WO2023195158A1 - 熱変換システム及び熱変換方法 - Google Patents

熱変換システム及び熱変換方法 Download PDF

Info

Publication number
WO2023195158A1
WO2023195158A1 PCT/JP2022/017363 JP2022017363W WO2023195158A1 WO 2023195158 A1 WO2023195158 A1 WO 2023195158A1 JP 2022017363 W JP2022017363 W JP 2022017363W WO 2023195158 A1 WO2023195158 A1 WO 2023195158A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat conversion
conversion system
water
temperature
float
Prior art date
Application number
PCT/JP2022/017363
Other languages
English (en)
French (fr)
Inventor
栄伸 廣田
一貴 納戸
卓威 植松
和典 片山
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/017363 priority Critical patent/WO2023195158A1/ja
Publication of WO2023195158A1 publication Critical patent/WO2023195158A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V50/00Use of heat from natural sources, e.g. from the sea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies

Definitions

  • the present disclosure relates to systems and methods for reducing temperatures near the surface of water.
  • Solar power generation is a system that directly converts sunlight into electricity. Since power generation itself does not require fuel, it does not emit greenhouse gases. For this reason, solar panels were installed across Japan as a national strategy. The number of installations has increased particularly since 2012. However, there are no reports that the Earth's atmospheric temperature is decreasing, but rather increasing.
  • IPCC is an abbreviation for the United Nations Intergovernmental Panel on climate Change, which is a scientific, technological, socio-economic, and This organization was established for the purpose of conducting comprehensive evaluations from various perspectives.
  • Figure 1 shows water depth and water temperature in the ocean. Although the name of the surface mixed layer changes, the water temperature decreases as the water gets deeper, and when the water depth exceeds 4000 m, the water temperature drops below 5 degrees Celsius. This means that the seawater itself is cold. Seawater is in contact with the atmosphere, and if the temperature near the sea surface can be lowered, this will lead to lower atmospheric temperatures in contact with the seawater.
  • the present disclosure aims to reduce the temperature near the water surface.
  • the inventors investigated a method of cooling the atmosphere using this cold energy in seawater. For example, if you want to extract energy by stirring seawater, you will need energy to stir it. In this case, producing that energy would mean emitting additional greenhouse gases, which would be putting the cart before the horse. Therefore, the inventors devised a system that lowers the temperature near the sea surface without using wasteful energy such as stirring.
  • the heat conversion system of the present disclosure includes: A float that floats on water, a heat conversion unit connected to the float and connecting the vicinity of the water surface and a predetermined water depth with a thermally conductive medium; Equipped with
  • a thermally conductive heat conversion section cools the water surface area by transmitting heat near the water surface to a predetermined water depth.
  • the heat conversion section includes: A metal plate placed near the water surface, a metal wire extending from the metal plate in the water depth direction; may be provided.
  • the metal wire may have a polygonal cross-sectional shape.
  • the heat conversion system of the present disclosure includes: An optical fiber that senses the temperature in the water, a temperature measuring device that measures the temperature sensed by the optical fiber; may be provided.
  • the heat conversion system of the present disclosure includes a position measuring device that measures the geographical position of the float, and moves the float to a predetermined geographical position based on the geographical position measured by the position measuring device.
  • a propulsion section may be provided.
  • the heat conversion system of the present disclosure includes a solar panel that converts solar energy into electric power, and a battery that supplies the electric power generated by the solar panel to the position measuring device and the propulsion section. You can leave it there.
  • the temperature near the water surface can be lowered. Therefore, by applying the present disclosure to any water surface on earth, such as the ocean, it is possible to reduce the atmospheric temperature in contact with the water surface.
  • This is an example of the structure of a heat conversion system.
  • This is an example of a cross-sectional structure of a metal wire.
  • This is an example of installing a heat conversion system underwater and transferring energy.
  • This is an example of atmospheric temperature changes associated with seawater cooling.
  • This is an example of the structure of a heat conversion system equipped with a seawater temperature observation function.
  • 1 is an example of a structure of a thermal conversion system with power supply and position correction functions. This is an example of how a heat conversion system is connected.
  • FIG. 1 An example of the system structure is shown in Figure 2.
  • the present disclosure includes three structures. First is the heat conversion section 10, which is composed of a metal plate 11 and a metal wire 12, and this part has a heat conversion function. The second is the float 20, which is a necessary function to float this system on the sea.
  • the shape of the float 20 is arbitrary, it is, for example, a flat plate.
  • the material of the float 20 can be any material that floats on water, for example polyurethane.
  • the metal plate 11 and the metal wire 12 are any medium having thermal conductivity, and for example, a metal material can be used.
  • the metal plate 11 and the metal wire 12 are preferably made of a material with high thermal conductivity; for example, they may be made of copper, which is a metal material that is stable in price and easily available.
  • FIG. 3 shows an example of the cross-sectional shape of the metal wire 12.
  • the cross-sectional shape of the metal wire 12 is generally circular. This is the easiest to make and therefore the most available. However, by making the cross-sectional shape of the metal wire 12 polygonal, such as square or star-shaped, the heat conversion efficiency can be increased.
  • the third part is a connecting part 21 for connecting the heat converting part 10 and the float 20.
  • the structure of the connecting portion 21 can be, for example, a hook shape that is difficult to disconnect, such as is used when connecting trains.
  • FIG. 2 shows an example in which four metal wires 12 are connected to one metal plate 11, the present disclosure is not limited to this.
  • the number of metal wires 12 connected to the metal plate 11 may be three or less, or may be five or more.
  • each metal wire 12 is not limited to one wire, but may be a wire rope in which a plurality of wires are tied together. This allows it to bend flexibly to match the ocean currents, thereby reducing its impact on ocean currents.
  • FIG. 4 shows an example of installing the proposed heat conversion system underwater. Since the float 20 is provided, that part is installed above the sea surface. Since the float 20 and the heat conversion section 10 are connected, the metal plate 11 and the metal wire 12 are installed in the sea. In this system, a metal plate 11 is installed in the depth direction of the sea.
  • the metal wire 12 extending from the metal plate 11 extends in the depth direction of the sea.
  • Figure 1 shows that the deeper the seawater, the lower its temperature, or the colder it becomes. That is, energy moves through the metal plate 11 and the metal wire 12. Warm energy near the sea surface propagates through the metal wire 12 to a cold energy region deep under the sea. In other words, the temperature of the sea water near the surface of the ocean decreases, leading to it becoming colder.
  • Figure 5 shows atmospheric cooling. Using the heat conversion system devised, if the temperature of the seawater surface is lowered, the surrounding atmosphere will also be cooled. By using the cold energy deep in the ocean to lower the surface temperature of the ocean, the atmosphere can be cooled.
  • the metal plate 11 only needs to be placed near the sea surface.
  • the area near the sea surface may be underwater or above water.
  • the temperature is preferably close to atmospheric temperature, and for example, the metal plate 11 is placed at a depth of 0 m or more and 30 m or less.
  • the tip of the metal wire 12 may be placed at any water depth that can lower the temperature of the metal plate 11, for example, it may be placed at a water depth of 50 m or more.
  • Embodiment example 3 In Embodiment 3, an example in which a function for observing changes in seawater temperature is installed in the heat conversion system of this embodiment will be described. In this system, seawater temperature changes occur in order to cool the atmosphere. Therefore, the system of this embodiment has a function of observing changes in seawater temperature.
  • FIG. 6 shows the observation method.
  • An optical fiber thermometer will be used for observation.
  • the optical fiber 30 is installed in the depth direction, and a temperature measuring device 31 is placed on one side of the optical fiber 30.
  • One of the characteristics of the optical fiber 30 is that when the temperature of the optical fiber changes due to a change in ambient temperature, the optical fiber 30 itself contracts in the longitudinal direction.
  • the change in the optical fiber 30 is called strain.
  • This strain can be evaluated with a temperature measuring device 31 installed on one side of the optical fiber 30, and the amount of change in seawater temperature can be estimated for each depth using the distribution of the amount of strain in the length direction of the optical fiber 30. Therefore, the heat conversion system of this embodiment can grasp the amount of change in seawater temperature caused by installing the heat conversion system.
  • the temperature measuring device 31 is equipped with a wireless device 32 and can send measurement data to the user wirelessly.
  • Embodiment example 4 In Embodiment 4, an example in which a position correction function is installed in the heat conversion system of this embodiment will be described.
  • the heat exchange system is equipped with floats 20 and is installed on the sea. There are ocean currents in the ocean, and objects floating on the ocean move due to the currents. Even if there is an area where you want to cool the atmosphere, there is a possibility that this system will flow to other areas. Therefore, the heat conversion system of this embodiment has a configuration that prevents the atmosphere from flowing away from the area where it is desired to be cooled.
  • FIG. 7 shows an example of the system configuration of this embodiment.
  • the heat conversion system of this embodiment includes a GPS (Global Positioning System) 35 that functions as a position measuring device, a screw 36 that functions as a propulsion section, a solar panel 33, and a battery. 34.
  • GPS Global Positioning System
  • a solar panel 33 that converts sunlight energy into electricity is installed on the surface of the float 20, and the solar panel 33 generates electricity.
  • a battery 34 is arranged to store the electric power. Power is distributed from the battery 34 to the temperature measuring device 31, the wireless device 32, the GPS 35, and the screw 36.
  • the GPS 35 measures the geographical position of the float 20. Since the heat conversion system of this embodiment is equipped with GPS 35, it is possible to accurately grasp the geographical position. Therefore, for example, if the heat conversion system moves due to the influence of ocean currents and deviates from a predetermined geographical position, the heat conversion system of this embodiment moves the screw 36 to move the float 20 to a predetermined geographical position. can be moved to position. Furthermore, power is required for the temperature measurement device 31 to measure the strain on the optical fiber 30 and for the wireless device 32 to wirelessly transmit the data to land, but it is possible to do this using the power of the battery 34. can.
  • FIG. 8 shows an example of connecting a plurality of heat conversion systems.
  • a heat conversion system is constructed in seawater using a float 20 or the like.
  • the structure of the connecting part 37 can be, for example, a hook shape that is difficult to be disconnected, such as is used when connecting trains.
  • the various devices mounted on the float 20 can also be changed as necessary.
  • Atmospheric temperature can be lowered by placing the heat conversion system of the present disclosure near any water surface on earth, such as a lake, as long as the temperature decreases depending on the water depth as shown in Figure 1. .
  • Metal plate 12 Metal wire 20: Float 21, 37: Connecting portion 30: Optical fiber 31: Temperature measuring device 32: Wireless device 33: Solar panel 34: Battery 35: GPS 36: Screw

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本開示は、水面付近の温度を低下させることを目的とする。 本開示は、水に浮く浮き(20)と、前記浮き(20)に連結され、水面付近と予め定められた水深とを熱伝導性を有する媒体で接続する熱変換部(10)と、を備える熱変換システムであって、水面付近の熱を予め定められた水深に伝達することで、水面付近を冷却する。

Description

熱変換システム及び熱変換方法
 本開示は、水面付近の温度を低下させるシステム及び方法に関する。
 地球の大気温度が高くなる温暖化は、人類に取って脅威である。温度が高くなる原因として、大気中の温室効果ガスの濃度増加が挙げられる。温室効果ガスとは、大気圏に存在し、地表から放射された赤外線の一部を吸収する特徴がある。温室ガスがなければ、赤外線は大気圏を透過するが、温室効果ガスにより、赤外線が大気圏に留まることで、大気に異変をもたらす。その結果、世界のほぼ全域で平年の気温が昔に比べて高くなり、1880年~2012年の期間では、0.9度程度の平均気温が上昇している。
 地球温暖化の影響で最も知られているのは、気温や海水面の上昇である。海面が上昇すると、沿岸侵食の拡大、土地や財産の損失、人々の移住、高潮リスクの増大、沿岸の自然生態系の減衰、淡水資源への海水の浸入など悪影響が生じる。
 温室効果ガスを減らす取組みとして、代表的なものとして、太陽光発電がある。太陽光発電は、日光を直接的に電力に変換するシステムである。発電そのものには燃料が不要のため、温室効果ガスを排出しない。このため、国家戦略として、太陽光パネルが日本全国に設置された。特に2012年以降に設置量が増加した。しかし、地球の大気温度が低くなる報告はされておらず、むしろ上がっている。
 つまり、太陽光発電を含めた現在の対策では不十分であり、さらなる対策が必要である(例えば、非特許文献1参照。)。ここで、IPCCとは、国連気候変動に関する政府間パネル(Intergovernmental Panel on Climate Change)の略であり、人為起源による気候変化、影響、適応及び緩和方策に関し、科学的、技術的、社会経済学的な見地から包括的な評価を行うことを目的として設立された組織である。
IPCC 第5次評価報告書 特設ページ(日本語)https://www.jccca.org/ipcc/ar5/wg1.html
 発明者らは、温室ガスの排出を少なくする技術ではなく、地球の大気温度そのものを下げる手段を検討し、地球を覆っている海水に着目した。図1は、海での水深と水温を示す。表層混合層等の名称は変わるものの、水深が深くなると水温が低くなり、水深が4000mを超えると水温が5度を下回る。つまり海水そのものは冷たいことが分かる。海水は大気と接しており、海面付近の温度を低下させることができれば、海水に接する大気温度を低下させることにつながる。
 そこで、本開示は、水面付近の温度を低下させることを目的とする。
 発明者らは、この海水中の冷たいエネルギーを用いて大気を冷やす方法を検討した。例えば、海水をかき混ぜて、エネルギーを取り出すとなると、かき混ぜるためのエネルギーが必要になる。この場合、そのエネルギーを作り出すために、さらなる温室効果ガスを排出することになるため、本末転倒である。そこで、発明者らは、かき混ぜる等の無駄なエネルギーを使うことなく、海面付近の温度を低下させるシステムを考案した。
 具体的には、本開示の熱変換システムは、
 水に浮く浮きと、
 前記浮きに連結され、水面付近と予め定められた水深とを熱伝導性を有する媒体で接続する熱変換部と、
 を備える。
 具体的には、本開示の熱変換方法は、熱伝導性を有する熱変換部が、水面付近の熱を予め定められた水深に伝達することで、水面付近を冷却する。
 前記熱変換部は、
 水面付近に配置される金属板と、
 前記金属板から水深方向に延びる金属線と、
 を備えていてもよい。
 ここで、前記金属線の断面形状が多角形であってもよい。
 本開示の熱変換システムは、
 水中の温度を感知する光ファイバと、
 前記光ファイバで感知された温度を測定する温度測定装置と、
 を備えていてもよい。
 本開示の熱変換システムは、前記浮きの地理的位置を測定する位置測定装置と、前記位置測定装置で測定された地理的位置に基づいて、前記浮きを予め定められた地理的位置に移動させる推進部と、を備えていてもよい。
 この場合、本開示の熱変換システムは、太陽光エネルギーを電力に変換する太陽光パネルと、前記太陽光パネルで生成された電力を前記位置測定装置及び前記推進部に供給するバッテリーと、を備えていてもよい。
 なお、上記各開示は、可能な限り組み合わせることができる。
 本開示によれば、水面付近の温度を低下させることができる。このため、本開示を海等の地球上の任意の水面で適用することで、当該水面に接する大気温度を低下させることができる。
海での水深と水温の相関図である。 熱変換システムの構造の一例である。 金属線の断面構造の一例である。 熱変換システムの海中への敷設とエネルギー移動の一例である。 海水冷却に伴う大気の温度変化の一例である。 海水温度の観測機能を備える熱変換システムの構造の一例である。 電力供給及び位置修正機能を備える熱変換システムの構造の一例である。 熱変換システムの連結例である。
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(実施形態例1)
 本実施形態例では、考案した熱変換システムの構造を述べる。システムの構造の一例を図2に示す。本開示は3つの構造を備える。まずは、金属板11と金属線12から構成される熱変換部10であり、この部位は熱変換機能を有する。そして、二つ目は浮き20であり、海上に本システムを浮かせるために必要な機能である。
 浮き20の形状は、任意であるが、例えば平面の板である。浮き20の材料は、水に浮く任意の材料を採用することができるが、例えば、ポリウレタンである。金属板11及び金属線12は、熱伝導性を有する任意の媒体であり、例えば金属材料を用いることができる。金属板11及び金属線12は、熱伝導率が高い材料が好ましく、例えば、価格が安定しており、入手しやすい金属材料である銅であってもよい。
 金属線12の形状についても述べる。海水に金属線12の熱を吸収させるため、海水と金属線12の接触面積が大きいほど有効である。図3に金属線12の断面形状の一例を示す。金属線12の断面形状は、円が一般的である。これは作りやすいため、最も入手しやすい。しかし、金属線12の断面形状を四角や星形等の多角形にすることで、熱変換効率を上げることができる。
 そして、3つ目は熱変換部10と浮き20をつなげるための連結部21である。連結部21の構造は、例えば、電車と電車をつなげる際に用いられるような連結が外れにくいフックの形状を用いることができる。
 なお、図2では1つの金属板11に4本の金属線12が接続されている例を示したが、本開示はこれに限定されない。例えば、金属板11に接続されている金属線12は3本以下であってもよいし、5本以上であってもよい。また、各金属線12は、1本のワイヤーに限らず、複数本のワイヤーが寄り合わされているワイヤーロープであってもよい。これにより、海流に合わせて柔軟に湾曲するため、海流への影響を少なくすることができる。
(実施形態例2)
 実施形態例2では、実施形態例1のシステムの使用方法について述べる。図4に考案した熱変換システムの海中への敷設例を示す。浮き20が備わっているため、その部分は海面上に設置される。浮き20と熱変換部10は連結されているため、金属板11と金属線12は、海中に設置される。このシステムは、海中の深さ方向に金属板11を設置する。
 金属板11から伸びた金属線12は、海中の深さ方向に伸びている。海水は深くなると、海水の温度が低くなる、つまり、冷たくなることを図1に示した。つまり、この金属板11と金属線12を介して、エネルギーが移動する。海面近くの暖かいエネルギーが金属線12を介して、海中深くの冷たいエネルギー領域に伝搬する。つまり、海面近くの海水温度が落ち、冷たくなることに至る。
 図5は、大気の冷却を示す。考案した熱変換システムにより、海水表面の温度が低くなれば、接している大気も同じく冷やされる。海水表面の温度を下げるために、海水深くの冷たいエネルギーを用いことで、大気を冷却できる。
 なお、金属板11は、海面付近に配置されていればよい。海面付近は、水中であってもよいし、水上であってもよい。水中の場合、大気温度に近いことが好ましく、例えば、金属板11は、水深0m以上30m以下に配置される。また、金属線12の先端は、金属板11の温度を低下させうる任意の水深に配置されていればよく、例えば、水深50m以上に配置することができる。
(実施形態例3)
 実施形態例3には、本実施形態の熱変換システムにおける、海水温度の変化の観測機能の搭載例について述べる。本システムでは、大気を冷やすために、海水の温度変化が生じる。そこで、本実施形態のシステムは、海水の温度変化を観察する機能を有する。
 図6に観察方法を示す。観測には、光ファイバ温度計を用いる。光ファイバ30は深さ方向に設置し、光ファイバ30の片側に温度測定装置31を配置する。光ファイバ30の特性の一つに、周囲の温度の変化によって光ファイバの温度が変化すると、光ファイバ30自身も長手方向に収縮をすることが挙げられる。光ファイバ30の変化をひずみと称している。光ファイバ30の片側に設置した温度測定装置31でこのひずみを評価することができ、光ファイバ30の長さ方向におけるひずみ量の分布を用いて海水温度の変化量が深さごとに推定できる。よって、本実施形態の熱変換システムは、熱変換システムを設置したことによって生じる海水温度の変化量が把握できる。温度測定装置31には無線装置32を具備させて、ユーザに無線で測定データを送ることができる。
(実施形態例4)
 実施形態例4では、本実施形態の熱変換システムにおける、位置修正機能の搭載例について述べる。熱交換システムは浮き20が備わっており、海上に設置する。海には海流があり、海上に浮いている物品は、海流の流れにより移動する。大気を冷やしたいエリアがあっても、本システムが他のエリアに流される可能性がある。そこで、本実施形態の熱変換システムは、大気を冷やしたいエリアから流されないための構成を備える。
 図7に、本実施形態のシステム構成例を示す。本実施形態の熱変換システムは、位置測定装置として機能するGPS(Global Positioning Systemの略称。日本語では全地球測位システム)35と、推進部として機能するスクリュー36と、太陽光パネル33と、バッテリー34と、を備える。
 浮き20の表面に太陽光エネルギーを電力に変換する太陽光パネル33を設置し、その太陽光パネル33で電力を発生させる。その電力を蓄電するためのバッテリー34を配置する。バッテリー34からは、温度測定装置31、無線装置32、GPS35、スクリュー36に電力を配電する。
 GPS35は、浮き20の地理的位置を測定する。本実施形態の熱変換システムは、GPS35を備えるため、正確に地理的位置を把握することができる。このため、例えば、海流の影響で、熱変換システムが移動してしまい、所定の地理的位置からずれた場合、本実施形態の熱変換システムは、スクリュー36を動かし、浮き20を所定の地理的位置に移動させることができる。また、温度測定装置31が光ファイバ30のひずみを測定するにも、そのデータを無線装置32が無線で陸地に送るにも電力が必要であるが、それをバッテリー34の電力で実施することができる。
(実施形態例5)
 図8に、複数の熱変換システムの連結例を示す。本開示は、浮き20などによって、海水内に熱変換システムが構築されている。本開示は、この浮き20を連結することによって、大気温度を低下させるエリアを増やすことが簡易にできる。連結部37の構造は、連結部21と同様に、例えば、電車と電車をつなげる際に用いられるような連結が外れにくいフックの形状を用いることができる。また、浮き20に搭載させる各種装置も、必要に応じて変えることができる。
 上述の実施形態では、水面が海面である例を示したが、本開示はこれに限定されない。図1に示すような水深に応じて温度が低下する水面であれば、湖などの地球上の任意の水面付近に本開示の熱変換システムを配置することで、大気温度を低下させることができる。
11:金属板
12:金属線
20:浮き
21、37:連結部
30:光ファイバ
31:温度測定装置
32:無線装置
33:太陽光パネル
34:バッテリー
35:GPS
36:スクリュー

Claims (7)

  1.  水に浮く浮きと、
     前記浮きに連結され、水面付近と予め定められた水深とを熱伝導性を有する媒体で接続する熱変換部と、
     を備える熱変換システム。
  2.  前記熱変換部は、
     水面付近に配置される金属板と、
     前記金属板から水深方向に延びる金属線と、
     を備える請求項1に記載の熱変換システム。
  3.  前記金属線の断面形状が多角形である、
     を備える請求項2に記載の熱変換システム。
  4.  水中の温度を感知する光ファイバと、
     前記光ファイバで感知された温度を測定する温度測定装置と、
     を備える請求項1に記載の熱変換システム。
  5.  前記浮きの地理的位置を測定する位置測定装置と、
     前記位置測定装置で測定された地理的位置に基づいて、前記浮きを予め定められた地理的位置に移動させる推進部と、
     を備える請求項1に記載の熱変換システム。
  6.  太陽光エネルギーを電力に変換する太陽光パネルと、
     前記太陽光パネルで生成された電力を前記位置測定装置及び前記推進部に供給するバッテリーと、
     を備える請求項5に記載の熱変換システム。
  7.  熱伝導性を有する熱変換部が、水面付近の熱を予め定められた水深に伝達することで、水面付近を冷却する、
     熱変換方法。
PCT/JP2022/017363 2022-04-08 2022-04-08 熱変換システム及び熱変換方法 WO2023195158A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017363 WO2023195158A1 (ja) 2022-04-08 2022-04-08 熱変換システム及び熱変換方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017363 WO2023195158A1 (ja) 2022-04-08 2022-04-08 熱変換システム及び熱変換方法

Publications (1)

Publication Number Publication Date
WO2023195158A1 true WO2023195158A1 (ja) 2023-10-12

Family

ID=88242799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017363 WO2023195158A1 (ja) 2022-04-08 2022-04-08 熱変換システム及び熱変換方法

Country Status (1)

Country Link
WO (1) WO2023195158A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321366A (ja) * 1986-07-16 1988-01-28 Kajima Corp 蓄熱式海洋温度差発電装置
JPH02240533A (ja) * 1989-03-14 1990-09-25 Furuno Electric Co Ltd 水中温度測定方法
JPH10205891A (ja) * 1997-01-06 1998-08-04 Seiichi Terui 太陽・波力エネルギーの捕促装置と発電方法
JPH1118615A (ja) * 1997-07-07 1999-01-26 Jatco Corp 海洋移動体および海洋移動体管理システム
JP2002136160A (ja) * 2000-10-27 2002-05-10 Seiko Epson Corp 熱電発電器
JP2003517570A (ja) * 1998-06-18 2003-05-27 キネテイツク・リミテツド 温度感知装置
JP2005327795A (ja) * 2004-05-12 2005-11-24 Sumitomo Electric Ind Ltd 放熱器
JP2013545956A (ja) * 2010-02-13 2013-12-26 マクアリスター テクノロジーズ エルエルシー 熱伝達装置、ならびに関連したシステムおよび方法
JP2015028339A (ja) * 2009-08-27 2015-02-12 マクアリスター テクノロジーズ エルエルシー 補足される海洋熱エネルギー変換(sotec)システムの効率の増加
JP2020150139A (ja) * 2019-03-13 2020-09-17 株式会社テックスイージー 熱電変換モジュール
JP2021143669A (ja) * 2020-03-12 2021-09-24 陽 凍田 台風等の熱帯低気圧制御を目的とする揚水式水圧発電構造体と統合運用方法
JP2022026899A (ja) * 2020-07-31 2022-02-10 三菱ケミカル株式会社 海洋浮体型構造物及び海洋浮体型構造物を用いて海水を冷却するとともにプラスチックを回収する方法。

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6321366A (ja) * 1986-07-16 1988-01-28 Kajima Corp 蓄熱式海洋温度差発電装置
JPH02240533A (ja) * 1989-03-14 1990-09-25 Furuno Electric Co Ltd 水中温度測定方法
JPH10205891A (ja) * 1997-01-06 1998-08-04 Seiichi Terui 太陽・波力エネルギーの捕促装置と発電方法
JPH1118615A (ja) * 1997-07-07 1999-01-26 Jatco Corp 海洋移動体および海洋移動体管理システム
JP2003517570A (ja) * 1998-06-18 2003-05-27 キネテイツク・リミテツド 温度感知装置
JP2002136160A (ja) * 2000-10-27 2002-05-10 Seiko Epson Corp 熱電発電器
JP2005327795A (ja) * 2004-05-12 2005-11-24 Sumitomo Electric Ind Ltd 放熱器
JP2015028339A (ja) * 2009-08-27 2015-02-12 マクアリスター テクノロジーズ エルエルシー 補足される海洋熱エネルギー変換(sotec)システムの効率の増加
JP2013545956A (ja) * 2010-02-13 2013-12-26 マクアリスター テクノロジーズ エルエルシー 熱伝達装置、ならびに関連したシステムおよび方法
JP2020150139A (ja) * 2019-03-13 2020-09-17 株式会社テックスイージー 熱電変換モジュール
JP2021143669A (ja) * 2020-03-12 2021-09-24 陽 凍田 台風等の熱帯低気圧制御を目的とする揚水式水圧発電構造体と統合運用方法
JP2022026899A (ja) * 2020-07-31 2022-02-10 三菱ケミカル株式会社 海洋浮体型構造物及び海洋浮体型構造物を用いて海水を冷却するとともにプラスチックを回収する方法。

Similar Documents

Publication Publication Date Title
US10285309B2 (en) Submerged datacenter
Majid et al. Study on performance of 80 watt floating photovoltaic panel
US9839160B2 (en) Water-based computing system
JP5087757B2 (ja) 熱電変換モジュールとこれを用いた発電装置
Xie et al. Generation of electricity from deep-sea hydrothermal vents with a thermoelectric converter
KR101721372B1 (ko) 수상전력변환장치가 적용된 수상태양광발전시스템
JP2013509522A (ja) バッテリユニットを備えた風力発電機
US20110114155A1 (en) Solar energy use
Elminshawy et al. Assessment of floating photovoltaic productivity with fins-assisted passive cooling
US20100205961A1 (en) Recoverable Heat Exchanger
WO2017115980A1 (ko) 파력 및 온도차 발전장치
KR20110136489A (ko) 열전발전시스템을 장착한 선박
Enaganti et al. Underwater characterization and monitoring of amorphous and monocrystalline solar cells in diverse water settings
WO2023195158A1 (ja) 熱変換システム及び熱変換方法
KR20130085110A (ko) 부유식 태양전지
RU2012123622A (ru) Метод и устройство термофотоэлектрических преобразователей с микронным зазором (мртv) высокой степени с субмикронным зазором
KR20110059922A (ko) 자연수를 이용하는 수냉식 방열판을 갖춘 태양열 열전 발전 장치
JP2023081431A (ja) 電力ケーブルシステム
CN112201742A (zh) 一种用于沙漠地区昼夜运行的热电转换系统
CN112092982A (zh) 一种极地水域用水体环境检测浮标
JP2014118813A (ja) 海洋熱水発電システム
JP2008283770A (ja) 太陽熱と地下放熱との温度差を利用した発電装置
KR101732386B1 (ko) 해양 구조물
JP2006156581A (ja) 光電変換モジュール
CN108417705A (zh) 一种有机无机复合材料热电发电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936556

Country of ref document: EP

Kind code of ref document: A1