KR20120130210A - 열전달 장치, 및 관련 시스템과 방법 - Google Patents

열전달 장치, 및 관련 시스템과 방법 Download PDF

Info

Publication number
KR20120130210A
KR20120130210A KR1020127023834A KR20127023834A KR20120130210A KR 20120130210 A KR20120130210 A KR 20120130210A KR 1020127023834 A KR1020127023834 A KR 1020127023834A KR 20127023834 A KR20127023834 A KR 20127023834A KR 20120130210 A KR20120130210 A KR 20120130210A
Authority
KR
South Korea
Prior art keywords
conduit
heat
inlet
architectural structure
end cap
Prior art date
Application number
KR1020127023834A
Other languages
English (en)
Inventor
로이 에드워드 맥알리스터
Original Assignee
맥알리스터 테크놀로지즈 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/857,228 external-priority patent/US8623107B2/en
Priority claimed from US12/857,546 external-priority patent/US8991182B2/en
Application filed by 맥알리스터 테크놀로지즈 엘엘씨 filed Critical 맥알리스터 테크놀로지즈 엘엘씨
Publication of KR20120130210A publication Critical patent/KR20120130210A/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0208Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes using moving tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/30Geothermal collectors using underground reservoirs for accumulating working fluids or intermediate fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/40Geothermal collectors operated without external energy sources, e.g. using thermosiphonic circulation or heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/06Heat pumps characterised by the source of low potential heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0052Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using the ground body or aquifers as heat storage medium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Building Environments (AREA)

Abstract

열전달 장치와 관련 시스템 및 방법의 실시예가 본 명세서에 개시되어 있다. 일 실시예에서, 열전달 시스템은 유입부, 유출부, 및 유입부와 유출부 사이의 측벽을 포함할 수 있다. 열은 유입부에서 도관에 진입하고 유출부에서 도관으로부터 배출된다. 열전달 시스템은 도관의 말단 근처의 단부 캡을 더 포함할 수 있다. 작동 유체는 기화-응축 사이클을 이용하여 도관을 통해 순환할 수 있다. 열전달 장치는 또한 합성 매트릭스 특성의 결정의 복수 개의 층을 갖는 아키텍처 구조물을 포함할 수 있다.

Description

열전달 장치, 및 관련 시스템과 방법{THERMAL TRANSFER DEVICE AND ASSOCIATED SYSTEMS AND METHODS}
관련 출원(들)의 상호-참조
본 출원은 2010년 2월 13일자로 출원되었고 발명의 명칭이 "총 스펙트럼 에너지 및 자원 자립(FULL SPECTRUM ENERGY AND RESOURCE INDEPENDENCE)"인 미국 특허 출원 제61/304,403호를 우선권 주장하고 그 이익을 청구한다. 본 출원은 2010년 8월 16일자로 출원되었고 발명의 명칭이 "보강된 해양 열 에너지 변환(SOTEC) 시스템의 효율 증가(INCREASING THE EFFICIENCY OF SUPPLEMENTED OCEAN THERMAL ENERGY CONVERSION(SOTEC) SYSTEMS)"인 미국 특허 출원 제12/857,546호와, 2010년 8월 16일자로 출원되었고 발명의 명칭이 "탄화수소 수화물 퇴적물을 얻기 위한 가스 수화물 변환 시스템(GAS HYDRATE CONVERSION SYSTEM FOR HARVESTING HYDROCARBON HYDRATE DEPOSITS)"인 미국 특허 출원 제12/857,228호의 일부 연속 출원인데, 이들 출원 각각은 2010년 2월 13일자로 출원되었고 발명의 명칭이 "총 스펙트럼 에너지 및 자원 자립(FULL SPECTRUM ENERGY AND RESOURCE INDEPENDENCE)"인 미국 특허 출원 제61/304,403호를 우선권 주장하고 그 이익을 청구한다. 미국 특허 출원 제12/857,546호와 미국 특허 출원 제12/857,228호는 또한 이하의 출원들 각각의 일부 연속 출원이다: 2010년 2월 17일자로 출원되었고 발명의 명칭이 "전해조 및 그 이용 방법(ELECTROLYTIC CELL AND METHOD OF USE THEROF)"인 미국 특허 출원 제12/707,651호; 2010년 2월 17일자로 출원되었고 발명의 명칭이 "전해조 및 그 이용 방법(ELECTROLYTIC CELL AND METHOD OF USE THEROF)"인 PCT 출원 제PCT/ US10/24497호; 2010년 2월 17일자로 출원되었고 발명의 명칭이 "전기 분해 중에 핵생성을 제어하는 장치 및 방법(APPARATUS AND METHOD FOR CONTROLLING NUCLEATION DURING ELECTROLYSIS)"인 미국 특허 출원 제12/707,653호; 2010년 2월 17일자로 출원되었고 발명의 명칭이 "전기 분해 중에 핵생성을 제어하는 장치 및 방법(APPARATUS AND METHOD FOR CONTROLLING NUCLEATION DURING ELECTROLYSIS)"인 PCT 출원 제PCT/US10/24498호; 2010년 2월 17일자로 출원되었고 발명의 명칭이 "전기 분해 중에 가스 포획 장치 및 방법(APPARATUS AND METHOD FOR GAS CAPTURE DURING ELECTROLYSIS)"인 미국 특허 출원 제12/707,656호 및 2010년 2월 17일자로 출원되었고 발명의 명칭이 "전기 분해 중에 핵생성을 제어하는 장치 및 방법(APPARATUS AND METHOD FOR CONTROLLING NUCLEATION DURING ELECTROLYSIS)"인 PCT 출원 제PCT/US10/24499; 이들 각각은 이하의 출원들을 우선권 주장하고 그 이익을 청구한다: 2009년 2월 17일자로 출원되었고 발명의 명칭이 "총 스펙트럼 에너지(FULL SPECTRUM ENERGY)"인 미국 가특허 출원 제61/153,253호; 2009년 8월 27일자로 출원되었고 발명의 명칭이 "전해조 및 에너지 자립 기술(ELECTROLYZER AND ENERGY INDEPENDENCE TECHNOLOGIES)"인 미국 가출원 제61/237,476호; 2010년 2월 13일자로 출원되었고 발명의 명칭이 "총 스펙트럼 에너지 및 자원 자립(FULL SPECTRUM ENERGY AND RESOURCE INDEPENDENCE)"인 미국 가출원 제61/304,403호. 이들 출원 각각은 그 전체가 본 명세서에 참조로 합체된다.
기술분야
본 기술은 전반적으로 열전달 장치와 관련 시스템 및 방법에 관한 것이다.
히트 파이프는 열원과 작동 유체의 액상-기상 변화를 이용하는 히트 싱크 간에 열을 전달한다. 예컨대, 종래의 히트 파이프 내에 밀폐되는 작동 유체는 고온의 계면과 접촉하여 계면으로부터 열을 흡수함으로써 고온의 계면이 기상으로 변경된다. 기상의 작동 유체를 도관을 통해 저온의 계면으로 기압이 강제 이동시키는데, 이 저온의 계면에서 작동 유체가 액상으로 응축된다. 저온의 계면은 상 변화로부터 잠열을 흡수하고 그 잠열을 시스템으로부터 제거한다. 이어서, 액상의 작동 유체는 모세관 작용 또는 중력을 이용하여 고온의 계면으로 복귀되어 기화-응축 사이클을 계속한다.
히트 파이프는 비교적 작은 온도 구배 상태에서 기계적 이동 부품이 없이도 대체로 많은 양의 열을 운반할 수 있다. 따라서, 히트 파이프는 효율적인 열전달 수단을 제공할 수 있다. 그러나, 응축되지 않은 가스가 히트 파이프의 벽을 통해 확산할 수 있고 이에 의해 히트 파이프의 효율을 떨어뜨리는 불순물이 작동 유체 내에 유발될 수 있다. 또한, 극단적인 온도가 기화-응축 사이클을 중지시킬 수 있다. 예컨대, 극단적인 열은 작동 유체가 응축하는 것을 방지할 수 있고, 극단적인 저온은 작동 유체가 기화하는 것을 방지할 수 있다. 따라서, 히트 파이프의 효율 및 적응성을 향상시키고 결과적인 열 에너지를 이용하는 것이 요구된다.
도 1은 본 기술의 실시예에 따라 구성된 열전달 장치의 개략적인 단면도이다.
도 2a 및 도 2b는 본 기술의 다른 실시예에 따라 구성된 열전달 장치의 개략적인 단면도이다.
도 3a는 본 기술의 추가 실시예에 따라 제1 방향에서 작동하는 열전달 장치의 개략적인 단면도이고, 도 3b는 제1 방향과 반대쪽인 제2 방향에서 작동하는 도 3a의 열전달 장치의 개략적인 단면도이다.
도 4a 및 도 4b는 본 기술의 실시예에 따라 구성된 열전달 장치의 개략적인 평면도이다.
도 4c는 본 기술의 추가 실시예에 따라 구성된 열전달 장치의 개략적인 단면도이다.
도 5a는 본 기술의 실시예에 따른 대표적인 환경에서 열전달 시스템의 개략도이고, 도 5b는 도 5a의 열전달 시스템의 일부의 작동 확대도이다.
도 6a는 본 기술의 다른 실시예에 따른 대표적인 환경에서 열전달 시스템의 개략도이고, 도 6b는 도 6a의 열전달 시스템의 일부의 작동 확대도이다.
도 7a는 본 기술의 또 다른 실시예에 따른 대표적인 환경에서 열전달 시스템의 개략도이고, 도 7b 및 도 7c는 도 7a의 열전달 시스템의 일부의 작동 확대도이다.
도 7d는 본 기술의 또 다른 실시예에 따른 대표적인 환경에서 열전달 시스템의 개략도이다.
도 8은 본 기술의 추가 실시예에 따른 대표적인 환경에서 열전달 시스템의 개략도이다.
도 9a는 본 기술의 추가 실시예에 따른 대표적인 환경에서 열전달 시스템의 단면도이고, 도 9b는 도 9a의 상세부(9B)의 확대도이다.
도 10은 본 기술의 추가 실시예에 따라 구성된 열전달 장치의 개략적인 단면도이다.
도 11은 본 기술의 또 다른 실시예에 따른 대표적인 환경에서 도시된 열전달 시스템(1100)의 개략도이다.
본 개시는 열전달 장치 뿐만 아니라 관련 시스템, 조립체, 구성요소, 및 이에 관한 방법을 설명하고 있다. 예컨대, 후술되는 실시예들 중 몇몇은 전반적으로 기화-응축 사이클을 이용하여 열을 전달하는 작동 유체 또는 작동 유체들의 조합을 포함하는 열전달 장치에 관한 것이다. 본 명세서에서 사용되는 바와 같이, 작동 유체라는 용어는 열전달 장치를 구동시키는 임의의 유체를 포함할 수 있다. 일 실시예에서, 예컨대 작동 유체는 물이다. 다른 실시예에서, 작동 유체는 암모니아, 메타놀, 및/또는 열전달 장치의 이용 가능한 유체들 및 원하는 출력을 기초로 하여 선택되는 다른 적절한 작동 유체를 포함할 수 있다. 또한, 후술되는 여러 실시예는 작동 유체를 기상과 액상 사이에서 변화시키는 기화-응축 사이클을 참조한다. 본 명세서에 사용되는 바와 같이, 기화-응축 사이클이라는 용어는 열의 전달을 초래하는 작동 유체의 임의의 상 변화를 가리키도록 광범위하게 해석된다.
본 개시의 다양한 실시예들의 완전한 이해를 제공하도록 특정한 상세가 이하의 설명 및 도 1 내지 11에 기술되어 있다. 그러나, 열전달 장치 및/또는 가열 및 냉각 시스템의 다른 양태와 흔히 관련되는 널리 공지된 구조 및 시스템을 설명하는 다른 상세는 본 개시의 다양한 실시예들의 설명을 불필요하게 모호하게 하는 것을 피하도록 아래에서 설명되지 않는다. 따라서, 후술되는 상세의 몇몇은 당업계의 숙련자가 개시된 실시예를 제조 및 이용하게 할 수 있기에 충분한 방식으로 이하의 실시예를 설명하도록 제공된다는 점을 알 것이다. 그러나, 후술되는 상세 및 이점의 몇몇은 본 개시의 특정한 실시예를 실시하는 데에 필요하지 않을 수 있다. 도면에 도시된 많은 상세, 치수, 각도, 형태 및 기타 특징은 본 개시의 특정한 실시예를 단순히 예시하는 것이다. 따라서, 다른 실시예가 본 개시의 사상 또는 범위로부터 벗어남이 없이 다른 상세, 치수, 각도, 및 특징을 가질 수 있다. 또한, 당업계의 숙련자는 본 개시의 추가 실시예가 후술되는 상세 중 몇몇이 없이도 실시될 수 있다는 것을 알 것이다.
본 명세서 전반에 걸쳐 "일 실시예" 또는 "실시예"에 대한 참조는 실시예와 관련하여 설명되는 특정한 특징, 구조 또는 특성이 본 개시의 적어도 하나의 실시예에 포함된다는 것을 의미한다. 따라서, 본 명세서 전반에 걸쳐 다양한 지점에서 "일 실시예에서" 또는 "실시예에서"라는 문구의 존재는 반드시 동일한 실시예를 모두 참조하는 것은 아니다. 더욱이, 특정한 실시예를 참조하여 설명되는 특정한 특징, 구조 또는 특성은 임의의 적절한 방식으로 또는 하나 이상의 다른 실시예에 조합될 수 있다. 또한, 본 명세서에 제공되는 표제는 단지 편의를 위한 것이고 주장하는 개시의 범위 또는 의미를 설명하지 않는다.
도 1은 본 기술의 실시예에 따라 구성된 열전달 장치(100)["장치(100)"]의 개략적인 단면도이다. 도 1에 도시된 바와 같이, 장치(100)는 유입부(104), 유입부의 반대쪽인 유출부(106), 및 유입부(104)와 유출부(106) 사이의 측벽(120)을 갖는 도관(102)을 포함할 수 있다. 장치(100)는 유입부(104)에 있는 제1 단부 캡(108)과 유출부(106)에 있는 제2 단부 캡(110)을 더 포함할 수 있다. 장치(100)는 기화-응축 사이클 중에 기상(122a)과 액상(122b) 간에 변화하는 작동 유체(122; 화살표로 도시됨)를 밀폐시킬 수 있다.
선택된 실시예에서, 장치(100)는 또한 하나 이상의 아키텍처 구조물(112)을 포함할 수 있다. 아키텍처 구조물(112)은 주로 그래핀(graphene), 흑연, 질화붕소, 및/또는 다른 적절한 결정으로 구성되는 합성 매트릭스 특성의 결정이다. 이들 결정의 형태 및 처리는 아키텍처 구조물(112)이 특정한 조건을 경험할 때에 나타나는 특성에 크게 영향을 미친다. 예컨대, 아래에서 더 상세하게 설명되는 바와 같이, 장치(100)는 그 열 특성, 모세관 특성, 흡수 특성, 촉매 특성, 및 전자기, 광학 및 음향 특성을 위해 아키텍처 구조물(112)을 이용할 수 있다. 도 1에 도시된 바와 같이, 아키텍처 구조물(112)은 간극(116)에 의해 서로 떨어져 있는 복수 개의 거의 평행한 층(114)들로서 배치될 수 있다. 다양한 실시예에서, 층(114)은 1개의 원자 만큼 얇을 수 있다. 다른 실시예에서, 개별적인 층(114)의 두께는 1개의 원자보다 크고 및/또는 작을 수 있으며, 층(114) 사이의 간극(116)의 폭은 변할 수 있다. 도 1에 도시된 아키텍처 구조물(112) 등의 아키텍처 구조물을 제조 및 구성하는 방법은 본 출원과 동시에 출원되었고 발명의 명칭이 "예컨대 복수 개의 아키텍처 결정을 갖는 아키텍처 구조물(ARCHITECTURAL CONSTRUCT HAVING FOR EXAMPLE A PLURALITY OF ARCHITECTURAL CRYSTALS)"이고 전체가 참조로서 합체되는 미국 특허 출원(대리인 정리 번호 69545-8701US) 에 설명되어 있다.
도 1에 도시된 바와 같이, 제1 단부 캡(108)은 이 제1 단부 캡(108)이 작동 유체(122)를 기화시키는 고온의 계면으로서 기능하도록 열원(도시 생략)에 가깝게 설치될 수 있다. 따라서, 제1 단부 캡(108)은 열원으로부터의 열을 흡수 또는 전달하도록 높은 열 전도성 및/또는 투과율을 갖는 재료를 포함할 수 있다. 도 1에 도시된 실시예에서, 예컨대 제1 단부 캡(108)은 열 전도성 결정(예컨대, 그래핀)으로 제조된 아키텍처 구조물(112)을 포함한다. 아키텍처 구조물(112)은 층(114)이 열속에 거의 평행한 고농도의 열 전도성 경로[예컨대, 층(114)에 의해 형성됨]를 갖게 구성함으로써 그 열 전도성을 증가시키도록 배치될 수 있다. 예컨대, 도시된 실시예에서, 층(114)은 유입되는 열 유동과 대체로 정렬되어 열이 층(114)들 사이에서 아키텍처 구조물(112)에 진입한다. 이 구성은 층(114)의 가장 큰 표면적을 열에 노출시킴으로써 아키텍처 구조물(112)에 의해 흡수되는 열을 증가시킨다. 유리하게는, 금속보다 훨씬 낮은 밀도를 갖지만, 아키텍처 구조물(112)은 고체 은, 원료 흑연, 구리 또는 알루미늄보다 단위 면적 당 보다 큰 양의 열을 전도 및/또는 복사에 의해 전달할 수 있다.
도 1에 더 도시된 바와 같이, 제2 단부 캡(110)은 이 제2 단부 캡(110)이 작동 유체(122)를 응축시키는 저온의 계면으로서 기능하도록 장치(100)로부터 히트 싱크(도시 생략)로 열을 방출할 수 있다. 제1 단부 캡(108)과 같이, 제2 단부 캡(110)은 작동 유체(122)로부터의 잠열을 흡수 및/또는 전달하도록 높은 열 전도성 및/또는 투과율을 갖는 재료(예컨대, 구리, 알루미늄)를 포함할 수 있다. 따라서, 제1 단부 캡(108)과 같이, 제2 단부 캡(110)은 아키텍처 구조물(112)을 포함할 수 있다. 그러나, 제1 단부 캡(108)과 같이 열을 장치 내로 들여오기보다는, 제2 단부 캡(110)은 잠열을 장치(100) 밖으로 전달한다. 다양한 실시예에서, 제1 단부 캡(108)과 제2 단부 캡(110)의 아키텍처 구조물(112)은 유사한 재료로 제조되고 및/또는 거의 유사한 열 전도성을 갖도록 배치될 수 있다. 다른 실시예에서, 아키텍처 구조물(112)은 상이한 재료를 포함할 수 있고, 상이한 방향으로 배치될 수 있으며, 및/또는 원하는 전도성 및 투과율을 비롯하여 상이한 열 전달 능력을 제공하도록 달리 구성될 수 있다. 다른 실시예에서, 제1 단부 캡(108) 또는 제2 단부 캡(110)도 아키텍처 구조물(112)을 포함하지 않는다.
선택된 실시예에서, 제1 단부 캡(108) 및/또는 제2 단부 캡(110)은 열 전도성이 변하는 부분을 포함할 수 있다. 예컨대, 도관(102)에 가까운 제1 단부 캡(108)의 부분은 열원으로부터의 열을 흡수하여 작동 유체(122)를 기화시키도록 고도의 열 전도성 재료[예컨대, 열 전도성을 촉진시키도록 구성된 아키텍처 구조물(112), 구리 등]를 포함할 수 있다. 도관(102)으로부터 떨어져 있는 제1 단부 캡(108)의 다른 부분은 높은 전도성 부분을 절연시키도록 덜 열 전도성인 재료를 포함할 수 있다. 특정 실시예에서, 예컨대, 절연 부분은 세라믹 섬유, 밀봉된 공기 사공간, 및/또는 높은 복사 흡수성 및/또는 낮은 열 전도성을 갖는 기타 재료 또는 구조를 포함할 수 있다. 다른 실시예에서, 제1 단부 캡(108)의 절연 부분은 열을 전도 전달하는 유용성이 낮도록 낮은 농도의 열 전도성 경로[예컨대, 층(114)이 큰 간극(116) 만큼 떨어져 있다]를 포함하도록 배치된 아키텍처 구조물(112)을 포함할 수 있다.
다른 실시예에서, 아키텍처 구조물(112)의 형태는 장치(100)의 치수, 열원과 히트 싱크 사이의 온도차, 원하는 열전달, 작동 유체(122), 및/또는 기타 적절한 열전달 특성을 기초로 하여 도 1에 도시된 것으로부터 변할 수 있다. 예컨대, 보다 작은 표면적을 갖는 아키텍처 구조물(112)은 장치(100)의 미시적 용례 및/또는 높은 온도차에 적합할 수 있는 반면, 보다 높은 표면적을 갖는 아키텍처 구조물(112)은 장치(100)의 거시적 용례 및/또는 보다 높은 속도의 열전달에 보다 양호하게 적합할 수 있다. 아키텍처 구조물(112)의 열 전도성은 또한 열 흡수를 증가시키도록 어두운 색깔의 코팅으로 그리고 열을 반사하여 열 흡수를 감소시키도록 밝은 색깔의 코팅으로 층(114)을 코팅함으로써 변경될 수 있다.
도 1을 여전히 참조하면, 장치(100)는 작동 유체(122)의 액상(122b)을 모세관 작용에 의해 유입구(104)로 복귀시킬 수 있다. 따라서, 도관(102)의 측벽(120)은 액상(122b)에 모세관 압력을 가하여 액상을 원하는 지점[예컨대, 유입부(104)]을 향해 강제 이동시키는 심지 구조를 포함할 수 있다. 예컨대, 측벽(120)은 셀룰로오스, 세라믹 심지 재료, 소결 또는 접착된 금속 분말, 나노섬유, 및/또는 모세관 작용을 제공하는 기타 적절한 심지 구조 또는 재료를 포함할 수 있다.
도 1에 도시된 실시예에서, 아키텍처 구조물(112)은 도관(102)의 종축(118)과 정렬되어 필요한 모세관 압력을 가하여 작동 유체(122)의 액상(122b)을 유입부(104)로 향하게 하도록 구성된다. 층(114)의 조성, 도판트, 간격, 및/또는 두께는 작동 유체(122)에 모세관 작용을 제공하는 데에 요구되는 표면 장력을 기초로 하여 선택될 수 있다. 유리하게는, 아키텍처 구조물(112)은 작동 유체(122)를 짧고 먼 거리(예컨대, 밀리미터 내지 킬로미터)에 걸쳐 강제 이동시키는 데에 충분한 모세관 압력을 액상(122b)에 인가할 수 있다. 또한, 선택된 실시예에서, 층(114)의 표면 장력은 아키텍처 구조물(112)이 미리 선택된 유체를 거부하도록 조종될 수 있다. 예컨대, 아키텍처 구조물(112)은 작동 유체(122)의 액상(122b) 이외의 임의의 액체를 거부하는 표면 장력을 갖도록 구성될 수 있다. 그러한 실시예에서, 아키텍처 구조물(112)은 작동 유체(122) 이외의 임의의 유체[예컨대, 도관(102) 내에 확산되는 불순물에 의해 더럽혀진 유체]가 기화-응축 사이클을 방해하는 것을 방지하는 필터로서 기능할 수 있다.
다른 실시예에서, 아키텍처 구조물(112)의 선택적인 모세관 작용은 종래의 증류 기법보다 매우 낮은 온도에서 물질들을 분리시킨다. 아키텍처 구조물(112)에 의한 물질들의 보다 신속한 분리는 물질이 장치(100) 내에 보다 높은 온도에 도달하는 경우에 야기되는 물질 열화를 감소 또는 제거할 수 있다. 예컨대, 작동 유체(122)가 유입부(104) 근처의 보다 높은 온도에 도달하기 전에, 잠재적으로 유해한 물질이 아키텍처 구조물(112)의 선택적인 모세관 작용에 의해 작동 유체(122)로부터 제거될 수 있다.
도관(102)과 제1 및 제2 단부 캡(108, 110)은 장치(100)의 온도차를 견딜 수 있는 적절한 파스너를 이용하여 함께 밀봉될 수 있다. 다른 실시예에서, 장치(100)는 일체로 형성된다. 예컨대, 장치(100)는 하나 이상의 재료를 이용하여 몰딩될 수 있다. 도관(102) 내에 임의의 공기를 제거하도록 진공이 사용될 수 있고, 이어서 도관(102)은 작동 온도에 일치하도록 선택된 작은 용적의 작동 유체(122)로 충전될 수 있다.
작동시, 장치(100)는 열을 전달하도록 작동 유체(122)의 기화-응축 사이클을 이용한다. 보다 구체적으로, 제1 단부 캡(108)은 열원으로부터 열을 흡수할 수 있고, 작동 유체(122)는 다시 제1 단부 캡(108)으로부터 열을 흡수하여 기상(122a)을 생성할 수 있다. 작동 유체(122)의 상 변화에 의해 야기된 압력차는 작동 유체(122)의 기상(122a)을 강제 이동시켜 이용 가능한 공간을 채우므로 작동 유체(122)를 도관(102)을 통해 유출부(104)로 운반할 수 있다. 유출부(104)에서, 제2 단부 캡(110)은 작동 유체(122)로부터 열을 흡수하여 작동 유체(122)를 액상(122b)으로 변화시킬 수 있다. 작동 유체(122)의 응축으로부터의 잠열은 제2 단부 캡(110)을 통해 장치(100) 밖으로 전달될 수 있다. 일반적으로, 제1 단부 캡(108)에 대한 열속은 제2 단부 캡(110)에 의해 제거된 열과 실질적으로 동일하다. 도 1에 또한 도시된 바와 같이, 아키텍처 구조물(112) 또는 다른 심지 구조에 의해 제공되는 모세관 작용은 작동 유체(122)의 액상(122b)을 유입부(104)로 복귀시킬 수 있다. 선택된 실시예에서, 층(114)의 말단은 층(114)들 사이에 액상(122b)의 진입을 용이하게 하고/하거나 유입부(104)에서 기상(122b)으로 액상(122b)의 변환을 용이하게 하도록 갈지자로 형성되거나 도관(102)을 향해 기울어질 수 있다. 유입부(104)에서, 작동 유체(122)는 기화-응축 사이클에 의해 다시 기화하여 도관(102)을 통해 계속 순환할 수 있다.
장치(100)는 또한 역방향으로 전술한 기화-응축 사이클을 작동시킬 수 있다. 예컨대, 열원과 히트 싱크가 반대로 될 때에, 제1 단부 캡(108)은 저온의 계면으로서 기능할 수 있고 제2 단부 캡(110)이 고온의 계면으로서 기능할 수 있다. 따라서, 유입부(104)와 유출부(106)는 작동 유체(122)가 제2 단부 캡(110) 근처에서 기화하고, 제1 단부 캡(108) 근처에서 응축하며, 측벽(120)에 의해 제공되는 모세관 작용을 이용하여 제2 단부 캡(110)으로 복귀하도록 반대로 된다. 장치(100)의 가역성은 장치(100)가 열원 및 히트 싱크의 위치와 상관없이 설치되게 한다. 또한, 장치(100)는 열원과 히트 싱크의 위치가 반대로 될 수 있는 환경에 적응할 수 있다. 예컨대, 더 후술되는 바와 같이, 장치(100)는 태양열 에너지를 이용하도록 여름 동안에 한 방향으로 작동할 수 있고, 장치(100)는 이전의 여름 동안에 저장된 열을 이용하도록 겨울 동안에 방향을 반대로 할 수 있다.
제1 단부 캡(108) 및/또는 제2 단부 캡(110)에 아키텍처 구조물(112)을 포함하는 장치(100)의 실시예는 종래의 도체보다 단위 면적 당 보다 높은 열 전도성을 갖는다. 이 증가된 열 전도성은 공정 속도 및 제1 단부 캡(108)과 제2 단부 캡(110) 간에 온도차를 증가시켜 보다 크고 보다 효율적인 열전달을 행할 수 있다. 또한, 제1 단부 캡(108) 및/또는 제2 단부 캡(110)에 아키텍처 구조물(112)을 포함하는 실시예는 기화-응축 사이클을 달성하는 데에 필요한 열을 흡수하기 위하여 보다 적은 표면적을 필요로 한다. 따라서, 장치(100)는 동등한 양의 열을 전달하는 종래의 히트 파이프보다 더 콤팩트하고 상당한 비용 절감을 제공할 수 있다.
여전히 도 1을 참조하면, 다양한 실시예에서, 장치(100)는 액체 저장조(124)가 작동 유체(122)의 적어도 일부를 수집 및 저장할 수 있도록 도관(102)과 유체 연통하는 액체 저장조(124)를 더 포함할 수 있다. 도 1에 도시된 바와 같이, 액체 저장조(124)는 파이프 또는 기타 적절한 관형 구조를 통해 도관(102)의 유입부(104)에 연결될 수 있다. 따라서, 액상(122b)은 측벽(102)[예컨대, 아키텍처 구조물(112), 심지 구조 등)으로부터 액체 저장조(124) 내로 유동할 수 있다. 다른 실시예에서, 액체 저장조(124)는 이 액체 저장조(124)가 기상(122a) 또는 혼합상의 작동 유체(122)를 수집하도록 도관(102)의 다른 부분[예컨대, 유출부(106)]와 유체 연통한다.
액체 저장조(124)는 장치(100)가 적어도 2개의 모드, 즉 열축적 모드와 열전달 모드에서 작동하게 한다. 열축적 모드 중에, 작동 유체(122)의 기화-응축 사이클은 작동 유체(122)를 도관(102)으로부터 액체 저장조(124)로 통과하게 함으로써 느르게 되거나 정지될 수 있다. 이때에, 제1 단부 캡(108)은 축적된 열을 방산하는 기화-응축 사이클없이 열을 흡수하는 열 어큐뮬레이터로서 기능할 수 있다. 제1 단부 캡(108)이 원하는 양의 열을 축적한 후에 및/또는 열원(예컨대, 태양)이 더 이상 열을 공급하지 않게 된 후에, 장치(100)는 작동 유체(122)를 도관(102)으로 통과하게 함으로서 열전달 모드로 변경될 수 있다. 제1 단부 캡(108)에 저장된 열은 유입되는 작동 유체(122)를 기화시킬 수 있고 압력차는 기상(122a)을 도관(102)의 유출부(106)를 향해 강제 이동시켜 전술한 기화-응축 사이클을 재시작시킬 수 있다. 특정 실시예에서, 기화-응축 사이클의 재시작은 작동 유체(122)의 특성(예컨대, 조성, 기체 압력, 잠열, 효율)을 분석하도록 모니터링될 수 있다.
도 1에 도시된 바와 같이, 제어기(126)는 작동 유체(122)가 도관(102)에 진입하는 속도를 조절하고 및/또는 도관(102) 내외로 유동하는 작동 유체(122)의 용적을 조정하도록 액체 저장조(124)에 작동 가능하게 연결될 수 있다. 이에 의해, 제어기(126)는 도관(102) 내의 압력을 변경시킬 수 있어, 장치(100)는 열원과 히트 싱크 사이에서 가변적인 온도차로 작동할 수 있다. 따라서, 장치(100)는 열화하는 열원[예컨대, 제1 단부 캡(108)] 또는 간헐적인 기화-증기 사이클에도 불구하고 일정한 열속을 제공할 수 있다.
도 2a 및 도 2b는 본 기술의 다른 실시예에 따른 열전달 장치(200)["장치(200)]의 개략적인 단면도이다. 장치(200)의 여러 특징들은 도 1에 도시된 장치(100)의 특징들과 대체로 유사하다. 예컨대, 각 장치(200)는 도관(102), 측벽(120), 제1 단부 캡(108) 및 제2 단부 캡(110)을 포함할 수 있다. 장치(200)는 또한 도 1을 참조하여 설명된 것과 대체로 유사한 작동 유체(122)의 기화-응축 사이클을 이용하여 열원으로부터 히트 싱크로 열을 전달한다. 또한, 도 2a 및 도 2b에 도시된 바와 같이, 장치(200)는 장치(200)가 열축적 모드와 열전달 모드에서 작동할 수 있도록 액체 저장조(124)와 제어기(126)를 더 포함할 수 있다.
도 2a 및 도 2b에 도시된 바와 같이, 장치(200)는 유입부(104)로 작동 유체(122)의 액상(122b)을 복귀시키도록 도 1에 설명된 모세관 작용이 아니라 중력을 이용할 수 있다. 따라서, 도 2a 및 도 2b에 도시된 바와 같이, 열 유입은 중력이 측벽(120) 아래의 액상(122b)을 유입부(104)로 강제 이동시킬 수 있도록 열 유출보다 아래에 있다. 따라서, 도 2a에 도시된 바와 같이, 측벽(120)은 작동 유체(122)를 도관(102) 내에 밀봉하기 위하여 모세관 작용에 필요한 심지 구조가 아니라 불침투성 막(228)만을 포함하면 된다. 불침투성 막(228)은 폴리에틸렌 등의 폴리머, 구리와 스테인리스강 등의 금속 또는 금속 합금, 및/또는 기타 적절한 불침투성 재료로 제조될 수 있다. 다른 실시예에서, 장치(200)는 유입부(104)와 유출부(106)가 중력에 의존하지 않도록 액상(122b)을 유입부(104)로 복귀시키기 위해 다른 가속 소스(예컨대, 원심력, 모세관 작용)을 이용할 수 있다.
도 2b에 도시된 바와 같이, 다른 실시예에서, 측벽(120)은 아키텍처 구조물(112)을 더 포함할 수 있다. 예컨대, 아키텍처 구조물(112)은 층(114)이 도관(102)의 종축(118)에 직교하게 배향되어 도관(102)으로부터 열을 전달하는 열 전도성 통로를 형성하도록 배치될 수 있다. 따라서, 액상(122b)이 측벽(120)을 따라 유동함에 따라, 아키텍처 구조물(112)은 층(114)을 따라 액상(122b)으로부터 그리고 장치(200)의 측벽(120)으로부터 열을 흡인할 수 있다. 이는 유입부(104)와 유출부(106) 사이에 온도차를 증가시켜 열전달률을 증가시키고 및/또는 온도 구배가 달리 불충분할 때에 기화-응축 사이클을 용이하게 할 수 있다. 다른 실시예에서, 층(114)은 열을 상이한 방향으로 전달하도록 종축(118)에 대해 상이한 각도로 배향될 수 있다. 특정 실시예에서, 아키텍처 구조물(112)은 불침투성 막(228)의 외측을 향해 반경 방향으로 위치 결정될 수 있다. 다른 실시예에서, 불침투성 막(228)은 아키텍처 구조물(112)의 외측을 향해 반경 방향으로 배치될 수 있거나 아키텍처 구조물(112) 자체가 도관(102) 내에 작동 유체(122)를 밀봉하도록 충분히 불투과성인 벽을 제공할 수 있다.
도 2a 및 도 2b에 도시된 제1 단부 캡(108)과 제2 단부 캡(110)은 또한 아키텍처 구조물(112)을 포함할 수 있다. 도 2a 및 도 2b에 도시된 바와 같이, 아키텍처 구조물(112)의 층(114)은 충분하게 열을 전달하는 열 전도성 통로를 제공하도록 열 유입 및 열 유출 방향과 대체로 정렬된다. 또한, 제1 단부 캡(108) 및/또는 제2 단부 캡(110)의 아키텍처 구조물(112)은 도관에 진입하거나 도관에서 배출되는 특정한 물질에 모세관 압력을 인가하도록 구성될 수 있다. 예컨대, 아키텍처 구조물(112)의 층(114)의 조성, 간격, 도판트, 및/또는 두께는 층(114)들 사이의 특정한 물질을 선택적으로 흡인하도록 조절될 수 있다. 선택된 실시예에서, 아키텍처 구조물(112)은 도관(102)으로부터 원하는 2개 이상의 원하는 물질을 선택적으로 제거 및/또는 추가하도록 제1 물질을 위해 구성된 층(11)의 제1 구역과 제2 물질을 위해 구성된 층(114)의 제2 구역을 포함할 수 있다.
다른 실시예에서, 제2 단부 캡(110)은 층(114)들 사이에 작동 유체(122)의 원하는 성분을 선택적으로 로딩하도록 아키텍처 구조물(112)의 흡수 특성을 이용할 수 있다. 아키텍처 구조물(112)의 구조는 거의 임의의 원소 또는 가용성 물질을 로딩하는 데에 필수적인 표면 장력을 얻도록 조절될 수 있다. 예컨대, 층(114)에는 이들 표면을 따라 흡착성 표면 장력을 조절하도록 미리 정해진 도판트 또는 재료가 프리로딩될 수 있다. 특정 실시예에서, 층(114)에는 열이 제2 단부 캡(110)을 통해 방출될 때에 아키텍처 구조물(112)이 작동 유체(122)로부터 CO2를 선택적으로 채굴할 수 있도록 CO2가 프리로딩될 수 있다. 다른 실시예에서, 층(114)은 미리 정해진 거리만큼 서로 떨어져 있고, 특정한 코팅을 포함하고 및/또는 원하는 성분을 선택적으로 로딩하도록 달리 배치될 수 있다. 몇몇 실시예에서, 원하는 성분은 개별적인 층(114)의 표면 상에 흡착되지만, 다른 실시예에서, 원하는 성분은 층(114)들 사이의 구역 내로 흡착된다. 다른 실시예에서, 물질은 유입부(104)로부터 [예컨대, 제1 단부 캡(108)을 통해] 도관(102) 내로 의도적으로 이송될 수 있어, 추가된 물질은 원하는 성분을 생성하도록 작동 유체(122)와 결합되거나 반응할 수 있다. 따라서, 제2 단부 캡(110)에서 아키텍처 구조물(112)은 성분들의 선태적 채굴을 용이하게 할 수 있다. 또한, 아키텍처 구조물(112)은 도관(102)에 진입해 있거나 잠재적으로 장치(200)의 효율을 방해할 수 있는 불순물 및/또는 다른 원치않는 가용성 물질을 제거할 수 있다.
유사하게, 선택된 실시예에서, 제1 단부 캡(110)에서의 아키텍처 구조물(112)은 또한 언젠가 도관(102)에 진입하는 것을 방지하도록 원하는 화합물 및/또는 원소를 선택적으로 로딩할 수 있다. 예컨대, 아키텍처 구조물(112)은 장치(200)의 열전달을 방해하거나 달리 간섭할 수 있는 파라핀을 여과할 수 있다. 다른 실시예에서, 장치(200)는 특정 물질들이 도관(102)에 진입하는 것을 방지하도록 사용될 수 있는 다른 필터를 포함할 수 있다.
더욱이, 화합물 또는 원소의 선택적인 로딩과 유사하게, 제1 단부 캡(108)과 제2 단부 캡(110)에서의 아키텍처 구조물(112)은 또한 원하는 파장의 복사 에너지를 흡수하도록 구성될 수 있다. 예컨대, 층(114)은 특정한 파장의 복사 에너지를 흡수하도록 특정한 두께, 조성, 간격을 가질 수 있다. 선택된 실시예에서, 아키텍처 구조물(112)은 제1 파장의 복사 에너지를 흡수하고 제2 파장의 복사 에너지를 변환시켜 흡수된 에너지의 적어도 일부를 재전달한다. 예컨대, 층(114)은 자외선 복사를 흡수하고 자외선 복사를 적외선 복사로 변환시키도록 구성될 수 있다.
추가로, 층(114)은 열을 반응이 발생하는 구역으로 전달함으로써 반응을 또한 촉진시킬 수 있다. 다른 실시에서, 층(114)은 반응이 발생하는 구역으로부터 열을 전달함으로써 반응을 촉진시킬 수 있다. 예컨대, 열은 층(114)의 지지 튜브 내에서 흡열 반응에 열을 공급하도록 층(114)으로 전도 전달될 수 있다(예컨대, 2010년 8월 16일자로 출원되었고 발명의 명칭이 "물질을 저장 및/또는 여과하는 장치 및 방법(APPARATUSES AND METHODS FOR STORING AND/OR FILTERING A SUBSTANCE)"이고 본 명세서에 전체가 참조로 합체되는 미국 특허 출원 제12/857,515에 논의됨). 몇몇 실시에서, 층(114)은 반응이 발생하는 구역으로부터 반응의 생성물을 제거함으로써 반응을 촉진시킨다. 예컨대, 층(114)은 알코올이 부산물인 중앙 지지 튜브 내에서 생화학 반응으로부터 알코올을 흡착함으로써, 층(114)의 외측 에지에서 알코올을 방출하여 생화학 반응에 수반되는 미생물의 수명을 연장시킨다.
도 3a는 본 기술의 다른 실시예에 따라 제1 방향에서 작동하는 열전달 장치(300)["장치(300)"]의 개략적인 단면도이고, 도 3b는 제1 방향의 반대쪽인 제2 방향에서 작동하는 도 3a의 장치(300)의 개략적인 단면도이다. 장치(300)의 여러 특징들은 도 1a 내지 도 2b에 도시된 장치(100, 200)의 특징들과 대체로 유사하다. 예컨대, 장치(300)는 도관(102), 제1 단부 캡(108)과 제2 단부 캡(110), 및 아키텍처 구조물(112)을 포함할 수 있다. 도 3a 및 도 3b에 도시된 바와 같이, 장치(300)의 측벽(120)은 2개의 아키텍처 구조물(112), 즉 도관(102)의 종축(118)에 평행하게 배향되는 층(114)을 갖는 제1 아키텍처 구조물(112a)과, 제1 아키텍처 구조물(112a)로부터 반경 방향으로 내측을 향하고 종축(118)에 수직으로 배향되는 층(114)을 갖는 제2 아키텍처 구조물(112b)을 포함할 수 있다. 제1 아키텍처 구조물(112a)의 층(114)은 모세관 작용을 수행할 수 있고, 제2 아키텍처 구조물(112b)의 층(114)은 도관(102)쪽으로부터 열을 전달하는 열 전도성 통로를 형성함으로써, 유입부(104)와 유출부(106) 간에 온도차를 증가시킬 수 있다.
도 1에 도시된 장치(100)와 유사하게, 장치(300)는 또한 열의 유동 방향이 변화하고 유입부(104)와 유출부(106)가 반대로 될 때에 작동될 수 있다. 도 3a에 도시된 바와 같이, 예컨대 장치(300)는 제1 단부 캡(108)에서 열을 흡수하여 유입부(104)에서 작동 유체(122)를 기화시키고, 도관(102)을 통해 작동 유체(122)의 기상(122a)를 매개로 열을 전달하며, 제2 단부 캡(110)으로부터 열을 방출하여 유출부(106)에서 작동 유체(122)를 응축시킬 수 있다. 도 3a에 또한 도시된 바와 같이, 작동 유체(122)의 액상(122b)은 도 1을 참조하여 전술한 바와 같이 모세관 작용에 의해 제1 아키텍처 구조물(112b)의 층(114)들 사이에서 이동될 수 있다. 다른 실시예에서, 측벽(120)은 액상(122b)을 유출부(106)로부터 유입부(104)로 강제 이동시킬 수 있는 상이한 모세관 구조(예컨대, 셀룰로오스)를 포함할 수 있다. 도 3b에 도시된 바와 같이, 열이 제2 단부 캡(110) 근처에서 장치(300)에 진입하고 제1 단부 캡(108) 근처에서 장치(300)로부터 방출되도록 상태가 반대로 될 수 있다. 유리하게는, 전술한 바와 같이, 작동 유체(122)의 이중 방향 기화-응축 사이클은 열원과 히트 싱크의 위치가 반대로 되는 환경에 적응된다.
도 4a-4c는 본 기술의 실시예에 따라 각각 구성되는 열전달 장치(400a-c)의 개략도이다. 도 4a-c를 함께 참조하면, 장치(400a-c)의 여러 특징들은 도 1a 내지 도 3b에 도시된 장치(100, 200, 300)의 특징들과 대체로 유사하다. 예컨대, 장치(400a-c)는 도관(102), 제1 단부 캡(108)과 제2 단부 캡(110), 아키텍처 구조물(112), 및 액체 저장조(124)를 포함할 수 있다(도 4a와 도 4b에서는 명확도를 위해 참조 번호를 도시하지 않았다). 도 4a-c에 도시된 장치(400a-c)는 각속도(ω)로 회전하고, 이에 따라 원심력을 받는다. 도 4a 및 도 4b에 도시된 실시예에서, 장치(400a-b)는 회전축(430)으로부터 떨어져 있을 수 있다. 도 4a를 참조하면, 예컨대 열 유입이 열 유출로부터 반경 방향으로 외측을 향할 때에(즉, 유입부가 유출부로부터 반경 방향 외측에 있을 때에), 장치(400a)는 원심력을 이용하여 작동 유체(122)의 액상(122b)을 유입부(104)를 향해 반경 방향 외측으로 복귀시킬 수 있다. 열 유출이 도 4b에 도시된 실시예와 같이 열 유입으로부터 반경 방향 외측을 향할 때에, 장치(400b)는 원심력을 극복하여 액상(122b)을 유입부를 향해 반경 방향 내측으로 강제 이동시키도록 모세관 작용 또는 다른 힘을 이용해야 한다.
도 4c에 도시된 바와 같이, 다른 실시예에서, 회전축(430)은 장치(400c)의 길이를 따라 떨어져 있을 수 있다. 도 4c에 도시된 실시예에서, 열은 제1 및 제2 단부 캡(108, 110) 양자에서 장치(400c)에 진입하고, 열은 회전축(430)에서 장치(400c)로부터 방출된다. 도 4a에 도시된 바와 같이, 이 구성은 작동 유체(122)의 이중 기화-응축 사이클을 생성한다. 예컨대, 작동 유체(122)는 회전축(430)에 도달할 때까지 도관(102)을 통해 이동한다. 회전축으로부터, 장치(400c)는 작동 유체(122)가 응축하여 원심력을 통해 유입부(104)로 복귀하도록 유출부(106)로부터 열을 방출시킨다. 다른 실시예에서, 유입부(104)와 유출부(106)는 이중 기화-응축 사이클이 도 4c에 도시된 것과 반대로 작동하도록 반대로 된다.
작동시에, 도 4a-4c에 도시된 장치(400a-c)는 윈드밀, 바퀴, 및/또는 기타 회전 장치와 같이 회전하는 환경에서 열전달을 달성할 수 있다. 특정 실시예에서, 장치(400a-c)는 원심 분리기에 설치될 수 있다. 작동 유체(122)는 플라즈마, 혈액, 및/또는 다른 체액일 수 있고, 아키텍처 구조물(112)은 체액의 성분을 선택적으로 채굴하여 성분의 레벨을 측정하고 및/또는 진단에 일조하도록 제2 단부 캡(110)에 포함될 수 있다. 다른 실시예에서, 장치(400a-c)는 회전하는 환경과 관련하여 아키텍처 구조물(112)의 다른 특성을 이용할 수 있다.
도 5a는 본 기술의 실시예에 따른 대표적인 환경에 도시된 열전달 시스템(500)["시스템(500)"]의 개략도이고, 도 5b는 도 5a의 시스템(500)의 일부의 확대 작동도이다. 시스템(500)은 해양 등의 수역 표면 근처의 태양열 수집기(552)와, 가스 수화물 퇴적물(553) 근처의 가동형 픽업 벨(55)과, 태양열 수집기(552)와 벨(554)을 연결하는 부속물(556)을 포함할 수 있다. 부속물(556)은 도 1을 참조하여 전술한 장치(100)와 대체로 유사한 특징을 갖는 열전달 장치(550)["장치(550)"]를 포함할 수 있다. 예컨대, 도 5b에 도시된 바와 같이, 장치(550)는 작동 유체(122)의 기상(122a)을 도관(102) 아래로 이동시키고 액상(122b)을 모세관 작용을 통해 복귀시킬 수 있다. 다른 실시예에서, 액상은 다른 적절한 방법을 이용하여 유입부(104)로 복귀될 수 있다.
도 5a에 도시된 실시예에서, 장치(550)는 태양열 수집기(552)로부터의 열을 벨(554)로 전달하여 가스 수화물 퇴적물(553)을 가열하도록 이용될 수 있다. 가열된 가스 수화물 퇴적물(553)은 가스 수화물(예컨대, 메탄 수화물)을 도관(558) 위로 메탄 회수 디렉터(560)로 방출할 수 있다. 따라서, 시스템(500)은 태양열 에너지를 동력화하고, 장치(550)를 통해 메탄 수화물 퇴적물(553)로 전달하여, 메탄 수화물의 방출을 시작할 수 있다. 그러한 메탄 수화물 수집 시스템의 다른 작동은 2010년 8월 16일자로 출원되었고 발명의 명칭이 "탄화수소 수화물 퇴적물을 얻기 위한 가스 수화물 변환 시스템(GAS HYDRATE CONVERSION SYSTEM FOR HARVESTING HYDROCARBON HYDRATE DEPOSITS)"이고 본 명세서에 전체가 참조로 합체되는 미국 특허 출원 제12/857,228호에 설명되어 있다.
또한, 가스 수화물의 분해 생성물인 물의 가열은 미국 특허 출원 제12/857,546호에 개시된 것과 같은 시스템을 이용하여 달성될 수 있는데, 이 특허 출원은 2010년 8월 16일자로 출원되었고 발명의 명칭이 "보강된 해양 열 에너지 변환(SOTEC) 시스템의 효율 증가(INCREASING THE EFFICIENCY OF SUPPLEMENTED OCEAN THERMAL ENERGY CONVERSION(SOTEC) SYSTEMS)"이며 본 명세서에 전체가 기재된 것처럼 참조로 합체된다. 이 경우에, 가스 수화물의 분해와 관련하여 먼저 수집된 물 재고의 정화 및 추가 에너지 변환을 위해 수집된 물을 증발시키는 것이 선택적으로 의도된다.
도 6a는 본 기술의 실시예에 따른 다른 대표적인 환경에서 도시된 열전달 시스템(600)["시스템(600)"]의 개략도이고, 도 6b는 도 6a의 시스템(600)의 일부의 확대 작동도이다. 시스템(600)은 지열 지층대(geothermal formation)(660)로부터 열을 흡수하고 공장, 빌딩, 또는 기타 구조물(662)로 열을 방출하는 열전달 장치(650)["장치(650)"]를 포함할 수 있다. 장치(650)는 도 2a 및 도 2b를 참조하여 설명된 장치(200)와 대체로 유사할 수 있다. 예컨대, 도 6b에 도시된 바와 같이, 장치(650)는 작동 유체(122)의 기상(122a)을 도관(102) 위로 강제 이동시켜 액상(122b)을 중력을 통해 고온의 계면[예컨대, 제1 단부 캡(108; 도시되지 않음)]으로 복귀시킬 수 있다. 작동시에, 장치(650)는 지열 지층대(660)에 의해 공급된 열 에너지를 포획하여 구조물(662)로 전달할 수 있는데, 구조물에서 열은 열, 전기를 제공하고, 및/또는 구조물(662)에 전달된 열 에너지를 달리 이용하도록 사용될 수 있다. 다른 실시예에서, 시스템(600)은 구조물(662) 및/또는 다른 지층대로부터 열을 전달하도록 사용될 수 있다. 예컨대, 시스템(600)은 구조물(662)이 열을 장치(650)로 전달하고 열을 다른 구조물, 엔진, 및/또는 구조물(662)로부터 떨어진 다른 지점으로 전달하도록 설치될 수 있다. 다른 예로서, 시스템(600)은 장치(650)가 영구 동토층으로부터 열을 전달하고 추가 열에 의해 악영향을 받지 않는 히트 싱크(예컨대, 외측 공간)으로 열을 전달하도록 설치될 수 있다.
도 7a는 본 기술의 실시예에 따른 또 다른 대표적인 환경에 도시된 열전달 시스템(700)["시스템(700)"]의 개략도이고, 도 7b 및 도 7c는 도 7a의 시스템(700)의 일부의 확대 작동도이다. 시스템(700)은 장치(750)가 양방향으로 기화-응축 사이클을 작동시킬 수 있도록 도 1, 도 3a 및 도 3b를 참조하여 전술한 장치(100, 300)와 대체로 유사한 특징을 포함하는 열전달 장치(750)["장치(750)"]를 포함할 수 있다. 예컨대, 도 7b에 도시된 바와 같이, 제1 조건하에서, 장치(750)는 작동 유체(122)의 기상(122a)을 도관(102) 아래로 강제 이동시키고 액상(122b)을 모세관 작용에 의해 고온의 계면으로 복귀시킬 수 있다. 도 7c에 도시된 바와 같이, 제2 조건하에서, 장치(750)는 작동 유체(122)의 기상(122a)을 반대 방향으로 도관(102) 위로 강제 이동시키고 액상(122b)을 모세관 작용 및/또는 중력을 이용하여 고온의 계면으로 복귀시킬 수 있다.
이 이중 방향 시스템(700)은 반대로 하거나 달리 온도차를 변화시키는 환경에 사용될 수 있다. 도 7a에 도시된 바와 같이, 예컨대 시스템(700)은 보다 따뜻한 계절 중에 제1 조건하에서 작동하여 태양열 수집기(766)를 통해 태양열 에너지를 흡수할 수 있다. 도관(102)의 유출부(106)에 위치 결정된 대수층(768; aquifer)은 시스템(700)으로부터 대수층으로 전달된 열을 보관할 수 있는 천연 열 어큐뮬레이터로서 기능할 수 있다. 계절이 변함에 따라, 시스템(700)은 대수층(768)의 열을 전달하도록 방향을 반대로 하여 제2 조건하에서 작동하여, 저장된 열을 공장(767) 및/또는 열 에너지를 이용할 수 있는 다른 구조물 또는 장치로 전달할 수 있다. 따라서, 이중 방향 시스템(700)은 태양열 에너지를 포획하고 나중의 사용(예컨대, 겨울 중에 전기)을 위해 저장하는 효율적인 방식을 제공한다. 또한, 특정 실시예에서, 대수층(768)에서의 장치(750)의 일부(예컨대, 전술한 제1 및 제2 단부 캡)은 대수층으로부터의 독소를 선택적으로 여과함으로써 이전의 위험한 대수층을 복구시키도록 그 모세관 및/또는 흡수 특성을 이용할 수 있다.
도 7d는 본 기술의 실시예에 따른 다른 대표적인 환경에서 도 7a-7c에 도시된 시스템(700)의 개략도이다. 도 7d에 도시된 바와 같이, 장치(750)는 거주지(780)와 지면속의 절연된 구조물(782) 사이에 설치될 수 있다. 절연된 구조물(782)은 모래, 자갈, 바위, 물, 및/또는 열을 흡수하고 저장할 수 있는 기타 적절한 물질로 채워질 수 있다. 작동시에, 시스템(700)은 태양열 수집기(784)에 의해 열을 흡수하고, 열을 장치(750)를 통해 절연된 구조물(782)로 전달하며, 절연된 구조물(782) 내에 열을 축적시킬 수 있다. 절연된 구조물(782) 내에 저장된 열은 나중에 열 또는 다른 형태의 에너지를 거주지(780)에 제공하도록 사용될 수 있다. 따라서, 전술한 바와 같이, 이중 방향 시스템(700)은 열을 나중의 사용을 위해 축적하는 효율적인 방법을 제공한다.
도 8a는 본 기술의 다른 실시예에 따른 대표적인 환경에서 열전달 시스템(800a)["시스템(800a)"]의 개략적인 확대 단면도이다. 시스템(800a)은 전술한 장치와 대체로 유사한 특징을 갖는 열전달 장치(850)["장치(850)"]를 포함할 수 있다. 예컨대, 도 8a에 도시된 바와 같이, 장치(850)는 도관(102)으로부터 열을 전달하도록 측벽(120)에 직교하게 배치된 층(114)을 갖는 아키텍처 구조물(112)을 포함할 수 있다. 도 8a에 도시된 바와 같이, 시스템(800a)은 장치(850)의 적어도 일부를 따라 위치 결정된 하나 이상의 외부 도관(890)을 포함할 수 있다. 외부 도관(890)은 장치(850)의 외측 환경과 유체 연통하는 개구(891)를 포함할 수 있다. 몇몇 실시예에서, 도관(890)은 아키텍처 구조물(112)로 제조되고 도관(102)의 외측으로부터 원하는 물질을 선택적으로 흡인하도록 구성될 수 있다. 예컨대, 아키텍처 구조물(112)은 외부 도관(890)을 통해 미리 선택된 액체를 강제 이동시키도록 모세관 작용을 이용하고 및/또는 액체로부터 미리 선택된 성분을 흡착하도록 흡수 특성을 이용할 수 있다. 미리 선택된 액체 및/또는 성분은 외부 도관(890)의 임의의 부분(예컨대, 단부 캡들 중 어느 한쪽의 근처)을 따라 배치된 수확물에 수집될 수 있다. 다른 실시예에서, 외부 도관(890)은 장치(850)의 외측으로부터 화학물질, 미네랄, 및/또는 기타 물질을 흡인하도록 다른 재료로 제조될 수 있다(예컨대, 플라스틱 배관, 심지 구조 등).
도 8a에 도시된 바와 같이, 시스템(800a)은 서로 떨어진 적어도 2개의 열원으로부터 열을 흡수하고 장치(850) 내에서 2개의 기화-응축 사이클을 발생시키도록 단일의 히트 싱크를 향해 열을 방출할 수 있다. 도 8a에 도시된 실시예에서, 예컨대 장치(850)는 태양열 수집기(882)와 해저 지열 지층대(884) 사이에 설치되고 해저 히트 싱크[예컨대, 해양 바닥(886) 근처)에서 열을 방출한다. 따라서, 시스템(800a)은 해양 바닥(886) 위에서 떨어져 있는 하나의 기화-응축 사이클과 해양 바닥(886) 아래에서 떨어져 있는 하나의 기화-응축 사이클을 포함한다. 유리하게는, 2개의 기화-응축 사이클이 결합되어 어느 한 사이클이 개별적으로 발생시킬 수 있는 것보다 시스템(800a)으로부터 보다 큰 열 출력을 발생시킬 수 있다. 선택된 실시예에서, 시스템(800a)은 장치(850)로부터 방출된 열 에너지를 얻고 터빈, 다른 엔진, 및/또는 물 위 또는 아래의 적절한 장치에 동력을 공급할 수 있다.
시스템(800a)은 또한 미국 특허 출원 제12/857,228호에 설명된 바와 같이 현재 상태(얼음 결정)으로부터 가스 수화물(예컨대, 메탄 수화물)을 방출하도록 이중 기화-응축 사이클의 증가된 열 출력을 이용할 수 있는데, 상기 특허 출원은 2010년 8월 16일자로 출원되었고 발명의 명칭이 탄화수소 수화물 퇴적물을 얻기 위한 가스 수화물 변환 시스템(GAS HYDRATE CONVERSION SYSTEM FOR HARVESTING HYDROCARBON HYDRATE DEPOSITS)이다. 도 8a에 도시된 바와 같이, 예컨대 시스템(800a)은 해양 바닥(886)에서 가스 수화물의 퇴적물(888) 근처에 위치 결정될 수 있어 시스템(800a)의 열 출력은 퇴적물(888)의 국부 온도를 증가시켜, 가스 수화물 얼음 결정을 용융시키고, 가스 수화물을 방출시킬 수 있다. 가스 수화물은 외부 도관(890)을 통해 연료, 제조 물질, 및/또는 기타 적절한 용례를 위해 사용될 수 있는 수확물로 흡인될 수 있다. 몇몇 실시예에서, 이산화탄소는 외부 도관(890)을 통해 방출된 가스 수화물을 강제 이동시킬 수 있다. 다른 실시예에서, 아키텍처 구조물(112)은 모세관 작용을 이용하여 가스 수화물을 위쪽으로 선택적으로 흡인하도록 구성될 수 있다. 다른 실시예에서, 가스 수화물은 펌프 및/또는 기타 적절한 액체구동 장치에 의해 외부 도관(890)을 통해 흡인될 수 있다.
유리하게는, 시스템(800a)의 증가된 열 출력은 가스 수화물을 보다 효율적으로 얻도록 단일의 기화-응축 사이클 시스템보다 더 빠르고 높게 퇴적물(888)의 국부 온도를 증가시킬 수 있다. 또한, 도 8a에 도시된 바와 같이, 도관(102)의 측벽(120)에 위치 결정된 아키텍처 구조물(112)로부터 외측을 향해 전달된 열은 가스 수화물의 방출을 더욱 촉진시키도록 추가의 열을 퇴적물(888)에 전달할 수 있다. 시스템(800a)의 증가된 열 출력은 또한 퇴적물(888)의 보다 큰 면적의 국부 온도를 증가시킬 수 있다. 예컨대, 몇몇 실시예에서, 시스템(800a)은 한번에 퇴적물(888)의 수 제곱 마일을 따뜻하게 만든다. 따라서, 이중 기화-응축 사이클은 시스템(800a)이 퇴적물(888)에 대해 가질 수 있는 영향의 구역을 증가시킨다.
도 8b는 본 개시의 실시예에 따른 대표적인 환경에서 열전달 시스템(800b)["시스템(800b)"]의 개략도이다. 시스템(800b)은 전술한 시스템(800a)과 대체로 유사한 특징을 포함할 수 있다. 예컨대, 시스템(800b)은 외부 환경으로부터 원하는 유체를 흡인하돌고 구성된 장치(850)와 외부 도관(890)을 포함할 수 있다. 또한, 시스템(800b)은 서로 떨어져 있는 2개의 열원[예컨대, 태양열 수집기(882)와 지열 지층대(884)]과 그 사이의 히트 싱크[예컨대, 해양 바닥(886) 근처] 사이에 설치되어 결합된 열 출력을 갖는 2개의 기화-응축 사이클을 달성할 수 있다. 전술한 시스템(800a)과 유사하게, 도 8b에 도시된 시스템(800b)은 장치(850)로부터 메탄 수화물 퇴적물(894)로 열을 전달할 수 있다. 전술한 바와 같이, 이중 기화-응축 사이클 장치(850b)는 메탄 퇴적물(894)에 걸쳐 광범위한 영향 구역을 가져서 시스템(800b)은 수면 위 및/또는 아래에서 메탄을 효율적으로 얻을 수 있다.
도 8b에 도시된 실시예에서, 시스템(800b)은 시스템(800b)의 영향 구역에 걸쳐 있는 배리어 필름(896a)과, 배리어 필름(896a) 아래로부터 메탄을 수신하도록 구성된 메탄 도관(898)을 더 포함한다. 배리어 필름(896a)은 메탄이 시스템(800b)으로부터 탈출하여 위험한 온실 가스를 대기로 방출하는 것을 방지하는 폴리에틸렌 등의 비투과성 필름으로 제조될 수 있다. 선택된 실시예에서, 배리어 필름(896)은 시스템(800b)의 영향 구역을 더 증가시키도록 장치(850)로부터 방출된 열을 분배하도록 구성될 수 있다. 도 8b에 더 도시된 바와 같이, 시스템(800b)은 또한 메탄이 시스템(800b)을 탈출하지 않는 것을 더 보장하도록 수면에 제2 배리어 필름(896b)을 포함할 수 있다. 도 9b에 더 도시된 바와 같이, 시스템(800b)은 메탄만이 배리어 필름(896a)과 메탄 투과성 필름(897) 사이에서 유동하여 메탄 도관(898)으로 유동하도록 메탄은 통과하게 하고 이산화탄소와 물은 차단하게 할 수 있는 선택적인 투과성 필름(897)을 포함할 수 있다. 따라서, 메탄은 이 메탄이 연료, 탄소 물질, 및/또는 기타 적절한 목적을 위해 얻게 될 수 있는 메탄 도관(898)을 통해 유동할 수 있다. 메탄 투과성 층(897)에 의해 차단된 이산화탄소와 물은 이산화탄소로부터의 리프트 및/또는 모세관 작용을 이용하여 외부 도관(890) 위로 유동할 수 있다. 선택된 실시예에서, 외부 도관(890)은 이산화탄소가 외부 도관(890)을 통해 이동하고 외부 도관(890)으로부터 물만이 운반될 때에 아키텍처 구조물(112)이 이산화탄소를 흡착하도록 이산화탄소가 로딩된 아키텍처 구조물(112)로부터 제조될 수 있다. 다른 실시예에서, 시스템(800b)은 메탄 도관(898)이 아니라 외부 도관(890)이 메탄 수화물을 위로 흡인하도록 설치될 수 있다. 다른 실시예에서, 시스템(800b)은 해양 바닥(886) 및/또는 다른 지열 지층대를 가열함으로써 방출되는 다른 가스 수화물 및/또는 기타 물질을 얻도록 사용될 수 있다.
선택된 실시예에서, 시스템(800b)은 장치(850)를 통한 작동 유체(122)의 유동을 가속시키도록 사용되는 터빈(895)을 구동시키도록 사용될 수 있는 수중 메탄 수확물을 포함할 수 있다. 다른 실시예에서, 메탄은 다른 수중 시스템을 구동시키도록 사용될 수 있다. 추가 실시예에서, 시스템(800b)은 나중의 메탄 수화물 수집을 위해 열을 저장하고 및/또는 수면 위 및/또는 아래의 시스템을 구동시키도록 시스템(800b)의 열 유출부에 열 퇴적물을 포함할 수 있다. 예컨대, 열 수확물은 시스템(800b)으로부터 방출된 열을 수집하고 도관을 통해 시스템(800b)의 영향 구역을 지나서 떨어져 있는 메탄 퇴적물(894)의 부분 및/또는 다른 메탄 퇴적물로 운반할 수 있다.
도 8b에 더 도시된 바와 같이, 시스템(800b)은 산소 도관(899)과 엔진(801)을 더 포함할 수 있다. 산소 도관(899)은 물 또는 다른 산소 소스 위로부터 산소를 강제 이동시켜 배리어층(896a) 아래에 설치된 엔진(801)으로 운반할 수 있다. 엔진(803)은 산소 도관(899)에 의해 운반된 산소와 시스템(800b)으로서 생성된 수소(즉, CH4 + 열 → C + 2H2)를 연소하여 고온 증기를 메탄 퇴적물(894)에 제공할 수 있다. 엔진(803)으로부터의 추가의 열은 추가의 메탄을 유리시킬 수 있다. 엔진(801)은 터빈과 같이 고온 증기를 전달하는 임의의 적절한 엔진일 수 있다.
도 9a는 본 기술의 실시예에 따른 추가의 대표적인 환경에서 열전달 시스템(900)["시스템(900)"]의 단면도이고, 도 9b는 도 9a의 상세부(9B)의 확대도이다. 시스템(900)은 전술한 장치와 대체로 유사한 특징을 포함하는 열전달 장치(950)["장치(950)"]를 포함할 수 있다. 도 9a 및 도 9b에 도시된 시스템(900)은, 2011년 2월 14일자로 출원되었고 발명의 명칭이 "목표 샘플의 특성을 검출하기 위한 방법, 장치 및 시스템(METHODS, DEVICES, AND SYSTEMS FOR DETECTING PROPERTIES OF TARGET SAMPLES)"이며 본 명세서에 전체가 동시에 참조로 합체되는 미국 특허 출원(대리인 정리 번호 69545-8801US1)에 설명된 바와 같이 센서 또는 다른 타입의 모니터로서 사용하기 위해 도 5a-8b에 도시된 거시적 시스템이 아니라 미시적 환경에 설치된다. 다른 실시예에서, 시스템(900)은 열전달의 이익이 있는 다른 미시적 용례에 사용될 수 있다.
도 9a 및 도 9b에 함께 도시된 실시예에서, 튜브(903)와 피팅(905)은 함께 밀봉된다. 예컨대, 튜브(903)와 피팅(905)은 너트(907)를 조임으로써 함께 밀봉된다. 하나 이상의 장치(950)가 튜브(903)와 피팅(907) 사이에 위치 결정되어 튜브(903)를 통해 이동하는 유체(909)의 초기 누출을 시험할 수 있다. 예컨대, 장치(950)는 유체(909)의 존재 및/또는 유체(909)의 조성을 감지할 수 있다. 선택된 실시예에서, 장치(950)는 아키텍처 구조물[예컨대, 전술한 아키텍처 구조물(112)] 내에 위치 결정된 센서를 포함할 수 있다. 아키텍처 구조물은 유체(909)의 미리 정해진 성분을 선택적으로 흡착하여 센서가 미리 정해진 성분의 존재 및/또는 그 존재의 경향을 결정할 수 있도록 구성될 수 있다. 다른 실시예에서, 아키텍처 구조물은 유체(909)의 목표 샘플 또는 그 성분을 저장조[예컨대, 전술한 액체 저장조(124)]에 선택적으로 전달하도록 구성될 수 있는데, 저장조는 샘플을 모니터하거나 달리 시험하도록 센서를 포함한다. 다른 실시예에서, 장치(950)는 시스템(900)의 다른 양태를 모니터하도록 달리 위치 결정될 수 있다.
도 10은 본 기술의 다른 실시예에 따라 구성된 열전달 장치(1000)의 개략도이다. 장치(1000)는 전술한 장치와 대체로 유사한 특징 및 기능을 포함할 수 있다. 그러나, 도 10에 도시된 장치(1000)는 위에서 나타낸 장치와 상이한 종횡비를 갖는다. 보다 구체적으로, 제1 단부 캡(108) 및 제2 단부 캡(110)과 측벽(120)은 장치(1000)가 넓은 도관(102)을 형성하도록 길이가 더 가깝다. 그러한 종횡비는 실내를 통해 열을 전달하기에 더 적합하다. 예컨대, 장치(1000)는 드라이 클리닝에 사용될 수 있다. 의복이 도관(102) 내에 위치 결정될 수 있고, 작동 유체(122)의 기상(122a)(예컨대, CO2)은 의복이 도관(102)을 통해 이동할 때에 의복으로부터 먼지, 오일 및 오물을 포획할 수 있다. 오물은 아키텍처 구조물(112) 및/또는 다른 적절한 필터에 의해 제2 단부 캡(110)에서 장치(1000)로부터 여과될 수 있다. 따라서, 의류를 세척하기 위해 독성 화학물질을 이용하는 종래의 드라이 클리닝법보다 장치에 의해 제공된 열전달이 의류를 세척하는 데에 사용될 수 있다. 다른 실시예에서, 장치(1000)는 다른 적절한 열전달 방법에 사용될 수 있고/있거나 장치(1000)의 종횡비가 다른 적절한 변경을 가질 수 있다.
도 11은 본 기술의 또 다른 실시예에 따른 대표적인 환경에서 도시된 열전달 시스템(1100)["시스템(1100)"]의 개략도이다. 도 11에 도시된 시스템(1100)은 전술한 열전달 장치와 대체로 유사한 특징을 갖는 열전달 장치(1150)["장치(1150)"]를 포함할 수 있다. 예컨대, 장치(1150)는 도관(102) 내에서 작동 유체(122)의 기화-응축 사이클을 이용하여 열을 전달할 수 있다. 도 11에 도시된 바와 같이, 시스템(1100)은 열을 집중시켜 제1 파이프(1123)로 전달하도록 구성된 태양열 수집기(1121)를 더 포함할 수 있다. 펌프(1125)가 제1 파이프(1123)에 작동 가능하게 연결되어 제1 파이프(1123) 내의 유체[예컨대, 작동 유체(122)]를 장치(1150)의 유입부(104) 근처의 제1 열교환기(1127)로 강제 이동시킬 수 있다. 제1 열교환기(1127)는 제1 파이프(1123) 내의 유체를 가열 및 기화시킴으로써 열을 장치(1150)의 유입부(104)로 전달할 수 있다. 도 11에 도시된 바와 같이, 작동 유체(122)는 유입부(104)에서 기화하고 장치(1150)를 통해 순환하여 열을 유출부(106)에서 방출한다. 장치(1150)는 방출된 열을 가정용 물 가열, 농작물 건조 및 기타 적절한 용례에 사용할 수 있다.
선택된 실시예에서, 작동 유체(122)는 제1 파이프(1121)를 통해 유동하여 장치(1150)는 작동 유체(122)가 도관(102) 내로 흡인되도록 아키텍처 구조물(112)을 이용하여 모세관 압력을 작동 유체(122)에 인가할 수 있다. 다른 실시예에서, 열교환기(1127)에 의해 방출된 기화된 유체는 아키텍처 구조물(112)에 의해 여과되어 하나 이상의 원하는 물질[작동 유체(122)에 의해 촉진되는 화학물질]을 도관(102) 내로 선택적으로 들일 수 있다.
도 11에 도시된 바와 같이, 시스템(1100)은 장치(1150)에 대한 열 유입을 증가시키도록 태양열 수집기(1121)와 함께 및/또는 태양열 가열이 이용될 수 없거나 원하지 않으면 태양열 수집기(1121)를 대체하도록 사용될 수 있는 제2 열원(1129)[즉, 태양열 수집기(1121)와 별개임]을 더 포함할 수 있다. 제2 열원(1129)은 도 11에 도시된 바와 같이 풍력 발생기, 그리드 전력에 의한 저항 또는 유도 가열, 및/또는 기타 적절한 열전달 장치일 수 있다. 도 11에 도시된 실시예에서, 제2 열원(1129)은 열을 장치(1150)의 유입부(104)에 전달하는 제2 파이프(1133)와 제2 열교환기(1131)에 연결된다. 다른 실시예에서, 제2 열원(1129)은 제1 파이프(1121)와 제1 열교환기(1123)에 연결된다.
또한, 도 11에 도시된 바와 같이, 시스템(1100)은 열이 제1 및/또는 제2 열교환기(1127, 1131)로부터 추가의 처리부(1135)로 전달되도록 유입부(104) 근처에 위치 결정되는 추가의 처리부(1135)를 더 포함할 수 있다. 추가의 처리부(1135)는 시스템(1100)에 추가의 제조 및/또는 서비스를 제공하도록 사용될 수 있다. 예컨대, 추가의 처리부(1135)는 과일을 건조시키고, 및/또는 여분의 물을 제공하도록 메이플 시럽을 탈수하며, 및/또는 아키텍처 구조물(112)에 의해 플라보노이드 등의 미리 선택된 물질을 제거하도록 사용될 수 있다.
본 출원은 이하의 출원들의 주제를 전체적으로 참조로 합체한다: 발명의 명칭이 "유체 이송 시스템의 특성을 검출하기 위한 방법 및 장치(METHODS AND APPARATUSES FOR DETECTION OF PROPERTIES OF FLUID CONVEYANCE SYSTEMS)"인 미국 특허 출원(대리인 정리 번호 69545-8801US1); 발명의 명칭이 "예컨대 복수 개의 아키텍처 결정을 갖는 아키텍처 구조물(ARCHITECTURAL CONSTRUCT HAVING FOR EXAMPLE A PLURALITY OF ARCHITECTURAL CRYSTALS)"인 미국 특허 출원(대리인 정리 번호 69545-8701US); 2010년 8월 16일자로 출원되었고 발명의 명칭이 "보강된 해양 열 에너지 변환(SOTEC) 시스템의 효율 증가(INCREASING THE EFFICIENCY OF SUPPLEMENTED OCEAN THERMAL ENERGY CONVERSION(SOTEC) SYSTEMS)"인 미국 특허 출원 제12/857,546호; 2010년 8월 16일자로 출원되었고 발명의 명칭이 "탄화수소 수화물 퇴적물을 채취하기 위한 가스 수화물 변환 시스템(GAS HYDRATE CONVERSION SYSTEM FOR HARVESTING HYDROCARBON HYDRATE DEPOSITS)"인 미국 특허 출원 제12/857,228호(이들 출원 모두는 그 전체가 본 명세서에 참조로 합체됨).
전술로부터, 본 개시의 특정 실시예는 본 명세서에 예시를 위해 설명되었고, 다양한 수정이 본 발명의 사상 및 범위로부터 벗어남이 없이 이루어질 수 있다는 것이 명백할 것이다. 예컨대, 전술한 열전달 장치들 중 임의의 장치는 상이한 용례에 적응하도록 도 1-11에 도시된 것과 상이한 종횡비[예컨대, 측벽과 제1 및 제2 단부 캡(108, 110) 간에]를 가질 수 있다. 특정 실시예의 문맥에서 설명된 새로운 기술의 특정한 양태는 다른 실시예에 결합되거나 제거될 수 있다. 예컨대, 도 3a-4c 및 도 6a-10에 도시된 열전달 장치는 도 1을 참조하여 설명된 액체 저장조 및/또는 제어기를 포함할 수 있다. 또한, 새로운 기술의 특정 실시예에 관한 이점이 이들 실시예의 관점에서 설명되었지만, 다른 실시예도 또한 그러한 이점을 보일 수 있고, 본 기술의 범위 내의 모든 실시예들이 그러한 이점을 반드시 보여야 하는 것은 아니다. 따라서, 본 개시 및 관련 기술은 본 명세서에 명시적으로 도시 또는 설명되지 않은 다른 실시예를 포괄할 수 있다. 더욱이, 문맥이 명백하게 달리 요구하지 않는다면, 상세한 설명 및 청구범위에 걸쳐서, "포함한다", "포함하는" 등의 단어는 배타적인 또는 소모적인 의미에 반대하여 포괄적인 의미로, 즉 "포함하지만 제한하지 않는"의 의미로 해석되어야 한다. 단수 또는 복수를 이용한 단어는 또한 복수 또는 단수를 각각 포함한다. 청구항이 2개 이상의 항목을 참조하여 "또는"이라는 단어를 사용할 때에, 그 단어는 이하의 모든 단어 해석, 즉 리스트의 항목들 중 임의의 항목, 리스트 중 모든 항목, 및 리스트의 항목들의 임의의 조합을 포괄한다.
전술한 다양한 실시예들의 특징은 추가의 실시예를 제공하도록 결합될 수 있다. 본 명세서에서 인용한 및/또는 출원 데이터 시트에서 열거된 미국 특허, 미국 특허 출원 공보, 미국 특허 출원, 외국 특허, 외국 특허 출원 및 비특허 공보 모두는 본 명세서에 그 전체가 참조로 합체된다. 본 개시의 양태는 필요에 따라 본 개시의 또 다른 실시예를 제공하도록 다양한 구성을 갖는 연료 인젝터 및 점화 장치 그리고 다양한 특허, 출원 및 공보의 개념을 채택하도록 수정될 수 있다.
전술한 상세한 설명의 관점에서 이들 및 기타 변경이 본 개시에 이루어질 수 있다. 일반적으로, 이하의 청구범위에서, 사용된 용어들은 본 개시를 명세서 및 청구범위에 개시된 특정한 실시예로 제한하도록 해석되지 않고, 청구범위에 따라 작동하는 모든 시스템 및 방법을 포함하도록 해석되어야 한다. 따라서, 본 발명은 본 개시에 의해 제한되지 않고, 대신에 그 범위는 이하의 청구범위에 의해 광범위하게 결정되어야 한다.
본 명세서에 참조로 미리 통합되지 않는 범위까지, 본 출원은 이하의 문헌 각각의 주제를 전체적으로 참조로 통합한다: 2010년 8월 16일자로 출원되었으며 발명의 명칭이 "재생 가능한 에너지, 재료 자원 및 영양분 체계의 통합 생산을 통한 유지 가능한 경제적 발전(SUSTAINABLE ECONOMIC DEVELOPMENT THROUGH INTEGRATED PRODUCTION OF RENEWABLE ENERGY, MATERIALS RESOURCES, AND NUTRIENT REGIMES)"인 미국 특허 출원 제12/857,553호; 2010년 8월 16일자로 출원되었으며 발명의 명칭이 "재생 가능한 에너지의 통합적 총 스펙트럼 생산을 통한 유지 가능한 경제적 발전을 위한 시스템 및 방법(SYSTEMS AND METHODS FOR SUSTAINABLE ECONOMIC DEVELOPMENT THROUGH INTEGRATED FULL SPECTRUM PRODUCTION OF RENEWABLE ENERGY)"인 미국 특허 출원 제12/857,553호; 2010년 8월 16일자로 출원되었으며 발명의 명칭이 "태양열을 이용한 재생 가능한 재료 자원의 통합적 총 스펙트럼 생산을 통한 유지 가능한 경제 발전을 위한 시스템 및 방법(SYSTEMS AND METHODS FOR SUSTAINABLE ECONOMIC DEVELOPMENT THROUGH INTEGRATED FULL SPECTRUM PRODUCTION OF RENEWABLE MATERIAL RESOURCES USING SOLAR THERMAL)"인 미국 특허 출원 제12/857,554호; 2010년 8월 16일자로 출원되었으며 발명의 명칭이 "주거지 지원을 이한 에너지 시스템(ENERGY SYSTEM FOR DWELLING SUPPORT)"인 미국 특허 출원 제12/857,502호; 2011년 2월 14일자로 출원되었으며 발명의 명칭이 "인라인 선택 추출 장치를 갖춘 운반 시스템 및 관련 작동 방법(DELIVERY SYSTEMS WITH IN-LINE SELECTIVE EXTRACTION DEVICES AND ASSOCIATED METHODS OF OPERATION)"인 대리인 정리 번호 69545-8505.US00; 2010년 8월 16일자로 출원되었으며 발명의 명칭이 "에너지, 재료 자원 및 영양분 체계의 생성을 위한 자생적 시스템 및 프로세스의 총체적인 비용 모델링(COMPREHENSIVE COST MODELING OF AUTOGENOUS SYSTEMS AND PROCESSES FOR THE PRODUCTION OF ENERGY, MATERIAL RESOURCES AND NUTRIENT REGIMES)"인 미국 특허 출원 제61/401,699호; 2011년 2월 14일자로 출원되었으며 발명의 명칭이 “수소 연료 및 구조 재료를 효율적으로 생성하기 위한 화학적 프로세스 및 반응기 그리고 관련 시스템 및 방법(CHEMICAL PROCESSES AND REACTORS FOR EFFICIENTLY PRODUCING HYDROGEN FUELS AND STRUCTURAL MATERIALS, AND ASSOCIATED SYSTEMS AND METHODS)”인 대리인 정리 번호 69545-8601.US00; 2011년 2월 14일자로 출원되었으며 발명의 명칭이 “수소계 연료 및 구조 요소를 생성하기 위한 투과 표면을 갖는 반응기 용기 그리고 관련 시스템 및 방법(REACTOR VESSELS WITH TRANSMISSIVE SURFACES FOR PRODUCING HYDROGEN-BASED FUELS AND STRUCTURAL ELEMENTS, AND ASSOCIATED SYSTEMS AND METHODS)”인 대리인 정리 번호 69545-8602.US00; 2011년 2월 14일자로 출원되었으며 발명의 명칭이 “재복사 표면을 갖춘 화학 반응기 및 관련 시스템과 방법(CHEMICAL REACTORS WITH RE-RADIATING SURFACES AND ASSOCIATED SYSTEMS AND METHODS)”인 대리인 정리 번호 69545-8603.US00; 2011년 2월 14일자로 출원되었으며 발명의 명칭이 “환형으로 위치 결정된 전달 및 제거 장치를 갖춘 화학 반응기 및 관련 시스템과 방법(CHEMICAL REACTORS WITH ANNULARLY POSITIONED DELIVERY AND REMOVAL DEVICES, AND ASSOCIATED SYSTEMS AND METHODS)”인 대리인 정리 번호 69545-8605.US00; 2011년 2월 14일자로 출원되었으며 발명의 명칭이 "태양열 유입을 갖는 열화학 프로세스를 수행하는 반응기와, 관련 시스템 및 방법(REACTORS FOR CONDUCTING THERMOCHEMICAL PROCESSES WITH SOLAR HEAT INPUT, AND ASSOCIATED SYSTEMS AND METHODS)"인 대리인 정리 번호 69545-8606.US00; 2011년 2월 14일자로 출원되었으며 발명의 명칭이 “열화학 프로세스를 위한 유도와, 관련 시스템 및 방법(INDUCTION FOR THERMOCHEMICAL PROCESS, AND ASSOCIATED SYSTEMS AND METHODS)”인 대리인 정리 번호 69545-8608.US00; 2011년 2월 14일자로 출원되었으며 발명의 명칭이 “커플링된 열화학 반응기 및 엔진 그리고 관련 시스템과 방법(COUPLED THERMOCHEMICAL REACTORS AND ENGINES, AND ASSOCIATED SYSTEMS AND METHODS)”인 대리인 정리 번호 69545-8611.US00; 2010년 9월 22일자로 출원되었으며 발명의 명칭이 “열화학적 재생을 이용하여 자동차 엔진에서의 마찰 에너지를 감소 및 획득하는 방법(REDUCING AND HARVESTING DRAG ENERGY ON MOBILE ENGINES USING THERMAL CHEMICAL REGENERATION)”인 미국 특허 출원 제61/385,508호; 2011년 2월 14일자로 출원되었으며 발명의 명칭이 “수소계 연료 및 구조 요소를 생성하기 위한 압력 및 열 전달 특징부를 갖춘 반응기 용기와, 관련 시스템 및 방법(REACTOR VESSELS WITH PRESSURE AND HEAT TRANSFER FEATURES FOR PRODUCING HYDROGEN-BASED FUELS AND STRUCTURAL ELEMENTS, AND ASSOCIATED SYSTEMS AND METHODS)”인 대리인 정리 번호 제69545-8616.US00호; 2011년 2월 14일자로 출원되었으며 발명의 명칭이 “예컨대 복수 개의 아키텍처 결정을 갖는 아키텍처 구조물(ARCHITECTURAL CONSTRUCT HAVING FOR EXAMPLE A PLURALITY OF ARCHITECTURAL CRYSTALS)”인 대리인 정리 번호 제69545-8701.US00호; 2010년 8월 16일자로 출원되었으며 발명의 명칭이 “유체 이송 시스템의 특성을 탐지하기 위한 방법 및 장치(METHODS AND APPARATUSES FOR DETECTION OF PROPERTIES OF FLUID CONVEYANCE SYSTEMS)”인 미국 특허 출원 제12/806,634호; 2011년 2월 14일자로 출원되었으며 발명의 명칭이 “목표 샘플의 특성을 검출하기 위한 방법, 장치 및 시스템(METHODS, DEVICES, AND SYSTEMS FOR DETECTING PROPERTIES OF TARGET SAMPLES)”인 대리인 정리 번호 제69545-8801.US01호; 2011년 2월 14일자로 출원되었으며 발명의 명칭이 “탄화수소, 알코올 증기, 수소, 탄소 등에 바이오매스를 처리하기 위한 시스템(SYSTEM FOR PROCESSING BIOMASS INTO HYDROCARBONS, ALCOHOL VAPORS, HYDROGEN, CARBON, ETC.)”인 대리인 정리 번호 제69545-9002.US00호; 2011년 2월 14일자로 출원되었으며 발명의 명칭이 “열화학적 재생을 이용한 탄소 재생 및 재투자(CARBON RECYCLING AND REINVESTMENT USING THERMOCHEMICAL REGENERATION)”인 대리인 정리 번호 제69545-9004.US00호; 2011년 2월 14일자로 출원되었으며 발명의 명칭이 “산소 생성 연료(OXYGENATED FUEL)”인 대리인 정리 번호 제69545-9006.US00호; 2009년 8월 27일자로 출원되었으며 발명의 명칭이 “탄소 몰수(CARBON SEQUESTRATION)”인 미국 특허 출원 제61/237,419호; 2009년 8월 27일자로 출원되었으며 발명의 명칭이 “산소 생성 연료 생산(OXYGENATED FUEL PRODUCTION)”인 미국 특허 출원 제61/237,425호; 2011년 2월 14일자로 출원되었으며 발명의 명칭이 “오염물질을 고립시키고 에너지를 저장하기 위한 재생 가능한 다목적 연료(MULTI-PURPOSE RENEWABLE FUEL FOR ISOLATING CONTAMINANTS AND STORING ENERGY)”인 대리인 정리 번호 제69545-9102.US00호; 2010년 12월 8일자로 출원되었으며 발명의 명칭이 “수소, 탄소의 산화물 및/또는 질소로부터의 액체 연료 그리고 내구성 제품을 제조하기 위한 탄소의 생성(LIQUID FUELS FROM HYDROGEN, OXIDES OF CARBON, AND/OR NITROGEN; AND PRODUCTION OF CARBON FOR MANUFACTURING DURABLE GOODS)”인 미국 특허 출원 제61/421,189호; 그리고 2011년 2월 14일자로 출원되었으며 발명의 명칭이 “가공된 연료 저장, 재분화 및 운반(ENGINEERED FUEL STORAGE, RESPECIATION AND TRANSPORT)”인 대리인 정리 번호 제69545-9105.US00호.

Claims (52)

  1. 열전달 시스템으로서,
    유입부, 상기 유입부의 반대쪽에 있는 유출부, 및 상기 유입부와 유출부 사이의 측벽을 갖는 도관으로서, 열은 유입부에서 도관에 진입하고 열은 유출부에서 도관으로부터 방출되며, 도관 내에 밀폐된 작동 유체는 유입부 근처에서 액상으로부터 기상으로 변하고 유출부 근처에서 기상으로부터 액상으로 변하는 것인 도관;
    상기 도관의 말단 근처의 단부 캡; 및
    서로 대략 평행하게 배향되는 복수 개의 층을 포함하는 아키텍처 구조물
    을 포함하고, 개별적인 층이 합성 매트릭스 특성의 결정을 포함하는 것인 열전달 시스템.
  2. 제1항에 있어서, 상기 아키텍처 구조물은 그래핀(graphene), 흑연 및 붕소 질화물 중 적어도 하나를 포함하는 것인 열전달 시스템.
  3. 제1항에 있어서, 상기 측벽은 아키텍처 구조물을 포함하고, 층은 도관의 종축에 대해 실질적으로 평행하며, 아키텍처 구조물은 액상을 모세관 작용에 의해 유출부로부터 유입부로 강제 이동시키도록 구성되며,
    상기 층은 유입부 및 유출부 근처에서 상기 도관을 향해 경사지는 것인 열전달 시스템.
  4. 제1항에 있어서, 상기 측벽은 아키텍처 구조물을 포함하고, 층은 도관의 종축에 대해 대략 수직인 것인 열전달 시스템.
  5. 제1항에 있어서, 상기 단부 캡은 아키텍처 구조물을 포함하고, 상기 층은 도관의 종축에 대해 대략 수직인 것인 열전달 시스템.
  6. 제1항에 있어서, 상기 단부 캡은 아키텍처 구조물을 포함하고, 상기 층은 도관의 종축에 대해 실질적으로 평행한 것인 열전달 시스템.
  7. 제1항에 있어서, 상기 단부 캡은 유출부의 근처에 있고, 단부 캡은 도관의 종축에 대해 실질적으로 평행한 층을 갖는 아키텍처 구조물을 포함하며,
    상기 아키텍처 구조물은 작동 유체로부터 적어도 하나의 미리 정해진 성분을 분리시키도록 구성되는 것인 열전달 시스템.
  8. 제7항에 있어서, 상기 유출부에서 용액이 도관에 진입하고 미리 정해진 성분은 이 용액의 일부를 포함하는 것인 열전달 시스템.
  9. 제1항에 있어서, 상기 단부 캡은 유입부의 근처에 있고, 단부 캡은 도관의 종축에 대해 실질적으로 평행한 층을 갖는 아키텍처 구조물을 포함하며,
    상기 아키텍처 구조물은 적어도 하나의 미리 정해진 재료가 단부 캡을 통해 도관에 진입하는 것을 방지하도록 구성되는 것인 열전달 시스템.
  10. 제1항에 있어서, 상기 단부 캡은 유입부 근처에 있고, 상기 단부 캡은 도관의 종축에 대해 실질적으로 평행한 층을 갖는 아키텍처 구조물을 포함함으로써, 단부 캡은 층들 사이에서 제1 파장을 갖는 복사 열을 수신하고 아키텍처 구조물은 상기 제1 파장과 상이한 제2 파장의 복사 열 중 적어도 일부를 재복사하는 것인 열전달 시스템.
  11. 제1항에 있어서, 상기 단부 캡은 유입부에 있고 아키텍처 구조물을 포함하며, 열전달 시스템은,
    상기 도관의 유입부와 유체 연통하도록 근처에 있는 액체 저장조;
    상기 액체 저장조에 작동 가능하게 연결되고, 상기 액체 저장조와 도관 사이의 작동 유체의 유동을 조절하는 제어기를 더 포함하고,
    상기 열전달 시스템은 제1 도관과 제2 도관을 포함하며, 상기 단부 캡은 열을 흡수하고 액체 어큐뮬레이터는 제1 도관 내에 작동 유체를 저장하며, 액체 저장조는 작동 유체를 도관 내로 향하게 하고, 작동 유체는 제2 도관에서 단부 캡으로부터의 열을 흡수하는 것인 열전달 시스템.
  12. 제1항에 있어서, 상기 아키텍처 구조물은 제1 아키텍처 구조물과 제2 아키텍처 구조물을 포함하고,
    상기 측벽은 제1 아키텍처 구조물과, 상기 제1 아키텍처 구조물의 내측을 향하는 제2 아키텍처 구조물을 포함하며,
    상기 제1 아키텍처 구조물의 층은 도관의 종축에 대해 실질적으로 평행하고,
    상기 제2 아키텍처 구조물의 층은 상기 종축에 대해 실질적으로 수직이며,
    상기 제1 아키텍처 구조물의 층은 유입부를 향해 유체를 강제 이동시키고, 상기 유체는 작동 유체와 상기 도관 밖의 외부 유체 중 적어도 하나인 것인 열전달 시스템.
  13. 제1항에 있어서, 상기 액상은 중력, 모세관 작용, 및 원심력 중 적어도 하나에 의해 유입 구역으로 복귀되는 것인 열전달 시스템.
  14. 제1항에 있어서, 상기 유입부는 태양열 수집기, 지열 지층대, 및 영구 동토층 중 적어도 하나 근처에 설치되는 것인 열전달 시스템.
  15. 제1항에 있어서, 상기 유출부는 대수층, 가스 수화물 퇴적물, 및 지질 표면 중 적어도 하나 근처에 설치되는 것인 열전달 시스템.
  16. 제1항에 있어서, 상기 유입부는 제1 유입부이고, 열전달 시스템은 상기 제1 유입부의 반대쪽에 제2 유입부를 더 포함하며, 상기 유출부는 제1 유입부와 제2 유입부 사이에 있는 것인 열전달 시스템.
  17. 열전달 장치로서,
    기화 구역, 상기 기화 구역의 반대쪽에 있는 응축 구역, 및 상기 기화 구역과 응축 구역 사이에서 연장되는 측벽을 포함하는 도관;
    합성 매트릭스 특성의 결정의 다수의 층을 포함하는 아키텍처 구조물; 및
    상기 도관 내의 작동 유체
    를 포함하고, 개별적인 층은 서로에 대해 실질적으로 평행하게 배향되며, 상기 작용 유체는 응축 구역에서 액상을 그리고 기화 구역에서 기상을 포함하는 것인 열전달 장치.
  18. 제17항에 있어서, 상기 아키텍처 구조물은 그래핀과 붕소 질화물 중 적어도 하나를 포함하는 것인 열전달 장치.
  19. 제17항에 있어서, 상기 측벽은 아키텍처 구조물을 포함하고, 상기 층은 도관의 종축에 대해 실질적으로 평행하게 배향되어 기화 구역으로부터 응축 구역으로 층들 사이에 통로를 형성하며,
    상기 층은 기화 및 응축 구역에서 도관을 향해 경사져 있어 작동 유체는 모세관 작용에 의해 통로를 통해 이동하는 것인 열전달 장치.
  20. 제19항에 있어서,
    기화 구역에 있는 열 어큐뮬레이터;
    상기 기화 구역에서 주변 채널과 유체 연통하고, 작동 유체를 액체 상태로 저장하는 액체 저장조; 및
    상기 액체 저장조와 작동 가능하게 연결되고, 상기 액체 저장조와 기화 구역 사이에서 작동 유체의 유동을 조절하는 제어기를 더 포함하는 것인 열전달 장치.
  21. 제19항에 있어서, 상기 아키텍처 구조물은 제1 아키텍처 구조물이고,
    열전달 장치는 서로에 대해 실질적으로 평행한 다수의 층을 포함하고 합성 매트릭스 특성의 결정을 구비하는 제2 아키텍처 구조물을 더 포함하며, 상기 제2 아키텍처 구조물은 제1 아키텍처 구조물의 내측에 있고 제2 층은 종축에 대해 실질적으로 수직인 것인 열전달 장치.
  22. 제17항에 있어서, 상기 응축 구역에 단부 캡을 더 포함하고, 상기 단부 캡은 아키텍처 구조물을 포함하며, 층은 도관의 종축에 대해 실질적으로 평행한 것인 열전달 장치.
  23. 제22항에 있어서, 상기 아키텍처 구조물의 층은 작동 유체로부터 미리 선택된 성분을 분리하도록 구성되는 것인 열전달 장치.
  24. 제17항에 있어서, 상기 기화 구역에 단부 캡을 더 포함하고, 상기 단부 캡은 아키텍처 구조물을 포함하며, 층은 도관의 종축에 대해 실질적으로 평행한 것인 열전달 장치.
  25. 제24항에 있어서, 상기 아키텍처 구조물의 층은 도관으로부터 미리 선택된 재료를 여과하도록 구성되는 것인 열전달 장치.
  26. 제17항에 있어서, 상기 기화 구역은 제1 기화 구역이고, 열전달 장치는 상기 제1 기화 구역의 반대쪽에 있는 제2 기화 구역을 더 포함하며, 상기 응축 구역은 제1 기화 구역과 제2 기화 구역 사이에 있는 것인 열전달 장치.
  27. 열전달 방법으로서,
    도관의 유입부에서 제1 단부 캡을 이용하여 열을 흡수하는 단계;
    상기 유입부에서 작동 유체를 액상에서 기상으로 변화시키는 단계;
    상기 기상을 도관을 통해 이송하는 단계;
    유출부에서 작동 유체를 기상에서 액상으로 변화시키는 단계;
    상기 유출부에서 제2 단부 캡으로부터 열을 안내하는 단계; 및
    상기 액상을 도관의 측벽을 따라 유입부로 복귀시키는 단계
    를 포함하고, 상기 제1 단부 캡, 제2 단부 캡, 및 도관 중 적어도 하나는 서로 실질적으로 평행한 다수의 층을 갖는 아키텍처 구조물을 포함하며, 개별적인 층은 합성 매트릭스 특성의 결정을 포함하는 것인 열전달 방법.
  28. 제27항에 있어서, 상기 액상을 복귀시키는 단계는 상기 액상을 측벽에 있는 아키텍처 구조물의 층들 사이에서 모세관 작용에 의해 강제 이동시키는 것을 더 포함하는 것인 열전달 방법.
  29. 제27항에 있어서, 상기 액상을 도관의 측벽을 따라 유입부로 복귀시키는 단계는 도관에 원심력을 인가하는 것을 더 포함하는 것인 열전달 방법.
  30. 제27항에 있어서, 상기 제1 단부 캡을 통해 열을 흡수하는 단계는 태양 소스, 영구 동토층 소스, 및 지열 소스 중 적어도 하나로부터 열을 흡수하는 것을 더 포함하는 것인 열전달 방법.
  31. 제27항에 있어서, 상기 제2 단부 캡으로부터 열을 안내하는 단계는 대수층, 터빈, 및 가스 수화물 퇴적물로 열을 안내하는 것을 더 포함하는 것인 열전달 방법.
  32. 제27항에 있어서, 층이 대체로 열원과 정렬하도록 상기 제1 단부 캡에 아키텍처 구조물을 위치 결정하는 단계;
    상기 아키텍처 구조물의 층들 사이에 제1 파장을 갖는 복사 에너지를 흡수하는 단계; 및
    상기 제1 파장과 상이한 제2 파장의 복사 에너지의 적어도 일부를 제1 단부 캡으로부터 복사하는 단계
    를 더 포함하는 것인 열전달 방법.
  33. 제27항에 있어서, 층이 도관의 종축에 대해 실질적으로 평행하도록 제2 단부 캡에 아키텍처 구조물을 위치 결정하는 단계; 및
    상기 아키텍처 구조물을 통해 작동 유체로부터 미리 선택된 성분을 흡착하는 단계를 더 포함하는 것인 열전달 방법.
  34. 제33항에 있어서,
    상기 제1 단부 캡을 통해 용액을 수용하는 단계; 및
    상기 용액과 작동 유체를 도관 내에서 합쳐 미리 선택된 성분을 형성하는 단계를 더 포함하는 것인 열전달 방법.
  35. 제27항에 있어서,
    층이 도관의 종축에 대해 실질적으로 평행하도록 제1 단부 캡에 아키텍처 구조물을 위치 결정하는 단계; 및
    아키텍처 구조물을 통해 열원으로부터 미리 선택된 성분을 여과하는 단계
    를 더 포함하는 것인 열전달 방법.
  36. 제27항에 있어서,
    작동 유체를 액체 저장조 내에 저장하는 단계;
    열을 제1 단부 캡에서 흡수하는 단계; 및
    작동 유체를 유입 구역으로 안내하는 단계
    를 더 포함하고, 상기 액체 저장조는 도관과 유체 연통하는 것인 열전달 방법.
  37. 제36항에 있어서, 유입 구역을 향하는 작동 유체의 유동 속도를 조절하는 단계를 더 포함하는 것인 열전달 방법.
  38. 제27항에 있어서, 상기 유입부는 제1 유입부이고, 열전달 방법은,
    상기 도관의 제2 유입부에서 제3 단부 캡을 이용하여 열을 흡수하는 단계로서, 제3 단부 캡은 제1 단부 캡의 반대쪽에 있고 제2 단부 캡이 그 사이에 있는 것인 단계; 및
    작동 유체를 제2 유입부에서 액상으로부터 기상으로 변화시키는 단계를 더 포함하는 것인 열전달 방법.
  39. 열전달 시스템으로서,
    유입부, 상기 유입부의 반대쪽에 있는 유출부, 및 상기 유입부와 유출부 사이의 측벽을 갖는 도관으로서, 열은 유입부에서 상기 도관에 진입하고 열은 유출부에서 도관으로부터 배출되는 것인 도관;
    상기 유입부에 있는 열 어큐뮬레이터;
    상기 유입부와 유체 연통하는 저장조; 및
    상기 도관 내의 작동 유체
    를 포함하고, 상기 작동 유체는 유입부 근처에서 액체로부터 기체로 변화하고 유출부 근처에서 기체로부터 액체로 변화하는 것인 열전달 시스템.
  40. 제39항에 있어서, 상기 열 어큐뮬레이터는 서로 실질적으로 평행하고 열원과 실질적으로 정렬되는 복수 개의 층을 갖는 아키텍처 구조물을 포함하고, 개별적인 평행한 층은 합성 매트릭스 특성의 결정을 포함하는 것인 열전달 시스템.
  41. 제40항에 있어서, 상기 층은 도관의 종축에 대해 실질적으로 평행하고,
    상기 층은 열 어큐뮬레이터 근처의 적어도 하나의 성분이 도관에 진입하는 것을 방지하는 것인 열전달 시스템.
  42. 제39항에 있어서, 상기 측벽은 서로 실질적으로 평행하고 도관의 종축에 대해 실질적으로 평행하게 배향되는 복수 개의 층을 갖는 아키텍처 구조물을 포함하고, 개별적인 층은 합성 매트릭스 특성의 결정을 포함하며, 아키텍처 구조물은 액체에 모세관 압력을 인가하도록 구성되는 것인 열전달 시스템.
  43. 제39항에 있어서,
    유출부에 있는 단부 캡; 및
    상기 단부 캡에 있는 아키텍처 구조물을 더 포함하고, 상기 아키텍처 구조물은 서로 실질적으로 평행하고 도관의 종축과 실질적으로 정렬되는 복수 개의 층을 갖고, 개별적인 평행한 층은 합성 매트릭스 특성의 결정을 포함하며, 상기 아키텍처 구조물은 작동 유체의 적어도 하나의 미리 선택된 성분을 로딩하도록 구성되는 것인 열전달 시스템.
  44. 제39항에 있어서, 상기 열 어큐뮬레이터는 제1 조건에서 열을 저장하고,
    상기 열 어큐뮬레이터는 제2 조건에서 열을 유입 구역으로 전달하며,
    상기 액체 저장조는 제1 조건에서 작동 유체를 저장하고,
    상기 액체 저장조는 제2 조건에서 액체 저장조를 실질적으로 비우며,
    상기 작동 유체는 제2 조건에서 유입부와 유출부 사이에서 순환하는 것인 열전달 시스템.
  45. 제39항에 있어서, 상기 액체 저장조에 작동 가능하게 연결되는 제어기를 더 포함하고, 상기 제어기는 액체 저장조와 유입부 사이에서 작동 유체의 유동을 조절하는 것인 열전달 시스템.
  46. 제39항에 있어서, 상기 열 어큐뮬레이터는 태양 소스, 지열 소스, 및 영구 동토층 소스 중 적어도 하나의 근처에 설치되는 것인 열전달 시스템.
  47. 제39항에 있어서, 상기 유입부는 제1 유입부이고, 열전달 시스템은 제1 유입부의 반대쪽에 있는 제2 유입부를 더 포함하며, 상기 유출부는 제1 유입부와 제2 유입부 사이에 있는 것인 열전달 시스템.
  48. 열전달 방법으로서,
    도관의 기화 구역 근처에서 액체 저장조 내에 작동 유체를 저장하는 단계;
    기화 구역에 있는 열 어큐뮬레이터에 의해 열을 흡수하는 단계;
    작동 유체를 액체 저장조로부터 기화 구역으로 안내하는 단계;
    작동 유체가 기화 구역에서 기상으로부터 액상으로 변화하도록 작동 유체에 의해 열 어큐뮬레이터로부터 열을 흡수하는 단계;
    기상을 도관을 통해 응축 구역으로 이송하는 단계;
    작동 유체가 응축 구역에서 기상으로부터 액상으로 변화하도록 응축 구역에서 단부 캡에 의해 작동 유체로부터 열을 흡수하는 단계;
    열을 응축 구역으로부터 멀어지게 안내하는 단계; 및
    액상을 기화 구역으로 강제 이동시키는 단계
    를 포함하는 것인 열전달 방법.
  49. 제48항에 있어서, 상기 액체 저장조와 도관의 기화 구역 사이에서 작동 유체의 유동 속도를 조절하는 단계를 더 포함하는 것인 열전달 시스템.
  50. 제48항에 있어서, 상기 열 어큐뮬레이터에 의해 열을 흡수하는 단계는 서로 실질적으로 평행하게 위치 결정되고 열원과 실질적으로 정렬되는 복수 개의 층을 갖는 아키텍처 구조물에 의해 열을 흡수하는 단계를 더 포함하고, 개별적인 아키텍처 층은 합성 매트릭스 특성의 결정을 포함하는 것인 열전달 시스템.
  51. 제48항에 있어서, 상기 열 어큐뮬레이터에 의해 열을 흡수하는 단계는 태양 소스, 영구 동토층 소스, 및 지열 소스 중 적어도 하나로부터 열을 흡수하는 것을 더 포함하는 것인 열전달 시스템.
  52. 제48항에 있어서, 상기 열을 안내하는 단계는 열을 대수층, 터빈, 및 메탄 퇴적물을 향해 안내하는 것을 더 포함하는 것인 열전달 시스템.
KR1020127023834A 2010-02-13 2011-02-14 열전달 장치, 및 관련 시스템과 방법 KR20120130210A (ko)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US30440310P 2010-02-13 2010-02-13
US61/304,403 2010-02-13
US12/857,546 2010-08-16
US12/857,228 US8623107B2 (en) 2009-02-17 2010-08-16 Gas hydrate conversion system for harvesting hydrocarbon hydrate deposits
US12/857,546 US8991182B2 (en) 2009-02-17 2010-08-16 Increasing the efficiency of supplemented ocean thermal energy conversion (SOTEC) systems
US12/857,228 2010-08-16
PCT/US2011/024814 WO2011100731A2 (en) 2010-02-13 2011-02-14 Thermal transfer device and associated systems and methods

Publications (1)

Publication Number Publication Date
KR20120130210A true KR20120130210A (ko) 2012-11-29

Family

ID=44368514

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127023834A KR20120130210A (ko) 2010-02-13 2011-02-14 열전달 장치, 및 관련 시스템과 방법

Country Status (8)

Country Link
EP (1) EP2534432A2 (ko)
JP (1) JP2013545956A (ko)
KR (1) KR20120130210A (ko)
CN (1) CN102906514B (ko)
AU (1) AU2011216188A1 (ko)
BR (1) BR112012020282A2 (ko)
CA (1) CA2789703A1 (ko)
WO (1) WO2011100731A2 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110720020B (zh) * 2017-07-06 2021-11-16 麦克赛尔株式会社 热输送器件和投射型影像显示装置
KR102488227B1 (ko) * 2019-11-11 2023-01-13 주식회사 아모그린텍 시트형 히트 파이프 및 그 제조방법
KR102447783B1 (ko) * 2019-11-11 2022-09-27 주식회사 아모그린텍 시트형 히트 파이프 및 그 제조방법
JP2024513163A (ja) * 2021-04-06 2024-03-22 セジェージェー セルヴィシズ エスアーエス 水面下環境における地熱エネルギのスクリーニング、探索、および開発のためのシステムおよび方法
WO2023195158A1 (ja) * 2022-04-08 2023-10-12 日本電信電話株式会社 熱変換システム及び熱変換方法
CN115846322A (zh) * 2022-12-14 2023-03-28 福州大学 一种超顺磁纳米涂层辅助加热的原油管道清管系统及方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786861A (en) * 1971-04-12 1974-01-22 Battelle Memorial Institute Heat pipes
US4109709A (en) * 1973-09-12 1978-08-29 Suzuki Metal Industrial Co, Ltd. Heat pipes, process and apparatus for manufacturing same
JPS5184449A (ko) * 1975-01-22 1976-07-23 Hitachi Ltd
JPS5628453Y2 (ko) * 1975-07-31 1981-07-07
JPS54108052A (en) * 1978-02-13 1979-08-24 Mitsubishi Electric Corp Heat pipe
JPS5919899Y2 (ja) * 1980-06-24 1984-06-08 株式会社フジクラ ヒ−トパイプ
JPS601550B2 (ja) * 1981-02-20 1985-01-16 株式会社フジクラ ヒ−トパイプ
JPS59189251A (ja) * 1983-04-13 1984-10-26 Matsushita Electric Ind Co Ltd ヒ−トパイプ
JPS63124507U (ko) * 1987-02-06 1988-08-15
JPH068718B2 (ja) * 1987-11-02 1994-02-02 工業技術院長 ヒートパイプにおけるウイックの構造
JP2539663B2 (ja) * 1988-05-11 1996-10-02 株式会社フジクラ 高温用セラミックヒ―トパイプ
JPH07103523B2 (ja) * 1990-12-26 1995-11-08 日本地下水開発株式会社 凍上被害防止方法
JPH0525166U (ja) * 1991-08-22 1993-04-02 三菱電機株式会社 冷媒作動流体ガス調整器
JPH09119789A (ja) * 1995-10-24 1997-05-06 Mitsubishi Materials Corp ヒートパイプの製造方法
JPH11351770A (ja) * 1998-06-10 1999-12-24 Fujikura Ltd ヒートパイプ
JP2000009560A (ja) * 1998-06-26 2000-01-14 Mitsubishi Electric Corp 動力計の冷却装置
JP2000130969A (ja) * 1998-10-22 2000-05-12 Fuji Heavy Ind Ltd 車両のヒートパイプ装置
JP2000326074A (ja) * 1999-05-20 2000-11-28 Koike Sanso Kogyo Co Ltd プラズマトーチ用の電極
JP2002013888A (ja) * 2000-06-30 2002-01-18 Sumitomo Precision Prod Co Ltd 熱伝導体と熱交換器並びに親水性膜の製造方法
CN1195196C (zh) * 2002-01-10 2005-03-30 杨洪武 集成式热管及其换热方法
KR20030065686A (ko) * 2002-01-30 2003-08-09 삼성전기주식회사 히트 파이프 및 그 제조 방법
US6460612B1 (en) * 2002-02-12 2002-10-08 Motorola, Inc. Heat transfer device with a self adjusting wick and method of manufacturing same
US7775261B2 (en) * 2002-02-26 2010-08-17 Mikros Manufacturing, Inc. Capillary condenser/evaporator
WO2003073032A1 (en) * 2002-02-26 2003-09-04 Mikros Manufacturing, Inc. Capillary evaporator
TW506523U (en) * 2002-03-29 2002-10-11 Hon Hai Prec Ind Co Ltd Heat pipe
JP2004028406A (ja) * 2002-06-24 2004-01-29 Namiki Precision Jewel Co Ltd ヒートパイプ及びヒートスプレッダ
JP2004116871A (ja) * 2002-09-25 2004-04-15 Sony Corp 熱輸送体および熱輸送体を有する電子機器
US20040118553A1 (en) * 2002-12-23 2004-06-24 Graftech, Inc. Flexible graphite thermal management devices
JP4357872B2 (ja) * 2003-05-15 2009-11-04 株式会社テイエルブイ ヒートパイプ
TW577969B (en) * 2003-07-21 2004-03-01 Arro Superconducting Technolog Vapor/liquid separated heat exchanging device
JP2005114179A (ja) * 2003-10-02 2005-04-28 Mitsubishi Electric Corp ヒートパイプ
US7246655B2 (en) * 2004-12-17 2007-07-24 Fujikura Ltd. Heat transfer device
CN2773601Y (zh) * 2005-02-17 2006-04-19 徐惠群 热管多层毛细组织
JP4627212B2 (ja) * 2005-04-27 2011-02-09 株式会社フジクラ ループ型ヒートパイプを備えた冷却装置
JP4810997B2 (ja) * 2005-11-29 2011-11-09 いすゞ自動車株式会社 ヒートパイプ及びその製造方法
JP5073229B2 (ja) * 2006-06-09 2012-11-14 株式会社デンソー 排熱回収装置
JP4946188B2 (ja) * 2006-06-13 2012-06-06 日亜化学工業株式会社 発光装置
JP2009052824A (ja) * 2007-08-28 2009-03-12 Fujikura Ltd 自動車のエンジン暖機用加温装置及び方法
JP2009076650A (ja) * 2007-09-20 2009-04-09 Sony Corp 相変化型ヒートスプレッダ、流路構造体、電子機器及び相変化型ヒートスプレッダの製造方法
CN101398272A (zh) * 2007-09-28 2009-04-01 富准精密工业(深圳)有限公司 热管

Also Published As

Publication number Publication date
WO2011100731A3 (en) 2011-12-22
CN102906514A (zh) 2013-01-30
EP2534432A2 (en) 2012-12-19
CN102906514B (zh) 2015-11-25
AU2011216188A1 (en) 2012-09-06
CA2789703A1 (en) 2011-08-18
WO2011100731A2 (en) 2011-08-18
BR112012020282A2 (pt) 2016-05-03
JP2013545956A (ja) 2013-12-26

Similar Documents

Publication Publication Date Title
US20110203776A1 (en) Thermal transfer device and associated systems and methods
Wang et al. Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation
KR20120130210A (ko) 열전달 장치, 및 관련 시스템과 방법
US9279601B2 (en) Solar energy system
US9617983B2 (en) Systems and methods for providing supplemental aqueous thermal energy
US8669014B2 (en) Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods
US8888408B2 (en) Systems and methods for collecting and processing permafrost gases, and for cooling permafrost
US8826657B2 (en) Systems and methods for providing supplemental aqueous thermal energy
US20140219904A1 (en) Geothermal energization of a non-combustion chemical reactor and associated systems and methods
US8673509B2 (en) Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods
CN101693559B (zh) 一种真空或直接接触两用的卧式太阳能膜蒸馏装置
US20130101492A1 (en) Geothermal energization of a non-combustion chemical reactor and associated systems and methods
WO2013025644A1 (en) Systems and methods for extracting and processing gases from submerged sources
JP2019516062A (ja) 太陽熱ユニット
TW201629422A (zh) 工業應用之熱捕捉,轉移及釋放
WO2013025645A2 (en) Systems and methods for collecting and processing permafrost gases, and for cooling permafrost
US8919124B2 (en) Hydrogen permeable pipe
CN112555786B (zh) 一种基于太阳能界面蒸发的温差发电装置
CN111569581B (zh) 一种适用于月球重力环境的气液分离装置及其分离方法
JP2013545956A5 (ko)
Derby et al. Heat and mass transfer in the food, energy, and water nexus—a review
Wilson et al. Design considerations for next-generation sorbent-based atmospheric water-harvesting devices
CA2900651A1 (en) Fuel-cell systems operable in multiple modes for variable processing of feedstock materials and associated devices, systems, and methods
Kumar et al. Performance of evacuated tube solar collector integrated solar desalination unit—a review
CN102320676A (zh) 太阳能海水淡化机组

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination