KR20140046729A - 유기발광소자용 금속산화물 박막 기판 및 그 제조방법 - Google Patents
유기발광소자용 금속산화물 박막 기판 및 그 제조방법 Download PDFInfo
- Publication number
- KR20140046729A KR20140046729A KR20120112729A KR20120112729A KR20140046729A KR 20140046729 A KR20140046729 A KR 20140046729A KR 20120112729 A KR20120112729 A KR 20120112729A KR 20120112729 A KR20120112729 A KR 20120112729A KR 20140046729 A KR20140046729 A KR 20140046729A
- Authority
- KR
- South Korea
- Prior art keywords
- thin film
- metal oxide
- oxide thin
- light emitting
- organic light
- Prior art date
Links
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 93
- 239000010409 thin film Substances 0.000 title claims abstract description 68
- 239000000758 substrate Substances 0.000 title claims abstract description 63
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 92
- 239000000203 mixture Substances 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 23
- 229910006404 SnO 2 Inorganic materials 0.000 claims description 24
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 19
- 238000002156 mixing Methods 0.000 claims description 18
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 14
- 238000000576 coating method Methods 0.000 claims description 8
- 238000010587 phase diagram Methods 0.000 claims description 7
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 claims description 6
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 4
- 239000011363 dried mixture Substances 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 2
- 238000000605 extraction Methods 0.000 abstract description 24
- 239000010410 layer Substances 0.000 description 54
- 239000010408 film Substances 0.000 description 17
- 239000011521 glass Substances 0.000 description 16
- 238000002347 injection Methods 0.000 description 9
- 239000007924 injection Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 5
- 239000011159 matrix material Substances 0.000 description 5
- 238000004528 spin coating Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000002356 single layer Substances 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000005354 aluminosilicate glass Substances 0.000 description 2
- 230000005281 excited state Effects 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000005525 hole transport Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/85—Arrangements for extracting light from the devices
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/0236—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
- G02B5/0242—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/85—Arrangements for extracting light from the devices
- H10K50/854—Arrangements for extracting light from the devices comprising scattering means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/125—Active-matrix OLED [AMOLED] displays including organic TFTs [OTFT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
본 발명은 유기발광소자용 금속산화물 박막 기판 및 그 제조방법에 관한 것으로서 더욱 상세하게는 우수한 광추출 효율을 나타냄은 물론, 적은 제조 비용으로 용이하게 제조할 수 있는 유기발광소자용 금속산화물 박막 기판 및 그 제조방법에 관한 것이다.
이를 위해, 본 발명은 베이스 기판; 및 상기 베이스 기판에 형성되고, 굴절률이 다른 2종 이상의 금속산화물의 혼합물로 이루어지는 금속산화물 박막을 포함하는 것을 특징으로 하는 유기발광소자용 금속산화물 박막 기판 및 그 제조방법을 제공한다.
이를 위해, 본 발명은 베이스 기판; 및 상기 베이스 기판에 형성되고, 굴절률이 다른 2종 이상의 금속산화물의 혼합물로 이루어지는 금속산화물 박막을 포함하는 것을 특징으로 하는 유기발광소자용 금속산화물 박막 기판 및 그 제조방법을 제공한다.
Description
본 발명은 유기발광소자용 금속산화물 박막 기판 및 그 제조방법에 관한 것으로서 더욱 상세하게는 우수한 광추출 효율을 나타냄은 물론, 적은 제조 비용으로 용이하게 제조할 수 있는 유기발광소자용 금속산화물 박막 기판 및 그 제조방법에 관한 것이다.
일반적으로, 유기발광소자(organic light emitting diode; OLED)는 애노드(anode), 발광층 및 캐소드(cathode)를 포함하여 형성된다. 여기서, 애노드와 캐소드 간에 전압을 인가하면, 정공은 애노드로부터 전공 주입층 내로 주입되고 전공 수송층을 거쳐 발광층으로 이동되며, 전자는 캐소드로부터 전자 주입층 내로 주입되고 전자 수송층을 거쳐 발광층으로 이동된다. 이때, 발광층 내로 주입된 정공과 전자는 발광층에서 재결합하여 엑시톤(excition)을 생성하고, 이러한 엑시톤이 여기상태(excited state)에서 기저상태(ground state)로 전이하면서 빛을 방출하게 된다.
한편, 이러한 유기발광소자로 이루어진 유기발광 표시장치는 매트릭스 형태로 배치된 N×M개의 화소들을 구동하는 방식에 따라, 수동 매트릭스(passive matrix) 방식과 능동 매트릭스(active matrix) 방식으로 나뉘어진다.
여기서, 능동 매트릭스 방식의 경우 단위화소 영역에는 발광영역을 정의하는 화소전극과 이 화소전극에 전류 또는 전압을 인가하기 위한 단위화소 구동회로가 위치하게 된다. 이때, 단위화소 구동회로는 적어도 두 개의 박막트랜지스터(thin film transistor; TFT)와 하나의 캐패시터(capacitor)를 구비하며, 이를 통해, 화소 수와 상관없이 일정한 전류의 공급이 가능해져 안정적인 휘도를 나타낼 수 있다. 이러한 능동 매트릭스 방식의 유기발광 표시장치는 전력 소모가 적어, 고해상도 및 대형 디스플레이의 적용에 유리하다는 장점을 갖고 있다.
하지만, 도 7에 도시한 바와 같이, 유기발광소자는 발광량의 약 20%만 외부로 방출되고 80% 정도의 빛은 유리 기판(10)과 애노드(20) 및 정공 주입층, 정공수송층, 발광층, 전자 수송층, 전자 주입층 등을 포함한 유기 발광층(30)의 굴절률 차이에 의한 도파관(wave guiding) 효과와 유리 기판(10)과 공기의 굴절률 차이에 의한 전반사 효과로 손실된다. 즉, 내부 유기 발광층(30)의 굴절률은 1.7 내지 1.8이고, 애노드(20)로 일반적으로 사용되는 ITO의 굴절률은 1.9 내지 2.0이다. 이때, 두 층의 두께는 대략 100 내지 400㎚로 매우 얇고, 유리 기판(10)으로 사용되는 유리의 굴절률은 1.5 정도이므로, 유기발광소자 내에는 평면 도파로가 자연스럽게 형성된다. 계산에 의하면, 상기 원인에 의한 내부 도파모드로 손실되는 빛의 비율이 약 45%에 이른다. 그리고 유리 기판(10)의 굴절률은 약 1.5이고, 외부 공기의 굴절률은 1.0이므로, 유리 기판(10)에서 외부로 빛이 빠져 나갈 때, 임계각 이상으로 입사되는 빛은 전반사를 일으켜 유리 기판(10) 내부에 고립되는데, 이렇게 고립된 빛의 비율은 약 35%에 이르기 때문에, 불과 발광량의 20% 정도만 외부로 방출된다. 여기서, 참조번호 31, 32, 33은 유기 발광층(30)을 구성하는 구성요소로, 31은 정공 주입층과 정공 수송층, 32는 발광층, 33은 전자 주입층과 전자 수송층을 나타낸다.
한편, 도 8에 도시한 바와 같이, 종래에는 상기의 문제를 해결하기 위해, 저굴절률을 갖는 그리드(low index grid; LIG)(50)를 ITO 애노드(20) 위에 형성하여 도파 모드로 움직이는 빛의 방향을 전면으로 바꾸어 줌으로써 광추출 효율을 향상시킬 수 있었다.
도 9는 도 8의 유기발광소자에 대한 시뮬레이션 결과로, 그리드(50)의 굴절률이 낮을수록 효과가 있으나 실제 굴절률 1.2 이하인 물질은 거의 없으며 그나마 굴절률이 낮을수록 물질의 가격이 높은 문제가 있다. 또한, 도 8에 도시한 바와 같이, ITO 애노드(20) 위에 그리드(50)가 형성되면, 단차가 발생하기 때문에 누설전류가 발생할 수 있다. 그리고 도 8의 유기발광소자는 ITO 애노드(20) 위에 그리드(50)를 형성하는 공정에서 유기 발광층(30)과 접촉하는 애노드(20) 면이 변성되어 일함수(work function)가 달라지는 경우가 있는 등 공정이 까다로운 문제가 있다. 게다가, 그리드(50)가 형성된 부분은 애노드(20)에서 정공이 유기 발광층(30)으로 주입되지 않으며, 인가되는 전기장의 크기도 주변과 달라서 발광 균일도가 떨어지는 문제가 있다.
또한, 도 10에 도시한 바와 같이, 종래에는 애노드(20) 아래(도면기준) 즉, 애노드(20)와 유리 기판(10) 사이의 경계면에 요철 구조물(60)을 형성하여 광추출 효율을 향상시키고자 하였다.
여기서, 상술한 바와 같이, 애노드(20)와 유기 발광층(30)은 일반적으로 캐소드(40)와 유리 기판(10) 사이에서 하나의 광도파로 역할을 하게 된다. 따라서, 애노드(20)와 유기 발광층(30)에 도파모드가 존재하는 가운데, 애노드(20)와 인접한 경계면에 광산란을 일으키는 요철 구조물(60)을 형성하면, 도파모드가 교란되어 외부로 추출되는 빛이 증가하게 된다. 하지만, 애노드(20) 아래에 요철 구조물(60)이 형성되어 있으면, 그 위의 애노드(20) 형상이 아래 요철 구조물(60)의 형상을 따라 가게 되어, 국부적으로 뾰족한 부분이 발생할 가능성이 높아진다. 유기발광소자는 매우 얇은 박막의 적층구조로 이루어져 있으므로, 애노드(20)에 뾰족하게 돌출된 부분이 있으면, 그 부분에 전류가 집중하게 되고, 큰 누설전류의 원인이 되거나 전력 효율의 저하를 가져온다. 따라서, 이러한 전기적 특성의 저하를 방지하기 위해, 애노드(20) 아래 요철 구조물(60)을 형성할 경우에는 평탄막(70)을 반드시 함께 사용한다. 이때, 평탄막(70)은 요철 구조물(60)의 요철이 평탄화되도록 하는 역할을 하게 된다. 평탄막(70)이 평탄하지 않아 뾰족하게 돌출된 부분이 있으면, 애노드(20)에도 돌출 부분이 형성되어 누설전류가 발생하는 원인이 된다. 따라서, 평탄막(70)의 평탄도는 매우 중요하며 이에 따라, 최대 표면 거칠기(Rpv)는 30㎚ 이하로 요구된다.
또한, 평탄막(70)은 애노드(20)와 유사한 굴절률을 가진 소재를 사용해야 하는데, 만약, 그렇지 않고 평탄막(70)의 굴절률이 낮으면, 빛이 요철 구조물(60)에 의해 교란되기도 전에 애노드(20)/평탄막(70)의 경계면에서 대부분 반사되어 애노드(20)/유기 발광층(30)에 갇히는 도파모드로 된다. 여기서, 평탄막(70)의 두께는 가능한 얇은 것이 좋다. 평탄막(70)이 너무 두꺼우면, 불필요한 광흡수가 증가할 수 있고, 요철 구조물(60)과 유기 발광층(30)과의 거리가 너무 멀어 산란 효과가 감소될 수 있다.
하지만, 올록볼록한 요철 구조물(60)을 수백㎚의 얇은 평탄막(70)으로 완벽하게 평탄화하는 것은 공정적으로 매우 어렵다. 또한, 요철 구조물(60)을 덮고 평판화하기 위한 방법으로는 증착코팅법과 용액코팅법이 있는데, 증착코팅법은 특성상 요철 구조물(60)의 형상을 따라가면서 막을 형성하기 때문에 증착코팅법보다는 용액코팅법에 의한 코팅을 통해 평탄막(70)을 형성하는 것이 바람직하다. 하지만, 굴절률이 ITO 애노드(20)의 굴절률 이상이고, 유기발광소자 기판 표면에 요구되는 까다로운 조건과 고온 공정이 수반되는 다결정 실리콘 박막 트랜지스터(polycrystalline thin film transistor) 공정을 만족하는 고굴절 용액 코팅소재를 구하기는 현재 매우 어려운 상황이다.
본 발명은 상술한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 우수한 광추출 효율을 나타냄은 물론, 적은 제조 비용으로 용이하게 제조할 수 있는 유기발광소자용 금속산화물 박막 기판 및 그 제조방법을 제공하는 것이다.
이를 위해, 본 발명은 베이스 기판; 및 상기 베이스 기판에 형성되고, 굴절률이 다른 2종 이상의 금속산화물의 혼합물로 이루어지는 금속산화물 박막을 포함하는 것을 특징으로 하는 유기발광소자용 금속산화물 박막 기판을 제공한다.
여기서, 상기 2종 이상의 금속산화물은 TiO2, SnO2, Al2O3, MgO, ZrO2 및 ZnO 중에서 선택될 수 있다.
또한, 상기 2종 이상의 금속산화물은 상평형도(phase diagram) 상에서 온도에 따른 섞임도 간격(miscibility gap) 내에 위치하는 조성비를 가질 수 있다.
이때, 상기 2종 이상의 금속산화물은 각각, 부피비로 적어도 1% 이상 포함될 수 있다.
아울러, 상기 금속산화물 박막은 유기발광소자의 전극과 직접 접촉될 수 있다.
이때, 상기 금속산화물 박막은 유기발광소자의 내부 광추출층으로 사용될 수 있다.
한편, 본 발명은, 굴절률이 다른 2종 이상의 금속산화물을 각각 졸겔용액으로 만드는 제1 단계; 상기 졸겔용액들을 혼합하여 혼합물을 만드는 제2 단계; 상기 혼합물을 베이스 기판 상에 코팅하는 제3 단계; 코팅된 상기 혼합물을 건조하는 제4 단계; 및 건조된 상기 혼합물을 소성시켜 금속산화물 박막으로 만드는 제5 단계를 포함하는 것을 특징으로 하는 유기발광소자용 금속산화물 박막 기판 제조방법을 제공한다.
여기서, 상기 2종 이상의 금속산화물로는 TiO2, SnO2, Al2O3, MgO, ZrO2 및 ZnO 중 둘 이상을 사용할 수 있다.
또한, 상기 제2 단계에서는 상평형도(phase diagram) 상에서 온도에 따른 섞임도 간격(miscibility gap) 내에 위치하는 조성비로 상기 졸겔용액들을 혼합할 수 있다.
이때, 상기 제2 단계에서는 각각의 부피비가 적어도 1% 이상 되도록 상기 졸겔용액들을 혼합할 수 있다.
아울러, 상기 제3 단계에서는 상기 베이스 기판 상에 상기 혼합물을 스핀 코팅할 수 있다.
본 발명에 따르면, 서로 다른 굴절률을 갖는 2종 이상의 금속산화물을 상평형도(phase diagram) 상에서 온도에 따른 섞임도 간격(miscibility gap) 내에 위치하는 조성비와 소정의 부피비로 혼합하여 유기발광소자의 내부 광추출층으로 사용되는, 단일층으로 이루어진 금속산화물 박막을 형성함으로써, 광도파 모드를 교란시켜 광추출 효율을 극대화시킬 수 있다.
또한, 본 발명에 따르면, 금속산화물 졸겔용액을 베이스 기판에 스핀코팅함으로써, 적은 제조 비용으로 용이하게 대면적의 유기발광소자용 금속산화물 박막을 제조할 수 있고, 소비전력을 낮출 수 있다.
또한, 본 발명에 따르면, 금속산화물 박막을 단일층으로 형성함으로써, 얇은 두께의 박막으로 형성 가능하고, 이에 따라, 유기발광소자 적용 시 누설 전류가 발생될 확률을 최소화시킬 수 있다.
또한, 본 발명에 따르면, 금속산화물 박막 기판을 유기발광소자에 적용함으로써, 유기발광소자의 효율을 높일 수 있고, 유기발광소자의 수명을 연장시킬 수 있다.
도 1은 본 발명의 실시 예에 따른 유기발광소자용 금속산화물 박막 기판을 채용한 유기발광소자를 나타낸 단면도.
도 2는 본 발명의 실시 예에 따른 금속산화물 박막을 구성하는 2종 금속산화물에 대한 상평형도.
도 3 내지 도 6은 본 발명의 실시 예 별 금속산화물 박막 기판의 단면을 주사전자현미경(SEM)으로 촬영한 사진으로, 도 3 및 도 4는 TiO2와 SnO2를 혼합하되 혼합 비율을 서로 달리하여 금속산화물 박막으로 코팅한 실시 예들이고, 도 5 및 도 6은 Al2O3와 SnO2를 혼합하되 혼합 비율을 서로 달리하여 금속산화물 박막으로 코팅한 실시 예들임.
도 7은 종래 기술에 따른 유기 발광소자의 단면도 및 광추출 효율을 설명하기 위한 개념도.
도 8은 종래 기술에 따른 다른 유기 발광소자를 나타낸 단면, 분해 및 결합 사시도.
도 9는 도 8의 유기 발광소자의 광추출 효율에 대한 시뮬레이션 결과를 나타낸 그래프.
도 10은 종래 기술에 따른 또 다른 유기 발광소자를 나타낸 부분 분해 사시도.
도 2는 본 발명의 실시 예에 따른 금속산화물 박막을 구성하는 2종 금속산화물에 대한 상평형도.
도 3 내지 도 6은 본 발명의 실시 예 별 금속산화물 박막 기판의 단면을 주사전자현미경(SEM)으로 촬영한 사진으로, 도 3 및 도 4는 TiO2와 SnO2를 혼합하되 혼합 비율을 서로 달리하여 금속산화물 박막으로 코팅한 실시 예들이고, 도 5 및 도 6은 Al2O3와 SnO2를 혼합하되 혼합 비율을 서로 달리하여 금속산화물 박막으로 코팅한 실시 예들임.
도 7은 종래 기술에 따른 유기 발광소자의 단면도 및 광추출 효율을 설명하기 위한 개념도.
도 8은 종래 기술에 따른 다른 유기 발광소자를 나타낸 단면, 분해 및 결합 사시도.
도 9는 도 8의 유기 발광소자의 광추출 효율에 대한 시뮬레이션 결과를 나타낸 그래프.
도 10은 종래 기술에 따른 또 다른 유기 발광소자를 나타낸 부분 분해 사시도.
이하에서는 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 유기발광소자용 금속산화물 박막 기판 및 그 제조방법에 대해 상세히 설명한다.
아울러, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다.
도 1에 도시한 바와 같이, 본 발명의 실시 예에 따른 유기발광소자용 금속산화물 박막 기판(100)은 유기발광소자를 채용한 디스플레이 혹은 조명의 휘도 향상을 위해 유기발광소자의 광추출 효율을 향상시키는 기능성 박막 기판이다. 이러한 금속산화물 박막 기판(100)은 유기발광소자의 전면에 배치되어, 유기발광소자를 외부 환경으로부터 보호함과 동시에 유기발광소자로부터 발생된 광을 외부로 방출시키는 통로 역할을 한다.
여기서, 유기발광소자는 제1 전극(130), 유기 발광층(140) 및 제2 전극(150)의 적층 구조로 이루어진다. 이때, 제1 전극(130)은 애노드(anode)이고, 제2 전극(150)은 캐소드(cathode)일 수 있다. 본 발명의 실시 예에 따른 금속산화물 박막 기판(100)은 제1 전극(130)과 접하도록 배치된다. 제1 전극(130), 유기 발광층(140) 및 제2 전극(150)은 서로 대향되는 봉지(encapsulation) 기판 사이에 배치되는데, 본 발명의 실시 예에 따른 금속산화물 박막 기판(100)은 봉지 기판 중 어느 하나의 기판으로서의 역할을 함과 동시에 유기발광소자의 내부 광추출층으로서의 역할을 하게 된다.
한편, 애노드인 제1 전극(130)은 전공 주입이 잘 일어나도록 일함수(work function)가 큰 금속 Au, In, Sn 또는 ITO와 같은 금속 또는 산화물로 이루어질 수 있고, 캐소드인 제2 전극(150)은 전자 주입이 잘 일어나도록 일함수가 작은 Al, Al:Li 또는 Mg:Ag의 금속 박막으로 이루어져 있고, 전면 발광(top emission) 구조인 경우 유기 발광층(140)에서 발광된 빛이 잘 투과될 수 있도록 Al, Al:Li 또는 Mg:Ag의 금속 박막의 반투명 전극(semitransparent electrode)과 인듐 주석산화물(indium tin oxide; ITO)과 같은 산화물 투명 전극(transparent electrode) 박막의 다층구조로 이루어질 수 있다. 그리고 유기 발광층(140)은 제1 전극(130) 상에 차례로 적층되는 정공 주입층, 정공 수송층, 발광층, 전자 수송층 및 전자 주입층을 포함하여 형성된다. 이러한 구조에 따라, 제1 전극(130)과 제2 전극(150) 사이에 순방향 전압이 인가되면, 제2 전극(150)으로부터 전자가 전자 주입층 및 전자 수송층을 통해 발광층으로 이동하게 되고, 제1 전극(130)으로부터 정공이 정공 주입층 및 정공 수송층을 통해 발광층으로 이동하게 된다. 그리고 발광층 내로 주입된 전자와 정공은 발광층에서 재결합하여 엑시톤(exciton)을 생성하고, 이러한 엑시톤이 여기상태(excited state)에서 기저상태(ground state)로 전이하면서 빛을 방출하게 되는데, 이때, 방출되는 빛의 밝기는 제1 전극(130)과 제2 전극(150) 사이에 흐르는 전류량에 비례하게 된다.
이와 같이, 유기발광소자의 내부 광추출층과 봉지 기판으로서의 역할을 하는 본 발명의 실시 예에 따른 금속산화물 박막 기판(100)은 베이스 기판(110)과 금속산화물 박막(120)을 포함하여 형성된다.
베이스 기판(110)은 일면에 형성되는 금속 산화물 박막(120)을 지지하는 기판이고, 유기발광소자를 외부 환경으로부터 보호함과 동시에 유기발광소자로부터 발생된 광을 외부로 방출시키는 기판이다.
이러한 베이스 기판(110)은 투명 기판으로, 광 투과율이 우수하고 기계적인 물성이 우수한 것이면 어느 것이든 제한되지 않는다. 예를 들어, 베이스 기판(110)은 열경화 또는 UV 경화가 가능한 유기필름인 폴리머 계열의 물질이나 화학강화유리인 소다라임 유리(SiO2-CaO-Na2O) 또는 알루미노실리케이트 유리(SiO2-Al2O3-Na2O)가 사용될 수 있으며, 이중 Na의 양은 용도에 따라 조절될 수 있다. 이때, 유기 발광소자가 조명용인 경우 소다라임 유리가 사용될 수 있고, 유기 발광소자가 디스플레이용인 경우 알루미노실리케이트 유리가 사용될 수 있다.
본 발명의 실시 예에서, 베이스 기판(110)으로는 두께 1.5㎜ 이하의 박판 유리가 사용될 수 있는데, 이러한 박판 유리는 퓨전(fusion) 공법 또는 플로팅(floating) 공법을 통해 제조될 수 있다.
금속산화물 박막(120)은 베이스 기판(110)에 형성된다. 이러한 금속산화물 박막(120)은 제1 전극(130)과 유기 발광층(140)에 의해 형성된 도파모드를 교란시켜 외부로 추출되는 광량을 증가시키는, 유기발광소자의 내부 광추출층으로서의 역할을 한다.
이를 위해, 금속산화물 박막(120)은 굴절률이 다른 2종 이상의 금속산화물의 혼합물로 이루어진다. 이때, 2종 이상의 금속산화물은 TiO2, SnO2, Al2O3, MgO, ZrO2 및 ZnO 중에서 선택될 수 있는데, 도 2의 그래프에서 보여지는 바와 같이, 선택된 2종 이상의 금속산화물은 상평형도(phase diagram) 상에서 섞임도 간격(miscibility gap) 내에 위치하는 조성비 즉, 서로 완전히 혼합되지 않는 비율로 혼합되는 것이 바람직하다. 도 2의 상평형도는 일례로, 금속산화물이 SnO2와 TiO2로 이루어진 경우, 대략 1350℃ 이하의 온도에서, SnO2 대비 TiO2가 15~85mol%일 때, SnO2와 TiO2가 서로 완전히 혼합되지 않는 섞임도 간격에 속하는 것을 보여준다. 이때, 물질 별로 고유한 특성이 있으므로, 2종 이상의 금속산화물 선택 시 섞임도 간격에 속하는 조성비는 달라질 수 있다. 아울러, 2종 이상의 금속산화물은 상평형도 상에서 서로 완전히 혼합되지 않는 비율로 혼합되는 가운데, 각각 부피비를 기준으로 적어도 1% 이상 혼합물에 포함될 수 있다.
이와 같은 혼합 비율로 2종 이상의 금속산화물이 혼합되면, 금속산화물 박막(120)은 덩어리(chunk) 형태의 2종 이상의 금속산화물로 이루어지고, 이때, 2종 이상의 금속산화물은 서로 다른 굴절률을 가지기 때문에 제1 전극(130)과 유기 발광층(140)에 의해 형성된 도파모드를 교란시킬 수 있게 된다.
예를 들어, 도 1에 도시한 바와 같이, 금속산화물 박막(120)은 제1 금속산화물(121)과 제2 금속산화물(122)의 혼합물로 이루어질 수 있다.
한편, 이러한 금속산화물 박막(120)은 예컨대,스핀코팅을 통해 베이스 기판(110)에 형성되고, 이를 통해, 얇은 단일 평탄막으로 형성된다. 이에 따라, 종래에 내부 광추출층의 표면을 평탄화시키기 위해 형성되었던 평탄막을 생략할 수 있게 되어, 금속산화물 박막(120)과 제1 전극(130)은 서로 경계면을 이루며 직접 접촉된 구조를 형성하게 된다. 또한, 금속산화물 박막(120)이 얇은 단일 평탄막으로 형성됨에 따라, 누설 전류의 발생량을 최소화시킬 수 있고, 이를 통해, 유기발광소자의 효율을 높일 수 있으며, 수명을 연장시킬 수 있다.
이하, 본 발명의 실시 예에 따른 유기발광소자용 금속산화물 박막 기판 제조방법에 대해 설명하기로 한다.
본 발명의 실시 예에 따른 유기발광소자용 금속산화물 박막 기판 제조방법은, 먼저, 굴절률이 다른 2종 이상의 금속산화물을 졸겔법으로 각각 졸겔용액으로 만든다. 이때, 2종 이상의 금속산화물로는 TiO2, SnO2, Al2O3, MgO, ZrO2 및 ZnO 중 둘 이상을 선택하여 사용할 수 있다.
그 다음, 각각의 졸겔용액 즉, 선택된 금속산화물들이 상평형도 상에서 온도에 따른 섞임도 간격(miscibility gap) 내에 위치하는 조성비 즉, 서로 완전히 혼합되지 않는 비율을 찾아 이 비율에 맞게 혼합한다. 이때, 금속산화물들의 조성비를 제어함과 아울러, 각각의 부피비가 적어도 1% 이상이 되도록 혼합하여 혼합물을 만든다.
그 다음, 준비된 유리기판 상에 혼합물을 코팅한다. 이때, 본 발명의 실시 예에서는 스핀코터(spin-coater)를 이용하여 혼합물을 유리기판 상에 스핀 코팅할 수 있다. 이와 같이, 스핀코터를 이용하여 혼합물을 스핀 코팅하면, 대면적 박막 코팅이 가능하고, 공정 자체도 간단하며, 스핀코터 장비도 고가가 아니므로, 저렴한 비용으로 쉽고 빠르게 코팅공정을 진행할 수 있는 장점이 있다.
그 다음, 베이스 기판 상에 스핀코팅된 혼합물을 건조한다. 이때, 혼합물에 대한 건조는 110℃에서 대략 10분간 진행하는 것이 바람직하다.
끝으로, 건조된 혼합물을 소성시키면, 베이스 기판 및 이에 코팅된 단일층의 금속산화물 박막으로 이루어진 금속산화물 박막 기판이 제조된다. 여기서, 혼합물에 대한 소성은 500℃에서 30분간 진행할 수 있다. 이와 같이 제조된 금속산화물 박막 기판은 투과도가 80% 이상인 투명하고 평탄하며 유기발광소자의 내부 광추출층으로 사용되는 금속산화물 박막을 구비하게 된다.
실시 예 1
0.7㎜ 두께의 유리기판에 TiO2와 SnO2가 3:7의 혼합 비율로 혼합된 혼합물을 148㎚ 두께로 스핀코팅하여 금속산화물 박막을 형성하고, 금속산화물 박막 상에 애노드로 ITO를 165㎚ 두께로 형성한 다음 도 3에 나타낸 바와 같이, 주사전자 현미경(SEM)으로 단면을 촬영하였고, 광추출 효율을 측정하였다.
실시 예 2
0.7㎜ 두께의 유리기판에 TiO2와 SnO2가 7:3의 혼합 비율로 혼합된 혼합물을 185㎚ 두께로 스핀코팅하여 금속산화물 박막을 형성하고, 금속산화물 박막 상에 애노드로 ITO를 165㎚ 두께로 형성한 다음 도 4에 나타낸 바와 같이, 주사전자 현미경(SEM)으로 단면을 촬영하였고, 광추출 효율을 측정하였다.
실시 예 3
0.7㎜ 두께의 유리기판에 Al2O3와 SnO2가 3:7의 혼합 비율로 혼합된 혼합물을 148㎚ 두께로 스핀코팅하여 금속산화물 박막을 형성하고, 금속산화물 박막 상에 애노드로 ITO를 165㎚ 두께로 형성한 다음 도 5에 나타낸 바와 같이, 주사전자 현미경(SEM)으로 단면을 촬영하였고, 광추출 효율을 측정하였다.
실시 예 4
0.7㎜ 두께의 유리기판에 Al2O3와 SnO2가 7:3의 혼합 비율로 혼합된 혼합물을 185㎚ 두께로 스핀코팅하여 금속산화물 박막을 형성하고, 금속산화물 박막 상에 애노드로 ITO를 165㎚ 두께로 형성한 다음 도 6에 나타낸 바와 같이, 주사전자 현미경(SEM)으로 단면을 촬영하였고, 광추출 효율을 측정하였다.
상기의 실시 예 별로 광추출 효율을 측정한 결과, TiO2와 SnO2가 3:7의 혼합 비율로 혼합된 실시 예 1의 광추출 효율은 35.5%, TiO2와 SnO2가 7:3의 혼합 비율로 혼합된 실시 예 2의 광추출 효율은 41.4%, Al2O3와 SnO2가 3:7의 혼합 비율로 혼합된 실시 예 3의 광추출 효율은 29.4%, Al2O3와 SnO2가 7:3의 혼합 비율로 혼합된 실시 예 4의 광추출 효율은 16.9%로 측정되었다.
이들 실시 예의 광추출 효율을 분석해보면, TiO2와 SnO2가 7:3의 혼합 비율로 혼합된 실시 예 2의 광추출 효율이 가장 우수한 것으로 관찰되었다. 즉, TiO2의 혼합 비율이 SnO2의 혼합 비율보다 상대적으로 높을 때, 광추출 효율이 향상됨을 알 수 있다. 또한, TiO2 대신 Al2O3를 SnO2와 혼합 한 경우, TiO2을 혼합했을 때 보다 광추출 효율이 저하됨을 확인할 수 있다. 그리고 TiO2와 SnO2가 혼합된 경우에는 두께가 두꺼울수록 광추출 효율이 증가하였으나 Al2O3와 SnO2이 혼합된 경우에는 두께가 얇을수록 광추출 효율이 증가됨을 확인할 수 있었다. 즉, 이러한 결과를 통해, 금속산화물의 종류와 혼합 비율뿐만 아니라 각 금속산화물에 최적화된 두께 제어 또한 광추출 효율을 향상을 위해서는 반드시 고려되어야 요인인 것으로 확인되었다.
이상과 같이 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시 예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등한 것들에 의해 정해져야 한다.
100: 금속산화물 박막 기판 110: 베이스 기판
120: 금속산화물 박막 121: 제1 금속산화물
122: 제2 금속산화물 130: 제1 전극
140: 유기 발광층 150: 제2 전극
120: 금속산화물 박막 121: 제1 금속산화물
122: 제2 금속산화물 130: 제1 전극
140: 유기 발광층 150: 제2 전극
Claims (11)
- 베이스 기판; 및
상기 베이스 기판에 형성되고, 굴절률이 다른 2종 이상의 금속산화물의 혼합물로 이루어지는 금속산화물 박막;
을 포함하는 것을 특징으로 하는 유기발광소자용 금속산화물 박막 기판.
- 제1항에 있어서,
상기 2종 이상의 금속산화물은 TiO2, SnO2, Al2O3, MgO, ZrO2 및 ZnO 중에서 선택되는 것을 특징으로 하는 유기발광소자용 금속산화물 박막 기판.
- 제1항에 있어서,
상기 2종 이상의 금속산화물은 상평형도(phase diagram) 상에서 온도에 따른 섞임도 간격(miscibility gap) 내에 위치하는 조성비를 가지는 것을 특징으로 하는 유기발광소자용 금속산화물 박막 기판.
- 제3항에 있어서,
상기 2종 이상의 금속산화물은 각각, 부피비로 적어도 1% 이상 포함되는 것을 특징으로 하는 유기발광소자용 금속산화물 박막 기판.
- 제1항에 있어서,
상기 금속산화물 박막은 유기발광소자의 전극과 직접 접촉되는 것을 특징으로 하는 유기발광소자용 금속산화물 박막 기판.
- 제5항에 있어서,
상기 금속산화물 박막은 유기발광소자의 내부 광추출층으로 사용되는 것을 특징으로 하는 유기발광소자용 금속산화물 박막 기판.
- 굴절률이 다른 2종 이상의 금속산화물을 각각 졸겔용액으로 만드는 제1 단계;
상기 졸겔용액들을 혼합하여 혼합물을 만드는 제2 단계;
상기 혼합물을 베이스 기판 상에 코팅하는 제3 단계;
코팅된 상기 혼합물을 건조하는 제4 단계; 및
건조된 상기 혼합물을 소성시켜 금속산화물 박막으로 만드는 제5 단계;
를 포함하는 것을 특징으로 하는 유기발광소자용 금속산화물 박막 기판 제조방법.
- 제7항에 있어서,
상기 2종 이상의 금속산화물로는 TiO2, SnO2, Al2O3, MgO, ZrO2 및 ZnO 중 둘 이상을 사용하는 것을 특징으로 하는 유기발광소자용 금속산화물 박막 기판 제조방법.
- 제7항에 있어서,
상기 제2 단계에서는 상평형도(phase diagram) 상에서 온도에 따른 섞임도 간격(miscibility gap) 내에 위치하는 조성비로 상기 졸겔용액들을 혼합하는 것을 특징으로 하는 유기발광소자용 금속산화물 박막 기판 제조방법.
- 제9항에 있어서,
상기 제2 단계에서는 각각의 부피비가 적어도 1% 이상 되도록 상기 졸겔용액들을 혼합하는 것을 특징으로 하는 유기발광소자용 금속산화물 박막 기판 제조방법.
- 제7항에 있어서,
상기 제3 단계에서는 상기 베이스 기판 상에 상기 혼합물을 스핀 코팅하는 것을 특징으로 하는 유기발광소자용 금속산화물 박막 기판 제조방법.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120112729A KR101421024B1 (ko) | 2012-10-11 | 2012-10-11 | 유기발광소자용 금속산화물 박막 기판 및 그 제조방법 |
EP13186085.0A EP2720284B1 (en) | 2012-10-11 | 2013-09-26 | Method of fabricating a metal oxide thin film substrate for OLED |
US14/049,345 US9118034B2 (en) | 2012-10-11 | 2013-10-09 | Metal oxide thin film substrate for OLED and method of fabricating the same |
JP2013213453A JP6198561B2 (ja) | 2012-10-11 | 2013-10-11 | 有機発光素子用の金属酸化物薄膜基板及びその製造方法 |
CN201310472578.2A CN103730600B (zh) | 2012-10-11 | 2013-10-11 | 用于oled的金属氧化物薄膜基板及其制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120112729A KR101421024B1 (ko) | 2012-10-11 | 2012-10-11 | 유기발광소자용 금속산화물 박막 기판 및 그 제조방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140046729A true KR20140046729A (ko) | 2014-04-21 |
KR101421024B1 KR101421024B1 (ko) | 2014-07-22 |
Family
ID=49237085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120112729A KR101421024B1 (ko) | 2012-10-11 | 2012-10-11 | 유기발광소자용 금속산화물 박막 기판 및 그 제조방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9118034B2 (ko) |
EP (1) | EP2720284B1 (ko) |
JP (1) | JP6198561B2 (ko) |
KR (1) | KR101421024B1 (ko) |
CN (1) | CN103730600B (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160099146A (ko) * | 2015-02-11 | 2016-08-22 | 삼성디스플레이 주식회사 | 유기발광 표시장치 및 도너 기판 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9991463B2 (en) * | 2012-06-14 | 2018-06-05 | Universal Display Corporation | Electronic devices with improved shelf lives |
FR3023979B1 (fr) * | 2014-07-17 | 2016-07-29 | Saint Gobain | Support electroconducteur pour oled, oled l'incorporant, et sa fabrication. |
CN107130228B (zh) * | 2017-04-24 | 2019-07-02 | 美的集团股份有限公司 | 三氧化二铝薄膜及其制备方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100786854B1 (ko) * | 2001-02-06 | 2007-12-20 | 삼성에스디아이 주식회사 | 디스플레용 필터막, 그 제조방법 및 이를 포함하는 표시장치 |
US7183707B2 (en) * | 2004-04-12 | 2007-02-27 | Eastman Kodak Company | OLED device with short reduction |
JP2006208985A (ja) * | 2005-01-31 | 2006-08-10 | Ohara Inc | 光拡散部材および光拡散部材の製造方法 |
JP2007059195A (ja) * | 2005-08-24 | 2007-03-08 | Fujifilm Holdings Corp | 上面発光型有機電界発光素子 |
JP2008084824A (ja) * | 2006-03-20 | 2008-04-10 | Kanagawa Acad Of Sci & Technol | 導電体の製造方法 |
US7851995B2 (en) * | 2006-05-05 | 2010-12-14 | Global Oled Technology Llc | Electroluminescent device having improved light output |
JP5277457B2 (ja) * | 2006-11-29 | 2013-08-28 | コニカミノルタ株式会社 | 複合金属酸化物微粒子含有樹脂材料の製造方法、及びそれを用いた光学素子 |
JP5114438B2 (ja) * | 2008-02-13 | 2013-01-09 | 富士フイルム株式会社 | 光学フィルム、その製造方法、偏光板および画像表示装置 |
US20100055447A1 (en) * | 2008-08-28 | 2010-03-04 | Seoul National University Industry Foundation | Optical article and a method for preparing the same |
US7957621B2 (en) * | 2008-12-17 | 2011-06-07 | 3M Innovative Properties Company | Light extraction film with nanoparticle coatings |
WO2010084922A1 (ja) * | 2009-01-26 | 2010-07-29 | 旭硝子株式会社 | 有機led素子の散乱層用ガラス及び有機led素子 |
JP2010170969A (ja) * | 2009-01-26 | 2010-08-05 | Asahi Glass Co Ltd | 電極付き基板、その製造方法、有機led素子およびその製造方法 |
JP2010205650A (ja) * | 2009-03-05 | 2010-09-16 | Fujifilm Corp | 有機el表示装置 |
DE102009036134A1 (de) * | 2009-08-05 | 2011-02-10 | Schott Ag | Substratglas für Lumineszenzdioden mit einer Streupartikel enthaltenden Schicht und Verfahren zu dessen Herstellung |
EP2490506A1 (en) * | 2009-10-15 | 2012-08-22 | Asahi Glass Company, Limited | Organic led element, glass frit for diffusion layer for use in organic led element, and method for production of diffusion layer for use in organic led element |
KR101191645B1 (ko) * | 2009-11-25 | 2012-10-17 | 삼성디스플레이 주식회사 | 유기 발광 표시 장치 및 그 제조 방법 |
US10581020B2 (en) * | 2011-02-08 | 2020-03-03 | Vitro Flat Glass Llc | Light extracting substrate for organic light emitting diode |
US20110169136A1 (en) * | 2010-01-14 | 2011-07-14 | Pickett Matthew D | Crossbar-integrated memristor array and method employing interstitial low dielectric constant insulator |
US8663596B2 (en) * | 2010-01-25 | 2014-03-04 | Fluor Enterprises, Inc. | Reactor, a structure packing, and a method for improving oxidation of hydrogen sulfide or polysulfides in liquid sulfur |
BR112013001133A2 (pt) * | 2010-07-16 | 2016-05-17 | Agc Glass Europe | substrato condutivo translúcido para dispositivos de emissão de luz orgânica. |
US9224983B2 (en) * | 2010-12-20 | 2015-12-29 | Samsung Electronics Co., Ltd. | Substrate for surface light emitting device and method of manufacturing the substrate, surface light emitting device, lighting apparatus, and backlight including the same |
-
2012
- 2012-10-11 KR KR1020120112729A patent/KR101421024B1/ko active IP Right Grant
-
2013
- 2013-09-26 EP EP13186085.0A patent/EP2720284B1/en active Active
- 2013-10-09 US US14/049,345 patent/US9118034B2/en active Active
- 2013-10-11 CN CN201310472578.2A patent/CN103730600B/zh active Active
- 2013-10-11 JP JP2013213453A patent/JP6198561B2/ja active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160099146A (ko) * | 2015-02-11 | 2016-08-22 | 삼성디스플레이 주식회사 | 유기발광 표시장치 및 도너 기판 |
Also Published As
Publication number | Publication date |
---|---|
CN103730600B (zh) | 2016-06-15 |
EP2720284B1 (en) | 2020-01-08 |
EP2720284A2 (en) | 2014-04-16 |
US20140103336A1 (en) | 2014-04-17 |
US9118034B2 (en) | 2015-08-25 |
EP2720284A3 (en) | 2014-05-21 |
JP2014078508A (ja) | 2014-05-01 |
KR101421024B1 (ko) | 2014-07-22 |
CN103730600A (zh) | 2014-04-16 |
JP6198561B2 (ja) | 2017-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101654360B1 (ko) | 유기 발광소자용 기판 및 그 제조방법 | |
US9412973B2 (en) | Organic light emitting diode display device and method of fabricating the same | |
JP2013235836A (ja) | ディスプレイ用多孔性ガラス基板及びその製造方法 | |
KR20130113642A (ko) | 광추출 효율이 향상된 유기 발광소자용 기판, 그 제조방법 및 이를 구비하는 유기 발광소자 | |
TW202133470A (zh) | 具有梯度折射率之有機發光二極體光萃取層 | |
KR20140046728A (ko) | 금속산화물 박막 기판, 그 제조방법 및 이를 포함하는 유기발광소자 | |
KR101421024B1 (ko) | 유기발광소자용 금속산화물 박막 기판 및 그 제조방법 | |
KR101466831B1 (ko) | 유기발광소자용 광추출 기판, 그 제조방법 및 이를 포함하는 유기발광소자 | |
KR20120076940A (ko) | 유기 발광장치 및 제조방법 | |
KR101468972B1 (ko) | 광산란층이 형성된 기판의 제조방법과 이에 의해 제조된 광산란층이 형성된 기판, 및 상기 광산란층이 형성된 기판을 포함하는 유기발광소자 | |
KR101466830B1 (ko) | 유기발광소자용 광추출 기판 제조방법 | |
WO2015005638A1 (ko) | 유기발광장치용 광추출 기판, 그 제조방법 및 이를 포함하는 유기발광장치 | |
KR101488660B1 (ko) | 유기발광소자용 기판, 그 제조방법 및 이를 포함하는 유기발광소자 | |
KR101659331B1 (ko) | 광추출 효율이 향상된 유기발광소자용 기판, 그 제조방법 및 이를 포함하는 유기발광소자 | |
KR101470293B1 (ko) | 유기발광소자용 광추출 기판 제조방법 | |
KR101699275B1 (ko) | 유기발광소자용 광추출 기판, 그 제조방법 및 이를 포함하는 유기발광소자 | |
KR101608335B1 (ko) | 유기발광소자 | |
KR101535236B1 (ko) | 광추출 기판 및 이를 포함하는 유기발광소자 | |
KR101602470B1 (ko) | 디스플레이용 다공성 유리 기판 및 그 제조방법 | |
KR101436548B1 (ko) | 유기발광소자용 광추출 기판 및 그 제조방법 | |
KR20160056598A (ko) | 광 추출 효율이 증대된 유기 전계 발광소자 및 그 제조방법 | |
KR101470294B1 (ko) | 금속산화물 박막 기판 및 이를 포함하는 유기발광소자 | |
KR20150009734A (ko) | 유기발광소자 | |
KR101230948B1 (ko) | 유기전계발광 소자 | |
TWM472951U (zh) | 有機發光二極體結構 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170616 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180626 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190701 Year of fee payment: 6 |