KR20130125387A - Treatment method for photoresist development wastewater - Google Patents

Treatment method for photoresist development wastewater Download PDF

Info

Publication number
KR20130125387A
KR20130125387A KR20137022233A KR20137022233A KR20130125387A KR 20130125387 A KR20130125387 A KR 20130125387A KR 20137022233 A KR20137022233 A KR 20137022233A KR 20137022233 A KR20137022233 A KR 20137022233A KR 20130125387 A KR20130125387 A KR 20130125387A
Authority
KR
South Korea
Prior art keywords
membrane
water
wastewater
photoresist
photoresist developing
Prior art date
Application number
KR20137022233A
Other languages
Korean (ko)
Inventor
사토시 야마다
Original Assignee
쿠리타 고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 쿠리타 고교 가부시키가이샤 filed Critical 쿠리타 고교 가부시키가이샤
Publication of KR20130125387A publication Critical patent/KR20130125387A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/425Treatment of water, waste water, or sewage by ion-exchange using cation exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/40Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture or use of photosensitive materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/06Aerobic processes using submerged filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/08Aerobic processes using moving contact bodies
    • C02F3/085Fluidized beds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

RO 투과수를 알칼리제로 중화시킬 필요가 없고, 슬라임에 의한 RO 막의 폐색이 방지 내지 억제되고, 또한 양호한 수질의 RO 막 투과수를 얻을 수 있는, RO 장치를 사용한 포토레지스트 현상 폐수의 처리 방법. 포토레지스트 현상 폐수를 pH 조정하지 않고 카티온 교환 수지와 접촉시킨 후, MF 막 장치 등에 의해 제탁 처리하고, 이어서 역침투막 장치에 통수시켜서, 막 투과수를 얻는다.A method for treating photoresist developing wastewater using a RO device, which does not need to neutralize the RO permeate with an alkaline agent, prevents or suppresses the blockage of the RO membrane due to slime, and can obtain a good quality RO membrane permeate. After the photoresist developing wastewater is brought into contact with the cation exchange resin without adjusting the pH, it is clarified by an MF membrane device or the like, and then passed through the reverse osmosis membrane device to obtain a membrane permeate.

Description

포토레지스트 현상 폐수의 처리 방법{TREATMENT METHOD FOR PHOTORESIST DEVELOPMENT WASTEWATER}TREATMENT METHOD FOR PHOTORESIST DEVELOPMENT WASTEWATER}

본 발명은 포토레지스트 현상 폐수의 처리 방법에 관한 것으로, 특히 역침투막 장치 (RO 장치) 를 사용한 처리 방법에 관한 것이다.The present invention relates to a method for treating photoresist developing wastewater, and more particularly, to a method for treating using a reverse osmosis membrane apparatus (RO apparatus).

반도체 디바이스, 액정 디스플레이, 프린트 기판 등의 전자 부품 등을 제조하기 위해서는, 웨이퍼 등의 기판 상에 포토레지스트의 피막을 형성하고, 패턴 마스크를 통해서 광 등을 조사하고, 이어서 현상액에 의해 불필요한 포토레지스트를 용해하여 현상하고, 추가로 에칭 등의 처리를 실시한 후, 기판 상의 불용성의 포토레지스트막을 박리한다. 포토레지스트는, 노광 부분이 가용성이 되는 포지티브형과 노광 부분이 불용성이 되는 네거티브형이 있다. 포지티브형 포토레지스트의 현상액으로는 알칼리 현상액이 주류이다. 네거티브형 포토레지스트의 현상액으로는 유기 용제계 현상액이 주류이지만, 알칼리 현상액을 사용하는 것도 있다.In order to manufacture electronic components such as semiconductor devices, liquid crystal displays, and printed boards, a film of photoresist is formed on a substrate such as a wafer, light is irradiated through a pattern mask, and then unnecessary photoresist is applied by a developer. After dissolving and developing and further performing a treatment such as etching, the insoluble photoresist film on the substrate is peeled off. The photoresist has a positive type in which the exposed part is soluble and a negative type in which the exposed part is insoluble. As a developer of the positive photoresist, an alkaline developer is the mainstream. As a developer of a negative photoresist, an organic solvent developer is the mainstream, but an alkali developer may be used.

상기 알칼리 현상액으로는, 예를 들어 테트라알킬암모늄하이드로옥사이드 (TAAH), 특히, 테트라메틸암모늄하이드로옥사이드 (TMAH) 가 사용되고 있다. 이러한 현상 공정이나 현상 후의 세정 공정에서 배출되는 폐수 (포토레지스트 현상 폐수) 에는, 통상, 테트라알킬암모늄 이온이 수 10∼20000 ppm 정도, 레지스트로서 사용된 퀴논디아지드와 페놀노볼락 수지의 혼합물 또는 축합물 (광분해형 포토레지스트) 등의 여러 가지의 감광성 수지 유래의 레지스트 박리물이 통상 10∼1000 ppm 정도의 농도로 각각 함유되어 있다.As the alkali developer, for example, tetraalkylammonium hydrooxide (TAAH), in particular tetramethylammonium hydrooxide (TMAH), is used. Wastewater (photoresist developing wastewater) discharged from such a developing step or a cleaning step after the development is usually a mixture of 10 to 20000 ppm of tetraalkylammonium ions and a mixture or condensation of a quinonediazide and a phenol novolak resin used as a resist. The resist stripper derived from various photosensitive resins, such as water (photolysis type | mold photoresist), is normally contained in the density | concentration of about 10-1000 ppm, respectively.

특허문헌 1 에는, 포토레지스트 현상 폐액에 산을 첨가하여 pH 를 2∼6 으로 낮춰 포토레지스트를 석출시킨 후, RO 막을 사용하여 테트라알킬암모늄 이온을 농축시킴과 함께 석출물을 제거하고, 농축액을 이온 교환하여 정제하고, TAAH 를 회수하는 방법이 기재되어 있다.In Patent Literature 1, an acid is added to a photoresist developing waste solution to lower the pH to 2 to 6 to precipitate a photoresist, followed by concentrating tetraalkylammonium ions using a RO membrane, removing the precipitate, and ionizing the concentrate by ion exchange. To purify and recover TAAH.

일본 공개특허공보 2002-253931호Japanese Laid-Open Patent Publication 2002-253931

상기 특허문헌 1 의 포토레지스트 현상 폐수의 처리 방법에서는, 포토레지스트 현상 폐수에 산을 첨가하여 포토레지스트를 불용화하고, RO 장치에 공급하고, 석출물 및 TAAH 를 포함하는 농축수와 투과수로 막분리한다. 이 종래 방법에서는, 다음과 같은 과제가 있었다.In the method of treating the photoresist developing wastewater described in the Patent Document 1, the acid is added to the photoresist developing wastewater to insolubilize the photoresist, supply it to the RO apparatus, and separate the membrane into concentrated and permeate water containing precipitates and TAAH. do. This conventional method has the following problems.

i) 포토레지스트 현상 폐수에 산을 첨가하여 pH 2∼6 으로 하기 위해, RO 투과수를 알칼리로 중화시킬 필요가 있어, 알칼리제가 필요하게 된다.i) In order to add acid to the photoresist developing wastewater to bring the pH to 2 to 6, it is necessary to neutralize the RO permeated water with alkali, and an alkaline agent is required.

ii) 포토레지스트 현상 폐수 중의 TAAH 농도가 높기 때문에, RO 막에 슬라임 폐색이 발생하기 쉽다.ii) Photoresist development Because of the high TAAH concentration in the wastewater, slime clogging tends to occur in the RO film.

iii) 슬라임 폐색 방지를 위해 RO 장치에 슬라임 방지제를 첨가하면, 농축수에 슬라임 방지제가 혼입하게 되고, 농축수로부터 TAAH 를 회수할 수 없게 된다. 그 때문에, 슬라임 방지제에 의한 RO 막 폐색 방지를 도모할 수 없다.iii) The addition of a slime inhibitor to the RO unit to prevent slime occlusion results in the incorporation of a slime inhibitor into the concentrated water and the inability to recover TAAH from the concentrated water. Therefore, it is impossible to prevent the blocking of the RO film by the slime inhibitor.

iv) 폐수 중의 TAAH 가 고농도이기 때문에, TAAH 의 일부가 RO 막을 투과하여 투과수 중에 유출된다. 이 때문에, RO 투과수의 처리 수질이 낮다.iv) Since the TAAH in the wastewater is high concentration, part of the TAAH penetrates the RO membrane and flows out into the permeate. For this reason, the water quality of treatment of RO permeate is low.

본 발명은, 상기 종래의 문제점을 해결하고, RO 투과수를 알칼리제로 중화시킬 필요가 없고, 슬라임에 의한 RO 막의 폐색이 방지 내지 억제되고, 또한 양호한 수질의 RO 막 투과수를 얻을 수 있는, RO 장치를 사용한 포토레지스트 현상 폐수의 처리 방법을 제공하는 것을 목적으로 한다.The present invention solves the above-mentioned conventional problems, does not need to neutralize the RO permeate with an alkaline agent, and prevents the blockage of the RO membrane due to slime, thereby preventing and suppressing RO membrane permeate of good quality RO membrane. It is an object to provide a method of treating photoresist developing wastewater using an apparatus.

본 발명의 포토레지스트 현상 폐수의 처리 방법에서는, 포토레지스트 현상 폐수를 카티온 교환 수지와 접촉시킨 후, 제탁 처리하고, 이어서 역침투막 장치에 통수시켜서, 막 투과수를 얻는다.In the method for treating the photoresist developing wastewater of the present invention, the photoresist developing wastewater is brought into contact with a cation exchange resin, followed by a filtration treatment, and then passed through a reverse osmosis membrane device to obtain a membrane permeate water.

상기 포토레지스트 현상 폐수를 pH 를 저하시키기 위한 pH 조정 처리를 실시하지 않고 카티온 교환 수지와 접촉시켜도 된다.The photoresist developing wastewater may be brought into contact with the cation exchange resin without performing a pH adjusting treatment for lowering the pH.

상기 포토레지스트 현상 폐수를, 카티온 교환 수지와 접촉시킨 후, 제탁 처리하기 전에 생물 처리해도 된다.After contacting the photoresist developing wastewater with the cation exchange resin, the photoresist developing wastewater may be subjected to a biotreatment before the dewatering treatment.

생물 처리조는, 유동상 담체나 또는 요동형 고정상 담체의 담체 방식이 바람직하다.The biological treatment tank is preferably a fluidized carrier or a carrier type of a rocking fixed bed carrier.

본 발명에서는, 포토레지스트 현상 폐수를 먼저 카티온 교환 수지와 접촉시키고, 그 폐수 중의 TMAH 등의 TAAH 를 그 카티온 교환 수지에 흡착시킨다. 그 폐수로부터 TAAH 가 흡착 분리됨으로써, 카티온 교환 후의 물의 pH 가 저하되고, 포토레지스트가 석출된다. 이 석출된 포토레지스트를 제탁 처리에 의해 제거하고, 제탁 처리수를 RO 장치에 공급한다. 그리고, 이 RO 장치의 투과수를 처리수로서 취출한다. 농축수에 대해서는 농축수 처리 수단으로 처리한다.In the present invention, the photoresist developing wastewater is first contacted with a cation exchange resin, and TAAH such as TMAH in the wastewater is adsorbed to the cation exchange resin. When TAAH is adsorbed and separated from the wastewater, the pH of the water after cation exchange is lowered, and the photoresist precipitates. The precipitated photoresist is removed by a decontamination treatment, and the decontamination treatment water is supplied to the RO apparatus. And the permeated water of this RO apparatus is taken out as process water. Concentrated water is treated with concentrated water treatment means.

이와 같이, TAAH 및 포토레지스트가 제거된 물을 RO 장치에 공급하기 때문에, RO 장치에 유입하는 TOC 성분 농도가 낮아져 있고, RO 막에서의 슬라임 발생이 방지 내지 억제된다.In this way, since the TAAH and the photoresist-removed water are supplied to the RO apparatus, the concentration of the TOC component flowing into the RO apparatus is low, and slime generation in the RO film is prevented or suppressed.

또, RO 급수 중의 TAAH 농도가 낮기 때문에, RO 투과수 중에도 TAAH 가 전혀 또는 거의 리크되지 않아, RO 투과수의 수질이 양호해진다. 또, 통상의 경우, 상기 카티온 교환 수지 처리수의 pH 는 5∼8 정도이고, 알칼리제에 의한 중화는 불필요하다.In addition, since the TAAH concentration in the RO water supply is low, no or almost TAAH leaks even in the RO permeate, and the water quality of the RO permeate becomes good. Moreover, in normal cases, pH of the said cation exchange resin treated water is about 5-8, and neutralization by an alkali chemicals is unnecessary.

테트라알킬암모늄 이온 (TAA+) 을 흡착한 카티온 교환 수지를 재생 처리함으로써, TAA+ 를 회수할 수 있다.TAA + can be collect | recovered by regenerating the cation exchange resin which adsorbed tetraalkylammonium ion (TAA + ).

포토레지스트를 카티온 교환 수지와 접촉시킨 후, 제탁 처리하기 전에 생물 처리함으로써, 용해성 유기물이 분해되고, RO 투과수의 수질이 향상된다.By contacting the photoresist with the cation exchange resin and then biotreating before the degreasing treatment, the soluble organics are decomposed and the water quality of the RO permeate is improved.

생물 처리조를 유동상 담체나 또는 요동형 고정상 담체의 담체 방식으로 함으로써, 포토레지스트 석출물에 의한 폐색이 방지된다.By using the biological treatment tank as a carrier system of a fluidized bed carrier or a rocking type fixed bed carrier, blockage by photoresist precipitates is prevented.

도 1 은 실시예 1 을 설명하는 블록도이다.
도 2 는 비교예 1 을 설명하는 블록도이다.
도 3 은 비교예 2 를 설명하는 블록도이다.
도 4 는 실시예 2 를 설명하는 블록도이다.
도 5 는 실시예 3 을 설명하는 블록도이다.
도 6 은 실시예 4 를 설명하는 블록도이다.
1 is a block diagram illustrating Embodiment 1. FIG.
2 is a block diagram illustrating Comparative Example 1. FIG.
3 is a block diagram illustrating Comparative Example 2. FIG.
4 is a block diagram illustrating Embodiment 2. FIG.
5 is a block diagram for explaining the third embodiment.
6 is a block diagram for explaining the fourth embodiment.

이하, 본 발명에 관해서 더욱 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은, TAAH 를 함유하는 포토레지스트 현상 폐수를 처리 대상으로 한다. 레지스트제는 레지스트 폴리머, 감광제, 용제, 첨가제로 구성된다. 레지스트 폴리머로는, 예를 들어 노볼락계 수지, 페놀계 수지, 폴리파라하이드록시스티렌계 수지를 들 수 있다. 이들은 pH 중성역에서 물에 난용성이다. 본 발명의 처리 대상이 되는 포토레지스트 현상 폐수는, 상기 레지스트 폴리머를 포함한다.This invention aims at the photoresist image development wastewater containing TAAH. A resist agent consists of a resist polymer, a photosensitive agent, a solvent, and an additive. As a resist polymer, a novolak-type resin, a phenol resin, polyparahydroxy styrene resin is mentioned, for example. They are poorly soluble in water in the neutral pH range. The photoresist developing wastewater to be treated in the present invention contains the resist polymer.

TAAH 로는, 테트라메틸암모늄하이드로옥사이드 (TMAH), 테트라에틸암모늄하이드로옥사이드, 테트라프로필암모늄하이드로옥사이드, 테트라부틸암모늄하이드로옥사이드, 메틸트리에틸암모늄하이드로옥사이드, 트리메틸에틸암모늄하이드로옥사이드, 디메틸디에틸암모늄하이드로옥사이드, 트리메틸(2-하이드록시에틸)암모늄하이드로옥사이드, 트리에틸(2-하이드록시에틸)암모늄하이드로옥사이드, 디메틸디(2-하이드록시에틸)암모늄하이드로옥사이드, 디에틸디(2-하이드록시에틸)암모늄하이드로옥사이드, 메틸트리(2-하이드록시에틸)암모늄하이드로옥사이드, 에틸트리(2-하이드록시에틸)암모늄하이드로옥사이드, 테트라(2-하이드록시에틸)암모늄하이드로옥사이드 등을 들 수 있다. 이 중에서도, pH 11 이하가 되면 불용화되는 것이 바람직하고, 특히 TMAH 가 바람직하다.Examples of TAAH include tetramethylammonium hydrooxide (TMAH), tetraethylammonium hydrooxide, tetrapropylammonium hydrooxide, tetrabutylammonium hydrooxide, methyltriethylammonium hydrooxide, trimethylethylammonium hydrooxide, dimethyldiethylammonium hydrooxide, Trimethyl (2-hydroxyethyl) ammonium hydrooxide, triethyl (2-hydroxyethyl) ammonium hydrooxide, dimethyldi (2-hydroxyethyl) ammonium hydrooxide, diethyldi (2-hydroxyethyl) ammonium hydro Oxide, methyl tri (2-hydroxyethyl) ammonium hydrooxide, ethyl tri (2-hydroxyethyl) ammonium hydrooxide, tetra (2-hydroxyethyl) ammonium hydrooxide and the like. Among these, when pH is 11 or less, it is preferable to insolubilize, and TMAH is especially preferable.

또, 포토레지스트 현상 폐수 중의 TAAH 농도는, 통상의 경우, 200∼30000 ㎎/ℓ (TOC 로는 100∼150000 ㎎/ℓ) 정도이지만, 본 발명은 이 범위의 TAAH 농도 또는 TOC 농도의 폐수이면 모두 충분히 처리할 수 있다. 이 포토레지스트 현상 폐수의 pH 는 10 이상 정도인 경우가 많다.The TAAH concentration in the photoresist developing wastewater is usually about 200 to 30000 mg / l (100 to 150000 mg / l in TOC), but the present invention is sufficient if the wastewater has a TAAH concentration or TOC concentration in this range. Can be processed. The pH of this photoresist developing wastewater is often about 10 or more.

본 발명에서는, 이 포토레지스트 현상 폐수를, pH 를 저하시키기 위한 pH 조정하지 않고, 예를 들어 그대로, 또는 필요에 따라 여과, 예를 들어 UF 막에 의한 여과 등에 의해 탁질 성분을 제거한 후, 카티온 교환 수지와 접촉시키고, TAA+ 를 카티온 교환 수지에 흡착시킨다. 이 때의 SV 등의 처리 조건은, 폐수 중의 TAAH 농도 등에 따라 적절히 실험적으로 정하면 된다. 또, 카티온 교환 수지와 접촉한 후의 수중의 TOC 농도가 1∼20 ㎎/ℓ 이하 정도가 되는 조건을 선정하는 것이 바람직하다.In the present invention, the photoresist developing wastewater is removed without adjusting the pH for lowering the pH, and after removing the turbidity component by filtration, for example, filtration by an UF membrane, or the like, if necessary, and then cationic. Contact is made with the exchange resin and TAA + is adsorbed onto the cation exchange resin. What is necessary is just to experimentally determine treatment conditions, such as SV, suitably according to TAAH density | concentration etc. in wastewater. Moreover, it is preferable to select the conditions by which the TOC density | concentration in water after contacting with a cation exchange resin will be about 1-20 mg / L or less.

이 카티온 교환 처리에 의해, TAAH 가 제거되고, 물의 pH 가 저하되고, 통상은 pH 4∼9 특히 5∼8 정도가 된다. 그 때문에, 폐수 중에 포함되어 있던 포토레지스트의 적어도 일부, 통상은 대부분이 불용화되어 석출된다.By this cation exchange | exchange process, TAAH is removed and pH of water falls, and it becomes pH 4-9 especially about 5-8 normally. Therefore, at least a part, usually most of the photoresist contained in the waste water is insolubilized and precipitates.

그래서, 본 발명에서는, 이 석출물을 포함하는 물을 그대로, 또는 생물 처리를 실시한 후, 제탁 처리하고, 석출물을 제거한다. 생물 처리를 실시함으로써, RO 나 UF 등에서는 제거되지 않은 용해성 유기물이 분해되고, RO 투과수의 수질이 향상된다. 생물 처리 방식으로는 유동상이나 요동형 고정상 (예를 들어 끈 형상, 시트 형상 등의 담체의 일부를 조 내에 고정시킨 것) 등의 레지스트 석출물에 의한 폐색이 발생하지 않는 담체 방식이 바람직하다. 생물 처리시의 pH 는, 생물이 번식하기 쉬운 pH 4∼9 정도가 바람직하다.Therefore, in the present invention, after the water containing the precipitate is subjected to biological treatment as it is or after being treated, the precipitate is treated to remove the precipitate. By biological treatment, soluble organics not removed in RO, UF, and the like are decomposed, and the water quality of RO permeate is improved. As a biological treatment method, the carrier system which does not generate | occur | produce occlusion by resist precipitates, such as a fluidized bed and a rocking-type stationary bed (for example, what fixed a part of support | carriers, such as a string form and a sheet form, in the tank), is preferable. As for pH at the time of biological treatment, about pH 4-9 which an organism is easy to breed is preferable.

이 제탁 처리를 위한 수단으로는, UF 막 장치, MF 막 장치, 여과 장치, 응집 침전 장치, 침전 장치, 응집 부상 장치, 부상 장치 등을 들 수 있지만, UF 막 장치 또는 MF 막 장치가 바람직하다. 또, 석출되는 레지스트의 일부는 콜로이드화되어 있고, MF 막을 투과하는 점에서, MF 막보다 분획 분자량 50 만 이하, 예를 들어 10 만∼50 만 정도의 UF 막이 바람직하다.As a means for this clarification treatment, an UF membrane apparatus, an MF membrane apparatus, a filtration apparatus, a flocculation precipitation apparatus, a precipitation apparatus, a flocculation flotation apparatus, a flotation apparatus, etc. are mentioned, A UF membrane apparatus or an MF membrane apparatus is preferable. In addition, a part of the resist to be precipitated is colloidal, and from the viewpoint of penetrating the MF membrane, an UF membrane having a fractional molecular weight of 500,000 or less, for example, 100,000 to 500,000, is preferable to the MF membrane.

이 제탁 처리를 실시하기 전에 pH 4∼9 로 하고, 포토레지스트 석출물을 석출시키는 것이 바람직하다.It is preferable to set it as pH 4-9, and to precipitate a photoresist precipitate before this deposit treatment.

이 제탁 처리수를 RO 장치에 공급하고, 농축수와 투과수로 분리한다. RO 장치에 대한 급수 중의 TAAH 농도가 낮기 때문에, RO 투과수에 TAAH 가 리크되는 경우가 전혀 또는 거의 없어, RO 투과수의 수질이 양호하다. 또한, RO 급수 중의 TOC 농도가 낮기 때문에, RO 막의 슬라임 발생도 방지 내지 억제된다. 가령 슬라임이 발생해도, 슬라임 방지제를 첨가하여 슬라임을 방지할 수 있다. 이 슬라임 방지제는, RO 막을 투과하지 않고, RO 투과수의 수질에 영향을 미치지 않는다.This water treatment process is supplied to a RO apparatus, and it isolate | separates into concentrated water and permeate water. Since the TAAH concentration in the feed water to the RO apparatus is low, there is little or no TAAH leak in the RO permeate, and the water quality of the RO permeate is good. In addition, since the TOC concentration in the RO water supply is low, slime generation of the RO film is also prevented or suppressed. For example, even if slime occurs, slime may be added to prevent slime. This slime inhibitor does not permeate a RO membrane and does not affect the water quality of RO permeate.

RO 급수의 포토레지스트 성분 농도가 낮기 때문에, RO 급수의 pH 는 특별히 한정되지 않는다.Since the photoresist component concentration of RO water supply is low, the pH of RO water supply is not specifically limited.

RO 농축수에 관해서는, 배수 처리 설비에서 처리한다.Regarding RO concentrated water, the wastewater treatment plant is treated.

카티온 교환 수지가 흡착한 TAA+ 는, 이 카티온 교환 수지를 재생함으로써 회수할 수 있다.TAA + adsorbed by the cation exchange resin can be recovered by regenerating the cation exchange resin.

실시예Example

이하, 실시예 및 비교예에 관해서 설명한다.Hereinafter, an Example and a comparative example are demonstrated.

<실시예 1>&Lt; Example 1 >

TAAH 로서 TMAH 를 함유하는 pH 11, TOC 농도 126 ㎎/ℓ, 도전율 46 mS/m 의 포토레지스트 현상 폐수 (전자 부품 제조 공정 폐수) 를, 도 1 에 나타내는 바와 같이 카티온 교환 수지 (CER) 탑에 SV32 로 통수시킨 후, MF 막 장치 (밀리포아사 제조 HAWP) 에 통수하여 제탁하였다. 이 MF 막 처리수의 pH 는 5 이고, 중화제에 의한 중화 처리는 불필요하였다. 이 MF 막 처리수를 RO 장치 (닛토 전공 (주) 제조 ES-20) 에 공급하고, 투과수를 얻었다. 카티온 교환 수지 처리수, MF 막 처리수 및 RO 투과수의 TOC 농도 및 도전율을 표 1 에 나타낸다. 또, RO 급수 (즉 MF 막 처리수) 의 BOD 는 5.0 ppm 이하, MFF 값은 1.04 였다.A photoresist developing wastewater (electronic component manufacturing process wastewater) having a pH of 11, a TOC concentration of 126 mg / l and a conductivity of 46 mS / m containing TAAH as TAAH was placed on a cation exchange resin (CER) column as shown in FIG. After passing through SV32, it passed through the MF membrane | membrane apparatus (HAWP by Millipore Co., Ltd.), and deposited. The pH of this MF membrane treated water was 5, and the neutralization treatment with a neutralizing agent was unnecessary. This MF membrane-treated water was supplied to a RO apparatus (ES-20, manufactured by Nitto Electric Co., Ltd.) to obtain permeate. Table 1 shows TOC concentrations and electrical conductivity of cationic exchange resin treated water, MF membrane treated water, and RO permeate water. Moreover, BOD of RO feed water (namely, MF film | membrane treated water) was 5.0 ppm or less, and MFF value was 1.04.

MFF 값은, 막분리 처리되는 물 (막 공급수) 의 막여과성 (막오염성) 의 지표로서 사용되는 값이다. 이 MFF 값의 측정 수법은 이하와 같다.The MFF value is a value used as an index of membrane filterability (membrane fouling) of water (membrane feed water) to be subjected to membrane separation. The measuring method of this MFF value is as follows.

(i) 자 테스터에 의한 응집 처리로, 응집 처리수 1000 ㎖ 이상을 얻는다.(i) The flocculation process by a ruler tester obtains 1000 ml or more of flocculation process water.

(ii) 응집 처리수를 30 분 정치 (靜置) 시켜 응집 플록을 침전시킨다.(ii) The flocculated treated water is allowed to stand for 30 minutes to precipitate flocculated floc.

(iii) (ii) 의 응집 처리수를 No.5A (5 ㎛ 구멍) 여과지에서 상청액으로부터 서서히 여과하고, 최종적으로 응집 플록을 포함시켜 응집 처리수의 전체량을 여과한다.(iii) The coagulated treated water of (ii) is gradually filtered from the supernatant on a No. 5A (5 μm pore) filter paper, and finally the aggregated floc is included to filter the total amount of coagulated treated water.

(iv) 얻어진 여과액 1000 ㎖ 이상을 500 ㎖ 씩 2 개의 메스실린더에 넣는다.(iv) 1000 ml or more of the obtained filtrate is put into two measuring cylinders 500 ml each.

(v) 1 개째의 메스실린더의 여과액 500 ㎖ 를, 구멍 직경 0.45 ㎛, 직경 47 ㎜ 의 니트로셀룰로오스제 멤브레인 필터를 사용하고, 66 kPa (500 ㎜Hg) 의 감압화로 여과하고, 이 때의 여과에 요하는 시간 T1 을 계측한다. 계속해서 다른 1 개의 메스실린더의 여과액 500 ㎖ 를 동일하게 감압 여과하고, 이 때의 여과에 요하는 시간 T2 를 측정한다.(v) 500 ml of the filtrate of the first measuring cylinder was filtered by a reduced pressure of 66 kPa (500 mmHg) using a nitrocellulose membrane filter having a pore diameter of 0.45 µm and a diameter of 47 mm. Measure the time T1 required. Subsequently, 500 mL of the filtrates of another measuring cylinder are filtered under reduced pressure similarly, and the time T2 required for the filtration at this time is measured.

(vi) 하기 식으로 MFF 값을 산출한다.(vi) The MFF value is calculated by the following formula.

MFF=T2/T1MFF = T2 / T1

MFF 값이 1.00 에 가까울수록, 막 공급수로서 양호한 수질의 물이고, 막을 오염시키기 어려운 물이라고 평가할 수 있다. 일반적으로는 MFF 값 1.1 이하가 막 공급수로서 바람직하다고 되어 있다. 예를 들어, 수돗물 (토치기현 노기마치의 물) 의 MFF 는 1.03∼1.06 으로 평균 1.05 이다.As the MFF value is closer to 1.00, it can be evaluated that the water is of good quality as the membrane feed water and the water is less likely to contaminate the membrane. Generally, MFF value 1.1 or less is said to be preferable as membrane feed water. For example, tap water (water from Nogimachi, Tochigi Prefecture) has an MFF of 1.03 to 1.06, an average of 1.05.

<비교예 1>&Lt; Comparative Example 1 &

실시예 1 과 동일한 포토레지스트 현상 폐수를 상기 특허문헌 1 과 동일한 순서에 따라서 처리하였다.The same photoresist developing wastewater as in Example 1 was treated in the same procedure as in Patent Document 1.

즉, 도 2 에 나타내는 바와 같이, 그 폐수를 황산에 의해 pH 6 으로 한 후, 상기 MF 막 장치에 통수시키고, 상기 RO 장치에 통수시켰다. RO 급수 및 RO 투과수의 TOC 농도 및 도전율을 표 1 에 나타낸다. 또, RO 급수의 BOD 는 77 ppm 이었다.That is, as shown in FIG. 2, after the wastewater was made to pH 6 by sulfuric acid, it was made to flow into the said MF membrane apparatus, and it was made to flow into the said RO apparatus. Table 1 shows TOC concentrations and electrical conductivity of RO water supply and RO permeate. Moreover, BOD of RO water supply was 77 ppm.

Figure pct00001
Figure pct00001

상기와 같이, 실시예 1 에 의하면 비교예 1 에 비해 RO 급수 및 RO 투과수의 TOC 농도 및 BOD 농도가 현저하고, RO 투과수의 수질이 양호함과 함께, RO 막의 슬라임도 방지되는 것이 확인되었다.As described above, according to Example 1, it was confirmed that the TOC concentration and the BOD concentration of the RO feed water and RO permeate water were remarkable, the water quality of the RO permeate water was good, and the slime of the RO membrane was prevented as compared with Comparative Example 1. .

<비교예 2>Comparative Example 2

도 3 에 나타내는 바와 같이, 비교예 1 에 있어서, MF 막에 의한 제탁을 실시하지 않은 것 이외에는 동일하게 하여 포토레지스트 현상 폐수를 처리하고자 했지만, RO 막이 폐색되었다. 비교예 2 의 RO 급수는, MFF 값을 측정할 수 없을 정도로 막여과성이 떨어지는 것이었다.As shown in Fig. 3, in Comparative Example 1, the photoresist developing wastewater was tried to be treated in the same manner except that the MF film was not deposited, but the RO film was blocked. The RO water supply of the comparative example 2 was inferior in membrane filterability so that MFF value could not be measured.

<실시예 2><Example 2>

도 4 와 같이, 실시예 1 에 있어서, MF 막 대신에 분획 분자량 30 만의 UF 막을 사용한 것 이외에는 동일하게 하여 포토레지스트 현상 폐수의 처리를 실시한 결과, RO 막의 세정 빈도는 9 개월에 1 회로 충분하였다. 또, 상기 실시예 1 에서는, RO 막의 세정 빈도는 3 개월에 1 회였다. 따라서, 제탁용의 막으로는 MF 막보다 UF 막이 바람직한 것이 확인되었다.As shown in Fig. 4, in Example 1, the photoresist developing wastewater was treated in the same manner except that the UF membrane having a fractional molecular weight of 300,000 was used instead of the MF membrane. As a result, the cleaning frequency of the RO membrane was sufficient once every nine months. In addition, in Example 1, the washing frequency of the RO membrane was once every three months. Therefore, it was confirmed that the UF membrane is preferable to the MF membrane than the MF membrane.

실시예 2 의 RO 투과수의 TOC 농도는 1.0 ㎎/ℓ 였다.The TOC concentration of the RO permeate of Example 2 was 1.0 mg / L.

<실시예 3><Example 3>

도 5 와 같이, 실시예 2 에 있어서, 카티온 교환 수지 처리수를 생물 처리한 후, UF 막 처리하도록 한 것 이외에는 동일하게 하여 처리를 실시하였다. 생물 처리조는 유동상 방식으로 하였다. 그 결과, RO 투과수의 TOC 농도는 0.5 ㎎/ℓ 이고, 실시예 2 보다 낮아졌다. 이 수질의 투과수는 순수 제조에 사용할 수 있다. 이 생물 처리조는 2 주간 이상에 걸쳐 폐색 없이 운전되었다.As in FIG. 5, in Example 2, it treated similarly except having made UF membrane process, after biologically treating a cation exchange resin treated water. The biological treatment tank was in a fluidized bed mode. As a result, the TOC concentration of the RO permeate was 0.5 mg / l, which was lower than that in Example 2. This water permeate can be used for pure water production. This biotreatment tank was operated without occlusion for over two weeks.

<실시예 4><Example 4>

도 6 과 같이, 실시예 3 에 있어서 생물 처리조를 유동상 생물 처리조가 아니라 고정상 생물 처리조로 한 것 이외에는 동일하게 하여 처리를 실시하였다. 이 경우, 생물 처리조의 생물 담지층에 레지스트가 부착되고, 약 2 주간에 생물 처리조가 폐색되었다.As in FIG. 6, the treatment was performed in the same manner as in Example 3 except that the biological treatment tank was not a fluidized bed biological treatment tank but a fixed bed biological treatment tank. In this case, a resist adhered to the biological support layer of the biological treatment tank, and the biological treatment tank was blocked in about two weeks.

본 발명을 특정한 양태를 사용하여 상세히 설명했지만, 본 발명의 의도와 범위를 벗어나지 않고 다양한 변경이 가능한 것은 당업자에게 분명하다.While the invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various changes may be made without departing from the spirit and scope of the invention.

또, 본 출원은, 2011 년 3 월 23 일자로 출원된 일본 특허출원 (특원 2011-064368호) 에 기초하고 있고, 그 전체가 인용에 의해 원용된다.In addition, this application is based on the JP Patent application (Japanese Patent Application No. 2011-064368) for which it applied on March 23, 2011, The whole is taken in into consideration.

Claims (6)

포토레지스트 현상 폐수를 카티온 교환 수지와 접촉시킨 후, 제탁 처리하고, 이어서 역침투막 장치에 통수시켜서, 막 투과수를 얻는 것을 특징으로 하는 포토레지스트 현상 폐수의 처리 방법.A method of treating photoresist developing wastewater, wherein the photoresist developing wastewater is brought into contact with a cation exchange resin, followed by a clarification treatment, followed by passing through a reverse osmosis membrane device to obtain a membrane permeate water. 제 1 항에 있어서,
포토레지스트 현상 폐수를 pH 를 저하시키기 위한 pH 조정 처리를 실시하지 않고 카티온 교환 수지와 접촉시키는 것을 특징으로 하는 포토레지스트 현상 폐수의 처리 방법.
The method of claim 1,
A method for treating photoresist developing wastewater, wherein the photoresist developing wastewater is brought into contact with a cation exchange resin without carrying out a pH adjusting treatment for lowering pH.
제 1 항 또는 제 2 항에 있어서,
포토레지스트가 pH 11 이하에서 불용의 물질인 것을 특징으로 하는 포토레지스트 현상 폐수의 처리 방법.
3. The method according to claim 1 or 2,
A method of treating photoresist developing wastewater, wherein the photoresist is an insoluble substance at pH 11 or lower.
제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
제탁 수단이 UF 막인 것을 특징으로 하는 포토레지스트 현상 폐수의 처리 방법.
The method according to any one of claims 1 to 3,
The method for treating photoresist developing wastewater, wherein the depositing means is an UF film.
제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
카티온 교환 수지와 접촉시킨 후, 제탁 처리하기 전에 생물 처리를 실시하는 것을 특징으로 하는 포토레지스트 현상 폐수의 처리 방법.
The method according to any one of claims 1 to 4,
A method of treating photoresist developing wastewater, wherein the treatment is carried out after contact with the cation exchange resin and before biological treatment.
제 5 항에 있어서,
상기 생물 처리를 유동상 담체나 또는 요동형 고정상 담체를 사용하여 실시하는 것을 특징으로 하는 포토레지스트 현상 폐수의 처리 방법.
The method of claim 5, wherein
The biological treatment is performed using a fluidized bed carrier or a rocking type fixed bed carrier.
KR20137022233A 2011-03-23 2012-03-13 Treatment method for photoresist development wastewater KR20130125387A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011064368 2011-03-23
JPJP-P-2011-064368 2011-03-23
PCT/JP2012/056365 WO2012128119A1 (en) 2011-03-23 2012-03-13 Treatment method for photoresist development wastewater

Publications (1)

Publication Number Publication Date
KR20130125387A true KR20130125387A (en) 2013-11-18

Family

ID=46879271

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20137022233A KR20130125387A (en) 2011-03-23 2012-03-13 Treatment method for photoresist development wastewater

Country Status (5)

Country Link
JP (1) JPWO2012128119A1 (en)
KR (1) KR20130125387A (en)
CN (1) CN103443032B (en)
TW (1) TWI457290B (en)
WO (1) WO2012128119A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021171704A (en) * 2020-04-24 2021-11-01 ニプロ株式会社 Waste fluid pretreatment method and pretreatment system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2730610B2 (en) * 1992-11-10 1998-03-25 多摩化学工業株式会社 Method for treating wastewater containing organic quaternary ammonium hydroxide
EP0597460B1 (en) * 1992-11-10 1997-01-22 Tama Chemicals Co., Ltd. Method of processing organic quaternary ammonium hydroxide-containing waste liquid
JP3671644B2 (en) * 1998-01-05 2005-07-13 オルガノ株式会社 Photoresist developing waste liquid recycling method and apparatus
CN1298636C (en) * 2002-11-29 2007-02-07 长濑产业株式会社 Regeneration device and method for waste developing solution
JP4655570B2 (en) * 2004-09-28 2011-03-23 栗田工業株式会社 Wastewater treatment equipment containing organic nitrogen compounds
KR100954250B1 (en) * 2004-11-30 2010-04-23 가부시끼가이샤 도꾸야마 Method for treating development waste liquid
JP5115271B2 (en) * 2008-03-27 2013-01-09 栗田工業株式会社 Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water
JP2010017614A (en) * 2008-07-08 2010-01-28 Kurita Water Ind Ltd Method and apparatus for treating organic wastewater
TWI399360B (en) * 2009-07-14 2013-06-21 Recovery equipment for tetramethylammonium hydroxide and its method

Also Published As

Publication number Publication date
CN103443032B (en) 2016-06-01
JPWO2012128119A1 (en) 2014-07-24
WO2012128119A1 (en) 2012-09-27
TWI457290B (en) 2014-10-21
CN103443032A (en) 2013-12-11
TW201245053A (en) 2012-11-16

Similar Documents

Publication Publication Date Title
JP4085987B2 (en) Recycle processing method of photoresist development waste liquid
JP3800450B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
JP6123840B2 (en) Organic wastewater treatment method
JPH10272494A (en) Treatment of organic waste water containing salts of high concentration
JP5245626B2 (en) Method and apparatus for recovering water-soluble organic solvent having amino group
KR20130125387A (en) Treatment method for photoresist development wastewater
US11597668B2 (en) Methods and systems for zero liquid discharge recycling of waste generated from manufacturing operations
JP2002253931A (en) Method and apparatus for manufacturing regenerated tetraalkylammonium hydroxide
JP5106182B2 (en) Water treatment method and water treatment apparatus
JP3656338B2 (en) Photoresist development waste liquid processing method
JPS61204081A (en) Treatment of night soil sewage
KR102657936B1 (en) Zero liquid discharge recirculation system for PCB manufacturing, general metal finishing and chemical milling
JP6614175B2 (en) Organic wastewater treatment method
CN102408166B (en) Method for preventing membrane system from being polluted by recycled water treatment medicaments
JP3663804B2 (en) Photoresist development waste liquid processing method
KR20240055112A (en) Zero liquid discharge recycling system for pcb fab, general metal finishing, and chemical milling
JP2001276824A (en) Treatment method of drain containing tetraalkylammonium ion
TW201803811A (en) Organic wastewater treatment method for avoiding malfunctions due to mucus formed by propagation of bacteria in the organic wastewater such as factory wastewater
JPH07328642A (en) Treatment of tetraalkyl ammonium hydroxide-containing waste water and developer for electronic parts
JP2001276825A (en) Method and equipment for recovering and reutilizing drain generated in developing process
JPH11333443A (en) Recycling method for rinse wastewater
JP2012210565A (en) Apparatus and method for regenerating development waste liquid
KR20220029831A (en) A method for recycling wastewater, an equipment for recycling wastewater and recycling system comprising there of
KR20240011152A (en) Systems and methods for quaternary ammonium hydroxide treatment or recovery
WO2018020591A1 (en) Method for treating organic wastewater

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application