KR20140046162A - 발광소자 - Google Patents

발광소자 Download PDF

Info

Publication number
KR20140046162A
KR20140046162A KR1020120112251A KR20120112251A KR20140046162A KR 20140046162 A KR20140046162 A KR 20140046162A KR 1020120112251 A KR1020120112251 A KR 1020120112251A KR 20120112251 A KR20120112251 A KR 20120112251A KR 20140046162 A KR20140046162 A KR 20140046162A
Authority
KR
South Korea
Prior art keywords
layer
light emitting
semiconductor layer
emitting device
conductive
Prior art date
Application number
KR1020120112251A
Other languages
English (en)
Inventor
황정현
정종필
강동훈
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020120112251A priority Critical patent/KR20140046162A/ko
Publication of KR20140046162A publication Critical patent/KR20140046162A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen

Abstract

실시예에 따른 발광소자는 제1 도전형 반도체층; 제2 도전형 반도체층; 및 상기 제1 도전형 반도체층과 상기 제2 도전형 반도체층 사이의 활성층;을 포함하고, 상기 제2 도전형 반도체층은, 상기 활성층에 인접하여 위치하며 제1층 및 제2층의 페어 구조를 적어도 하나 포함하는 전자 차단층을 포함하며, 상기 제1층 및 제2층은 이종 물질로 형성되고, 상기 제1층은 상기 제2 도전형 반도체층에 도핑된 제2 도전형 도펀트와 동일한 물질을 포함하여 이루어지며, 상기 제2층은 InxAlyGa1 -x-yN(0≤x<y<1)의 조성을 갖고 상기 제2 도전형 도펀트가 도핑될 수 있다.

Description

발광소자{LIGHT EMITTING DEVICE}
실시예는 발광소자에 관한 것이다.
반도체의 3-5족 또는 2-6족 화합물 반도체 물질을 이용한 발광 다이오드(Light Emitting Diode)나 레이저 다이오드와 같은 발광소자는 박막 성장 기술 및 소자 재료의 개발로 적색, 녹색, 청색 및 자외선 등 다양한 색을 구현할 수 있으며, 형광 물질을 이용하거나 색을 조합함으로써 효율이 좋은 백색 광선도 구현이 가능하며, 형광등, 백열등 등 기존의 광원에 비해 저소비전력, 반영구적인 수명, 빠른 응답속도, 안전성, 환경친화성의 장점을 가진다.
따라서, 광 통신 수단의 송신 모듈, LCD(Liquid Crystal Display) 표시 장치의 백라이트를 구성하는 냉음극관(CCFL: Cold Cathode Fluorescence Lamp)을 대체하는 발광 다이오드 백라이트, 형광등이나 백열 전구를 대체할 수 있는 백색 발광 다이오드 조명 장치, 자동차 헤드 라이트 및 신호등에까지 응용이 확대되고 있다.
발광소자는 n-GaN층에서 주입된 전자와 p-GaN층에서 주입된 정공이 다중 우물 구조(MQW)로 이루어진 활성층에서 재결합함으로써 빛을 방출한다. 하지만 정공의 효율과 이동성이 전자에 비해 현저히 떨어지기 때문에, 홀의 주입 효율을 개선하여 발광 효율을 증대시킬 필요가 있다.
실시예는 도펀트의 주입률을 증대시켜 정공의 주입 효율과 발광 효율을 향상시키고자 한다.
실시예에 따른 발광소자는 제1 도전형 반도체층; 제2 도전형 반도체층; 및 상기 제1 도전형 반도체층과 상기 제2 도전형 반도체층 사이의 활성층;을 포함하고, 상기 제2 도전형 반도체층은, 상기 활성층에 인접하여 위치하며 제1층 및 제2층의 페어 구조를 적어도 하나 포함하는 전자 차단층을 포함하며, 상기 제1층 및 제2층은 이종 물질로 형성되고, 상기 제1층은 상기 제2 도전형 반도체층에 도핑된 제2 도전형 도펀트와 동일한 물질을 포함하여 이루어지며, 상기 제2층은 InxAlyGa1 -x-yN(0≤x<y<1)의 조성을 갖고 상기 제2 도전형 도펀트가 도핑될 수 있다.
상기 전자 차단층은 상기 제1층 및 제2층의 페어 구조를 1개 내지 6개 포함할 수 있다.
상기 제2층은 InAlGaN 또는 AlGaN를 포함할 수 있다.
상기 제1층을 이루는 물질은 Mg-N의 결합 구조를 포함할 수 있다.
상기 제1층은 MgN 또는 MgInN를 포함할 수 있다.
상기 제2 도전형 반도체층은 상기 활성층과 상기 전자 차단층 사이에 위치하는 정공 주입층을 더 포함할 수 있다.
상기 전자 차단층은 120Å 내지 200Å의 두께로 형성될 수 있다.
실시예에 따르면 제2 도전형 도펀트의 주입률을 개선하여 정공의 주입 효율과 이동도가 향상될 수 있다.
또한, 발광소자의 발광 효율이 향상되고 동작 전압을 낮출 수 있다.
도 1은 제1 실시예에 따른 발광소자의 측단면도.
도 2는 전자 차단층 부분을 확대하여 도시한 측단면도.
도 3은 제2 실시예에 따른 발광소자의 측단면도.
도 4 내지 도 7은 발광소자의 제작 과정의 일실시예를 간략히 도시한 도면.
도 8은 실시예들에 따른 발광소자를 포함한 발광소자 패키지의 일실시예를 도시한 도면.
도 9는 실시예들에 따른 발광소자 또는 발광소자 패키지가 배치된 헤드램프의 일실시예를 도시한 도면.
도 10은 실시예에 따른 발광소자 패키지가 배치된 표시장치의 일실시예를 도시한 도면.
이하 상기의 목적을 구체적으로 실현할 수 있는 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 설명한다.
본 발명에 따른 실시예의 설명에 있어서, 각 element의 " 상(위) 또는 하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두개의 element가 서로 직접(directly)접촉되거나 하나 이상의 다른 element가 상기 두 element사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 “상(위) 또는 하(아래)(on or under)”으로 표현되는 경우 하나의 element를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
도면에서 각층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기는 실제크기를 전적으로 반영하는 것은 아니다.
도 1은 제1 실시예에 따른 발광소자의 측단면도이다.
도 1을 참조하면, 제1 실시예에 따른 발광소자(100A)는 제1 도전형 반도체층(122), 제2 도전형 반도체층(126), 및 상기 제1 도전형 반도체층(122)과 제2 도전형 반도체층(126) 사이의 활성층(124)을 포함한다.
제1 도전형 반도체층(122)과 활성층(124) 및 제2 도전형 반도체층(126)을 합하여 발광 구조물(120)이라 칭할 수 있다.
발광소자(100)는 복수의 화합물 반도체층, 예를 들어 3족-5족 또는 2족-6족 원소의 반도체층을 이용한 LED(Light Emitting Diode)를 포함하며, LED는 청색, 녹색 또는 적색 등과 같은 광을 방출하는 유색 LED이거나, 백색 LED 또는 UV LED일 수 있다. LED의 방출 광은 다양한 반도체를 이용하여 구현될 수 있으며, 이에 대해 한정하지는 않는다.
발광 구조물(120)은 예를 들어, 유기금속 화학 증착법(MOCVD; Metal Organic Chemical Vapor Deposition), 화학 증착법(CVD; Chemical Vapor Deposition), 플라즈마 화학 증착법(PECVD; Plasma-Enhanced Chemical Vapor Deposition), 분자선 성장법(MBE; Molecular Beam Epitaxy), 수소화물 기상 성장법(HVPE; Hydride Vapor Phase Epitaxy) 등의 방법을 이용하여 형성될 수 있으며, 이에 대해 한정하지는 않는다.
제1 도전형 반도체층(122)은 반도체 화합물로 형성될 수 있으며, 예를 들어 3족-5족 또는 2족-6족 등의 화합물 반도체로 형성될 수 있다. 또한 제1 도전형 도펀트가 도핑될 수 있다. 상기 제1 도전형 반도체층(122)이 n형 반도체층인 경우, 상기 제1 도전형 도펀트는 n형 도펀트로서 Si, Ge, Sn, Se, Te 등을 포함할 수 있으나 이에 한정되지 않는다. 상기 제1 도전형 반도체층(122)이 p형 반도체층인 경우, 상기 제1 도전형 도펀트는 p형 도펀트로서 Mg, Zn, Ca, Sr, Ba 등을 포함할 수 있으나 이에 한정하지 않는다.
제1 도전형 반도체층(122)은 AlxInyGa(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질을 포함할 수 있다. 상기 제1 도전형 반도체층(122)은 GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN, AlGaAs, InGaAs, AlInGaAs, GaP, AlGaP, InGaP, AlInGaP, InP 중 어느 하나 이상으로 형성될 수 있다.
제2 도전형 반도체층(126)은 반도체 화합물로 형성될 수 있으며, 예를 들어 3족-5족 또는 2족-6족 등의 화합물 반도체로 형성될 수 있다. 또한 제2 도전형 도펀트가 도핑될 수 있다. 제2 도전형 반도체층(126)은 예를 들어, InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질을 포함할 수 있다. 상기 제2 도전형 반도체층(126)이 p형 반도체층인 경우, 상기 제2 도전형 도펀트는 p형 도펀트로서, Mg, Zn, Ca, Sr, Ba 등을 포함할 수 있으나 이에 한정하지 않는다. 상기 제2 도전형 반도체층(126)이 n형 반도체층인 경우, 상기 제2 도전형 도펀트는 n형 도펀트로서 Si, Ge, Sn, Se, Te 등을 포함할 수 있으나 이에 한정되지 않는다.
이하에서는, 제1 도전형 반도체층(122)이 n형 반도체층, 제2 도전형 반도체층(126)이 p형 반도체층인 경우를 예로 들어 설명한다.
상기 제2 도전형 반도체층(126) 상에는 상기 제2 도전형과 반대의 극성을 갖는 반도체, 예컨대 상기 제2 도전형 반도체층(126)이 p형 반도체층일 경우 n형 반도체층(미도시)을 형성할 수 있다. 이에 따라 발광 구조물은 n-p 접합 구조, p-n 접합 구조, n-p-n 접합 구조, p-n-p 접합 구조 중 어느 한 구조로 구현할 수 있다.
제1 도전형 반도체층(122)과 제2 도전형 반도체층(126) 사이에 활성층(124)이 위치한다.
활성층(124)은 전자와 정공이 서로 만나서 활성층(발광층) 물질 고유의 에너지 밴드에 의해서 결정되는 에너지를 갖는 빛을 방출하는 층이다. 제1 도전형 반도체층(122)이 n형 반도체층이고 제2 도전형 반도체층(126)이 p형 반도체층인 경우, 상기 제1 도전형 반도체층(122)으로부터 전자가 주입되고 상기 제2 도전형 반도체층(126)으로부터 정공이 주입될 수 있다.
활성층(124)은 단일 우물 구조, 다중 우물 구조, 양자선(Quantum-Wire) 구조, 또는 양자 점(Quantum Dot) 구조 중 적어도 어느 하나로 형성될 수 있다. 예를 들어, 상기 활성층(124)은 트리메틸 갈륨 가스(TMGa), 암모니아 가스(NH3), 질소 가스(N2), 및 트리메틸 인듐 가스(TMIn)가 주입되어 다중 양자 우물 구조가 형성될 수 있으나 이에 한정되는 것은 아니다.
활성층(124)이 다중 우물 구조로 이루어진 경우, 서로 번갈아 위치하는 복수 개의 우물층과 장벽층을 포함하며, 활성층(124)의 우물층/장벽층은 InGaN/GaN, InGaN/InGaN, GaN/AlGaN, InAlGaN/GaN, GaAs(InGaAs)/AlGaAs, GaP(InGaP)/AlGaP 중 어느 하나 이상의 페어 구조로 형성될 수 있으나 이에 한정되지 않는다. 우물층은 장벽층의 밴드갭보다 작은 밴드갭을 갖는 물질로 형성될 수 있다.
제2 도전형 반도체층(126)은 활성층(124)에 인접하여 위치하는 전자 차단층(Electron Blocking Layer: EBL, 200)을 포함한다.
전자 차단층(200)은 제1 도전형 반도체층(122)에서 제공되는 전자의 이동도(mobility)가 높기 때문에, 전자가 발광에 기여하지 못하고 활성층(124)을 넘어 제2 도전형 반도체층(126)으로 빠져나가 누설 전류의 원인이 되는 것을 방지하는 전위 장벽의 역할을 한다.
도 2는 전자 차단층 부분을 확대하여 도시한 측단면도이다. 도 2를 참조하여 전자 차단층(200)에 대하여 좀 더 자세히 설명한다.
전자 차단층(200)은 제1층(210) 및 제2층(220)의 페어 구조를 적어도 하나 포함한다. 제1층(210)은 제2 도전형 반도체층(126)에 도핑된 제2 도전형 도펀트와 동일한 물질을 포함하여 이루어질 수 있다. 제2 도전형 도펀트로서 Mg, Zn, Ca, Sr, Ba 등이 사용될 수 있으나, 이하에서는 Mg를 사용한 경우를 예로 들어 설명한다.
제1층(210)은 제2 도전형 도펀트인 Mg를 포함하는 물질로 형성될 수 있으며, Mg-N의 결합 구조를 포함할 수 있다.
제2층(220)은 활성층(124)보다 큰 에너지 밴드갭을 갖는 물질로 형성되며, InxAlyGa1-x-yN(0≤x<y<1)의 조성을 가질 수 있다. 제2층(220)은 제2 도전형 도펀트로 도핑될 수 있다. 예를 들어, 제2층(220)은 Mg로 도핑될 수 있다.
제1층(210)과 제2층(220)의 페어 구조를 포함한 전자 차단층(200)은 제2 도전형 도펀트의 주입률을 개선하여, 활성층(124)으로의 정공의 주입 효율을 향상시킬 수 있다. 제1층(210)과 제2층(220)은 이종 물질로 이루이지며, 이종 물질의 계면에 도펀트의 주입이 잘 이루어지므로, 제1층(210)과 제2층(220)의 계면에서 제2 도전형 도펀트의 주입률이 증대될 수 있다.
또한, 제1층(210)의 Mg-N 결합이 끊어지면서 Mg가 제2층으로 내부 확산(inter-diffusion)되어, 전자 차단층(200)에서 Mg의 효율이 향상될 수 있다.
전자 차단층(200)에서 제2 도전형 도펀트의 주입률이 향상되면 활성층(124)으로의 정공의 주입 효율과 이동성이 개선될 수 있다. 따라서, 실시예에 따르면, 정공의 주입 효율과 이동성이 개선되어 발광소자(100A)의 발광 효율과 파워가 향상되고 동작 전압을 낮출 수 있다.
전자 차단층(200)은 제1층(210)/제2층(220)의 페어 구조를 복수 개 포함할 수 있다. 도 2에는 세 개의 제1층(210)/제2층(220) 페어 구조를 도시하였으나, 실시예에 따라 페어 구조의 수는 달라질 수 있다. 페어 구조의 수가 너무 적을 경우, 제1층(210)과 제2층(220)의 계면이 적게 형성되고 Mg의 내부 확산이 적게 일어나므로 정공의 주입 효율 개선의 효과가 미비할 수 있고, 페어 구조의 수가 너무 많을 경우, 장벽이 커지므로 제2 도전형 반도체층(126)으로부터 홀의 주입이 오히려 방해될 수 있다. 일 예로서, 전자 차단층(200)은 제1층(210)/제2층(220)의 페어 구조를 1개 내지 6개 포함할 수 있다.
일 예로서, 전자 차단층(200)은 120Å 내지 200Å의 두께(D)로 형성될 수 있다. 또는, 다른 실시예에서, 150Å 내지 200Å의 두께(D)로 형성될 수 있다. 전자 차단층(200)의 두께가 너무 얇을 경우 제1층(210)과 제2층(220)의 계면이 적게 형성되거나 Mg의 내부 확산이 적게 일어나므로 정공의 주입 효율 개선의 효과가 미비할 수 있고, 전자 차단층(200)의 두께가 너무 두꺼울 경우, 장벽이 커지므로 제2 도전형 반도체층(126)으로부터 홀의 주입이 오히려 방해될 수 있다.
제1층(210)은 MgN 또는 MgInN 물질을 포함하여 이루어질 수 있다. 제1층(210)에 포함된 Mg-N의 결합 구조가 깨지면서 Mg가 제2층(220)으로 내부 확산되어 들어갈 수 있다.
제2층(220)은 AlGaN 또는 InAlGaN 물질을 포함하여 이루어질 수 있다. 특히, 제2층(220)이 In을 포함할 경우, Mg의 활성화 에너지(Activation Energy)를 낮춰 Mg의 효율이 높아지고 온도의 변화에 의해 In 성분이 증발되고 그 자리에 Mg가 자리함으로써, 제2 도전형 도펀트의 역할을 하는 Mg의 주입률이 향상되고, 이로써 정공의 주입 효율과 이동성이 더욱 더 향상될 수 있다.
다시 도 1을 참조하면, 제2 도전형 반도체층(126)은 활성층(124)과 전자 차단층(200) 사이에 정공 주입층(126a)을 더 포함할 수 있다. 정공 주입층(126a)은 활성층(124)으로 정공을 제공하는 역할을 한다. 전자 차단층(200)의 큰 에너지 밴드갭으로 인하여 활성층(124)으로의 정공 주입률이 저하될 수 있는데, 활성층(124)과 전자 차단층(200) 사이에 정공 주입층(126a)을 삽입함으로써, 정공의 주입 효율이 향상될 수 있다. 정공 주입층(126a)의 에너지 밴드갭은 전자 차단층(200)의 에너지 밴드갭보다 작으며, 활성층(124)의 장벽층의 에너지 밴드갭과 동일할 수 있다.
정공 주입층(126a)은 InxAlyGa1 -x- yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 물질을 포함할 수 있고, 제2 도전형 도펀트로 도핑될 수 있다.
발광 구조물(120)은 기판(110) 상에 위치한다.
기판(110)은 반도체 물질 성장에 적합한 재료, 열전도성이 뛰어난 물질로 형성될 수 있다. 기판(110)은 예를 들어, 사파이어(Al2O3), SiC, GaAs, GaN, ZnO, Si, GaP, InP, Ge, and Ga203 중 적어도 하나를 사용할 수 있다. 기판(110)에 대해 습식세척을 하여 표면의 불순물을 제거할 수 있다.
발광 구조물(120)과 기판(110) 사이에는 버퍼층(115)이 위치할 수 있다. 버퍼층(115)은 발광 구조물(120)과 기판(110)의 재료의 격자 부정합 및 열팽창 계수의 차이를 완화하기 위한 것이다. 버퍼층(115)의 재료는 3족-5족 화합물 반도체, 예컨대, GaN, InN, AlN, InGaN, InAlGaN, AlInN 중 적어도 하나로 형성될 수 있다.
기판(110)과 제1 도전형 반도체층(122) 사이에 언도프트 반도체층(미도시)이 위치할 수도 있다. 언도프트 반도체층은 제1 도전형 반도체층(122)의 결정성 향상을 위해 형성되는 층으로, n형 도펀트가 도핑되지 않아 제1 도전형 반도체층에 비해 낮은 전기전도성을 갖는 것을 제외하고는 상기 제1 도전형 반도체층(122)과 같을 수 있다.
제1 도전형 반도체층(122)은 제2 도전형 반도체층(126)과 활성층(124)의 적어도 일부가 선택적으로 식각되어 노출된 노출면(S)을 갖는다. 상기 노출면(S) 상에 제1 전극(130)이 위치하고, 식각되지 않은 제2 도전형 반도체층(126) 상에 제2 전극(140)이 위치한다.
제1 전극(130) 및 제2 전극(140)은 몰리브덴(Mo), 크롬(Cr), 니켈(Ni), 금(Au), 알루미늄(Al), 타이타늄(Ti), 백금(Pt), 바나듐(V), 텅스텐(W), 납(Pd), 구리(Cu), 로듐(Rh) 또는 이리듐(Ir) 중 적어도 하나를 포함하여 단층 또는 다층 구조로 형성될 수 있다.
제2 전극(140)이 형성되기 전 제2 도전형 반도체층(126) 상에는 도전층(150)이 형성될 수 있다.
실시예에 따라, 제2 도전형 반도체층(126)이 노출되도록 도전층(150)의 일부가 오픈되어 제2 도전형 반도체층(126)과 제2 전극(140)이 접할 수 있다.
또는, 도 1에 도시된 바와 같이, 도전층(150)을 사이에 두고 제2 도전형 반도체층(126)과 제2 전극(140)이 전기적으로 연결될 수도 있다.
도전층(150)은 제2 도전형 반도체층(126)의 전기적 특성을 향상시키고 제2 전극(140)과의 전기적 접촉을 개선하기 위한 것으로, 층 또는 복수의 패턴으로 형성될 수 있다. 도전층(150)은 투과성을 갖는 투명 전극층으로 형성될 수 있다.
도전층(150)에는 투광성 전도층과 금속이 선택적으로 사용될 수 있으며, 예를 들어, ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IZON(IZO Nitride), AGZO(Al-Ga ZnO), IGZO(In-Ga ZnO), ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, 또는 Ni/IrOx/Au/ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Sn, In, Ru, Mg, Zn, Pt, Au, Hf 중 적어도 하나를 포함하여 형성될 수 있으나, 이러한 재료에 한정되지 않는다.
도 1에 따른 발광소자(100)는 수평형(Lateral) 구조일 수 있다. 수평형 구조란, 발광 구조물(120)에서 제1 전극(130)과 제2 전극(140)이 동일한 방향을 향해 형성되는 구조를 의미한다. 일 예로서, 도 1를 참조하면, 제1 전극(130)과 제2 전극(140)이 발광 구조물(120)의 상부 방향으로 형성되어 있다.
도 3은 제2 실시예에 따른 발광소자의 측단면도이다. 상술한 내용과 중복되는 내용은 다시 설명하지 않고, 이하에서는 차이점을 중심으로 설명한다.
도 3을 참조하면, 제2 실시예에 따른 발광소자(100B)는 제1 도전형 반도체층(122), 제2 도전형 반도체층(126), 및 상기 제1 도전형 반도체층(122)과 제2 도전형 반도체층(126) 사이의 활성층(124)을 포함한다.
제1 도전형 반도체층(122)과 활성층(124) 및 제2 도전형 반도체층(126)을 합하여 발광 구조물(120)이라 칭할 수 있다.
제2 도전형 반도체층(126)은 활성층(124)에 인접하여 위치하는 전자 차단층(Electron Blocking Layer: EBL, 200)을 포함한다.
전자 차단층(200)은 제1 도전형 반도체층(122)에서 제공되는 전자의 이동도(mobility)가 높기 때문에, 전자가 발광에 기여하지 못하고 활성층(124)을 넘어 제2 도전형 반도체층(126)으로 빠져나가 누설 전류의 원인이 되는 것을 방지하는 전위 장벽의 역할을 한다.
전자 차단층(200)의 내용은 도 2와 관련하여 상술한 바와 같으므로 자세한 설명을 생략한다.
발광 구조물(120)의 상부, 즉 제1 도전형 반도체층(122)의 일면에 제1 전극(130)이 위치하고, 발광 구조물(120)의 하부, 즉 제2 도전형 반도체층(126)의 일면에 제2 전극층(160)이 위치한다.
일 예로서, 제2 전극층(160)은 도전층(160a) 또는 반사층(160b) 중 적어도 어느 하나를 포함할 수 있다.
도전층(160a)은 제2 도전형 반도체층(126)의 전기적 특성을 개선하기 위한 것으로, 제2 도전형 반도체층(126)과 접하여 위치할 수 있다.
도전층(160a)은 투명 전극층 또는 불투명 전극층으로 형성될 수 있으며, 예를 들어, ITO(indium tin oxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), IZON(IZO Nitride), AGZO(Al-Ga ZnO), IGZO(In-Ga ZnO), ZnO, IrOx, RuOx, NiO, RuOx/ITO, Ni/IrOx/Au, 또는 Ni/IrOx/Au/ITO, Ag, Ni, Cr, Ti, Al, Rh, Pd, Ir, Sn, In, Ru, Mg, Zn, Pt, Au, Hf 중 적어도 하나를 포함하여 형성될 수 있으며, 이러한 재료에 한정되지는 않는다.
반사층(160b)은 활성층(124)에서 생성된 빛을 반사시켜 발광소자(100)의 내부에서 소멸되는 빛의 양을 줄임으로써, 발광소자(100)의 외부양자효율을 향상시킬 수 있다.
반사층(160b)은 Ag, Ti, Ni, Cr 또는 AgCu 중 적어도 어느 하나를 포함할 수 있으나, 이에 한정하지 않는다.
반사층(160b)이 제2 도전형 반도체층(126)과 오믹 접촉하는 물질로 이루어진 경우, 도전층(160a)은 별도로 형성하지 않을 수 있다.
발광 구조물(120)은 지지기판(180)에 의해 지지된다.
지지기판(180)은 전기 전도성과 열 전도성이 높은 물질로 형성되며, 예를 들어, 소정의 두께를 갖는 베이스 기판(substrate)으로서, 몰리브덴(Mo), 실리콘(Si), 텅스텐(W), 구리(Cu) 또는 알루미늄(Al)로 구성되는 군으로부터 선택되는 물질 또는 이들의 합금으로 이루어질 수 있으며, 또한, 금(Au), 구리합금(Cu Alloy), 니켈(Ni), 구리-텅스텐(Cu-W), 캐리어 웨이퍼(예: GaN, Si, Ge, GaAs, ZnO, SiGe, SiC, SiGe, Ga2O3 등) 또는 전도성 시트 등을 선택적으로 포함할 수 있다.
발광 구조물(120)은 본딩층(185)에 의해 지지기판(120)에 본딩될 수 있다. 이때, 발광 구조물(120) 하부에 위치하는 제2 전극층(160)과 본딩층(185)이 접할 수 있다.
본딩층(185)은 베리어 금속 또는 본딩 금속 등을 포함하며, 예를 들어, Ti, Au, Sn, Ni, Cr, Ga, In, Bi, Cu, Ag 또는 Ta 중 적어도 하나를 포함할 수 있으며, 이에 대해 한정하지는 않는다.
본딩층(185)은 발광 구조물(120)에 인접하여 확산 방지층(미도시)을 포함하여, 본딩층(185)에 사용된 금속 등이 상부의 발광 구조물(120) 내부로 확산되는 것을 방지할 수도 있다.
발광 구조물(120)의 하부 둘레에 채널층(170)이 위치할 수 있다. 채널층(170)은 발광 구조물(120)을 보호하며, 발광소자(100)의 제조 과정 중 아이솔레이션 에칭시 에칭의 스톱 레이어(stop layer)로서 기능할 수 있다.
채널층(170)은 발광 구조물(120)의 제2 도전형 반도체층(126) 하부 둘레에 루프 형상, 고리 형상 또는 프레임 형상 등의 패턴으로 형성될 수 있다.
채널층(170)은 발광 구조물의 외벽이 습기에 노출되더라도 서로 쇼트가 발생하는 것을 방지하여 고습에 강한 발광소자를 제공할 수 있다.
채널층(170)은 산화물, 질화물 또는 절연층의 재질 중에서 선택될 수 있으며, 예컨대 ITO(indium tinoxide), IZO(indium zinc oxide), IZTO(indium zinc tin oxide), IAZO(indium aluminum zinc oxide), IGZO(indium gallium zinc oxide), IGTO(indium gallium tin oxide), AZO(aluminum zinc oxide), ATO(antimony tin oxide), GZO(gallium zinc oxide), SiO2, SiOx, SiOxNy, Si3N4, Al2O3, TiO2 등에서 선택적으로 형성될 수 있으나, 이에 한정하지 않는다.
발광 구조물(120) 상의 적어도 일부, 측면, 그리고 발광 구조물(120)의 외부로 노출된 채널층(170)의 상부에 패시베이션층(190)이 위치할 수도 있다.
패시베이션층(190)은 산화물 또는 질화물로 이루어져 발광 구조물(120)을 보호할 수 있다. 일 예로서, 패시베이션층(190)은 실리콘 산화물(SiO2)층, 실리콘 질화물층, 산화 질화물층, 또는 산화 알루미늄층으로 이루어질 수 있으나, 이에 한정하지 않는다.
발광 구조물(120)의 제1 도전형 반도체층(122) 상에는 러프니스 패턴(R)이 형성될 수 있다. 발광 구조물(120)의 상부에 패시베이션층(190)이 존재하는 경우, 상기 패시베이션층(190)에 러프니스 패턴(R)이 위치할 수도 있다. 러프니스 패턴(R)은 PEC(Photo enhanced chemical) 식각 방법이나 마스크 패턴을 이용한 에칭 공정 수행하여 형성할 수 있다. 러프니스 패턴(R)은 활성층(124)에서 생성된 광의 외부 추출 효율을 증가시키기 위한 것으로서, 규칙적인 주기를 갖거나 불규칙적인 주기를 가질 수 있다.
도 3에 따른 발광소자(100)는 수직형(Vertical) 구조일 수 있다. 수직형 구조란, 발광소자(100)에서 제1 전극(130)과 제2 전극층(160)이 서로 다른 방향에 각각 형성되는 구조를 의미한다. 일 예로서, 도 3을 참조하면, 발광 구조물(120)의 상부 방향으로 제1 전극(130)이 형성되고 발광 구조물(120)의 하부 방향으로 제2 전극층(160)이 형성되어 있다.
도 4 내지 도 7은 발광소자의 제작 과정의 일실시예를 간략히 도시한 도면이다.
먼저, 도 4를 참조하면, 기판(110) 상에 제1 도전형 반도체층(122)과 활성층(124) 및 제2 도전형 반도체층(200)의 발광 구조물(120)을 성장한다. 이때, 발광 구조물(120)의 결정성 향상을 위하여 기판(110) 상에 버퍼층(115)을 성장시킨 후 제1 도전형 반도체층(122)을 성장할 수 있다.
발광 구조물(120)은 예를 들어, 유기금속 화학 증착법(MOCVD; Metal Organic Chemical Vapor Deposition), 화학 증착법(CVD; Chemical Vapor Deposition), 플라즈마 화학 증착법(PECVD; Plasma-Enhanced Chemical Vapor Deposition), 분자선 성장법(MBE; Molecular Beam Epitaxy), 수소화물 기상 성장법(HVPE; Hydride Vapor Phase Epitaxy) 등의 방법을 이용하여 성장될 수 있으나, 이에 대해 한정하지 않는다.
제2 도전형 반도체층(126) 성장시, 활성층(124)에 접하도록 정공 주입층(126a)을 성장하고, 그 후 전자 차단층(200)을 성장할 수 있다. 정공 주입층(126a)의 성장은 생략될 수도 있다.
전자 차단층(200)은 복수 개의 제1층(210) 및 복수 개의 제2층(220) 서로 번갈아 성장한다. 제1층(210)은 제2 도전형 반도체층(126)에 도핑된 제2 도전형 도펀트와 동일한 물질을 포함하여 성장하며, 제2층(220)은 InxAlyGa1 -x-yN(0≤x<y<1)의 조성을 이루는 물질로 성장할 수 있다.
도 5는 전자 차단층의 제1층 및 제2층의 성장 온도의 일 예시를 간략히 나타낸 그래프이다.
도 5를 참조하면, 약 800℃에서 제1층(210)을 성장하고, 그 후 약 950℃까지 온도를 서서히 올리면서 제2층(220)을 성장할 수 있다. 제2층(220)이 In을 포함하는 경우, 이러한 온도의 변화를 통한 어닐링(annealing) 효과로 인하여 제2층(220)에 포함된 In이 증발하면서 그 자리에 제1층(210)에 포함된 Mg가 들어가면서 Mg의 효율이 향상될 수 있다.
제2 도전형 반도체층(126)의 성장이 완료되면, 도 6에 도시된 바와 같이, 발광 구조물(120)을 선택적으로 식각하여 수평형 구조의 발광소자를 제작할 수 있다.
다시 설명하면, 도 4에서와 같이 제2 도전형 반도체층(126)을 성장한 후, 제2 도전형 반도체층(126)과 활성층(124) 및 제1 도전형 반도체층(122)의 일부를 선택적으로 식각하여 노출면(S)을 형성한다. 그리고, 제1 도전형 반도체층(122)의 노출면(S)에 제1 전극(130)을 형성하고, 식각되지 않은 제2 도전형 반도체층(126) 상에 제2 전극(140)을 형성한다. 제조 방법에 따라, 제2 도전형 반도체층(126)과 제2 전극(140) 사이에 도전층(150)을 증착할 수도 있다.
또는, 도 7a 및 도 7b에 도시된 바와 같이, 수직형 구조의 발광소자를 제작할 수도 있다.
도 7a를 참조하면, 도 4에서와 같이 제2 도전형 반도체층(126)을 성장한 후, 제2 전극층(160)을 형성한다. 그리고, 후에 개별적인 발광 구조물로 아이솔레이션될 영역에 제2 전극층(160)의 일부를 제거하여 채널층(170)을 형성한다.
그 후, 제2 전극층(160)의 상부에 지지기판(180)을 배치한다. 지지기판(180)은 본딩 방식, 도금 방식 또는 증착 방식으로 형성할 수 있다. 지지기판(180)을 본딩 방식으로 형성하는 경우, 본딩층(185)을 통해 제2 전극층(160)과 지지기판(180)을 본딩할 수 있다.
그리고, 도 7a에 도시된 바와 같이, 기판(110)을 분리한다. 기판(110)의 분리는 엑시머 레이저 등을 이용한 레이저 리프트 오프(Laser Lift Off: LLO)의 방법으로 할 수도 있으며, 건식 및 습식 식각의 방법으로 할 수도 있다.
레이저 리프트 오프법을 예로 들면, 상기 기판(110) 방향으로 일정 영역의 파장을 가지는 엑시머 레이저 광을 포커싱(focusing)하여 조사하면, 상기 기판(110)과 발광 구조물(120)의 경계면에 열 에너지가 집중되어 경계면이 갈륨과 질소 분자로 분리되면서 레이저 광이 지나가는 부분에서 순간적으로 기판(110)의 분리가 일어난다. 기판(110) 분리 후 별도의 식각 공정을 통해 버퍼층(115)을 제거할 수 있다.
그 후, 도 7b를 참조하면, 채널층(170)이 위치하는 영역에서 아이솔레이션 에칭을 실시하여 각각의 발광소자 단위로 분리한다. 아이솔레이션 에칭은, 예를 들어, ICP(Inductively Coupled Plasma)와 같은 건식 식각 방법에 의해 실시될 수 있다.
각각의 발광소자 단위로 분리한 후, 발광 구조물(120)의 제1 도전형 반도체층(122) 상에 제1 전극(130)을 형성한다. 그리고, 발광 구조물(120)의 상면과 측면의 적어도 일부에 패시베이션층(190)을 형성한다.
상술한 발광소자의 제작 과정은 일 예시에 불과하며, 실시예에 따라 구체적인 제작 과정의 순서나 방법은 달라질 수 있다.
도 8은 실시예들에 따른 발광소자를 포함한 발광소자 패키지의 일실시예를 도시한 도면이다.
일실시예에 따른 발광소자 패키지(300)는 몸체(310)와, 상기 몸체(310)에 배치된 제1 리드 프레임(321) 및 제2 리드 프레임(322)과, 상기 몸체(310)에 배치되어 상기 제1 리드 프레임(321) 및 제2 리드 프레임(322)과 전기적으로 연결되는 상술한 실시예들에 따른 발광소자(100)와, 상기 캐비티에 형성된 몰딩부(340)를 포함한다. 상기 몸체(310)에는 캐비티가 형성될 수 있다.
상기 몸체(310)는 실리콘 재질, 합성수지 재질, 또는 금속 재질을 포함하여 형성될 수 있다. 상기 몸체(310)가 금속 재질 등 도전성 물질로 이루어지면, 도시되지는 않았으나 상기 몸체(310)의 표면에 절연층이 코팅되어 상기 제1,2 리드 프레임(321, 322) 간의 전기적 단락을 방지할 수 있다.
상기 제1 리드 프레임(321) 및 제2 리드 프레임(322)은 서로 전기적으로 분리되며, 상기 발광소자(100)에 전류를 공급한다. 또한, 상기 제1 리드 프레임(321) 및 제2 리드 프레임(322)은 상기 발광소자(100)에서 발생된 광을 반사시켜 광 효율을 증가시킬 수 있으며, 상기 발광소자(100)에서 발생된 열을 외부로 배출시킬 수도 있다.
상기 발광소자(100)는 상기 몸체(310) 상에 배치되거나 상기 제1 리드 프레임(321) 또는 제2 리드 프레임(322) 상에 배치될 수 있다. 본 실시예에서는 제1 리드 프레임(321)과 발광소자(100)가 직접 통전되고, 제2 리드 프레임(322)과 상기 발광소자(100)는 와이어(330)를 통하여 연결되어 있다. 발광소자(100)는 와이어 본딩 방식 외에 플립칩 방식 또는 다이 본딩 방식 등에 의하여 리드 프레임(321, 322)과 연결될 수 있다.
상기 몰딩부(340)는 상기 발광소자(100)를 포위하여 보호할 수 있다. 또한, 상기 몰딩부(340) 상에는 형광체(350)가 포함되어, 상기 발광소자(100)로부터 방출되는 빛의 파장을 변화시킬 수 있다.
형광체(350)는 가넷(Garnet)계 형광체, 실리케이트(Silicate)계 형광체, 니트라이드(Nitride)계 형광체, 또는 옥시니트라이드(Oxynitride)계 형광체를 포함할 수 있다.
예를 들어, 상기 가넷계 형광체는 YAG(Y3Al5O12:Ce3 +) 또는 TAG(Tb3Al5O12:Ce3 +)일 수 있고, 상기 실리케이트계 형광체는 (Sr,Ba,Mg,Ca)2SiO4:Eu2 +일 수 있고, 상기 니트라이드계 형광체는 SiN을 포함하는 CaAlSiN3:Eu2 +일 수 있고, 상기 옥시니트라이드계 형광체는 SiON을 포함하는 Si6 - xAlxOxN8 -x:Eu2 +(0<x<6)일 수 있다.
상기 발광소자(100)에서 방출된 제1 파장 영역의 광이 상기 형광체(350)에 의하여 여기되어 제2 파장 영역의 광으로 변환되고, 상기 제2 파장 영역의 광은 렌즈(미도시)를 통과하면서 광경로가 변경될 수 있다.
실시예에 따른 발광소자 패키지는 복수 개가 기판 상에 어레이되며, 상기 발광소자 패키지의 광 경로 상에 광학 부재인 도광판, 프리즘 시트, 확산 시트 등이 배치될 수 있다. 이러한 발광소자 패키지, 기판, 광학 부재는 라이트 유닛으로 기능할 수 있다. 또 다른 실시 예는 상술한 실시 예들에 기재된 반도체 발광소자 또는 발광소자 패키지를 포함하는 표시 장치, 지시 장치, 조명 시스템으로 구현될 수 있으며, 예를 들어, 조명 시스템은 램프, 가로등을 포함할 수 있다.
이하에서는 상술한 발광소자 또는 발광소자 패키지가 배치된 조명 시스템의 일실시예로서, 헤드램프와 백라이트 유닛을 설명한다.
도 9는 실시예들에 따른 발광소자 또는 발광소자 패키지가 배치된 헤드램프의 일실시예를 도시한 도면이다.
도 9를 참조하면, 실시예들에 따른 발광소자 또는 발광소자 패키지가 배치된 발광 모듈(710)에서 방출된 빛이 리플렉터(720)와 쉐이드(730)에서 반사된 후 렌즈(740)를 투과하여 차체 전방을 향할 수 있다.
상기 발광 모듈(710)은 회로기판 상에 발광소자가 복수 개로 탑재될 수 있으며, 이에 대해 한정하지 않는다.
도 10은 실시예에 따른 발광소자 패키지가 배치된 표시장치의 일실시예를 도시한 도면이다.
도 10을 참조하면, 실시예에 따른 표시장치(800)는 발광 모듈(830, 835)과, 바텀 커버(810) 상의 반사판(820)과, 상기 반사판(820)의 전방에 배치되며 상기 발광 모듈에서 방출되는 빛을 표시장치 전방으로 가이드하는 도광판(840)과, 상기 도광판(840)의 전방에 배치되는 제1 프리즘시트(850)와 제2 프리즘시트(860)와, 상기 제2 프리즘시트(860)의 전방에 배치되는 패널(870)과 상기 패널(870)의 전반에 배치되는 컬러필터(880)를 포함하여 이루어진다.
발광 모듈은 회로 기판(830) 상의 상술한 발광소자 패키지(835)를 포함하여 이루어진다. 여기서, 회로 기판(830)은 PCB 등이 사용될 수 있고, 발광소자 패키지(835)는 도 8에서 설명한 바와 같다.
상기 바텀 커버(810)는 표시 장치(800) 내의 구성 요소들을 수납할 수 있다. 상기 반사판(820)은 본 도면처럼 별도의 구성요소로 마련될 수도 있고, 상기 도광판(840)의 후면이나, 상기 바텀 커버(810)의 전면에 반사도가 높은 물질로 코팅되는 형태로 마련되는 것도 가능하다.
여기서, 반사판(820)은 반사율이 높고 초박형으로 사용 가능한 소재를 사용할 수 있고, 폴리에틸렌 테레프탈레이트(PolyEthylene Terephtalate; PET)를 사용할 수 있다.
도광판(840)은 발광소자 패키지 모듈에서 방출되는 빛을 산란시켜 그 빛이 액정 표시 장치의 화면 전영역에 걸쳐 균일하게 분포되도록 한다. 따라서, 도광판(830)은 굴절률과 투과율이 좋은 재료로 이루어지는데, 폴리메틸메타크릴레이트(PolyMethylMethAcrylate; PMMA), 폴리카보네이트(PolyCarbonate; PC), 또는 폴리에틸렌(PolyEthylene; PE) 등으로 형성될 수 있다. 그리고, 도광판이 생략되어 반사시트(820) 위의 공간에서 빛이 전달되는 에어 가이드 방식도 가능하다.
상기 제1 프리즘 시트(850)는 지지필름의 일면에, 투광성이면서 탄성을 갖는 중합체 재료로 형성되는데, 상기 중합체는 복수 개의 입체구조가 반복적으로 형성된 프리즘층을 가질 수 있다. 여기서, 상기 복수 개의 패턴은 도시된 바와 같이 마루와 골이 반복적으로 스트라이프 타입으로 구비될 수 있다.
상기 제2 프리즘 시트(860)에서 지지필름 일면의 마루와 골의 방향은, 상기 제1 프리즘 시트(850) 내의 지지필름 일면의 마루와 골의 방향과 수직할 수 있다. 이는 발광 모듈과 반사시트로부터 전달된 빛을 상기 패널(870)의 전방향으로 고르게 분산하기 위함이다.
본 실시예에서 상기 제1 프리즘시트(850)과 제2 프리즘시트(860)가 광학시트를 이루는데, 상기 광학시트는 다른 조합 예를 들어, 마이크로 렌즈 어레이로 이루어지거나 확산시트와 마이크로 렌즈 어레이의 조합 또는 하나의 프리즘 시트와 마이크로 렌즈 어레이의 조합 등으로 이루어질 수 있다.
상기 패널(870)은 액정 표시 패널(Liquid crystal display)가 배치될 수 있는데, 액정 표시 패널(860) 외에 광원을 필요로 하는 다른 종류의 디스플레이 장치가 구비될 수 있다.
상기 패널(870)은, 유리 바디 사이에 액정이 위치하고 빛의 편광성을 이용하기 위해 편광판을 양 유리바디에 올린 상태로 되어있다. 여기서, 액정은 액체와 고체의 중간적인 특성을 가지는데, 액체처럼 유동성을 갖는 유기분자인 액정이 결정처럼 규칙적으로 배열된 상태를 갖는 것으로, 상기 분자 배열이 외부 전계에 의해 변화되는 성질을 이용하여 화상을 표시한다.
표시장치에 사용되는 액정 표시 패널은, 액티브 매트릭스(Active Matrix) 방식으로서, 각 화소에 공급되는 전압을 조절하는 스위치로서 트랜지스터를 사용한다.
상기 패널(870)의 전면에는 컬러 필터(880)가 구비되어 상기 패널(870)에서 투사된 빛을, 각각의 화소마다 적색과 녹색 및 청색의 빛만을 투과하므로 화상을 표현할 수 있다.
이상과 같이 실시예는 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
그러므로, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
100: 발광소자 110: 기판
120: 발광 구조물 122: 제1 도전형 반도체층
124: 활성층 126: 제2 도전형 반도체층
126a: 정공 주입층 200: 전자 차단층
210: 제1층 220: 제2층
160: 제2 전극층 170: 채널층
180: 지지기판 190: 패시베이션층
310: 패키지 몸체 321, 322: 제1,2 리드 프레임
330: 와이어 340: 몰딩부
350: 형광체 710: 발광 모듈
720: 리플렉터 730: 쉐이드
800: 표시장치 810: 바텀 커버
820: 반사판 840: 도광판
850: 제1 프리즘시트 860: 제2 프리즘시트
870: 패널 880: 컬러필터

Claims (7)

  1. 제1 도전형 반도체층;
    제2 도전형 반도체층; 및
    상기 제1 도전형 반도체층과 상기 제2 도전형 반도체층 사이의 활성층;을 포함하고,
    상기 제2 도전형 반도체층은, 상기 활성층에 인접하여 위치하며 제1층 및 제2층의 페어 구조를 적어도 하나 포함하는 전자 차단층을 포함하며,
    상기 제1층 및 제2층은 이종 물질로 형성되고, 상기 제1층은 상기 제2 도전형 반도체층에 도핑된 제2 도전형 도펀트와 동일한 물질을 포함하여 이루어지며, 상기 제2층은 InxAlyGa1 -x-yN(0≤x<y<1)의 조성을 갖고 상기 제2 도전형 도펀트가 도핑된 발광소자.
  2. 제 1 항에 있어서,
    상기 전자 차단층은 상기 제1층 및 제2층의 페어 구조를 1개 내지 6개 포함하는 발광소자.
  3. 제 1 항에 있어서,
    상기 제2층은 InAlGaN 또는 AlGaN를 포함하는 발광소자.
  4. 제 1 항에 있어서,
    상기 제1층을 이루는 물질은 Mg-N의 결합 구조를 포함하는 발광소자.
  5. 제 4 항에 있어서,
    상기 제1층은 MgN 또는 MgInN를 포함하는 발광소자.
  6. 제 1 항에 있어서,
    상기 제2 도전형 반도체층은 상기 활성층과 상기 전자 차단층 사이에 위치하는 정공 주입층을 더 포함하는 발광소자.
  7. 제 1 항에 있어서,
    상기 전자 차단층은 120Å 내지 200Å의 두께로 형성되는 발광소자.
KR1020120112251A 2012-10-10 2012-10-10 발광소자 KR20140046162A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120112251A KR20140046162A (ko) 2012-10-10 2012-10-10 발광소자

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120112251A KR20140046162A (ko) 2012-10-10 2012-10-10 발광소자

Publications (1)

Publication Number Publication Date
KR20140046162A true KR20140046162A (ko) 2014-04-18

Family

ID=50653213

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120112251A KR20140046162A (ko) 2012-10-10 2012-10-10 발광소자

Country Status (1)

Country Link
KR (1) KR20140046162A (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174925A1 (en) * 2014-05-14 2015-11-19 Nanyang Technological University Light-emitting device and method of forming the same
CN109786530A (zh) * 2018-12-28 2019-05-21 华灿光电(浙江)有限公司 一种GaN基发光二极管外延片及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050082183A (ko) * 2004-02-18 2005-08-23 삼성전기주식회사 질화물계 반도체 발광소자
KR20080010136A (ko) * 2006-07-26 2008-01-30 엘지전자 주식회사 질화물계 발광 소자
KR101028251B1 (ko) * 2010-01-19 2011-04-11 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR20120088986A (ko) * 2011-02-01 2012-08-09 엘지이노텍 주식회사 발광소자 및 발광소자 패키지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050082183A (ko) * 2004-02-18 2005-08-23 삼성전기주식회사 질화물계 반도체 발광소자
KR20080010136A (ko) * 2006-07-26 2008-01-30 엘지전자 주식회사 질화물계 발광 소자
KR101028251B1 (ko) * 2010-01-19 2011-04-11 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
KR20120088986A (ko) * 2011-02-01 2012-08-09 엘지이노텍 주식회사 발광소자 및 발광소자 패키지

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015174925A1 (en) * 2014-05-14 2015-11-19 Nanyang Technological University Light-emitting device and method of forming the same
CN106463573A (zh) * 2014-05-14 2017-02-22 南洋理工大学 发光器件及其成形方法
CN109786530A (zh) * 2018-12-28 2019-05-21 华灿光电(浙江)有限公司 一种GaN基发光二极管外延片及其制备方法

Similar Documents

Publication Publication Date Title
KR101827975B1 (ko) 발광소자
KR101941033B1 (ko) 발광소자
EP2696375B1 (en) Light emitting diode
KR20140059985A (ko) 발광소자
KR101908657B1 (ko) 발광소자
KR101941032B1 (ko) 발광소자
KR101963220B1 (ko) 발광소자
KR101922529B1 (ko) 발광소자
KR101991032B1 (ko) 발광소자
KR102050052B1 (ko) 발광소자
KR101929933B1 (ko) 발광 소자 및 이를 포함하는 조명 시스템
KR20130138416A (ko) 발광소자
KR20130138483A (ko) 발광소자 및 이를 포함하는 조명시스템
KR102050053B1 (ko) 발광소자
KR20140046162A (ko) 발광소자
KR20140092092A (ko) 발광소자
KR20140001353A (ko) 발광소자
KR101915212B1 (ko) 발광소자
KR101911865B1 (ko) 발광소자
KR101960791B1 (ko) 발광소자
KR101963222B1 (ko) 발광소자
KR20140056929A (ko) 발광소자
KR20140056931A (ko) 발광소자
KR20140001352A (ko) 발광소자
KR20140019509A (ko) 발광소자

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application