JP2012210565A - Apparatus and method for regenerating development waste liquid - Google Patents

Apparatus and method for regenerating development waste liquid Download PDF

Info

Publication number
JP2012210565A
JP2012210565A JP2011077081A JP2011077081A JP2012210565A JP 2012210565 A JP2012210565 A JP 2012210565A JP 2011077081 A JP2011077081 A JP 2011077081A JP 2011077081 A JP2011077081 A JP 2011077081A JP 2012210565 A JP2012210565 A JP 2012210565A
Authority
JP
Japan
Prior art keywords
membrane
membrane separation
liquid
waste liquid
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011077081A
Other languages
Japanese (ja)
Inventor
Kiminobu Osawa
公伸 大澤
Keiryo Kofune
佳亮 小船
Seiichi Onoda
成一 小野田
Toshitsura Cho
俊連 長
Takahiro Sato
貴寛 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Tama Kagaku Kogyo Co Ltd
Original Assignee
Kurita Water Industries Ltd
Tama Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Tama Kagaku Kogyo Co Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2011077081A priority Critical patent/JP2012210565A/en
Publication of JP2012210565A publication Critical patent/JP2012210565A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To stably and efficiently carry out long-term regeneration treatment of a development waste liquid that contains resist exfoliation and tetraalkylammonium hydroxide (TAAH).SOLUTION: Acid is added to the development waste liquid containing resist exfoliation and TAAH to adjust the liquid to pH 8-9.5, and then membrane separation treatment is carried out by an MF membrane module 1. A permeated liquid is subjected to membrane separation treatment at a liquid permeation temperature of 40-80°C by a nanofiltration (NF) membrane module 2 with a molecular weight cutoff of 200-900 and treated in an activated carbon column 3. Setting the liquid permeation temperature of the NF membrane to 40-80°C lowers the viscosity of the treated liquid and suppresses an operating pressure to increase the amount of permeated liquid. When the amount of permeated liquid of the NF membrane is increased, the resist exfoliation leaks to the permeated liquid side of the NF membrane. However, since the resist exfoliation can be eliminated in the activated carbon treatment in a subsequent stage, a regenerated liquid of high TAAH purity can be obtained.

Description

本発明は、半導体、液晶、プリント基板等の電子部品製造過程で発生するテトラアルキルアンモニウムハイドロオキサイド(以下、「TAAH」という。)を含む現像廃液を再生する現像廃液の再生装置及び再生方法に関する。   The present invention relates to an apparatus and method for regenerating a developing waste liquid that regenerates a developing waste liquid containing tetraalkylammonium hydroxide (hereinafter referred to as “TAAH”) generated in the process of manufacturing electronic components such as semiconductors, liquid crystals, and printed circuit boards.

従来、半導体、液晶、プリント基板等の電子部品を製造する際、Siウエハー等の基板上にネガ型又はポジ型のフォトレジストの被膜を形成し、次いで、このレジスト被膜にパターンマスクを通して光等を照射し、次に現像液を用いて不要なフォトレジストを溶解除去し、さらにエッチング等の処理を行った後、基板上の不溶性のフォトレジスト膜を剥離する方法が採られている。上記の現像液としては、通常TAAH水溶液が用いられているため、このような電子部品の製造分野における現像工程からは、レジスト剥離物とTAAHを含む現像廃液が排出される。   Conventionally, when manufacturing electronic parts such as semiconductors, liquid crystals, and printed circuit boards, a negative or positive photoresist film is formed on a substrate such as a Si wafer, and then light or the like is passed through the resist film through a pattern mask. A method is employed in which an unnecessary photoresist is dissolved and removed using a developer, and an insoluble photoresist film on the substrate is peeled off after further processing such as etching. Since the TAAH aqueous solution is usually used as the developer, a developing waste solution containing a resist strip and TAAH is discharged from such a development step in the field of manufacturing electronic components.

TAAH含有フォトレジスト現像廃液は排出量が多く、また、TAAHの窒素が水質汚染の原因となるためにそのまま投棄することはできず、減容化して廃棄量を削減して処分する場合もあるが、一般的には、廃液中の不純物を除去し、精製して再利用することが行われている。   TAAH-containing photoresist development wastewater is a large amount of discharge, and since TAAH nitrogen causes water pollution, it cannot be discarded as it is, but it may be disposed of by reducing the volume and reducing the amount of waste. Generally, impurities in the waste liquid are removed, purified and reused.

従来、TAAH含有現像廃液の再生方法として、特許文献1,2には、ナノフィルトレーション(NF)膜による膜分離法が提案されている。
具体的には、特許文献1では、現像廃液をpH9.5〜12に調整してNF膜で分離する処理が行われているが、このpH調整に炭酸を用いた場合、炭酸はCO 2−の状態で存在しており、このような2価のイオンの存在下ではNF膜の透過液量が急激に低下する問題がある。
また、特許文献2では、耐アルカリ性を有するNF膜を用いて処理する方法が示されているが、TAAH濃度が10重量%以上の現像廃液を処理する場合、その液性状から浸透圧及び粘性が高く、一定水量を確保するためには、操作圧力を2.0MPa以上とする必要がある。このようにアルカリ性の現像廃液を高圧処理することは、安全面での懸念、設備コストの増大の問題がある。
Conventionally, as a method for regenerating a TAAH-containing developer waste solution, Patent Documents 1 and 2 propose a membrane separation method using a nanofiltration (NF) membrane.
Specifically, in Patent Document 1, a process of adjusting the development waste liquid to pH 9.5 to 12 and separating with an NF membrane is performed. When carbonic acid is used for this pH adjustment, carbonic acid is CO 3 2. In the presence of such divalent ions, there is a problem that the amount of permeated liquid of the NF membrane rapidly decreases.
Further, Patent Document 2 discloses a method of processing using an alkali-resistant NF film. However, when processing a development waste liquid having a TAAH concentration of 10% by weight or more, the osmotic pressure and viscosity are determined from the liquid properties. In order to ensure a high and constant amount of water, the operating pressure needs to be 2.0 MPa or more. The high-pressure treatment of the alkaline developer waste solution in this way has a problem of safety and an increase in equipment cost.

また、特許文献3には、現像廃液を活性炭で処理する方法が示されている。しかし、現像廃液中には、通常レジスト剥離物が0.1〜1g/L程度含まれており、このような高濃度でレジスト剥離物を含む現像廃液を直接活性炭で処理した場合、活性炭が早期に破過に到ることから、膨大な活性炭が必要となり、実用的でない。   Patent Document 3 discloses a method of treating a development waste liquid with activated carbon. However, the developing waste liquid usually contains about 0.1 to 1 g / L of the resist stripped material. When the developing waste solution containing the resist stripped material at such a high concentration is directly treated with activated carbon, the activated carbon is in an early stage. Therefore, enormous amounts of activated carbon are required, which is not practical.

特許第3671644号公報Japanese Patent No. 3671644 特許第3497841号公報Japanese Patent No. 3497841 特開昭58−30753号公報JP 58-30753 A

本発明は、上記従来の問題点を解決し、レジスト剥離物とTAAHとを含む現像廃液を長期に亘り安定かつ効率的に再生処理する装置及び方法を提供することを課題とする。   An object of the present invention is to solve the above-mentioned conventional problems and to provide an apparatus and method for stably and efficiently regenerating a development waste solution containing a resist strip and TAAH over a long period of time.

本発明者らは、上記課題を解決すべく鋭意検討した結果、現像廃液を膜分離処理して得られた透過液を活性炭処理することにより、好ましくは、活性炭処理に先立ち、所定の分画分子量のNF膜を後段の分離膜として用いた2段膜分離処理を行うことにより、更に好ましくは、このNF膜の通液温度を上げることにより、上記課題を解決することができることを見出した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have preferably treated the permeate obtained by membrane separation treatment of the development waste liquid with a predetermined fractional molecular weight prior to the activated carbon treatment. It has been found that the above-mentioned problems can be solved by performing a two-stage membrane separation treatment using the NF membrane as a subsequent separation membrane, and more preferably by raising the liquid passing temperature of the NF membrane.

本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。   The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.

[1] レジスト剥離物とテトラアルキルアンモニウムハイドロオキサイドとを含有する現像廃液の再生装置において、
該現像廃液に酸を添加してpH8〜9.5に調整するpH調整手段と、
pH調整された現像廃液を膜分離処理する第1の膜分離手段と、
該膜分離手段の透過液が通液される活性炭塔とを備えることを特徴とする現像廃液の再生装置。
[1] In a recycling apparatus for developing waste liquid containing a resist strip and a tetraalkylammonium hydroxide,
PH adjusting means for adjusting the pH to 8 to 9.5 by adding an acid to the developing waste solution;
first membrane separation means for membrane separation treatment of pH adjusted developer waste,
An apparatus for regenerating waste developer, comprising: an activated carbon tower through which the permeate of the membrane separation means is passed.

[2] [1]において、前記膜分離手段が、前記pH調整された現像廃液を膜分離処理する第1の膜分離手段と、該第1の膜分離手段の透過液を膜分離処理する第2の膜分離手段とを備え、該第2の膜分離手段の透過液が前記活性炭塔に通液されることを特徴とする現像廃液の再生装置。 [2] In [1], the membrane separation unit performs a membrane separation process on a first membrane separation unit that performs a membrane separation process on the pH-adjusted developer waste liquid, and a membrane separation process on a permeate liquid of the first membrane separation unit. And a membrane separation means, wherein the permeate of the second membrane separation means is passed through the activated carbon tower.

[3] [1]又は[2]において、前記第2の膜分離手段の分離膜が分画分子量200〜900のナノフィルトレーション膜であり、通液温度40〜80℃で膜分離処理が行われることを特徴とする現像廃液再生装置。 [3] In [1] or [2], the separation membrane of the second membrane separation means is a nanofiltration membrane having a fractional molecular weight of 200 to 900, and membrane separation treatment is performed at a liquid passing temperature of 40 to 80 ° C. A developing waste liquid recycling apparatus characterized by being performed.

[4] [2]又は[3]において、前記第1の膜分離手段の分離膜が孔径1μm以下の精密濾過膜であることを特徴とする現像廃液の再生装置。 [4] An apparatus for recycling a developing waste liquid according to [2] or [3], wherein the separation membrane of the first membrane separation means is a microfiltration membrane having a pore diameter of 1 μm or less.

[5] [2]又は[3]において、前記第1の膜分離手段の分離膜が、分画分子量10万以下の限外濾過膜であることを特徴とする現像廃液の再生装置。 [5] The apparatus for regenerating waste developer according to [2] or [3], wherein the separation membrane of the first membrane separation means is an ultrafiltration membrane having a fractional molecular weight of 100,000 or less.

[6] [1]ないし[5]のいずれかにおいて、前記活性炭塔が非再生型の活性炭塔であることを特徴とする現像廃液の再生装置。 [6] The developing waste liquid regenerating apparatus according to any one of [1] to [5], wherein the activated carbon tower is a non-regenerating activated carbon tower.

[7] [2]ないし[6]のいずれかにおいて、前記第1の膜分離手段の透過液の吸光度の測定手段と、測定された吸光度に基いて前記第2の膜分離手段の洗浄時期を決定する洗浄制御手段とを備えることを特徴とする現像廃液の再生装置。 [7] In any one of [2] to [6], the measurement means for measuring the absorbance of the permeate of the first membrane separation means, and the cleaning timing of the second membrane separation means based on the measured absorbance. An apparatus for regenerating development waste liquid, comprising: a cleaning control means for determining.

[8] レジスト剥離物とテトラアルキルアンモニウムハイドロオキサイドとを含有する現像廃液の再生方法において、
該現像廃液に酸を添加してpH8〜9.5に調整するpH調整工程と、
pH調整された現像廃液を膜分離処理する膜分離工程と、
該膜分離工程の透過液を処理する活性炭処理工程とを備えることを特徴とする現像廃液の再生方法。
[8] In a method for regenerating a developing waste solution containing a resist strip and a tetraalkylammonium hydroxide,
A pH adjusting step of adjusting the pH to 8 to 9.5 by adding an acid to the developing waste solution;
a membrane separation step for membrane separation treatment of pH adjusted developer waste,
A method for regenerating a developing waste liquid, comprising: an activated carbon treatment step for treating a permeate in the membrane separation step.

[9] [8]において、前記膜分離工程が、前記pH調整された現像廃液を膜分離処理する第1の膜分離工程と、該第1の膜分離工程の透過液を膜分離処理する第2の膜分離工程とを備え、該第2の膜分離工程の透過液が前記活性炭処理工程で処理されることを特徴とする現像廃液の再生方法。 [9] In [8], in the membrane separation step, a first membrane separation step for membrane separation treatment of the pH-adjusted developer waste solution, and a membrane separation treatment for the permeate in the first membrane separation step. And a membrane separation step, wherein the permeate in the second membrane separation step is treated in the activated carbon treatment step.

[10] [8]又は[9]において、前記第2の膜分離工程の分離膜が、分画分子量200〜900のナノフィルトレーション膜であり、通液温度40〜80℃で膜分離処理が行われることを特徴とする現像廃液の再生方法。 [10] In [8] or [9], the separation membrane in the second membrane separation step is a nanofiltration membrane having a fractional molecular weight of 200 to 900, and a membrane separation treatment at a liquid passing temperature of 40 to 80 ° C. A method for regenerating a developing waste solution, wherein:

[11] [9]又は[10]において、前記第1の膜分離工程の分離膜が孔径1μm以下の精密濾過膜であることを特徴とする現像廃液の再生方法。 [11] The method for regenerating a developing waste liquid according to [9] or [10], wherein the separation membrane in the first membrane separation step is a microfiltration membrane having a pore diameter of 1 μm or less.

[12] [9]又は[10]において、前記第1の膜分離工程の分離膜が、分画分子量10万以下の限外濾過膜であることを特徴とする現像廃液の再生方法。 [12] The method for regenerating a developing waste liquid according to [9] or [10], wherein the separation membrane in the first membrane separation step is an ultrafiltration membrane having a fractional molecular weight of 100,000 or less.

[13] [8]ないし[12]のいずれかにおいて、前記活性炭処理工程において、非再生型の活性炭塔を用いることを特徴とする現像廃液の再生方法。 [13] The method for regenerating a developing waste liquid according to any one of [8] to [12], wherein a non-regenerating type activated carbon tower is used in the activated carbon treatment step.

[14] [9]ないし[13]のいずれかにおいて、前記第1の膜分離工程の透過液の吸光度を測定し、測定された吸光度に基いて前記第2の膜分離工程における分離膜の洗浄時期を決定することを特徴とする現像廃液の再生方法。 [14] In any one of [9] to [13], the absorbance of the permeate in the first membrane separation step is measured, and the separation membrane is washed in the second membrane separation step based on the measured absorbance. A method for regenerating a developing waste liquid, characterized in that the timing is determined.

本発明によれば、活性炭処理に先立ち膜分離処理を行うことにより、活性炭の寿命を延長することができる。また、膜分離処理においては、後段に活性炭処理があることにより、高度な膜分離を行う必要がなくなり、透過液を確保することが容易となる。   According to the present invention, the lifetime of the activated carbon can be extended by performing the membrane separation treatment prior to the activated carbon treatment. Further, in the membrane separation treatment, there is no need to perform advanced membrane separation because there is an activated carbon treatment in the subsequent stage, and it becomes easy to secure a permeate.

特に、本発明の好適な態様においては、以下のような作用効果のもとに、現像廃液を長期に亘り安定かつ効率的に処理して再生することができる。
(1) 現像廃液をpH8〜9.5に調整することにより、現像廃液中のレジスト剥離物を析出させて、これを膜分離除去することができる。
(2) NF膜として分画分子量200〜900のものを用いることにより、TAAHを除去することなく、レジスト剥離物を効率的に除去することができる。
(3) このNF膜の通液温度を40〜80℃とすることにより、被処理液の粘性を下げ、操作圧力を過度に高めることなく、透過液量を高めることができる。
(4) NF膜の通液温度を40〜80℃として透過液量を高めると、NF膜の透過液側にレジスト剥離物がリークするが、このレジスト剥離物は後段の活性炭処理で除去することができ、TAAH純度の高い再生液を得ることができる。
この活性炭処理に供されるNF膜透過液は、既にレジスト剥離物が十分に除去されたものであるため、活性炭が早期に破過に到ることはない。
In particular, in a preferred embodiment of the present invention, the developing waste liquid can be treated and regenerated stably and efficiently over a long period of time based on the following effects.
(1) By adjusting the developing waste liquid to pH 8 to 9.5, the resist stripped material in the developing waste liquid can be deposited and removed by membrane separation.
(2) By using a NF film having a molecular weight cut off of 200 to 900, it is possible to efficiently remove the resist stripped material without removing TAAH.
(3) By setting the liquid passing temperature of this NF membrane to 40 to 80 ° C., the viscosity of the liquid to be treated can be lowered and the amount of permeated liquid can be increased without excessively increasing the operating pressure.
(4) When the permeate temperature of the NF membrane is increased to 40 to 80 ° C. and the amount of permeate is increased, the resist exfoliation leaks to the permeate side of the NF membrane. And a regenerated solution with high TAAH purity can be obtained.
In the NF membrane permeate used for this activated carbon treatment, the resist stripped material has already been sufficiently removed, so that the activated carbon does not break through early.

本発明の現像廃液の再生装置の実施の形態を示す系統図である。1 is a system diagram showing an embodiment of a developing waste liquid recycling apparatus of the present invention. FIG. 比較例3における処理液の吸光度の経日変化を示すグラフである。10 is a graph showing changes over time in absorbance of a treatment liquid in Comparative Example 3.

以下に図面を参照して本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の現像廃液の再生装置の実施の形態を示す系統図であり、図1において、1は精密濾過(MF)膜モジュール、2はNF膜モジュール、3は活性炭塔を示し、4は回収原水槽、5は透過液槽であり、P,Pはポンプを示す。 FIG. 1 is a system diagram showing an embodiment of a developing waste liquid regenerating apparatus according to the present invention. In FIG. 1, 1 is a microfiltration (MF) membrane module, 2 is an NF membrane module, 3 is an activated carbon tower, 4 Is a recovered raw water tank, 5 is a permeate tank, and P 1 and P 2 are pumps.

図1の再生装置では、現像廃液は、酸が添加されて所定のpHに調整された後、回収原水槽4を経てポンプPによりMF膜モジュール1(第1の膜分離手段・第1の膜分離工程)に導入されて膜分離処理される。このMF膜モジュール1の濃縮液の一部は濃縮廃液として系外へ排出され、残部は回収原水槽4に戻されて循環処理される。 In the reproducing apparatus 1, a developing waste liquid after the acid is added has been adjusted to a predetermined pH, by the pump P 1 through the collecting raw water tank 4 MF membrane module 1 (the first membrane separation unit, a first Membrane separation process) and membrane separation treatment. A part of the concentrated liquid of the MF membrane module 1 is discharged out of the system as a concentrated waste liquid, and the remaining part is returned to the recovery raw water tank 4 and circulated.

このMF膜モジュール1の透過液は、透過液槽5を経てポンプPによりNF膜モジュール(第2の膜分離手段・第2の膜分離工程)2に導入されて膜分離処理される。
このNF膜モジュール2の濃縮液の一部は濃縮廃液として系外へ排出され、残部は透過液槽5に戻されて循環処理される。
The permeate of the MF membrane module 1 is introduced into the NF membrane module (second membrane separation means / second membrane separation step) 2 by the pump P 2 through the permeate tank 5 and subjected to membrane separation treatment.
A part of the concentrated liquid of the NF membrane module 2 is discharged out of the system as a concentrated waste liquid, and the remaining part is returned to the permeate tank 5 and circulated.

NF膜モジュール2の透過液は、活性炭塔3に導入されて活性炭処理され、流出液は処理液(再生液)として回収される。   The permeated liquid of the NF membrane module 2 is introduced into the activated carbon tower 3 and treated with activated carbon, and the effluent is recovered as a treated liquid (regenerated liquid).

本発明において処理する現像廃液は、半導体、液晶、プリント基板等の電子部品製造過程で発生するTAAHとレジスト剥離物を含むものである。なお、この現像廃液には、現像時の現像廃液のみならず、その後の洗浄処理で排出される洗浄廃液も含まれる。   The developing waste liquid to be treated in the present invention contains TAAH and resist strips generated in the process of manufacturing electronic parts such as semiconductors, liquid crystals, and printed circuit boards. The developing waste liquid includes not only the developing waste liquid during development but also the cleaning waste liquid discharged in the subsequent cleaning process.

現像廃液中に含まれるTAAHとしては、テトラメチルアンモニウムハイドロオキサイド(以下、「TMAH」という。)、テトラエチルアンモニウムハイドロオキサイド(以下、「TEAH」という。)、テトラプロピルアンモニウムハイドロオキサイド、テトラブチルアンモニウムハイドロオキサイド、ジエチルジメチルアンモニウムハイドロオキサイド、トリメチル(2−ヒドロキシエチル)アンモニウムハイドロオキサイド、トリエチル(2−ヒドロキシエチル)アンモニウムハイドロオキサイド、ジメチルジ(2−ヒドロキシエチル)アンモニウムハイドロオキサイド、ジエチルジ(2−ヒドロキシエチル)アンモニウムハイドロオキサイド、メチルトリ(2−ヒドロキシエチル)アンモニウムハイドロオキサイド、エチルトリ(2−ヒドロキシエチル)アンモニウムハイドロオキサイド、テトラ(2−ヒドロキシエチル)アンモニウムハイドロオキサイドなどの1種又は2種以上が挙げられるが、通常、TMAH、又はTEAHが用いられる。   TAAH contained in the developing waste liquid includes tetramethylammonium hydroxide (hereinafter referred to as “TMAH”), tetraethylammonium hydroxide (hereinafter referred to as “TEAH”), tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide. , Diethyldimethylammonium hydroxide, trimethyl (2-hydroxyethyl) ammonium hydroxide, triethyl (2-hydroxyethyl) ammonium hydroxide, dimethyldi (2-hydroxyethyl) ammonium hydroxide, diethyldi (2-hydroxyethyl) ammonium hydroxide , Methyltri (2-hydroxyethyl) ammonium hydroxide, ethyltri ( - hydroxyethyl) ammonium hydroxide, tetra (2-hydroxyethyl) but one or more of such ammonium hydroxide and the like, usually, TMAH, or TEAH is used.

通常、本発明で処理対象とする現像廃液は、これらのTAAH濃度が1〜20重量%程度で、レジスト剥離物を0.01〜10g/L程度含むpH12〜14程度の強アルカリ性である。なお、現像工程から排出された現像廃液や洗浄廃液中のTAAH濃度が上記範囲よりも低い場合、エバポレーター等により濃縮して本発明に従って処理するようにしてもよい。   Usually, the developing waste liquid to be processed in the present invention has a strong alkalinity of about 12 to 14% in pH with these TAAH concentrations of about 1 to 20% by weight and resist strips of about 0.01 to 10 g / L. When the concentration of TAAH in the development waste liquid and the cleaning waste liquid discharged from the development step is lower than the above range, the TAAH concentration may be concentrated by an evaporator or the like and processed according to the present invention.

本発明においては、このような現像廃液に酸を添加してpH8〜9.5に調整することにより、現像廃液中に溶解しているレジスト剥離物を不溶化して析出させる。この調整pH値が9.5より高いと、レジスト剥離物の析出が十分でなく、8.5未満の低pHとしてもそれ以上のレジスト剥離物の析出効果は得られず、pH調整に用いる酸の添加量が過大となり好ましくない。   In the present invention, an acid is added to such a developing waste solution to adjust the pH to 8 to 9.5, thereby insolubilizing and depositing the resist strip dissolved in the developing waste solution. If the adjusted pH value is higher than 9.5, the resist stripped material is not sufficiently precipitated, and even if the pH is lower than 8.5, no further effect of depositing the resist stripped material can be obtained. The amount of addition is excessively undesirable.

pH調整に用いる酸としては、二酸化炭素及び/又は炭酸が好ましい。塩酸、硫酸、硝酸等の無機酸では、塩素イオン、硫酸イオン、硝酸イオン等の無機アニオンが残留し、再生液を再利用する際、半導体装置等に悪影響を及ぼし、好ましくない。   As the acid used for pH adjustment, carbon dioxide and / or carbonic acid is preferable. Inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid are not preferable because inorganic anions such as chlorine ions, sulfate ions, and nitrate ions remain and adversely affect the semiconductor device and the like when the regenerated solution is reused.

pH調整した現像廃液を膜分離処理するMF膜モジュール1のMF膜の材質としては、ポリスルホン、ポリフッ化ビニリデン(PVDF)、ポリエチレン(PE)、ポリ塩化ビニル(PVC)、セラミック等が挙げられるが、膜の透過液量が低下したときには、pH13以上の強アルカリ性の洗浄液で洗浄することから、耐アルカリ性のポリスルホンやポリエチレンが好ましい。   Examples of the material of the MF membrane of the MF membrane module 1 for membrane separation treatment of pH adjusted developer waste include polysulfone, polyvinylidene fluoride (PVDF), polyethylene (PE), polyvinyl chloride (PVC), and ceramics. When the permeated liquid amount of the membrane decreases, the membrane is washed with a strong alkaline washing liquid having a pH of 13 or higher, and therefore, alkali-resistant polysulfone and polyethylene are preferable.

また、析出したレジスト剥離物は、通常粒径0.5〜10μm程度の粒子であるため、MF膜の孔径は1μm以下、特に0.02〜0.1μmであることが、透過液量を維持した上でこのようなレジスト剥離物の析出粒子を効率的に除去する上で好ましい。   Moreover, since the resist stripped product is usually particles having a particle size of about 0.5 to 10 μm, the pore size of the MF membrane is 1 μm or less, particularly 0.02 to 0.1 μm, so that the amount of permeate can be maintained. In addition, it is preferable for efficiently removing the deposited particles of such a resist strip.

なお、第1の膜分離手段としては、図1に示すMF膜モジュールの他、限外濾過(UF)膜モジュールを用いてもよい。この場合、現像廃液をpH9.5以下に調整しても析出しない溶解性のレジスト剥離物が多く残留し、また、現像廃液中にはレジスト剥離物以外にも界面活性剤等の有機物も含まれているため、これらを効率的に除去するために、分画分子量10万以下、好ましくは13000以下、例えば1000〜13000程度のUF膜を用いると、後段のNF膜の負荷を軽減してNF膜モジュールの安定運転を図ることができ、好ましい。   As the first membrane separation means, an ultrafiltration (UF) membrane module may be used in addition to the MF membrane module shown in FIG. In this case, a lot of dissolved resist strips that do not precipitate even if the development waste liquid is adjusted to pH 9.5 or less remain, and the development waste liquid contains organic substances such as surfactants in addition to the resist strips. Therefore, in order to remove these efficiently, when a UF membrane having a molecular weight cut-off of 100,000 or less, preferably 13000 or less, for example, about 1000 to 13000 is used, the load of the NF membrane in the subsequent stage is reduced and the NF membrane is reduced. The module can be stably operated, which is preferable.

MF膜モジュール1等の第1の膜分離手段における通液条件としては特に制限はないが、次のような条件とすることが好ましい。
操作圧力:0.01〜0.15MPa
回収率:85〜95%
循環水量:処理水に対して2〜5倍
温度:20〜40℃
There are no particular restrictions on the liquid flow conditions in the first membrane separation means such as the MF membrane module 1, but the following conditions are preferred.
Operating pressure: 0.01-0.15 MPa
Recovery rate: 85-95%
Circulating water volume: 2-5 times the treated water Temperature: 20-40 ° C

MF膜モジュール1の透過液を膜分離処理するNF膜モジュール2のNF膜の材質についてもpH13以上の強アルカリ性の洗浄液で洗浄する必要があることから、ポリスルホンやポリエーテルスルホン等の耐アルカリ性のものが好ましい。   Since the material of the NF membrane module 2 of the NF membrane module 2 that performs membrane separation treatment of the permeate of the MF membrane module 1 needs to be washed with a strong alkaline washing solution having a pH of 13 or higher, it is resistant to alkali such as polysulfone and polyethersulfone. Is preferred.

このNF膜モジュール2ではTAAHを透過させ、TAAH以外の不純物を除去するために、分画分子量200〜1200、特に200〜800程度のNF膜を用いることが好ましい。NF膜の分画分子量が200未満では、TAAHを透過させることができず、900より大きいとレジスト剥離物等の不純物を十分に除去し得ない。   In this NF membrane module 2, it is preferable to use an NF membrane having a fractional molecular weight of 200 to 1200, particularly about 200 to 800 in order to allow TAAH to permeate and remove impurities other than TAAH. If the molecular weight cutoff of the NF film is less than 200, TAAH cannot be transmitted, and if it is greater than 900, impurities such as resist strips cannot be removed sufficiently.

このような分画分子量を有する耐アルカリ性のNF膜としては、例えばKoch社製「MPS−34」、Nadia社製「NPO30」等を用いることができる。   As the alkali-resistant NF film having such a molecular weight cut off, for example, “MPS-34” manufactured by Koch, “NPO30” manufactured by Nadia, and the like can be used.

前述の如く、10重量%以上のTAAHを含有する現像廃液を処理する場合、その液性状から浸透圧、粘性が高く、一定の透過液量を確保しようとした場合、操作圧力は少なくとも2.0MPa以上とする必要があり、また、操作圧力を上げた場合でも濾過抵抗が高く、大きな膜面積を必要とする場合がある。   As described above, when processing a developing waste liquid containing 10% by weight or more of TAAH, the osmotic pressure and viscosity are high due to its liquid properties, and the operation pressure is at least 2.0 MPa when trying to ensure a constant amount of permeate. In addition, the filtration resistance is high even when the operation pressure is increased, and a large membrane area may be required.

従って、本発明においては、好ましくはNF膜モジュール2の通液温度を40〜80℃、好ましくは50〜60℃として膜分離処理を行う。このように通液温度を高めることにより、被処理液の粘性が下がり、透過液量を十分に確保することができる。   Therefore, in the present invention, the membrane separation treatment is preferably performed with the liquid passing temperature of the NF membrane module 2 being 40 to 80 ° C., preferably 50 to 60 ° C. By increasing the liquid passing temperature in this way, the viscosity of the liquid to be treated is lowered, and a sufficient amount of permeated liquid can be secured.

なお、透過液量が増大することにより、少量のレジスト剥離物の透過液側へのリークが見られるが、本発明においては、後段の活性炭塔3で、リークしたレジスト剥離物を除去することができるため、リークしたレジスト剥離物が問題になることはない。   In addition, although the leak to the permeate side of a small amount of resist stripped material is observed due to the increase in the amount of the permeated liquid, in the present invention, the leaked resist stripped material can be removed by the activated carbon tower 3 in the subsequent stage. Therefore, the leaked resist strip does not become a problem.

このNF膜モジュール2における通液条件としては特に制限はないが、次のような条件とすることが好ましく、特に、通液温度を上げることにより、操作圧力を下げることができ、安定性、設備コストの面で好ましい。
操作圧力:2.8〜3.8MPa
回収率:75〜85%
循環水量:処理水に対して1〜100倍
温度:40〜70℃
There are no particular restrictions on the conditions for passing the liquid in the NF membrane module 2, but the following conditions are preferred. In particular, the operating pressure can be lowered by increasing the liquid passing temperature, and the stability, equipment It is preferable in terms of cost.
Operating pressure: 2.8 to 3.8 MPa
Recovery rate: 75-85%
Circulating water volume: 1 to 100 times the treated water Temperature: 40 to 70 ° C

NF膜モジュール2の透過液を処理する活性炭塔3の活性炭は、ヤシガラ系、コール系のいずれでもよく、その形状についても粒状、シート状、その他、どのような形状でもよい。   The activated carbon of the activated carbon tower 3 that treats the permeated liquid of the NF membrane module 2 may be either coconut shell-based or coal-based, and the shape thereof may be any shape such as granular, sheet, or the like.

活性炭塔3への通液SVは過度に高いと残留レジスト剥離物の除去効果が低く、過度に低いと処理効率が低下するため、5〜40h−1、特に10〜20h−1とすることが好ましい。 If the SV passing through the activated carbon tower 3 is excessively high, the effect of removing the residual resist stripped material is low, and if it is excessively low, the processing efficiency decreases, so that it is 5 to 40 h −1 , particularly 10 to 20 h −1. preferable.

処理に用いた活性炭は、現場にて蒸気やアルカリ薬剤によって再生することも可能であるが、再生による不純物の混入の懸念もあるため、一定期間の通液後に交換する非再生型のものを用いることが好ましい。本発明においては、非再生型の活性炭塔を用いた場合であっても、この活性炭塔の前段の膜分離処理で、現像廃液中のレジスト剥離物を十分に除去してあるため、活性炭塔の交換頻度が問題となることはない。   The activated carbon used in the treatment can be regenerated with steam or alkaline chemicals on site, but there is a concern of contamination due to regeneration, so use a non-regenerative type that is replaced after passing through for a certain period of time. It is preferable. In the present invention, even when a non-regenerative type activated carbon tower is used, since the resist stripped material in the development waste liquid is sufficiently removed by the membrane separation treatment in the previous stage of the activated carbon tower, the activated carbon tower The exchange frequency is not a problem.

本発明において、現像廃液の膜分離処理に用いた分離膜は、定期的に或いは透過液量が減少した場合に必要に応じて洗浄する必要がある。特に、後段のNF膜は、分画分子量が比較的小さく、透過液量が低下し易いが、膜の目詰りが進行してからの洗浄では膜性能の回復に時間を要し、また、一定期間毎の定期的な洗浄では、被処理液の液性状の変化や処理条件の変動による膜汚染の進行に対応し得ない。   In the present invention, the separation membrane used for the membrane separation treatment of the development waste liquid needs to be washed periodically or when necessary when the permeate amount decreases. In particular, the NF membrane in the latter stage has a relatively small molecular weight cut and the permeate amount is likely to decrease. However, it takes time to recover the membrane performance in the cleaning after the membrane clogging has progressed, and is constant. Periodic cleaning for each period cannot cope with the progress of film contamination due to changes in the liquid properties of the liquid to be processed and changes in processing conditions.

従って、NF膜の適切な洗浄時期を検知して、膜の目詰りが進行する前に、また、洗浄頻度を過度に増やすことなく、適切な洗浄頻度で洗浄を行うことが望まれる。   Therefore, it is desirable to detect an appropriate cleaning time of the NF film and perform cleaning with an appropriate cleaning frequency before the film clogging progresses and without excessively increasing the cleaning frequency.

従って、図1のような現像廃液の再生装置においては、第1の膜分離手段であるMF膜モジュール1の透過液の吸光度を吸光分光分析器(吸光光度計)で測定し、この測定結果に基いて、第2の膜分離手段であるNF膜モジュール2の洗浄時期又は洗浄頻度を設定することが好ましい。即ち、第2の膜分離手段であるNF膜モジュール2に導入される第1の膜分離手段のMF膜モジュール1の透過液の性状が、NF膜モジュール2の膜汚染の進行に影響を及ぼすが、このMF膜モジュール1の透過液の性状は吸光度に十分に反映され、吸光度の低い透過水はNF膜を汚染し難く、吸光度の高い透過水はNF膜を汚染し易い。従って、この吸光度の測定結果に基いて洗浄頻度を制御することが好ましい。   Therefore, in the developing waste solution regenerating apparatus as shown in FIG. 1, the absorbance of the permeate of the MF membrane module 1 which is the first membrane separation means is measured with an absorption spectrophotometer (absorptiometer). Therefore, it is preferable to set the cleaning time or the cleaning frequency of the NF membrane module 2 as the second membrane separation means. That is, the property of the permeate of the MF membrane module 1 of the first membrane separation means introduced into the NF membrane module 2 as the second membrane separation means affects the progress of the membrane contamination of the NF membrane module 2. The properties of the permeated liquid of the MF membrane module 1 are sufficiently reflected in the absorbance. Permeated water having a low absorbance hardly contaminates the NF membrane, and permeated water having a high absorbance tends to contaminate the NF membrane. Therefore, it is preferable to control the washing frequency based on the measurement result of the absorbance.

即ち、例えば透過液槽5の透過液をNF膜モジュール2に送給する配管に吸光分光分析器(吸光光度計)を設け、波長290〜500nm、具体的には波長450nmの吸光度を測定し、次のようにしてNF膜モジュール2の洗浄時期又は洗浄頻度を設定する方法が挙げられる。   That is, for example, an absorption spectrophotometer (absorptiometer) is provided in a pipe for supplying the permeate from the permeate tank 5 to the NF membrane module 2, and the absorbance at a wavelength of 290 to 500 nm, specifically, a wavelength of 450 nm is measured. A method for setting the cleaning time or the cleaning frequency of the NF membrane module 2 as follows.

(1) 予め吸光度と洗浄頻度との関係をプログラミングしておき、測定された吸光度に応じた洗浄頻度を採用する。
(2) 吸光度の測定値が増大する傾向にある場合は洗浄頻度を上げ、低下する傾向にある場合は洗浄頻度を下げる。
(3) 吸光度の測定値が設定値を超える場合は直ちに或いはその後所定期間内に洗浄を行う。
(1) The relationship between the absorbance and the washing frequency is programmed in advance, and the washing frequency corresponding to the measured absorbance is adopted.
(2) When the absorbance measurement value tends to increase, the cleaning frequency is increased, and when the absorbance measurement value tends to decrease, the cleaning frequency is decreased.
(3) If the measured value of absorbance exceeds the set value, wash immediately or within a predetermined period.

膜洗浄に当っては、現像廃液の通液を停止し、NF膜モジュールに洗浄液を一定期間注入して洗浄を行い、洗浄後は再び現像廃液の処理を開始する。
この洗浄液のpHとしてはpH12.5以上、特にpH13.5以上であることが好ましい。
In the membrane cleaning, the flow of the developing waste liquid is stopped, the cleaning liquid is injected into the NF membrane module for a certain period of time for cleaning, and after the cleaning, the processing of the developing waste liquid is started again.
The pH of the cleaning liquid is preferably pH 12.5 or more, particularly preferably pH 13.5 or more.

上述の吸光度の測定及び洗浄は、人手を要することなく、自動的に行うことができ、NF膜モジュールを最適な洗浄頻度で洗浄して安定に自動運転することが可能となる。   The above-described absorbance measurement and cleaning can be performed automatically without requiring manual operation, and the NF membrane module can be cleaned at an optimal cleaning frequency and stably operated automatically.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
なお、以下において、試料液としては、半導体製造工程から排出され、約6倍濃縮されたTMAH含有現像廃液(pH14以上、TMAH濃度12重量%、レジスト剥離物含有量3g/L)を用いた。
また、以下において、分離膜の濃縮液量、透過液量は、分離膜エレメント1本当たりの液量を示す。
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
In the following, as a sample solution, a TMAH-containing developing waste solution (pH 14 or more, TMAH concentration 12 wt%, resist exfoliation content 3 g / L) discharged from the semiconductor manufacturing process and concentrated about 6 times was used.
In the following, the concentrated liquid amount and permeated liquid amount of the separation membrane indicate the amount of liquid per separation membrane element.

液の吸光度は、日立製作所社製吸光光度計「U−2810」により、波長450nmの吸光度を測定した。
また、濁度は、HACH社製濁度計「2100P」により測定し、TMAH濃度はブロモクレゾールグリーン/メチルレッド指示薬を用いた中和滴定により測定した。
The absorbance of the liquid was measured with a spectrophotometer “U-2810” manufactured by Hitachi, Ltd. at a wavelength of 450 nm.
The turbidity was measured with a turbidimeter “2100P” manufactured by HACH, and the TMAH concentration was measured by neutralization titration using a bromocresol green / methyl red indicator.

[比較例1]
(1)試験方法
炭酸を用いて試料液のpHを9.0に調整し、NF膜(Koch社製4インチエレメント(MPS34−4040、分画分子量200、材質ポリエーテルスルホン)に、以下の条件で通液してと膜分離処理を行った。
[Comparative Example 1]
(1) Test method The pH of the sample solution was adjusted to 9.0 using carbonic acid, and the following conditions were applied to an NF membrane (4 inch element manufactured by Koch (MPS34-4040, fractional molecular weight 200, material polyethersulfone)). The membrane separation treatment was performed by passing the solution through.

<通液条件>
液温:30℃
操作圧力:3.0MPa
濃縮液循環量:1.5m/h
透過液量:膜分離開始時の3L/hから徐々に減少
回収率:50%
<Liquid flow conditions>
Liquid temperature: 30 ° C
Operating pressure: 3.0 MPa
Concentrated liquid circulation rate: 1.5 m 3 / h
Permeate volume: Decrease gradually from 3 L / h at the start of membrane separation. Recovery: 50%

(2)試験結果
通液初期の段階で、透過液量は3L/hであり、通液時間12時間後で透過液は全くでなくなり、期待値15L/h以上には全く到達しなかった。
(2) Test results At the initial stage of liquid passage, the amount of permeated liquid was 3 L / h, and the permeated liquid disappeared completely after 12 hours of liquid passage, and did not reach the expected value of 15 L / h or more at all.

[比較例2]
(1)試験方法
炭酸を用いて試料液のpHを9.0に調整し、NF膜(Koch社製4インチエレメント(MPS36−4040、分画分子量1000、材質ポリエーテルスルホン)に、比較例1と同じ通液条件で通液した。
なお、pH調整後の試料液の吸光度は0.4であった。
[Comparative Example 2]
(1) Test method The pH of the sample solution was adjusted to 9.0 using carbonic acid, and an NF membrane (4 inch element (MPS36-4040, fractional molecular weight 1000, material polyethersulfone) manufactured by Koch) was used as Comparative Example 1. The liquid was passed under the same conditions.
The absorbance of the sample solution after pH adjustment was 0.4.

(2)試験結果
透過液量は70L/hと十分であったが、NF膜の入口吸光度0.4に対して、透過液の吸光度は0.35と、レジスト残渣物を殆ど除去することができなかった。
(2) Test results The amount of permeated liquid was 70 L / h, but the absorbance of the permeated liquid was 0.35 compared to the absorbance at the entrance of the NF membrane of 0.45. could not.

[比較例3]
(1)試験方法
炭酸を用いて試料液のpHを12.0に調整し(吸光度0.4)、以下の活性炭塔に以下の通液条件で通液した。
[Comparative Example 3]
(1) Test method The pH of the sample solution was adjusted to 12.0 using carbon dioxide (absorbance 0.4), and the solution was passed through the following activated carbon tower under the following solution flow conditions.

<活性炭塔>
栗田工業(株)製「カーボナー CF50」(活性炭量:50L)
活性炭:ヤシガラ系 10−32
<通液条件>
通水SV:5h−1
通水量:0.25m/h
<Activated carbon tower>
"Carboner CF50" manufactured by Kurita Kogyo Co., Ltd. (Amount of activated carbon: 50L)
Activated carbon: Coconut shell system 10-32
<Liquid flow conditions>
Water flow SV: 5h -1
Water flow rate: 0.25m 3 / h

(2)試験結果
図1に通液日数と処理液(活性炭塔の流出液)の吸光度との関係を示す。
図1より明らかなように、通液開始から3日後までは、処理液の吸光度0.1以下を維持したが、その後、吸光度が上昇し、破過に到った。
(2) Test results FIG. 1 shows the relationship between the number of days of liquid passage and the absorbance of the treatment liquid (the effluent of the activated carbon tower).
As is clear from FIG. 1, the absorbance of the treatment liquid was maintained at 0.1 or less until 3 days after the start of liquid flow, but the absorbance increased thereafter, resulting in breakthrough.

[比較例4]
(1)試験方法
炭酸を用いて試料液のpHを9.0に調整し、以下のMF膜とNF膜を用い、MF膜→NF膜の順で以下の条件で通液を行った(即ち、MF膜の透過液をNF膜に通液する。)。通液温度は30℃とした。
[Comparative Example 4]
(1) Test method The pH of the sample solution was adjusted to 9.0 using carbonic acid, and the following MF membrane and NF membrane were used, and liquid was passed in the following order in the order of MF membrane → NF membrane (that is, Then, the permeate of the MF membrane is passed through the NF membrane.) The liquid passing temperature was 30 ° C.

<MF膜>
旭化成製 内圧式中空糸膜 PSP−303
材質:ポリエチレン
公称孔径:0.1μm
サイズ:89×1129mm
膜面積:6.0m
操作圧力:0.05MPa
回収率:90%
<MF membrane>
Asahi Kasei internal pressure hollow fiber membrane PSP-303
Material: Polyethylene Nominal pore size: 0.1 μm
Size: 89 x 1129mm
Membrane area: 6.0 m 2
Operating pressure: 0.05 MPa
Recovery rate: 90%

<NF膜>
Koch社製 4インチエレメント MPS34−4040
材質:ポリエーテルスルホン
分画分子量:200
濃縮液循環量:1.5m/h
操作圧力:3.0MPa
回収率:75%
<NF film>
4 inch element MPS34-4040 made by Koch
Material: Polyethersulfone Fractionated molecular weight: 200
Concentrated liquid circulation rate: 1.5 m 3 / h
Operating pressure: 3.0 MPa
Recovery rate: 75%

(2)試験結果
pH調整後の試料液、MF膜透過液及びNF膜透過液の水質分析結果を表1に示す。
(2) Test results Table 1 shows the results of water quality analysis of the sample solution, MF membrane permeate, and NF membrane permeate after pH adjustment.

Figure 2012210565
Figure 2012210565

表1より明らかなように、NF膜透過液は目標濃度を満足したが、12時間通液後のNF膜の透過液量は10L/hであり、期待値には到達しなかった。   As is clear from Table 1, the NF membrane permeate satisfied the target concentration, but the amount of permeate through the NF membrane after passing through for 12 hours was 10 L / h, and did not reach the expected value.

[実施例1]
(1)試験方法
比較例4において、通液温度を50℃とし、図1に示すように、NF膜透過液を更に以下の活性炭塔に以下の条件で通液したこと以外は同様にして処理を行った。
[Example 1]
(1) Test method In Comparative Example 4, the treatment temperature was set to 50 ° C., and as shown in FIG. 1, the NF membrane permeate was further passed through the following activated carbon tower under the following conditions. Went.

<活性炭塔>
栗田工業(株)製「カーボナー CF50」(活性炭量:100L)
活性炭:ヤシガラ系 10−32
<通液条件>
通水SV:10h−1
通水量:1.0m/h
<Activated carbon tower>
"Carboner CF50" manufactured by Kurita Kogyo Co., Ltd. (Amount of activated carbon: 100L)
Activated carbon: Coconut shell system 10-32
<Liquid flow conditions>
Water flow SV: 10h -1
Water flow rate: 1.0m 3 / h

(2)試験結果
pH調整後の試料液、MF膜透過液、NF膜透過液及び活性炭塔流出液の水質分析結果を表2に示す。
(2) Test results Table 2 shows the results of water quality analysis of the sample solution, MF membrane permeate, NF membrane permeate, and activated carbon tower effluent after pH adjustment.

Figure 2012210565
Figure 2012210565

表2により明らかなように、NF膜透過液は目標吸光度<0.1に到達しなかったが、活性炭塔を設置することにより、安定して吸光度<0.1を満足した。
また、12時間通液後のNF膜の透過液量は17L/hであり、期待値を満足した。
この条件で3ヶ月間連続して通液処理を行ったが、活性炭塔流出液の吸光度は安定して<0.1を達成した。
As apparent from Table 2, the NF membrane permeate did not reach the target absorbance <0.1, but the absorbance <0.1 was stably satisfied by installing an activated carbon tower.
Further, the permeated liquid amount of the NF membrane after passing through for 12 hours was 17 L / h, which satisfied the expected value.
The liquid passing treatment was continuously performed for 3 months under these conditions, but the absorbance of the activated carbon tower effluent stably achieved <0.1.

1 MF膜モジュール
2 NF膜モジュール
3 活性炭塔
4 回収原水槽
5 透過液槽
1 MF membrane module 2 NF membrane module 3 Activated carbon tower 4 Recovery raw water tank 5 Permeate tank

Claims (14)

レジスト剥離物とテトラアルキルアンモニウムハイドロオキサイドとを含有する現像廃液の再生装置において、
該現像廃液に酸を添加してpH8〜9.5に調整するpH調整手段と、
pH調整された現像廃液を膜分離処理する第1の膜分離手段と、
該膜分離手段の透過液が通液される活性炭塔とを備えることを特徴とする現像廃液の再生装置。
In a recycling apparatus for developing waste liquid containing a resist strip and tetraalkylammonium hydroxide,
PH adjusting means for adjusting the pH to 8 to 9.5 by adding an acid to the developing waste solution;
first membrane separation means for membrane separation treatment of pH adjusted developer waste,
An apparatus for regenerating waste developer, comprising: an activated carbon tower through which the permeate of the membrane separation means is passed.
請求項1において、前記膜分離手段が、前記pH調整された現像廃液を膜分離処理する第1の膜分離手段と、該第1の膜分離手段の透過液を膜分離処理する第2の膜分離手段とを備え、該第2の膜分離手段の透過液が前記活性炭塔に通液されることを特徴とする現像廃液の再生装置。   2. The first membrane separation unit according to claim 1, wherein the membrane separation unit performs a membrane separation process on the pH-adjusted developer waste liquid, and a second membrane performs a membrane separation process on the permeate of the first membrane separation unit. And a separation means, wherein the permeate of the second membrane separation means is passed through the activated carbon tower. 請求項1又は2において、前記第2の膜分離手段の分離膜が分画分子量200〜900のナノフィルトレーション膜であり、通液温度40〜80℃で膜分離処理が行われることを特徴とする現像廃液再生装置。   3. The separation membrane according to claim 1 or 2, wherein the separation membrane of the second membrane separation means is a nanofiltration membrane having a fractional molecular weight of 200 to 900, and the membrane separation treatment is performed at a liquid passing temperature of 40 to 80 ° C. Development waste liquid recycling device. 請求項2又は3において、前記第1の膜分離手段の分離膜が孔径1μm以下の精密濾過膜であることを特徴とする現像廃液の再生装置。   4. A developing waste liquid recycling apparatus according to claim 2, wherein the separation membrane of the first membrane separation means is a microfiltration membrane having a pore diameter of 1 μm or less. 請求項2又は3において、前記第1の膜分離手段の分離膜が、分画分子量10万以下の限外濾過膜であることを特徴とする現像廃液の再生装置。   4. The recycling apparatus for developing waste liquid according to claim 2, wherein the separation membrane of the first membrane separation means is an ultrafiltration membrane having a fractional molecular weight of 100,000 or less. 請求項1ないし5のいずれか1項において、前記活性炭塔が非再生型の活性炭塔であることを特徴とする現像廃液の再生装置。   6. The recycling apparatus for developing waste liquid according to claim 1, wherein the activated carbon tower is a non-regenerative activated carbon tower. 請求項2ないし6のいずれか1項において、前記第1の膜分離手段の透過液の吸光度の測定手段と、測定された吸光度に基いて前記第2の膜分離手段の洗浄時期を決定する洗浄制御手段とを備えることを特徴とする現像廃液の再生装置。   7. The method according to claim 2, wherein the absorbance of the permeated liquid of the first membrane separation unit is measured, and the cleaning time for determining the cleaning time of the second membrane separation unit is determined based on the measured absorbance. And a developing device for recycling a developing waste liquid. レジスト剥離物とテトラアルキルアンモニウムハイドロオキサイドとを含有する現像廃液の再生方法において、
該現像廃液に酸を添加してpH8〜9.5に調整するpH調整工程と、
pH調整された現像廃液を膜分離処理する膜分離工程と、
該膜分離工程の透過液を処理する活性炭処理工程とを備えることを特徴とする現像廃液の再生方法。
In a method for regenerating a waste developer containing a resist strip and a tetraalkylammonium hydroxide,
A pH adjusting step of adjusting the pH to 8 to 9.5 by adding an acid to the developing waste solution;
a membrane separation step for membrane separation treatment of pH adjusted developer waste,
A method for regenerating a developing waste liquid, comprising: an activated carbon treatment step for treating a permeate in the membrane separation step.
請求項8において、前記膜分離工程が、前記pH調整された現像廃液を膜分離処理する第1の膜分離工程と、該第1の膜分離工程の透過液を膜分離処理する第2の膜分離工程とを備え、該第2の膜分離工程の透過液が前記活性炭処理工程で処理されることを特徴とする現像廃液の再生方法。   9. The membrane separation step according to claim 8, wherein the membrane separation step includes a first membrane separation step for membrane separation treatment of the pH-adjusted developer waste solution, and a second membrane for membrane separation treatment of the permeate in the first membrane separation step. And a separation step, wherein the permeate in the second membrane separation step is treated in the activated carbon treatment step. 請求項8又は9において、前記第2の膜分離工程の分離膜が、分画分子量200〜900のナノフィルトレーション膜であり、通液温度40〜80℃で膜分離処理が行われることを特徴とする現像廃液の再生方法。   10. The membrane separation process according to claim 8 or 9, wherein the separation membrane in the second membrane separation step is a nanofiltration membrane having a fractional molecular weight of 200 to 900, and the membrane separation treatment is performed at a liquid passing temperature of 40 to 80 ° C. A developing method for recycling a developing waste liquid. 請求項9又は10において、前記第1の膜分離工程の分離膜が孔径1μm以下の精密濾過膜であることを特徴とする現像廃液の再生方法。   11. The method for regenerating a developing waste liquid according to claim 9, wherein the separation membrane in the first membrane separation step is a microfiltration membrane having a pore diameter of 1 μm or less. 請求項9又は10において、前記第1の膜分離工程の分離膜が、分画分子量10万以下の限外濾過膜であることを特徴とする現像廃液の再生方法。   11. The method for regenerating a developing waste liquid according to claim 9 or 10, wherein the separation membrane in the first membrane separation step is an ultrafiltration membrane having a fractional molecular weight of 100,000 or less. 請求項8ないし12のいずれか1項において、前記活性炭処理工程において、非再生型の活性炭塔を用いることを特徴とする現像廃液の再生方法。   The method for regenerating a developing waste liquid according to any one of claims 8 to 12, wherein a non-regenerating activated carbon tower is used in the activated carbon treatment step. 請求項9ないし13のいずれか1項において、前記第1の膜分離工程の透過液の吸光度を測定し、測定された吸光度に基いて前記第2の膜分離工程における分離膜の洗浄時期を決定することを特徴とする現像廃液の再生方法。   The absorbance of the permeate in the first membrane separation step is measured according to any one of claims 9 to 13, and the cleaning time of the separation membrane in the second membrane separation step is determined based on the measured absorbance. A method for regenerating a developing waste solution.
JP2011077081A 2011-03-31 2011-03-31 Apparatus and method for regenerating development waste liquid Withdrawn JP2012210565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011077081A JP2012210565A (en) 2011-03-31 2011-03-31 Apparatus and method for regenerating development waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011077081A JP2012210565A (en) 2011-03-31 2011-03-31 Apparatus and method for regenerating development waste liquid

Publications (1)

Publication Number Publication Date
JP2012210565A true JP2012210565A (en) 2012-11-01

Family

ID=47265008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011077081A Withdrawn JP2012210565A (en) 2011-03-31 2011-03-31 Apparatus and method for regenerating development waste liquid

Country Status (1)

Country Link
JP (1) JP2012210565A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080008A1 (en) * 2018-10-19 2020-04-23 オルガノ株式会社 System for treating tetraalkylammonium-hydroxide-containing liquid, and method for treating same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080008A1 (en) * 2018-10-19 2020-04-23 オルガノ株式会社 System for treating tetraalkylammonium-hydroxide-containing liquid, and method for treating same
CN112789101A (en) * 2018-10-19 2021-05-11 奥加诺株式会社 System and method for treating liquid containing tetraalkylammonium hydroxide
JPWO2020080008A1 (en) * 2018-10-19 2021-09-09 オルガノ株式会社 Treatment system and treatment method for tetraalkylammonium hydroxide-containing liquid
US11524261B2 (en) 2018-10-19 2022-12-13 Organo Corporation System for treating tetraalkylammonium hydroxide-containing liquid and method for treating same
JP7357635B2 (en) 2018-10-19 2023-10-06 オルガノ株式会社 Treatment system and method for liquid containing tetraalkylammonium hydroxide

Similar Documents

Publication Publication Date Title
JP2007130523A (en) Membrane washing method for water treatment system
JP4241684B2 (en) Membrane module cleaning method
JP2012139659A (en) Treatment method and treatment apparatus of organic-matter-containing water
JP2008132421A (en) Water treatment apparatus and water treatment method
JP4385407B2 (en) Method for treating tetraalkylammonium ion-containing liquid
JP2012210568A (en) Regeneration apparatus and regeneration method of development waste liquid
JP4496795B2 (en) Method and apparatus for treating wastewater containing organic matter
JPH08243361A (en) Membrane separation device
JP2006204996A (en) Method for washing porous membrane, water treatment apparatus, and method for cleaning porous membrane module
JP5245626B2 (en) Method and apparatus for recovering water-soluble organic solvent having amino group
JP2001149950A (en) Water treating method and water treating device
KR20150046093A (en) Water production method
JP2012210565A (en) Apparatus and method for regenerating development waste liquid
JP5120106B2 (en) Method and apparatus for treating organic alkaline wastewater
JP2004167423A (en) Apparatus and method for pure water production
JP2011104504A (en) Washing method of water treatment facility
JP4180019B2 (en) Reverse osmosis membrane cleaning method and wastewater recovery method using this method
JP2008302333A (en) Method and apparatus for production of fresh water
US20060201882A1 (en) Method and system for treating wastewater containing hydrogen peroxide
JP2008036605A (en) Apparatus for producing purified water and method for producing purified water
JP7168324B2 (en) Silica-containing water treatment apparatus and treatment method
KR101076454B1 (en) Method for recycling inorganic waste water
JP2010227869A (en) Method for washing filter membrane
JP2012210566A (en) Method for washing taah recovery apparatus
JP2009208012A (en) Water treating method and water treating apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603