는 방사용액을 구간 별로 각각 공급하는 역할을 한다. 노즐블록을 2개구간으로 구획하고 각각의 구간에 제1 및 2의 공급장치를 구비하여 방사액은 각각 제1공급장치에는 메타아라미드 용액을, 제2공급장치에는 폴리이미드 전구체 수지의 용액을 사용한다.
제조된 메타아라미드 기재상에 메타아라미드 나노섬유와 폴리이미드 나노섬유를 적층시킨 필터는 공기유입방향에 높은 온도의 공기가 유입되는 가스터빈의 에어필터로 사용 시 내열성이 좋은 고분자 수지를 사용하므로 필터의 수명을 연장시킬 수 있다.
상기 노즐블록에서 구획된 구간의 길이는 필터여재을 구성하는 각각의 층의 두께에 따라 조절이 가능하다.
그리고, 고분자 막의 두께, 섬유의 직경, 섬유의 형상의 기계적 특성 등은 인가되는 전압의 세기, 고분자 용액의 종류, 고분자 용액의 점도, 토출 유량 등과 같은 전기방사 공정 조건을 제어하는 것을 통하여 임의로 조절할 수 있다.
바람직한 전기방사 공정 조건은 방사용액 공급관으로 이송된 방사용액은 다중관상노즐을 통해 컬렉터로 토출되어 섬유를 형성할 때, 다중관상노즐로부터 전기방사되는 나노섬유는 공기공급용 노즐에서 분사되는 공기에 의해 넓게 퍼지면서 컬렉터상에 포집되어 포집면적이 넓어지고 집적밀도가 균일해진다. 다중관상노즐에서 섬유화되지 못한 과잉 방사용액은 오버플로 제거용 노즐에서 수진된 후, 오버플로액의 임시저장판을 거쳐 방사용액 공급판으로 다시 이동하게 된다.
나노섬유를 제조하고자 할 경우에는 공기공급용 노즐에서 공기의 속도는 0.05m 내지 50m/초, 보다 바람직하기로는 1 내지 30m/초인 것이 좋다. 공기의 속도가 0.05m/초 미만인 경우에는 컬렉터에 포집된 나노섬유 퍼짐성이 낮아서 포집면적이 크게 향상되지 않고, 공기의 속도가 50m/초를 초과하는 경우에는 공기의 속도가 너무 빨라 나노섬유가 컬렉터에 집속되는 면적이 오히려 감소되어, 더욱 심각한 문제는 나노섬유가 아니라 굵은 실타래 형태로 컬렉터에 부착되어 나노섬유의 형성능이 현저하게 저하된다는 심각한 문제가 발생된다.
아울러, 노즐블록 최상부에 과잉 공급된 방사용액은 방사용액 배출장치에 의해 방사용액 주탱크로 강제 이송된다.
이때 전기력에 의한 섬유형성을 촉진하기 위하여 노즐블록 하단부에 설치된 도전체판과 컬렉터에는 전압발생장치에서 발생된 1kV 이상, 더욱 좋기로는 20kV 이상의 전압을 걸어준다. 상기 컬렉터로는 앤드레스 (Endless) 벨트를 사용하는 것이 생산성 측면에서 더욱 유리하다. 상기 컬렉터는 나노섬유의 밀도를 균일하게 하기 위하여 좌우로 일정거리를 왕복운동하는 것이 바람직하다.
이와 같이 컬렉터 상에 형성된 나노섬유는 웹 지지로울러를 거쳐서 권취로울러에 권취되면 나노섬유의 제조공정이 완료된다.
상기 제조장치는 포집면적을 넓혀 나노섬유의 집적 밀도를 균일하게 할 수 있으며, 드롭렛(Droplet) 현상을 효과적으로 방지하여 나노섬유의 품질을 향상시킬 수 있고, 전기력에 의한 섬유형성 효과가 높아져 나노섬유를 대량 생산 할 수 있다. 아울러 다수개의 핀으로 구성되는 노즐들을 블록형태로 배열함으로서 부직포 및 필라멘트의 폭 및 두께를 자유롭게 변경, 조절 할 수 있다.
또한, 상기와 같이 내열성 고분자를 방사하는 경우 고분자 물질에 따라 상이하나 온도 허용범위는 30 내지 40℃, 습도는 40 내지 70%의 환경조건에서 방사를 하는 것이 가장 바람직하다.
본 발명에서 다층 필터여재를 형성하는 나노섬유의 직경은 30 내지 1000nm인 것이 바람직하며 더욱 바람직하게는 50 내지 500nm이다.
다층 필터여재의 기공도는 40 내지 80%가 바람직하며 섬유의 직경이 작을수록 기공 크기가 작아지며, 기공 크기 분포도 작아진다. 또한, 섬유의 직경이 작을수록 섬유의 비 표면적이 증대되므로 작은 미립자를 필터하는 효율이 커지게 된다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예들은 여러가지 다른 형태로 변형 될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어져서는 안된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
[실시예 1]
제1구간에는 점도 50,000cps, 고형분 20중량%의 메타아라미드를 디메틸아세트아마이드(Dimethylacetamide, DMAc)에 녹여 메타아라미드 전기방사 용액(Dope, 도프)을 제조하고, 제2구간에는 중량평균분자량이 100,000인 폴리아믹산(Poly(amic acid), PAA)를 테트라하이드로퓨란(Tetrahydrofuran, THF)과 디메틸아세트아마이드(Dimethylacetamide, DMAc)의 혼합용매(THF/DMAc)에 녹여 폴리아믹산 도프(Dope)를 제조한다. 전극과 컬렉터 간의 거리를 40Cm, 인가 전압 15kV, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%인 전기방사조건에서 3㎛ 두께의 메타아라미드 나노섬유를 평량이 30gsm인 메타아라미드 기재위에 형성하고 일정속도로 컬렉터가 이동하여 2구간에서 메타아라미드 나노섬유 상층에 두께가 3㎛ 되도록 폴리아믹산 나노섬유를 방사하여 나노섬유층을 형성한 후, 200℃에서 가열시켜 폴리아믹산 나노섬유를 폴리이미드 나노섬유로 이미드화 시켜 다층 필터여재를 형성한다.
[실시예 2]
제1구간에는 점도 50,000cps, 고형분 10중량%의 메타아라미드를 디메틸아세트아마이드(Dimethylacetamide, DMAc)에 녹여 메타아라미드 전기방사 용액(Dope, 도프)을 제조하고, 제2구간에는 중량평균분자량이 100,000인 폴리아믹산(Poly(amic acid), PAA)를 테트라하이드로퓨란(Tetrahydrofuran, THF)과 디메틸아세트아마이드(Dimethylacetamide, DMAc)의 혼합용매(THF/DMAc)에 녹여 폴리아믹산 도프(Dope)를 제조한다. 전극과 컬렉터 간의 거리를 40Cm, 인가 전압 15kV, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%인 전기방사조건에서 1㎛ 두께의 메타아라미드 나노섬유를 평량이 30gsm인 메타아라미드 기재위에 형성하고 일정속도로 컬렉터가 이동하여 2구간에서 메타아라미드 나노섬유 상층에 두께가 5㎛ 되도록 폴리아믹산 나노섬유를 방사하여 나노섬유층을 형성한 후, 200℃에서 가열시켜 폴리아믹산 나노섬유를 폴리이미드 나노섬유로 이미드화 시켜 다층 필터여재를 형성한다.
[실시예 3]
제1구간에는 점도 50,000cps, 고형분 20중량%의 메타아라미드를 디메틸아세트아마이드(Dimethylacetamide, DMAc)에 녹여 메타아라미드 전기방사 용액(Dope, 도프)을 제조하고, 제2구간에는 중량평균분자량이 100,000인 폴리아믹산(Poly(amic acid), PAA)를 테트라하이드로퓨란(Tetrahydrofuran, THF)과 디메틸아세트아마이드(Dimethylacetamide, DMAc)의 혼합용매(THF/DMAc)에 녹여 폴리아믹산 도프(Dope)를 제조한다. 전극과 컬렉터 간의 거리를 40Cm, 인가 전압 15kV, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%인 전기방사조건에서 5㎛ 두께의 메타아라미드 나노섬유를 평량이 30gsm인 메타아라미드 기재위에 형성하고 일정속도로 컬렉터가 이동하여 2구간에서 메타아라미드 나노섬유 상층에 두께가 1㎛ 되도록 폴리아믹산 나노섬유를 방사하여 나노섬유층을 형성한 후, 200℃에서 가열시켜 폴리아믹산 나노섬유를 폴리이미드 나노섬유로 이미드화 시켜 다층 필터여재를 형성한다.
[실시예 4]
제1구간에는 점도 50,000cps, 고형분 20중량%의 메타아라미드를 디메틸아세트아마이드(Dimethylacetamide, DMAc)에 녹여 메타아라미드 전기방사 용액(Dope, 도프)을 제조하고, 제2구간에는 중량평균분자량이 100,000인 폴리아믹산(Poly(amic acid), PAA)를 테트라하이드로퓨란(Tetrahydrofuran, THF)과 디메틸아세트아마이드(Dimethylacetamide, DMAc)의 혼합용매(THF/DMAc)에 녹여 폴리아믹산 도프(Dope)를 제조한다. 전극과 컬렉터 간의 거리를 40Cm, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%인 전기방사조건에서 3㎛ 두께의 메타아라미드 나노섬유는 평량이 30gsm인 메타아라미드 기재위에 인가 전압 10kV로 방사하여 섬유직경이 400nm를 형성하고 일정속도로 컬렉터가 이동하여 2구간에서 메타아라미드 나노섬유 상층에 두께가 3㎛ 되도록 폴리아믹산 나노섬유를 인가 전압 20kV로 방사하여 섬유직경이 100nm를 나노섬유층을 형성한 후, 200℃에서 가열시켜 폴리아믹산 나노섬유를 폴리이미드 나노섬유로 이미드화 시켜 다층 필터여재를 형성한다.
[실시예 5]
제1구간에는 점도 50,000cps, 고형분 20중량%의 메타아라미드를 디메틸아세트아마이드(Dimethylacetamide, DMAc)에 녹여 메타아라미드 전기방사 용액(Dope, 도프)을 제조하고, 제2구간에는 중량평균분자량이 100,000인 폴리아믹산(Poly(amic acid), PAA)를 테트라하이드로퓨란(Tetrahydrofuran, THF)과 디메틸아세트아마이드(Dimethylacetamide, DMAc)의 혼합용매(THF/DMAc)에 녹여 폴리아믹산 도프(Dope)를 제조한다. 전극과 컬렉터 간의 거리를 40Cm, 인가 전압 15kV, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%인 전기방사조건에서 3㎛ 두께의 메타아라미드 나노섬유를 평량이 30gsm인 메타아라미드 기재위에 인가 전압 20kV로 방사하여 섬유직경이 100nm의 나노섬유를 형성하고 일정속도로 컬렉터가 이동하여 2구간에서 메타아라미드 나노섬유 상층에 두께가 3㎛ 되도록 폴리아믹산 나노섬유를 인가 전압 10kV로 방사하여 섬유직경이 400nm의 나노섬유층을 형성한 후, 200℃에서 가열시켜 폴리아믹산 나노섬유를 폴리이미드 나노섬유로 이미드화 시켜 다층 필터여재를 형성한다.
[비교예 1]
점도 50,000cps, 고형분 20중량%의 메타아라미드를 디메틸아세트아마이드(Dimethylacetamide, DMAc)에 녹여 메타아라미드 도프를 제조한다. 전극과 컬렉터 간의 거리를 40Cm, 인가 전압 15kV, 방사용액 유량 0.1mL/h, 온도 22℃, 습도 20%인 전기방사조건에서 6㎛ 두께의 메타아라미드 나노섬유를 평량이 30gsm인 메타아라미드 기재위에 방사하여 필터여재를 형성한다.
-내열성 평가-
실시예 1 내지 5 및 비교예 1을 200℃의 온도에서 50kg/cm의 선압으로 가열가압하여 내열성을 확인하였다.
- 여과효율 측정 -
상기 제조된 나노섬유 필터의 효율을 측정하기 위해 DOP 시험방법을 이용하였다. DOP 시험방법은 티에스아이 인코퍼레이티드(TSI Incorporated)의 TSI 3160의 자동화 필터 분석기(AFT)로 디옥틸프탈레이트(DOP) 효율을 측정하는 것으로서, 필터 미디어 소재의 통기성, 필터 효율, 차압을 측정할 수 있다.
상기 자동화 분석기는 DOP를 원하는 크기의 입자를 만들어 필터 시트 위에 투과하여 공기의 속도, DOP 여과 효율, 공기 투과도(통기성) 등을 계수법으로 자동으로 측정하는 장치이며 고효율 필터에 아주 중요한 기기이다.
DOP 여과 효율(%)은 다음과 같이 정의된다.
DOP 투과율(%) = 1- 100 (DOP농도 하류/DOP 농도 상류)
실시예1 실시예2 실시예3 실시예4 실시예5 비교예1
섬유수축율 (%) 2.9 2.5 3.3 2.9 2.9 5.0
실시예1 실시예2 실시예3 실시예4 실시예5 비교예1
0.35um DOP % 95 95 95 99 99 85
1, 1a, 1b: 전압발생장치 2: 노즐
3: 노즐블록 4: 컬렉터
5: 기재 6: 보조벨트
7: 보조벨트 롤러 8: 케이스
9: 두께측정장치 10: 전기방사장치
11: 공급롤러 12: 권취롤러
19: 라미네이팅 장치 20, 20a, 20b: 블록
30: 주제어장치 41: 오버플로우 용액 저장탱크
43: 관체 44: 방사용액 저장탱크
45: 방사용액 유통 파이프
200: 폴리이미드 나노섬유
300: 메타아라미드 나노섬유

Claims (5)

  1. 노즐이 구비되는 노즐블록이 수평방향을 향하여 2개의 구간으로 구획되고, 각각의 구획된 구간에 고분자를 공급하는 제1공급장치, 제2공급장치로 구비되어 컬렉터 상에 고분자를 방사하는 전기방사장치의 필터여재 제조 방법에 있어서,
    상기 전기방사장치의 제1공급장치에는 내열성 메타아라미드를 유기용매에 용해시켜 제조한 방사용액을 메타아라미드 기재상에 전기방사하여 메타아라미드 나노섬유층을 형성하는 단계;
    상기 전기방사장치의 제2공급장치에는 내열성 고분자인 폴리이미드 전구체를 유기 용매에 용해시켜 제조한 방사용액을 상기 메타아라미드 나노섬유층 상에 방사하여 폴리이미드 전구체 나노섬유층을 적층하는 단계;
    상기 적층된 나노섬유층을 가열하여 폴리이미드 전구체 나노섬유층을 폴리이미드 나노섬유층으로 이미드화시키는 단계;
    를 포함하는 내열성이 향상된 다층 필터여재의 제조방법.
  2. 제1항에 있어서,
    상기 폴리이미드 전구체로는 폴리아믹산(Poly(amic acid), PAA)을 이용하는 것을 특징으로 하는 내열성이 향상된 다층 필터여재의 제조방법.
  3. 삭제
  4. 제1항에 있어서,
    컬렉터 상에 고분자를 전기방사하는 방법은 상향식 전기방사법인 것을 특징으로 하는 내열성이 향상된 다층 필터여재의 제조방법.
  5. 제1항 내지 제2항 및 제4항 중 어느 한 항에 따른 제조방법으로 제조된 메타아라미드 및 폴리이미드 나노섬유로 이루어지는 내열성이 향상된 다층 필터여재.
KR1020130091651A 2013-08-01 2013-08-01 내열성이 향상된 다층 필터여재 및 이의 제조방법 KR101527497B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020130091651A KR101527497B1 (ko) 2013-08-01 2013-08-01 내열성이 향상된 다층 필터여재 및 이의 제조방법
PCT/KR2014/001569 WO2015016449A1 (ko) 2013-08-01 2014-02-26 내열성이 향상된 다층 나노섬유 필터 및 이의 제조방법
US14/909,372 US20160175748A1 (en) 2013-08-01 2014-02-26 Multi-layered nanofiber filter having improved heat resistance, and method for manufacturing same
EP14831150.9A EP3029190A4 (en) 2013-08-01 2014-02-26 MULTILAYER NANOFIBRE FILTERS WITH IMPROVED HEAT RESISTANCE AND METHOD FOR THE MANUFACTURE THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130091651A KR101527497B1 (ko) 2013-08-01 2013-08-01 내열성이 향상된 다층 필터여재 및 이의 제조방법

Publications (2)

Publication Number Publication Date
KR20150015795A KR20150015795A (ko) 2015-02-11
KR101527497B1 true KR101527497B1 (ko) 2015-06-09

Family

ID=52572957

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130091651A KR101527497B1 (ko) 2013-08-01 2013-08-01 내열성이 향상된 다층 필터여재 및 이의 제조방법

Country Status (1)

Country Link
KR (1) KR101527497B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180126581A (ko) * 2016-04-06 2018-11-27 내셔널 유니버시티 오브 사이언스 앤드 테크놀로지 “미시스” 내열성 고분자 섬유 직물 및 제품

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102273728B1 (ko) * 2020-07-31 2021-07-06 코오롱머티리얼 주식회사 나노 멤브레인, 나노 멤브레인 조립체 및 나노 멤브레인 제조방법
CN114808442B (zh) * 2022-03-21 2024-05-17 安徽世倾环保科技有限公司 一种整理液、制备方法、用途及高温烟气过滤材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070047872A (ko) * 2005-11-03 2007-05-08 김학용 나노섬유층을 갖는 섬유 적층체의 제조방법
KR20100004190A (ko) * 2008-07-03 2010-01-13 코오롱패션머티리얼 (주) 마스크
KR20100035208A (ko) * 2008-09-26 2010-04-05 주식회사 코오롱 필터재 및 그의 제조방법
KR101371061B1 (ko) * 2013-03-14 2014-03-10 (주)에프티이앤이 내열성이 향상된 이차전지용 2층 분리막 및 이의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070047872A (ko) * 2005-11-03 2007-05-08 김학용 나노섬유층을 갖는 섬유 적층체의 제조방법
KR20100004190A (ko) * 2008-07-03 2010-01-13 코오롱패션머티리얼 (주) 마스크
KR20100035208A (ko) * 2008-09-26 2010-04-05 주식회사 코오롱 필터재 및 그의 제조방법
KR101371061B1 (ko) * 2013-03-14 2014-03-10 (주)에프티이앤이 내열성이 향상된 이차전지용 2층 분리막 및 이의 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180126581A (ko) * 2016-04-06 2018-11-27 내셔널 유니버시티 오브 사이언스 앤드 테크놀로지 “미시스” 내열성 고분자 섬유 직물 및 제품
KR102534745B1 (ko) 2016-04-06 2023-05-18 내셔널 유니버시티 오브 사이언스 앤드 테크놀로지 “미시스” 내열성 고분자 섬유 직물 및 제품

Also Published As

Publication number Publication date
KR20150015795A (ko) 2015-02-11

Similar Documents

Publication Publication Date Title
KR101479762B1 (ko) 내열성이 향상된 기재 사이에 다층의 나노섬유층이 구비된 필터여재 및 이의 제조방법
KR101650354B1 (ko) 내열성이 향상된 기재 양면 나노섬유가 구비된 필터여재 및 이의 제조방법
EP3029191A1 (en) Multi-layered nanofiber filter medium using electro-blowing, melt-blowing or electrospinning, and method for manufacturing same
KR101479755B1 (ko) 내열성이 향상된 다층 나노섬유 필터 및 이의 제조방법
US20160175748A1 (en) Multi-layered nanofiber filter having improved heat resistance, and method for manufacturing same
KR101479756B1 (ko) 내열성이 향상된 다층 나노섬유 필터 및 이의 제조방법
KR20150040692A (ko) 폴리비닐리덴 플루오라이드 나노섬유와 이성분 기재를 포함하는 필터 및 이의 제조방법
KR101527497B1 (ko) 내열성이 향상된 다층 필터여재 및 이의 제조방법
KR20180007817A (ko) 나노섬유 웹을 포함하는 2층 미세먼지 차단용 필터 및 이의 제조방법
KR101484510B1 (ko) 내열성이 향상된 기재 양면 나노섬유 필터여재 및 이의 제조방법
KR101650355B1 (ko) 셀룰로오스 기재 상에 폴리비닐리덴 플루오라이드를 전기방사하고 세라믹을 코팅한 내열성 나노섬유 필터 및 이의 제조방법
KR101479758B1 (ko) 내열성이 향상된 폴리이미드 나노섬유 필터 및 이의 제조방법
KR101479760B1 (ko) 내열성이 향상된 다층 필터여재 및 이의 제조방법
KR101491994B1 (ko) 다공성 지지체, 이의 제조방법 및 이를 포함하는 기체 또는 액체 필터용 멤브레인
KR101479761B1 (ko) 내열성이 향상된 다층 필터여재 및 이의 제조방법
KR101579933B1 (ko) 일렉트로블로운과 일렉트로스피닝을 이용한 다층 나노섬유 필터여재 및 이의 제조방법
KR20150023960A (ko) 멜트블로운과 전기방사를 이용한 필터여재 및 이의 제조방법
KR20150040676A (ko) 폴리비닐리덴 플루오라이드 나노섬유를 포함하는 필터 및 이의 제조방법
KR101635031B1 (ko) 내열성이 향상된 기재 양면 나노섬유 필터여재 및 이의 제조방법
KR101579936B1 (ko) 이성분 기재의 양면에 폴리비닐리덴 플루오라이드-핫멜트 나노섬유를 포함하는 필터 및 이의 제조방법
KR101479763B1 (ko) 일렉트로블로운과 일렉트로스피닝을 이용한 다층 나노섬유 필터여재 및 이의 제조방법
KR20160071760A (ko) 폴리비닐리덴 플루오라이드 나노섬유와 이성분 기재를 포함하는 필터 및 이의 제조방법
KR101479754B1 (ko) 내열성이 향상된 다층 나노섬유 필터 및 이의 제조방법
KR101416614B1 (ko) 내열성이 향상된 폴리이미드 나노섬유 필터 및 이의 제조방법
KR101479757B1 (ko) 내열성이 향상된 폴리에테르설폰 나노섬유 필터 및 이의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180409

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190701

Year of fee payment: 5