KR20140057505A - h-TERT 유전자를 포함하는 종양세포 불멸화용 조성물 - Google Patents

h-TERT 유전자를 포함하는 종양세포 불멸화용 조성물 Download PDF

Info

Publication number
KR20140057505A
KR20140057505A KR1020140034309A KR20140034309A KR20140057505A KR 20140057505 A KR20140057505 A KR 20140057505A KR 1020140034309 A KR1020140034309 A KR 1020140034309A KR 20140034309 A KR20140034309 A KR 20140034309A KR 20140057505 A KR20140057505 A KR 20140057505A
Authority
KR
South Korea
Prior art keywords
cells
cell
virus
tumor
tumor cells
Prior art date
Application number
KR1020140034309A
Other languages
English (en)
Inventor
김윤경
최재도
고재필
Original Assignee
주식회사 제넨메드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제넨메드 filed Critical 주식회사 제넨메드
Priority to KR1020140034309A priority Critical patent/KR20140057505A/ko
Publication of KR20140057505A publication Critical patent/KR20140057505A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/04Immortalised cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Oncology (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 v-myc 또는 h-TERT 유전자를 포함하는 종양세포 불멸화용 조성물에 관한 것이다.
본 발명에 따르면, 종양조직에서 일차배양 종양세포를 분리하여 바이러스 암유전자(oncogene)인 브이-믹(v-myc)과 틸로미어 유지를 통하여 세포의 노화를 억제하는 에이치-터트(h-TERT) 유전자를 이용하여 종양세포를 대량으로 증폭시키는 것이 가능하다. 현재 개발 중인 항암제를 시험하기 위해서는 종양조직 내에 제한된 수의 종양세포를 이용해서 모델을 만들거나, 종양조직을 증폭해야 하는데 적은수의 종양세포는 성장을 유지하지 어렵다. 그러나 본 발명 불멸화 기술을 이용하면 종양세포를 대량으로 증폭이 가능하기 때문에 문제점을 극복할 수 있다. 본 발명은 v-myc 또는 h-TERT 유전자를 포함하는 종양세포 불멸화용 조성물에 관한 것이다.
본 발명에 따르면, 종양조직에서 일차배양 종양세포를 분리하여 바이러스 암유전자(oncogene)인 브이-믹(v-myc)과 틸로미어 유지를 통하여 세포의 노화를 억제하는 에이치-터트(h-TERT) 유전자를 이용하여 종양세포를 대량으로 증폭시키는 것이 가능하다. 현재 개발 중인 항암제를 시험하기 위해서는 종양조직 내에 제한된 수의 종양세포를 이용해서 모델을 만들거나, 종양조직을 증폭해야 하는데 적은수의 종양세포는 성장을 유지하지 어렵다. 그러나 본 발명 불멸화 기술을 이용하면 종양세포를 대량으로 증폭이 가능하기 때문에 문제점을 극복할 수 있다.

Description

h-TERT 유전자를 포함하는 종양세포 불멸화용 조성물{compositions for tumor cell immortalization comprising h-TERT gene}
본 발명은 종양세포 불멸화용 조성물에 관한 것으로, 더욱 구체적으로 v-myc 또는 h-TERT 유전자를 포함하는 종양세포 불멸화용 조성물에 관한 것이다.
세포주란 세포 배양을 통해 계속 분열·증식하는 세포를 말하며 계대 배양시 세포의 특징이 변하지 않는 세포를 말한다. 이러한 세포주는 자연적으로 발생하거나 의도적으로 실험에 의해 유도되어 만들어진다.
최초의 세포주는 Henrietta Lacks라는 흑인 여성의 자궁경부에서 종양을 떼어내어 배양한 세포이다. 이 세포는 시험관 내에서 세포의 특징이 변하지 않고 무한 증식이 가능한 최초의 세포이고 HeLa 세포라고 명명되어 지금까지 사용되고 있다.
세포주를 만들어지는 방법은 여러 가지가 있는데, 첫 번째로는 암에 의해서 자연적으로 발생하는 경우이다. 이것은 최초의 세포주를 만들었던 방법이다. 가장 대표적인 예로는 자궁경부암 종양에서 떼어내 배양한 HeLa 세포와 쥐 백혈병에서 얻은 mouse raw 264.7 세포가 있다. 두 번째는 자연발생적인 혹은 유도되어 진 임의돌연변이유발과 세포선별에 의해 분열할 수 있는 세포를 얻는 것이다. 세 번째로는 바이러스 유전자를 삽입하여 부분적으로 세포주기를 조절하는 방법으로 이렇게 만들어진 세포주의 예로는 아데노바이러스 E1 유전자가 이용되어 만들어진 HEK294 세포주가 있다. 네 번째로는 세포불멸화에 요구되어지는 단백질의 인위적인 발현을 통하여 세포주를 제작하는 방법이 있다. 진핵세포에서 DNA를 복제하는 동안 염색체 분해 (chromosome dgradation)를 막는 텔로머레이즈(telomerase)의 인위적인 발현이 그 예이다. 다섯 번째로는 항체생산 B 세포주와 골수종과 융합된 항체생산 B 세포주의 발생에 사용되는 하이브리도마 기술이 있다.
현재 개발 중인 항암제를 시험하기 위해서는 종양조직 내에 제한된 수의 종양세포를 이용해서 모델을 만들거나, 종양조직을 증폭해야 하는데 적은 수의 종양세포는 성장을 유지하지 못하는 것이 현실이다. 따라서 본 발명은 적은 수의 종양세포를 불멸화 시켜 배양함으로써 종양세포를 대량으로 증폭할 수 있다.
신경줄기세포, 중배엽줄기세포의 불멸화 경험을 바탕으로 종양세포 불사화 유전자로 v-myc과 h-TERT를 선정하고 유전자 전달 시스템으로는 레트로바이러스를 이용한 세포 감염법을 확립하였다. 레트로바이러스 시스템은 바이러스를 생산할 수 있는 생산세포주(Packaging cell line)와 발현 벡터로 구성된다. 생산세포는 바이러스 입자형성과 바이러스 복제에 관련된 유전자(gag, pol, env)를 생산세포의 염색체에 삽입하여 지속적으로 발현될 수 있도록 제작되었다. 발현 벡터는 생산세포 내에서 바이러스 입자가 형성될 때 바이러스의 리보핵산(RNA)가 입자에 삽입되도록 하는 신호와(Ψ+) 6.5kb 이하의 목적유전자(Gene of interest) 삽입위치, 세포주 선별에 사용될 항생제 저항성 유전자가 포함되어 있다. 목적유전자를 발현벡터에 삽입하고, 이를 생산세포 내에 유전자형질도입(transfection) 방법으로 도입하게 되면 생산세포에서 발현된 유전자와 발현 벡터로부터 발현된 유전자가 공조하여 바이러스 입자를 형성하여 생산세포 밖으로 분비된다. 이때 생성된 바이러스는 발현벡터에서 형성된 유사 바이러스 유전체 RNA만을 함유하고 있어 이 바이러스가 생산세포가 아닌 다른 세포에 감염되었을 경우 바이러스 복제는 일어나지 않고 발현 백터상의 유전자들의 발현이 이루어진다.
이처럼 레트로바이러스 시스템은 복제능이 없는 감염성 레트로바이러스를 생성하고 시험관내 실험(in vitro) 및 생체내 실험(in vivo)으로 광범위한 포유류 세포에 목적 유전자를 도입할 수 있다. 레트로바이러스가 지닌 형질도입능은 상당히 효율이 높아 거의 모든 분열세포의 호스트게놈(host genome)속에 목적 유전자를 안정적으로 도입할 수 있다. 발현벡터는 모로니 생쥐 백혈병 바이러스의 레트로바이러스 발현벡터를 사용하였다. 피티67(PT67) 생산세포주는 엔아이에이치/3티3 (NIH/3T3)의 생산세포주로 10에이1 바이러스 (10A1 virus)의 엔벨롭(envelope) 단백질을 발현한다. 피티67(PT67) 세포로 팩키징한 세포는 2종류의 다른 표면분자, 즉 앰포트로픽 레트로바이러스(amphotropic retrovirus) 수용체와 씨에이엘브이 (CALV) 수용체를 통해 세포에 감염하여 다른 세포주로 팩키징한 바이러스보다도 광범위한 숙주에 감염된다. 본 연구팀은 레트로바이러스 시스템이 다양하고 불안정한 일차배양 종양세포에 불사화 유전자를 전달하는 최적의 방법이라 확정하였다.
v-myc 유전자는 골수구증에 관련된 바이러스 유래 암유전자로 정상세포의 8번 염색체 상에 존재하는 씨-믹(c-myc)과 유사하다. 세포내 유전자 약 15%의 발현을 조절하는 Myc 단백질은 전사 조절인자(transcription factor)로 과발현되었을 경우 세포활성 및 증식이 촉진된다고 알려져 있다. 정상세포의 경우 세포분열에 따른 염색체 복제 과정에서 염색체의 말단에 존재하는 텔로미어의 길이가 감소하게 된다. 텔로미어의 감소는 결국 세포의 노화와 사멸을 일으키게 된다. h-TERT(Human telomerase reverse transcriptase)는 세포 분열에 따라 감소 되는 텔로미어의 길이를 유지하며, 정상세포에는 발현되지 않으나 줄기세포와 종양세포에서 발현이 확인되어 이들 세포의 지속적인 분열에 관련되어 있다고 알려져 있다. 본 연구팀은 신경줄기세포와 중배엽유래 줄기세포의 불사화 경험을 토대로 v-myc과 h-TERT를 종양세포 불사화 유전자로 선정하였다.
본 발명에서는 레트로바이러스액을 제조하여 유전자 전달방법을 확립하고, 불멸화 유전자들이 세포의 활성을 증가시킴을 확인하고, 종양 일차배양 세포에서도 세포생장을 증가시켜 종양 일차배양 세포를 불멸화 시켜서 제공한다. 또한, 본 발명에 이용된 바이러스액을 제조하기 위해서는, v-myc과 h-Tert 유전자를 이용하여 레트로바이러스 벡터를 제조하고 바이러스 생산균주인 피티67(PT67)에 유전자형질도입(transfection)방법을 이용하였다.
이에, 본 발명자들은 상기 종래기술들의 문제점들을 극복하기 위하여 예의 연구노력한 결과, v-myc 및 h-TERT 유전자를 포함하는 종양세포 불멸화용 조성물로 종양세포를 불멸화 시키는 경우, 적은수의 종양세포의 성장을 유지하여 종양세포를 대량으로 증폭할 수 있음을 확인하고, 본 발명을 완성하게 되었다.
따라서, 본 발명의 주된 목적은 적은 수의 종양세포의 성장을 유지하여 종양세포를 대량으로 증폭할 수 있는 v-myc 또는 h-TERT 유전자를 포함하는 종양세포 불멸화용 조성물을 제공하는 데 있다.
본 발명의 한 양태에 따르면, 본 발명은 v-myc 또는 h-TERT 유전자를 포함하는 종양세포 불멸화용 조성물을 제공한다.
본 발명에 있어서, 상기 v-myc 유전자는 서열번호 1의 염기서열을 가지고, 상기 h-TERT 유전자는 서열번호 2의 염기서열을 갖는 것을 특징으로 하는 종양세포 불멸화용 조성물을 제공한다.
본 발명에 있어서, 상기 종양세포는 종양일차세포(Primary cancer cell)인 것을 특징으로 하는 종양세포 불멸화용 조성물을 제공한다. 본 발명에서 사용될 수 있는 종양세포는 바람직하게는 불멸화 시킬 수 있는 모든 종양세포가 사용 가능하며 더욱 바람직하게 페암 환자에서 발생한 종양세포가 사용될 수 있다.
본 발명의 조성물에서, 상기 v-myc 또는 h-TERT 유전자는 발현벡터에 삽입되어 있는 것이 바람직하다. 여기서 “발현벡터”란, 본 발명에서 클로닝 된 v-myc 또는 h-TERT유전자가 삽입 또는 도입될 수 있는 플라스미드, 바이러스 또는 기타 매개체를 의미한다. 본 발명에 따라 클로닝된 v-myc 또는 h-TERT 유전자 서열은 발현 조절 서열에 작동 가능하게 연결될 수 있으며, 상기 작동 가능하게 연결된 유전자 서열과 발현 조절 서열은 선택 마커 및 복제 개시점(replication origin)을 같이 포함하고 있는 하나의 발현 벡터 내에 포함될 수 있다. 상기 “작동 가능하게 연결(poerably linked)”된다는 것은 적절한 분자가 발현 조절 서열에 결합될 때 유전자 발현을 가능하게 하는 방식으로 연결된 유전자 및 발현 조절 서열일 수 있다. 상기 “발현 조절 서열(expression control sequence)”이란 특정한 숙주 세포에서 작동 가능하게 연결된 폴리뉴클레오티드 서열의 발현을 조절하는 DNA 서열을 의미한다. 그러한 조절 서열은 전사를 실시하기 위한 프로모터, 전사를 조절하기 위한 임의의 오퍼레이터 서열, 적합한 mRNA 리포좀 결합 부위를 코딩하는 서열 및 전시 및 해독의 종결을 조절하는 서열을 포함한다. 상기 플라스미드의 예로는 대장균 유래 플라스미드(pBR322, pBR325, pUC118 및 pUC119, pET-22b(+)), 바실러스 서브틸리스 유래 플라스미드(pUB110 및 pTP5) 및 효모 유래 플라스미드(YEp13, YEp24 및 YCp50) 등이 있으며 상기 바이러스는 레트로바이러스, 아데노바이러스 또는 백시니아 바이러스와 같은 동물 바이러스, 배큘로바이러스와 같은 곤충 바이러스가 사용될 수 있다. 본 발명에 따른 v-myc 또는 h-TERT 유전자를 숙주세포에 도입시키는데 적합한 벡터를 사용할 수 있으며, 바람직하게는 v-myc 또는 h-TERT 발현 유도가 용이하도록 디자인된 벡터를 사용할 수 있다. 본 발명에서 v-myc 또는 h-TERT 유전자는 레트로바이러스용 백터에 삽입되는 것을 특징으로 하는 종양세포 불멸화용 조성물을 제공한다.
본 발명의 v-myc 또는 h-TERT 유전자를 포함하는 재조합벡터는 당업계에 공지된 방법을 사용하여 숙주세포에 도입할 수 있다. 상기 본 발명에 따른 재조합 벡터를 숙주세포에 도입하는 방법으로는 당업계에 공지된 기술을 이용할 수 있는데 예를 들어, 염화칼슘(CaCl2) 및 열 쇼크(heat shock) 방법, 입자 총 충격법(particle gun bombardment), 실리콘 탄화물 위스터(Silicon carbide whiskers), 초음파 처리(sonication), 전기천공법(electroporation) 및 PEG(polyethylenglycol)에 의한 침전법 등을 사용할 수 있다.
본 발명의 실시예 2에서 사용된 transfection 방법은 리포솜(Liposome)을 이용한 방법으로 DNA는 어떤 carrier 없이는 세포 안으로 들어가기가 매우 힘들기 때문에 DNA를 carrier에 붙여서 세포에 transfection 하는 방법을 사용한다. 이때 사용한 liposome을 이용한 reagent가 lipofectamine이다. liposome 제제의 세포내 전달 경로는 다음과 같다. 리포솜을 DNA와 서서히 결합하면서 DNA를 수축시켜 리포솜과의 결합체를 형성한다. 이러한 결합체를 세포에 첨가하면 리포솜이 세포막과 융합되면서 세포내로 유입되어 엔도솜(endosome)을 형성하고 이후 엔도솜을 깨고 세포질 내로 나와서 DNA를 유리시킨다. 세포질 내의 DNA가 핵내로 이동하며, 핵공을 통해 핵내로 들어간다.
본 발명에 있어서, 상기 v-myc 유전자는 pLXSN 백터에, h-TERT유전자는 pLPCX 백터에 삽입된 재조합 pLXSN-myc 및 pLPCX-hTERT 백터인 것을 특징으로 하는 종양세포 불멸화용 조성물을 제공한다.
본 발명에 있어서, 상기 재조합 pLXSN-myc 또는 pLPCX-hTERT 백터는 도1에 도시된 개열지도를 갖는 것을 특징으로 하는 종양세포 불멸화용 조성물을 제공한다.
본 발명에 있어서, 상기 재조합 pLXSN-myc 또는 pLPCX-hTERT 백터는 바람직하게는 대장균, 효모 및 고등식물에서 형질전환시킬 수 있으며 더욱 바람직하게는, 대장균에서 형질전환시켜 증폭되는 것을 특징으로 하는 종양세포 불멸화용 조성물을 제공한다.
본 발명에 있어서, 상기 재조합 pLXSN-myc 백터는 v-myc 단백질, 네오마이신 저항성 단백질 및 엠파실린 저항성 단백질을 발현하고, pLPCX-hTERT 백터는 퓨로마이신 저항성 단백질을 발현하는 것을 특징으로 하는 종양세포 불멸화용 조성물을 제공한다.
본 발명에 있어서, 상기 엠파실린 저항성 단백질의 발현은 대장균에서의 선택배지에서, 네오마이신 저항성 단백질의 발현은 바이러스 생산세포주 및 불사화 암세포의 선별에서, 퓨로마이신 저항성 단백질은 단백질의 동물세포 선별에 사용하는 것을 특징으로 하는 종양세포 불멸화용 조성물을 제공한다.
본 발명에 있어서, 상기 재조합 레트로바이러스 백터를 바이러스 생산세포주에 형질도입되어 상기 바이러스 생산세포주에서 생산된 바이러스 클론인 것을 특징으로 하는 종양세포 불멸화용 조성물을 제공한다.
본 발명에 있어서, 상기 바이러스 백터의 유전자형질도입을 위한 생산세포주는 바람직하게는 앰포펙-293(AmphoPack-293), 에코펙2-293(EcoPack 2-293), 지293(G293) 세포가 있으며 더욱 바람직하게는 피티67(PT67)인 것을 특징으로 하는 종양세포 불멸화용 조성물을 제공한다. 피니67(PT67인) RetroPack PT67 cell line은 NIH/3T3의 packaging 세포주로, 10A1 virus의 envelope 단백질을 발현한다. PT67 세포로 package한 세포는 2 종류의 다른 표면분자, 즉 amphotropic retrovirus 수용체와 CALV 수용체를 통해 세포에 침입하여 다른 세포주로 package한 virus보다도 광범위한 숙주에 감염된다.
본 발명에 있어서, 상기 바이러스 생산세포주 선별은 퓨로마이신 또는 네오마이신 항생제를 사용하여 PT67-myc 또는 PT67-hTERT를 사용하여 선별하는 것을 특징으로 하는 종양세포 불멸화용 조성물을 제공한다.
본 발명에 있어서, 상기 선별된 생산세포주의 불사화 유전자 확인은 바람직하게는, real-time PCR과 wester blot 방법이 있으며, 더욱 바람직하게는 RT-PCR 및 PCR을 통해 확인하는 것을 특징으로 하는 종양세포 불멸화용 조성물을 제공한다. 도면 2에서 나타나는 바와 같이 원 세포주(packaging cell line)인 피티67(PT67)에서는 v-Myc과 h-TERT이 발현되지 않았으나 제조된 생산세포주 피티67-vmyc과 피티67-hTERT에서는 발현이 되는 것을 확인할 수 있었고 이로써 생산세포주에 불사화 유전자가 제대로 도입되었다는 것을 알 수 있다.
본 발명에 있어서, 상기 PCR에서 사용되는 프라이머는 v-myc는 서열번호3, 서열번호4, h-TERT는 서열번호5, 서열번호6 인 것을 특징으로 하는 종양세포 불멸화용 조성물을 제공한다.
도면 3에서 PCR을 통해 확인한 결과 원 세포주(packaging cell line)인 피티67(PT67)에서는 v-Myc과 h-TERT 밴드를 확인할 수 없었으나, 제조된 생산세포주 피티67-vmyc과 피티67-hTERT에서는 밴드를 확인할 수 있었으며, 이는 생산세포주에 불사화유전자의 도입 및 발현이 되었다는 것을 나타낸다. 중합효소 연쇄반응은 DNA의 원하는 부분을 복제, 증폭시키는 분자생물학적인 기술이다. 이 기술은 사람의 게놈과 같은 매우 복잡하며 양이 지극히 미량인 DNA용액에서 원하는 특정 DNA 단편만을 선택적으로 증폭시킬 수 있다. 증합효소연쇄반응에는 일련의 세 개의 단계가 있고 30~40회 정도 반복된다. 첫 번째 단계는 DNA를 변성(Denaturation)시키는 것이다. 두 가닥의 DNA는 가열함으로써 분리시킬 수 있다. 분리된 각각의 DNA는 주형(Template)으로서 역할을 하게 된다. 변성 온도는 DNA 내에 있는 G+C의 양과 길이에 따라 달라진다. 두 번째 단계는 결합(Annealing)이다. 이 단계에서는 시발체(Primer)들이 주형 DNA에 결합을 하게 된다. 결합(Annealing) 온도는 반응의 정확성을 결정하는 중요한 요소인데 만약 온도를 너무 높게 하면 시발체가 주형 DNA에 너무 약하게 결합되어서 증폭된 DNA의 산물이 매우 적어진다. 또 만약 온도를 너무 낮게 하면 시발체가 비특이적으로 결합하기 때문에 원하지 않는 DNA가 증폭될 수 있다. 세 번째 단계는 신장(Elongation)단계이다. 이 단계에서 열에 강한 DNA 중합효소가 주형 DNA에서 새로운 DNA를 만들게 된다. 또한 제조된 바이러스의 역가확인을 위하여 도면 4에서 나타나는 바와 같이 HeLa 세포에 감염시킨 경우 감염 전 세포(A) 및 바이러스 비감염 대조군 세포(B) 에 비하여 Retrovirus-vmyc 감염세포(C) Retrovirus-htert 감염세포 (D)에서 더 많은 세포가 증폭했음을 볼 수 있으며, 이는 상기 불멸화 바이러스가 많은 세포를 증폭할 수 있음을 나타낸다. 그러나 세포의 외견상으로는 큰 차이를 나타내지 않아 도면 5와 같이 씨씨케이-8(CCK-8)을 이용한 세포활성을 통하여 생산된 바이러스의 배양세포에 대한 영향력을 평가한 바와 같이 불멸화 바이러스를 감연한 세포의 활성이 크게 증가 됨을 확인 할 수 있다. 현재 세포증식 및 생존능력을 측정하기 위해서 여러 가지 테트라졸리움 솔트 (Tetrazolium salts (MTT, XTT, MTS 등)을 이용한 방법이 사용되고 있다. 대사적으로 왕성한 활동을 하고 있는 세포는 미토콘드리아의 전자전달계 과정을 통하여 생존에 필요한 에너지를 생산한다. 이 방법은 전자전달계에 존재하는 탈수소 효소가 Tetrazolium salt를 분해하여 포마잰(Formazan)이라는 발색물질을 생성하는 원리를 이용하여 살아있는 세포에서만 효과를 나타낸다. 따라서 Formazan에 의한 발색 강도 증감은 살아있는 세포수와 직선적인 상관관계가 있다는 것을 의미한다. 본 발명에서 사용한 Cell Counting Kit-8(CCK-8)은 물에 잘 녹는 테트라졸리움 솔트(highly water-soluble tetrazolium salt)를 활용한 방법이다. WST-8은 전자전달이 일어나면 water-soluble formazan dye를 형성한다. WST-8은 세포에 있는 탈수소 효소에 의해서 줄어들고 오렌지색의 물질(Formazan)이 배양액에 녹아있다. 세포에서 탈수소 효소의 활성에 의해 생성된 Formazan dye의 양은 세포증식 및 생존능력과 상관관계가 있다.
본 발명의 다른 양태에 따르면, 본 발명은 다음 단계들을 포함하는 불멸화 종양세포 제조방법:
a) v-myc 또는 h-TERT 유전자가 삽입된 레트로 바이러스 백터를 제조하는 단계:
b) 바이러스 백터를 생산세포주에 형질도입시키는 단계:
c) 형질도입된 바이러스 생산세포주를 선별하는 단계; 및
d) 상기 불멸화 바이러스 생산세포주에서 생산된 바이러스 클론을 종양세포에 감염시켜 종양세포를 불사화시키는 단계를 제공한다.
본 발명에 있어서, 상기 a)단계에서 v-myc 또는 h-TERT 유전자는 pLXSN-myc 또는 pLPCX-hTERT 백터에 삽입되는 것을 특징으로 하는 종양세포 불멸화용 조성물을 제공한다.
본 발명에 있어서, 상기 d)단계에서 바이러스 생산세포주는 피티67(PT67)인 것을 특징으로 하는 종양세포 불멸화용 조성물을 제공한다.
바이러스 암유전자(oncogene)인 브이-믹(v-myc)과 틸로미어 유지를 통하여 세포의 노화를 억제하는 에이치-터트(h-TERT) 유전자를 이용하여 종양세포를 불멸화시킴으로써 종양세포를 대량으로 증폭시키는 것을 가능하게 함에 따라 종양조직 내의 제한된 수의 종양세포를 이용하여 모델을 만들어 개발중인 항암제 시험에 유용하게 사용될 수 있으며, 적은 수의 종양세포를 불멸화 하여 성장 유지를 통해 종양세포를 대량으로 증폭할 수 있다.
도 1 은 레트로바이러스 발현벡터 지도이다.
도 2 는 PT67 세포주에서 선별된 바이러스 생산세포주의 불사화 유전자 발현 결과이다.
도 3 은 PT67 세포주에서 생산세포주의 불멸화 유전자 발현을 확인한 RT-PCR 결과이다.
도 4 는 불멸화 바이러스에 감염된 헬라(HeLa) 세포의 사진으로, A. 감염 전 세포, B. 바이러스 비감염 대조군 세포, C. Retrovirus-vmyc 감염세포, D. Retrovirus-htert 감염세포를 나타낸다.
도 5 는 씨씨케이-8(CCK-8)을 이용한 세포활성을 조사한 결과이다.
도 6 은 종양 일차배양 세포주 사진이다.
도 7a 는 종양 일차세포와 기존의 암세포의 표면 항원 확인한 결과로, A.Human dermal fibroblast, B.H187(small cell lung cancer), C.H460(large cell carcinoma)를 나타낸다.
도 7b 는 종양 일차세포와 기존의 암세포의 표면항원 확인한 결과로, D.H1793(adenocarcinoma), E. 100816 cancer 이**, F. 100811 55F, G. 100811 77M를 나타낸다.
도 8 은 불멸화 된 종양 일차세포의 사진이다.
도 9 는 불멸화 세포주의 세포 성장곡선이다.
도 10 은 불멸화 종양세포의 세포수가 두 배가 되는 시간(population doubling time) 결과이다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다.
실시예 1 : pLXSN - myc pLPCX - hTERT 의 제조
중합효소연쇄반응법으로 증폭한 v-myc과 h-TERT 유전자를 v-myc는 BstE II, Sph I, h-TERT는 Bgl II, Cla I 로 절단한 후 동일한 제한 효소로 절단한 피엘엑스에스엔(pLXSN,clontech #631509), 피엘피씨엑스(pLPCX,clontech #631511) 벡터에 디옥시리보핵산(DNA) 접합효소로 접합하였다. 접합된 유전자는 형질전환성세포 (competent cell) 대장균(Escherichia coli) 디에이치5알파(DH5α)(intron #15046, pUC계 plasmid를 이용한 유전자 library 제작, 서브클로닝 등을 하는 경우, 본 숙주균과 조합하면 β-galactosidase의 α-상보성을 이용하여 X-Gal에 의해 재조합체를 쉽게 선별할 수 있다.)에 형질전환 (transformation)하고 증폭된 플라스미드 디엔에이(plasmid DNA)를 수확하여 유전자 재조합을 확인한 후 레트로바이러스 발현 벡터 유전자를 완성하였다. 완성된 바이러스 발현 벡터는 pLXSN-myc의 경우 v-myc 단백질과 네오마이신 저항성 단백질과 엠피실린 저항성 단백질을 발현하는데 엠피실린 저항성 단백질의 발현은 대장균에서의 선택배지에서, 네오마이신 저항성 단백질은 바이러스 생산세포주 및 불사화 암세포의 선별에 사용되었다. pLPCX-hTERT의 경우 퓨로마이신 저항성 단백질이 동물세포 선별에 사용되었다.
실시예 2 : 바이러스 벡터 유전자형질도입
바이러스 벡터를 transfection 하기 위하여 인비트로젠사의 리포펙타민 2000 (Lipofectamine 2000 (Cat.#11668))을 사용하였다. 고농도의 DNA 플라스미드를 준비하고 피티67(PT67)세포(Clontech #631510)를 배양하여 준비하였다. 배양해 놓은 피티67세포는 transfection 하루 전에 60~80%의 세포로 계대하여 준비하였다. 계대 시에는 컴플리트 미디엄 (complete medium) (둘베코스 모디파이드 이글즈 미디엄(Dulbecco's Modified Eagle's Medium (DMEM)) supplemented with 100unit/ml 페니실린(penicillin G sodium), 100ug/ml 스트렙토마이신(streptomycin), 4mM 엘-글루타민 (L-glutamine), 1mM 소디움파이루베이트 (sodium pyruvate), 10% 우혈청(fetal bovine serum))을 사용하였다. 실험에는 2*106개의 세포를 60-㎜ 배양접시에 계대하여 준비하였다. 다음날 혈청과 항생제가 없는 DMEM을 희석배양액으로서 500㎕씩 두 개의 튜브에 준비하여 각각 DNA 플라즈미드 8㎍과 Lipofectamine2000 20㎕를 혼합하여 준비하였다. 각각의 혼합된 배양액은 5분간 상온에서 배양하고, 배양이 끝나면 두 가지 배양액을 혼합하여 20분간 상온에서 배양하여 transfection 혼합액으로 사용하였다. 20분간 배양이 끝나면 준비해 놓은 세포를 희석배양액으로 한번 세척하고 4㎖의 DMEM을 첨가한 뒤 유전자형질도입 혼합액 1㎖을 첨가하여 37℃, 5% CO2 배양기에 넣어 10~24시간 배양하였다. 배양 후 세포를 관찰하고 인산완충액(Dulbecco's Phosphate Buffered Saline)로 세포를 1회 세척하고 pLXSN-myc을 유전자형질도입한 배양접시에는 네오마이신(G418)을 600㎍/㎖ 농도로 첨가한 선택배지(selective medium)을, pLPCX-hTERT을 유전자형질도입한 배양 접시에는 퓨로마이신을 2㎍/㎖ 농도로 첨가한 선택배지를 5ml 첨가하여 바이러스 생산세포주를 선별하였다.
실시예 3 : 바이러스 생산세포주의 선별
바이러스 생산세포주 선별에는 퓨로마이신과 네오마이신 항생제를 사용하였다. transfection 후 10~24시간이 지나면 선택배지를 이용하여 선별을 시작하였다. 피티67-hTERT 세포주의 선별에는 2㎍/㎖농도의 퓨로마이신을, 피티67-vMyc 세포주의 선별에는 600㎍/㎖농도의 네오마이신(G418)을 사용하였다. 선택배지는 3~4일에 한번 씩 교체하며 약 10일이 경과하면 선별된 세포의 콜로니가 관찰된다. 콜로니가 관찰되면 콜로니를 트립신/이디티에이 (Trypsin/EDTA(0.25% trypsin, 1mM EDTA)로 적신 멸균된 필터디스크를 사용하여 24-웰 배양접시(24-well plate)로 계대하였다. 24-well plate에서 세포가 90%정도 꽉 차게 자라면 세포를 계수한 후 단일세포 분리를 위하여 96-well plate로 계대하였다. 96-well plate로 계대 할 때는 96-well plate에 선택배지를 100㎕씩 첨가하여 준비하였다. 첫 번째 well에는 2000개의 세포를 100ul의 선택배지에 희석하여 첨가하고 두 번째 well부터 12번째 well까지는 100㎕씩 1:2의 비율로 희석하여 최종 single cell/well 이 되도록 배양하였다. single cell이 배양 된 well이 confluent해지면 세포를 계수하고 24-well plate로 계대하였다. 그 후에는 세포주를 1/3 희석비율로 계대하면서 배양하였다.
실시예 4 : 선별된 생산세포주의 불사화유전자 발현확인
선별된 생산세포주에 불사화유전자의 도입 및 발현을 확인하기 위하여 역전사효소중합효소연쇄반응 (RT-PCR)을 실시하였다. 배양된 피티67-vMyc, 피티67-hTERT 세포주 배양접시에 각각 트라이졸 (Trizol LS) 1.5ml를 첨가하여 세포의 용해가 확인되면 튜브에 옮겨 담는다. 400㎕의 클로로포름(chloroform)을 첨가하여 잘 혼합하고 원심분리를 통해 유기용매층과 수층의 분리를 유도한다. RNA가 존재하는 상층부의 수층을 취하고 1ml의 이소프로필 알코올(isopropyl alcohol)을 첨가한 후 12,000rpm에서 10분간 원심분리하여 RNA를 침전시킨다. 침전된 RNA를 75% ethanol로 세척하고 다시 원심분리한다. 알콜을 제거하고 건조한 후 리보뉴클레아제에 오염되지 않은 물 (RNase-free water)를 사용하여 RNA를 용해한다. 이와 같이 준비된 RNA 1㎍을 상보적DNA (cDNA) 합성에 사용하였다. cDNA 합성은 슈퍼스크립트II(Superscript II)을 사용하였다. 1㎍(10㎕)의 RNA에 1㎕의 랜덤 헥사머(random hexamers(50ng/㎕)를 첨가하고 70℃에서 10분간 가열하고 곧바로 얼음에 식힌 후 간단히 원심분리 하였다. 4㎕의 5X 1st 스트랜드버퍼(strand buffer), 2㎕ 디티티(DTT(0.1M), 1㎕ 알엔에이신(Rnasin), 1㎕ 디엔티피(dNTP(10mM)을 순서대로 첨가한 후 잘 혼합한다. 25℃에서 10분간, 42℃에서 2분간 배양한 후 1㎕의 Superscript II를 첨가하여 cDNA 합성반응을 개시한다. 합성반응은 42℃에서 50분간 배양하고 효소 불활성화를 위하여 70℃에서 15분간 처리한다. 합성된 cDNA로부터 중합효소연쇄반응법으로 v-myc과 h-TERT의 cDNA를 검출하였다. 실험에 사용한 DNA 중합효소는 택폴리머레이즈(Taq polymerase (Enzynomics, Cat.# P025A)를 사용하였고, 시발체는 v-Myc의 경우에는 v-Myc Sense (CCTTTGTTGATTTCGCCAAT)와 v-Myc Antisense (AGTTCTCCTCCTCCTCCTCG)를 사용하였고, h-TERT의 경우에는 h-TERT Sense (CAGGTGTACGGCTTCGTG)와 h-TERT Antisense (AGTGCTGTCTGATTCCAATG)를 사용하였다.
도면2 및 도면3에서 나타나는 바와 같이 원 세포주(packaging cell line)인 피티67에서 v-Myc과 h-TERT는 발현되지 않았으나 발현을 제조된 생산세포주 피티67-vmyc과 피티67-hTERT에서는 발현되었음을 확인할 수 있었다.
실시예 5 : 제조된 바이러스의 역가 확인
제조된 바이러스 생산세포주를 이용하여 바이러스를 제조하고 제조된 바이러스의 역가(titer)를 측정하였다. NIH/3T3 세포에서 콜로니포밍유닛(Colony forming unit(CFU)를 측정하여 바이러스의 역가로 정하였다. 배양해 놓은 NIH/3T3 세포는 감염 (infection)하기 하루 전에 6-well plate에 well당 1*105개의 세포를 접종하였다. 다음날 complete medium에 폴리브렌(polybrene)의 농도가 12㎍/㎖이 되게 희석하여 준비한다. CFU(Colony forming unit) 측정을 위한 감염에는 0.45-㎛의 셀룰로오즈 아세테이트 필터(cellulose acetate filter)로 필터한 바이러스 원액을 연속희석법으로 10-5배 희석하여 사용하였다. 준비된 세포에 바이러스 희석액을 1㎖씩 첨가하고 polybrene의 최종농도가 4㎍/㎖이 되도록 complete medium을 2㎖씩 첨가한다, infection한 후 24시간 뒤에 선택배지로 배양액을 교체하고 관찰하였다. 바이러스의 농도측정에는 2㎍/㎖ 농도의 퓨로마이신과 500㎍/㎖ 농도의 네오마이신을 사용하였다. 선택배지는 3~4일에 한번 씩 교체하여 주고 10일 이상 관찰하여 콜로니를 확인하였다. 콜로니가 확인되면 0.2% 크리스탈바이올렛 (crystal violet) 용액을 이용하여 염색한 뒤 콜로니의 개수를 측정하여 바이러스의 역가를 계산하였다.
계산된 바이러스의 농도는 h-TERT의 경우 1.37*105cfu/㎖이고 v-Myc의 경우 1.43*105cfu/㎖이다.
실시예 6 : 바이러스 생산 세포주의 확인
생산된 바이러스의 배양세포에 대한 영향을 평가하기 위하여 세포생존능력측정 (Cell proliferation assay)를 실시하였다. Cell proliferation assay를 하기위해 Dojindo사의 Cell Counting Kit-8(CCK-8)을 사용하였다.
종양 일차배양 세포의 감염에 앞서 제조된 불사화 유전자가 세포의 활성에 미치는 영향을 평가하기 위하여 자궁경부암 세포주인 HeLa 세포에 불사화 바이러스를 감염하였다. 96-well plate의 각각의 well에 100㎕의 배양액에 희석된 5000개의 자궁경부암 세포주인 HeLa 세포를 접종하여 준비하였다. 다음날 배양액을 제거하고 각 well당 100㎕ 새로운 배양액으로 10㎕의 CCK-8 시약을 첨가하고 1시간 동안 37℃, 5% CO2 배양기에서 배양하였다. 반응이 끝난 세포를 450nm의 흡광도로 측정하였다.
도면 4에서 나타나는 것과 같이 불멸화 바이러스에 감염된 HeLa 세포는 외견 상 큰 차이를 확인하지 못했으나 도면5와 같이 CCK-8을 이용한 세포활성을 조사한 결과 불멸화 바이러스를 감염한 세포의 세포활성(Cell proliferation)이 크게 증가었음을 확인할 수 있었다.
실시예 7 : 종양세포의 일차배양
종양세포(lung cancer primary cell인 cancer 55/F, cancer77/M, cancer CSC1)의 배양에는 알피엠아이1640 배양액 (RPMI1640 Medium (supplemented with 100unit/ml penicillin G sodium, 100ug/ml streptomycin, and 10% fetal bovine serum(FBS)), 에이씨엘4 배양액 (ACL4 Medium (RPMI1640 Medium supplemented with 0.02㎎/㎖ insulin, 0.01㎎/㎖ transferrin, 25nM sodium selenite, 50nM hydrocortisone, 1 ng/㎖ epidermal growth factor, 0.01mM ethanolamine, 0.01mM phosphorylethanolamine, 100pM triiodothyronine, 0.5%(w/v) bovine serum albumin, 10mM HEPES, 0.5mM sodium pyruvate, 2mM L-glutamine), MTCC사의 네오트 배양액(Neopt Medium)을 사용하였다.(도면 6)
실시예 8 : 종양세포의 표면항원 확인
실험에는 항체당 3*105개의 세포를 이용하였다. 각각의 세포(a.human dermal fibroblast b.H187(small cell lung cancer,KCLB #. 90187, origin:peural effusion), C.H460(large cell carcinoma, KCLB #. 30177, origi:lung), D.H1793 H1793(adenocarcinoma, KCLB #.91793, origin:lung) E.cancer 55/F(폐암의 종양조직), F.cancer77/M(폐암의 종양조직), G.cancer CSC1(폐암의 종양조직))튜브에 분주하고 DPBS로 1회 세척하였다. 세척한 세포에 1:100으로 희석한 섬유아세포 표면 단백질(Fibroblast surface protein (FSP-1; Sigama Cat.# F4771)과 1:400으로 희석한 섬유아세포 단백질112 112kDa의 섬유아세포 단백질 (P112 (Acris Cat.# SM1214P)에 대한 단일클론항체를 첨가한 후 상온에서 교반하여 30분 동안 배양하였다. 배양이 끝난 후 13,000rpm의 속도로 30초 동안 원심분리하여 상층액을 제거한 후 차가운 DPBS를 넣어 3회 세척하였다. 이뮤노글로블린지-피코에리트린 (IgG-PE) (Beckaman. Cat.#731841)와 이뮤노글로블린엠-피코에리트린 (IgM-PE) (Beckaman, Cat.#731810)의 2차 항체를 1:1000으로 희석하여 각각의 세포에 첨가한 후 상온, 암조건에서 교반하여 30분 동안 배양하였다. 배양이 끝난 후 13,000rpm의 속도로 30초 동안 원심분리하여 상층액을 제거한 후 차가운 DPBS를 넣어 3회 세척하였다. 세척이 끝난 세포에 500㎕의 차가운 DPBS를 첨가하여 분석용 튜브에 옮겨 담고 유세포분석기를 사용하여 분석하였다. 각각의 대조군으로는 2차 항체만으로 염색한 세포를 사용하였다. 종양조직에서 일차종양세포를 분리하였을 때 세포의 형태가 섬유아세포와 비슷하여 일차종양세포와 함께 발현되는 카프(CAF;cancer associated fibroblast)와 함께 분리되었는지 확인하기 위한 실험으로 배양된 종양일차세포는 섬유아세포와 유사한 형태를 띠고 있으나 섬유아세포 특이적인 표면항원을 비교한 결과 정상적인 섬유아세포와는 다른 형태를 나타내고 있음을 확인할 수 있었다. 또한 P112 표면 항원의 경우에는 기존에 확립된 암세포종과도 확연히 다른 양상을 보였다. 섬유아세포 특이적 항체 anti-FSP1과 anti-P112를 이용하여 종양 일차세포의 표면항원을 관찰 하였다. Control은 일차항체 처리를 하지 않은 비특이적 이차항체 반응을 관찰한 것이다.(도면7a, 도면7b)
실시예 9 : 종양세포의 불사화
불사화시킬 종양세포를 12~18시간 전에 계대하였다. 폐암의 종양조직으로부터 분리한 cancer 55/F, cancer77/M, cancer CSC1 세포는 infection 하기 하루 전에 60-㎜의 배양접시에 2*105개의 세포를 접종하였다. 바이러스 용액은 0.45-㎛의 cellulose acetate filter로 필터하여 준비하였다. 바이러스를 알맞은 농도로 계산하여 complete medium으로 희석한 후 종양세포에 첨가하였다. polybrene은 최종농도가 8㎍/㎖이 되도록 계산하여 첨가하였다. infection한 후 24시간 뒤에 선택배지로 배양액을 교체하고 관찰하였다. 종양세포의 불멸화 후 선별에는 0.5㎍/㎖ 농도의 퓨로마이신과 600㎍/㎖ 농도의 네오마이신을 사용하였다. 선택배지는 3~4일에 한번 씩 교체하여 주고 10일 이상 관찰하여 콜로니를 확인하였다. 콜로니가 관찰되면 콜로니를 Trypsin/EDTA로 적신 멸균된 필터디스크로 찍어서 24-well plate로 계대하였다. 24-well plate에서 세포가 confluent해 지면 세포를 계수한 후 96-well plate로 계대하였다. 96-well plate로 계대 할 때는 96-well plate에 selective medium을 100㎕씩 첨가하여 준비하였다. 첫 번째 well에는 2000개의 세포를 100ul의 selective medium에 희석하여 첨가하고 두 번째 well부터 12번째 well까지는 100㎕씩 1:2의 비율로 희석하여 single cell이 만들어지도록 배양하였다. single cell이 배양 된 well이 꽉 차면 세포를 계수하고 24-well plate로 계대하였다. 그 후에는 세포주를 계대하면서 배양하였다.
primary cancer cell을 불멸화 시킨 이후에 세포의 형태가 변하지 않아야 하는데, 도면 8에서 보는 바와 같이 불사화 시키지 않은 primary cancer cell와 불사화시킨 primary cancer cell의 세포 형태가 변하지 않았다.(도면8)
실시예 10 : 불사화 종양세포의 세포성장
불사화 종양세포 제조 후 지속적인 계대배양을 통하여 세포의 성장특성을 확인하였다. 확보한 6종의 불멸화세포는 최초 바이러스 감염에 의한 세포주 확립 시점으로부터 약 90일 이상 안정적으로 배양이 지속되어 50회 이상 세포분열이 안정적으로 지속되는 것을 확인하였으며(도면9) 이 때 세포주의 2배 증식 주기는 약 2일정도이었다(도면10).
<110> GENENMED CO., LTD. <120> Compositions for tumor cell immortalization comprising v-myc or h-TERT genes <130> PN120541 <160> 6 <170> KopatentIn 2.0 <210> 1 <211> 2629 <212> DNA <213> Retroviral vector <400> 1 atggaagccg tcataaaggt gatttcgtcc gcgtgcaaaa cctattgcgg aaaaacctct 60 ccttctaaga aggaaatagg ggccatgttg tccctcttac aaaaggaagg gttgcttatg 120 tctccctcag acttatactc cccggggtcc tgggatccca ttaccgcggc gctctcccaa 180 cgggctatgg tacttgggaa atcgggagag ttaaaaacct ggggattggt tttgggagca 240 ttgaaggcgg ctcgagagga acaggttaca tctgagcaag cgaagttttg gttgggatta 300 gggggagggg agggtctctc ccccaggtcc ggagtgcatc gagacaccag caacggagcg 360 gcgaatcgac aagggggagg aagtgggaga aacaactgtg cagcgagatg cgaagatggc 420 gccggaggaa acgaccacgc ctaaaaccgt tggcacatcc tgttatcatt gcggaacagc 480 cgttggctgt aattgcgcca cagcctcggc ccctcctcct ccttatgtgg ggagtggttt 540 gtatccttcc ctggcggggg tgggagagca gcagggccag gggggtgaca cacctcgggg 600 ggcggaacag ccaagggcgg agccagggca cgcgggtcag gctcctgggc cggccctgac 660 tgactgggca agggtcaggg aggagcttgc gagtacaggt ccgcccgtgg tggccatgcc 720 tgtagtgatt aagacagagg gacccgcctg gacccctctg gagccaaaat tgatcacaag 780 actggctgat acggtcagga ccaagggctt acgatccccg atcactatgg cagaagtgga 840 agcgcttatg tcctccccgc tgctgccgca tgacgtcacg aatctaatga gagttatttt 900 aggacctgcc ccatatgcct tatggatgga cgcttgggga gtccaactcc agacggttat 960 agcggcggcc actcgcgacc cccgacaccc agcgaacggt caaggacggg gggaacggac 1020 taacttggat cgcttaaagg gcttagctga tgggatggtg ggcaacccac agggtcaggc 1080 cgcattatta agaccggggg aattggttgc tattacggcg tcggctctcc aggcgtttag 1140 agaagttgcc cggctggcgg aacctgcggg tccatgggcg gacatcacgc agggaccatc 1200 tgagtccttt gttgatttcg ccaatcggct tataaaggcg gttgaggggt cagacctccc 1260 gccttccgcg cgggctccgg tgatcattga ctgctttagg cagaagtcac agccagatat 1320 ccagcagctt atacgggcag caccctccac agtgcacggc caggcagcag ccgccgcgat 1380 gccgctcagc gccagcctcc ccagcaagaa ctacgattac gactacgact cggtgcagcc 1440 ctacttctac ttcgaggagg aggaggagaa cttctacctg gcggcgcagc agcggggcag 1500 cgagctgcag cctcccgccc cgtccgagga catctggaag aagtttgagc tcctgcccat 1560 gccgcccctc tcgcccagcc gccgctccag cctggccgcc gcctcctgct tcccttccac 1620 cgccgaccag ctggagatgg tgacggagct gctcgggggg gacatggtca accagagctt 1680 catctgcgac ccggacgacg aatccttcgt caaatccatc atcatccagg actgcatgtg 1740 gagcggcttc tccgccgccg ccaagctgga gaaggtggtg tcggagaagc tcgccaccta 1800 ccaagcctcc cgccgggagg ggggccccgc cgccgcctcc cgacccggcc cgccgccctc 1860 ggggccgccg cctcctcccg ccggccccgc cgcctcggcc ggcctctacc tgcacgacct 1920 gggagccgcg gccgccgact gcatcgaccc ctcggtggtc ttcccctacc cgctcagcga 1980 gcgcgccccg cgggccgccc cgcccggcgc caaccccgcg gctctgctgg gggtcgacac 2040 gccgcccacg accagcagcg actcggaaga agaacaagaa gaagatgagg aaatcgatgt 2100 cgttacatta gctgaagcga acgagtctga atccagcaca gagtccagca cagaagcatc 2160 agaggagcac tgtaagcccc accacagtcc gctggtcctc aagcggtgtc acgtcaacat 2220 ccaccaacac aactacgctg ctcctccctc caccaaggtg gaatacccag ccgccaagag 2280 gctaaagttg gacagtggca gggtcctcaa acagatcagc aacaaccgaa aatgctccag 2340 tccccgcacg ttagactcag aggagaacga caagaggcga acgcacaacg tcttggagcg 2400 ccagcgaagg aatgagctga agctgcgttt ctttgccctg cgtgaccaga tacccgaggt 2460 ggccaacaac gagaaggcgc ccaaggttgt catcctgaaa aaagccacgg agtacgttct 2520 gtctctccaa tcggacgagc acagactgat cgcagagaaa gagcagttga ggcggaggag 2580 agaacagttg aaacacaacc ttgagcagct aaggaactct cgtgcatag 2629 <210> 2 <211> 3399 <212> DNA <213> homo sapiens <400> 2 atgccgcgcg ctccccgctg ccgagccgtg cgctccctgc tgcgcagcca ctaccgcgag 60 gtgctgccgc tggccacgtt cgtgcggcgc ctggggcccc agggctggcg gctggtgcag 120 cgcggggacc cggcggcttt ccgcgcgctg gtggcccagt gcctggtgtg cgtgccctgg 180 gacgcacggc cgccccccgc cgccccctcc ttccgccagg tgtcctgcct gaaggagctg 240 gtggcccgag tgctgcagag gctgtgcgag cgcggcgcga agaacgtgct ggccttcggc 300 ttcgcgctgc tggacggggc ccgcgggggc ccccccgagg ccttcaccac cagcgtgcgc 360 agctacctgc ccaacacggt gaccgacgca ctgcggggga gcggggcgtg ggggctgctg 420 ctgcgccgcg tgggcgacga cgtgctggtt cacctgctgg cacgctgcgc gctctttgtg 480 ctggtggctc ccagctgcgc ctaccaggtg tgcgggccgc cgctgtacca gctcggcgct 540 gccactcagg cccggccccc gccacacgct agtggacccc gaaggcgtct gggatgcgaa 600 cgggcctgga accatagcgt cagggaggcc ggggtccccc tgggcctgcc agccccgggt 660 gcgaggaggc gcgggggcag tgccagccga agtctgccgt tgcccaagag gcccaggcgt 720 ggcgctgccc ctgagccgga gcggacgccc gttgggcagg ggtcctgggc ccacccgggc 780 aggacgcgtg gaccgagtga ccgtggtttc tgtgtggtgt cacctgccag acccgccgaa 840 gaagccacct ctttggaggg tgcgctctct ggcacgcgcc actcccaccc atccgtgggc 900 cgccagcacc acgcgggccc cccatccaca tcgcggccac cacgtccctg ggacacgcct 960 tgtcccccgg tgtacgccga gaccaagcac ttcctctact cctcaggcga caaggagcag 1020 ctgcggccct ccttcctact cagctctctg aggcccagcc tgactggcgc tcggaggctc 1080 gtggagacca tctttctggg ttccaggccc tggatgccag ggactccccg caggttgccc 1140 cgcctgcccc agcgctactg gcaaatgcgg cccctgtttc tggagctgct tgggaaccac 1200 gcgcagtgcc cctacggggt gctcctcaag acgcactgcc cgctgcgagc tgcggtcacc 1260 ccagcagccg gtgtctgtgc ccgggagaag ccccagggct ctgtggcggc ccccgaggag 1320 gaggacacag acccccgtcg cctggtgcag ctgctccgcc agcacagcag cccctggcag 1380 gtgtacggct tcgtgcgggc ctgcctgcgc cggctggtgc ccccaggcct ctggggctcc 1440 aggcacaacg aacgccgctt cctcaggaac accaagaagt tcatctccct ggggaagcat 1500 gccaagctct cgctgcagga gctgacgtgg aagatgagcg tgcgggactg cgcttggctg 1560 cgcaggagcc caggggttgg ctgtgttccg gccgcagagc accgtctgcg tgaggagatc 1620 ctggccaagt tcctgcactg gctgatgagt gtgtacgtcg tcgagctgct caggtctttc 1680 ttttatgtca cggagaccac gtttcaaaag aacaggctct ttttctaccg gaagagtgtc 1740 tggagcaagt tgcaaagcat tggaatcaga cagcacttga agagggtgca gctgcgggag 1800 ctgtcggaag cagaggtcag gcagcatcgg gaagccaggc ccgccctgct gacgtccaga 1860 ctccgcttca tccccaagcc tgacgggctg cggccgattg tgaacatgga ctacgtcgtg 1920 ggagccagaa cgttccgcag agaaaagagg gccgagcgtc tcacctcgag ggtgaaggca 1980 ctgttcagcg tgctcaacta cgagcgggcg cggcgccccg gcctcctggg cgcctctgtg 2040 ctgggcctgg acgatatcca cagggcctgg cgcaccttcg tgctgcgtgt gcgggcccag 2100 gacccgccgc ctgagctgta ctttgtcaag gtggatgtga cgggcgcgta cgacaccatc 2160 ccccaggaca ggctcacgga ggtcatcgcc agcatcatca aaccccagaa cacgtactgc 2220 gtgcgtcggt atgccgtggt ccagaaggcc gcccatgggc acgtccgcaa ggccttcaag 2280 agccacgtct ctaccttgac agacctccag ccgtacatgc gacagttcgt ggctcacctg 2340 caggagacca gcccgctgag ggatgccgtc gtcatcgagc agagctcctc cctgaatgag 2400 gccagcagtg gcctcttcga cgtcttccta cgcttcatgt gccaccacgc cgtgcgcatc 2460 aggggcaagt cctacgtcca gtgccagggg atcccgcagg gctccatcct ctccacgctg 2520 ctctgcagcc tgtgctacgg cgacatggag aacaagctgt ttgcggggat tcggcgggac 2580 gggctgctcc tgcgtttggt ggatgatttc ttgttggtga cacctcacct cacccacgcg 2640 aaaaccttcc tcaggaccct ggtccgaggt gtccctgagt atggctgcgt ggtgaacttg 2700 cggaagacag tggtgaactt ccctgtagaa gacgaggccc tgggtggcac ggcttttgtt 2760 cagatgccgg cccacggcct attcccctgg tgcggcctgc tgctggatac ccggaccctg 2820 gaggtgcaga gcgactactc cagctatgcc cggacctcca tcagagccag tctcaccttc 2880 aaccgcggct tcaaggctgg gaggaacatg cgtcgcaaac tctttggggt cttgcggctg 2940 aagtgtcaca gcctgtttct ggatttgcag gtgaacagcc tccagacggt gtgcaccaac 3000 atctacaaga tcctcctgct gcaggcgtac aggtttcacg catgtgtgct gcagctccca 3060 tttcatcagc aagtttggaa gaaccccaca tttttcctgc gcgtcatctc tgacacggcc 3120 tccctctgct actccatcct gaaagccaag aacgcaggga tgtcgctggg ggccaagggc 3180 gccgccggcc ctctgccctc cgaggccgtg cagtggctgt gccaccaagc attcctgctc 3240 aagctgactc gacaccgtgt cacctacgtg ccactcctgg ggtcactcag gacagcccag 3300 acgcagctga gtcggaagct cccggggacg acgctgactg ccctggaggc cgcagccaac 3360 ccggcactgc cctcagactt caagaccatc ctggactga 3399 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> forward primer of v-myc for PCR <400> 3 cctttgttga tttcgccaat 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of v-myc for PCR <400> 4 agttctcctc ctcctcctcg 20 <210> 5 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> forward primer of h-TERT for PCR <400> 5 caggtgtacg gcttcgtg 18 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer of h-TERT for PCR <400> 6 agtgctgtct gattccaatg 20

Claims (6)

  1. h-TERT 유전자를 포함하는 종양세포 불멸화용 조성물.
  2. 제 1항에 있어서, 상기 h-TERT 유전자는 서열번호 2의 염기서열을 갖는 것을 특징으로 하는 종양세포 불멸화용 조성물.
  3. 제 1항에 있어서, 상기 종양세포는 종양일차세포(Primary cancer cell)인 것을 특징으로 하는 종양세포 불멸화용 조성물.
  4. 제 1항에 있어서, 상기 h-TERT 유전자는 레트로바이러스용 백터에 삽입되는 것을 특징으로 하는 종양세포 불멸화용 조성물.
  5. 제 4항에 있어서, 상기 h-TERT유전자는 pLPCX 백터에 삽입된 재조합 pLPCX-hTERT 백터인 것을 특징으로 하는 종양세포 불멸화용 조성물.
  6. 다음 단계들을 포함하는 불멸화 종양세포 제조방법:
    a) h-TERT 유전자가 삽입된 레트로 바이러스 백터를 제조하는 단계:
    b) 바이러스 백터를 생산세포주에 형질도입시키는 단계:
    c) 형질도입된 바이러스 생산세포주를 선별하는 단계; 및
    d) 상기 불멸화 바이러스 생산세포주에서 생산된 바이러스 클론을 종양세포에 감염시켜 종양세포를 불사화시키는 단계.
KR1020140034309A 2014-03-24 2014-03-24 h-TERT 유전자를 포함하는 종양세포 불멸화용 조성물 KR20140057505A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140034309A KR20140057505A (ko) 2014-03-24 2014-03-24 h-TERT 유전자를 포함하는 종양세포 불멸화용 조성물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140034309A KR20140057505A (ko) 2014-03-24 2014-03-24 h-TERT 유전자를 포함하는 종양세포 불멸화용 조성물

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020120113677A Division KR20140047409A (ko) 2012-10-12 2012-10-12 v-myc 유전자를 포함하는 종양세포 불멸화용 조성물

Publications (1)

Publication Number Publication Date
KR20140057505A true KR20140057505A (ko) 2014-05-13

Family

ID=50888233

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140034309A KR20140057505A (ko) 2014-03-24 2014-03-24 h-TERT 유전자를 포함하는 종양세포 불멸화용 조성물

Country Status (1)

Country Link
KR (1) KR20140057505A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021015584A1 (ko) * 2019-07-24 2021-01-28 주식회사 에스엘바이젠 불사화된 줄기세포주의 제조 방법 및 이의 용도

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021015584A1 (ko) * 2019-07-24 2021-01-28 주식회사 에스엘바이젠 불사화된 줄기세포주의 제조 방법 및 이의 용도

Similar Documents

Publication Publication Date Title
US10017782B2 (en) Immune cells modified by transient transfection of RNA
US8859229B2 (en) Transient transfection with RNA
US11015171B2 (en) Immortalized stem cells and method for producing same
US20130171731A1 (en) Reversibly immortalized cells as well as methods relating hereto
TWI516592B (zh) 用於在原核細胞內使用真核第二型聚合酶啟動子驅動之轉錄作用的可誘導之基因表現組成物及其應用
CN109415719A (zh) 用于产生具有基因调节系统的合成染色体的方法及其用途
US20030104615A1 (en) Immortalized bone marrow mesenchymal stem cell
WO2019041344A1 (en) METHODS AND COMPOSITIONS FOR THE TRANSFECTION OF SINGLE STRANDED DNA
US7972816B2 (en) Efficient process for producing dumbbell DNA
CN110760480A (zh) 一种抗肿瘤nk细胞及其制备方法
KR20140057505A (ko) h-TERT 유전자를 포함하는 종양세포 불멸화용 조성물
WO2017159463A1 (ja) 線維芽細胞からの心臓前駆細胞と心筋細胞の直接製造方法
US20220056479A1 (en) Method For Delivering Gene In Cells
Costa et al. Establishment and partial characterization of an ovine synovial membrane cell line obtained by transformation with Simian Virus 40 T antigen
KR20140047409A (ko) v-myc 유전자를 포함하는 종양세포 불멸화용 조성물
CN110331165B (zh) 用于人体细胞重编程的重组仙台病毒的制备方法及其应用
JP2023507181A (ja) ポリヌクレオチドをエクソソームに送達するための核酸コンストラクト
CN104630221A (zh) 抑制肿瘤细胞生长的shRNA及其重组载体与应用
RU2670128C2 (ru) Способ генетической регистрации и коррекции нейрогенеза на основе генетических конструкций для трансфекции нейронов
KR102091511B1 (ko) 줄기세포 분화 효율 촉진 방법
CN116694630B (zh) 一种促进环状rna过表达的序列组合及其应用
KR100801873B1 (ko) 복합체
KR102168181B1 (ko) 인공 재조합 염색체 및 이의 이용
JP4825978B2 (ja) インスリン産生細胞特異的プロモーターおよびその用途
Pflaum Differenzierte Motoneurone als Modell zur Untersuchung von Stoffwechselvorgängen im Zusammenhang mit der Charcot-Marie-Tooth Erkrankung

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application