KR20120129872A - 측면 안정화 기구를 가지는 부유 웨이퍼 트랙 - Google Patents

측면 안정화 기구를 가지는 부유 웨이퍼 트랙 Download PDF

Info

Publication number
KR20120129872A
KR20120129872A KR1020127014116A KR20127014116A KR20120129872A KR 20120129872 A KR20120129872 A KR 20120129872A KR 1020127014116 A KR1020127014116 A KR 1020127014116A KR 20127014116 A KR20127014116 A KR 20127014116A KR 20120129872 A KR20120129872 A KR 20120129872A
Authority
KR
South Korea
Prior art keywords
gas
tunnel
substrate
channels
wall
Prior art date
Application number
KR1020127014116A
Other languages
English (en)
Other versions
KR101786475B1 (ko
Inventor
언스트 헨드릭 아우구스트 헤라네만
Original Assignee
레비테크 비.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 레비테크 비.브이. filed Critical 레비테크 비.브이.
Publication of KR20120129872A publication Critical patent/KR20120129872A/ko
Application granted granted Critical
Publication of KR101786475B1 publication Critical patent/KR101786475B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67784Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations using air tracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/063Transporting devices for sheet glass
    • B65G49/064Transporting devices for sheet glass in a horizontal position
    • B65G49/065Transporting devices for sheet glass in a horizontal position supported partially or completely on fluid cushions, e.g. a gas cushion
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2249/00Aspects relating to conveying systems for the manufacture of fragile sheets
    • B65G2249/04Arrangements of vacuum systems or suction cups
    • B65G2249/045Details of suction cups suction cups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

기판 처리 장치(100)는: 하부 터널 벽(120), 상부 터널 벽(130), 및 2개의 측면 터널 벽(108)들을 구비하는 처리 터널(102)로서, 처리 벽들은 함께 이송방향(T)으로 연장되는 처리 터널 공간(104)을 구획하는 처리 터널(102); 하부 및 상부 터널 벽 모두 안에 제공되는 복수의 가스 주입 채널들(122, 132)로서, 하부 터널 벽에 있는 가스 주입 채널들은 하부 가스 베어링(124)를 제공하도록 구성되고 상부 터널 벽에 있는 가스 주입 채널들은 상부 가스 베어링(134)를 제공하도록 구성되며, 가스 베어링들은 이들 사이에 기판을 부유시켜 지지하고 수용하도록 구성되는 복수의 가스 주입 채널들(122, 132); 및 측면 터널 벽들(108) 내에 제공되는 복수의 가스 배기 채널들(110)로서, 각각의 측면 터널 벽 내의 가스 배기 채널들은 이송 방향으로 이격되는 복수의 가스 배기 채널들(110)을 포함한다.

Description

측면 안정화 기구를 가지는 부유 웨이퍼 트랙{Floating wafer track with lateral stabilization mechanism}
본 발명은 반도체 공정 분야에 관한 것으로, 보다 상세하게는 실질적으로 사각형인 웨이퍼 행렬을 부유하도록 지지하고 처리하도록 구성된 장치에 관한 것이다.
반도체 장치 제조시에, 반도체 기판들 또는 웨이퍼들은, 예를 들어 증착과 열처리와 같은 매우 다른 처리들을 받을 수 있다. 이러한 처리들을 수행하는 장치는 연속적으로 이어지는 기판들을 처리하도록 구성될 수 있으며 대체 일괄 시스템에 비하여 개선된 처리속도를 제공할 수 있다. 따라서, 상기한 장치는 기판들이 처리되면서 이송될 수 있는 선형 트랙 또는 경로를 특징으로 할 수 있다.
이러한 장치의 설계를 단순화하고 주기적인 유지 보수의 필요성을 줄이기 위하여, 기판들은 "비접촉" 방법, 즉 물리적으로 기판들을 원하는 방향으로 보내는 기계적인 요소를 사용하지 않는 방법에 의해 트랙을 따라 바람직하게 이송될 수 있다. 이러한 방법의 하나는 이송되고 처리되는 동안 떠서 수용될 수 있는 기판들 사이에 상하에 하나씩 2개의 가스 베어링을 사용할 수 있다. 따라서 지지되는 기판들이 가지는 문제는 기판들이 가스 베어링들을 유지하는데 필요한 가스 유동에 의해 불안정해질 수 있다는 것이다. 결과적으로, 기판들은 가스 베어링들의 끝을 향하는 기판의 소정의 경로에서 이탈하기 시작하고/또는 각도 변위를 겪을 수 있다. 이러한 점에서, 예를 들어 공간 원자층 증착 장치와 같은 일부 처리 장치는 특히 사각형 기판들을 처리하기에 적합할 수 있다는 것에 연관성이 있다. (길이 방향을 따라 볼 때) 기판들의 일정한 폭 때문에, 사각형 기판들은 예를 들어 원형 웨이퍼들에 비하여 장치의 처리 용량을 더 잘 사용할 수 있다. 하지만, 사각형 기판들은 원형 대칭성을 가지지 않는다. 자체가 경제적인 가스 유동 관리를 이유로 유리할 수 있는, 측벽들에 의해 구획된 좁은 트랙을 따라서, 원형 대칭성의 결여가 기판들이 측벽들에 충돌하고 측벽들 사이에 끼어들도록 불안정하게 만들 수 있다. 일반적으로, 기판-벽 접촉은 각각 일반적인 부서지기 쉬운 기판이 파손되고/또는 트랙이 혼잡하게 될 때 가장 잘 방지된다. 따라서, 작동이 가능한 이중 가스 베어링 내에서, 특정 각도 편차를 가진 이탈과 같은 위치 이탈을 보정할 수 있는 측면 안정화 기구가 요구된다.
본 발명의 목적은, 이중 가스 베어링 내에서 위치 이탈을 보정할 수 있는 측면 안정화 시스템을 가지는 장치를 제공하는 것이다.
본 발명의 일 양상에 따르면, 기판 처리 장치가 제공된다. 기판 처리 장치는, 하부 터널 벽, 상부 터널 벽, 그리고 2개의 측면 터널 벽들을 구비하는 처리 터널을 포함할 수 있다. 터널 벽들 모두는, 처리 터널의 이송 방향으로 연장되고, 상부 및 하부 터널 벽들에 평행한 적어도 하나의 실질적으로 평평한 기판을 수용하도록 구성되는 처리 터널 공간을 구획할 수 있다. 기판 처리 장치는 하부 및 상부 터널 벽 모두 안에 제공되는 복수의 가스 주입 채널들을 더 포함할 수 있다. 하부 터널 벽 내의 가스 주입 채널들은 하부 가스 베어링을 제공하도록 구성될 수 있고 반면 상부 터널 벽 내의 가스 주입 채널들은 상부 가스 베어링을 제공하도록 구성될 수 있다. 가스 베어링들은 자신들 사이에 기판을 부유시켜 지지하고 수용하도록 구성될 수 있다. 각 측면 터널 벽들은 복수의 가스 배기 채널도 포함할 수 있어서 가스 배기 채널들은 이송 방향에서 이격될 수 있다.
본 발명에 따른 장치는 다양한 반도체 처리를 촉진하도록 사용될 수 있다. 예를 들어, 일 실시예에서, 기판 처리 장치는 다수의 공간적으로 분리되는 반응 물질들 또는 선구 물질들을 포함할 수 있는 적어도 하나의 증착 가스 베어링을 특징으로 하는 공간 원자층 증착 장치로서 구성될 수 있다. 이를 위하여, 이송 방향에서 보았을 때 하부 벽과 상부 벽 중 적어도 하나 안의 가스 주입 채널들은 제1선구 물질 가스 공급원, 퍼지 가스 공급원, 제2선구 물질 가스 공급원, 그리고 퍼지 가스 공급원에 연속적으로 연결되어, 사용 중에, 각각 제1선구 물질 가스, 퍼지 가스, 제2선구 물질 가스, 그리고 퍼지 가스를 포함하는 연속적인 영역을 포함하는 처리 터널 구획을 생성한다. 다른 실시예에서, 기판 처리 장치는 열처리 구역으로서 구성될 수 있다. 이를 위해, 가스 베어링들의 가스 유동들은 적어도 기판이 이송될 수 있는 트랙의 일부를 통하여 적절한 열처리 온도까지 가열될 수 있다. 또 다른 실시예에서, 기판 처리 장치는 기판들의 단순히 안전한 이송 환경을 위해 제공될 수 있다.
본 발명의 이러한 또는 다른 특징들과 장점들은 첨부된 도면을 이용한 다음의 상세한 설명을 통하여 보다 완전히 이해될 것이며, 이러한 상세한 설명은 본 발명을 설명하고자 의도된 것일 뿐 본 발명을 한정하는 것은 아니다.
본 발명에 따르면, 이중 가스 베어링 내에서 위치 이탈을 보정할 수 있는 측면 안정화 시스템을 가지는 장치가 제공된다.
도 1은 본 발명에 따른 원자층 증착 장치의 예시적인 실시예의 일부를 보여주는 도식적인 긴 단면도이다.
도 2는 도 1에 도시된 원자층 증착 장치의 실시예를 보여주는 도식적인 측단면도이다.
도 3는 처리 터널의 2개의 측면 터널 벽들 사이에 배치되는 기판의 2개의 도식적인 평면도이며, 기판이 도 1과 도 2에 도시된 장치의 처리 터널을 통하는 경로를 통과하는 동안 나타날 수 있는 운동/위치 이탈, 즉 병진 이탈(좌측)과 회전 이탈(우측)의 2가지 형태를 개략적으로 도시하는 도면이다.
도 4와 5는 기판이 중심에서 평행하게 벗어나는 경우 이웃하는 가스 배기 채널들의 2개의 반대쌍 사이에 압력 분포의 차이를 설명하기 위한 그래프이다.
도 6 내지 8은 채널의 폭 위에서 단일의 긴 가스 채널 내의 2개의 이웃하는 가스 배기 채널들 사이의 압력 분포의 의존도를 설명하기 위한 그래프로서, 각각의 그래프에서 이웃한 가스 배기 채널들 사이의 중심에서 중심까지의 거리는 10mm, 20mm, 그리고 50mm이다.
도 9는 데이터가 도 10과 11의 그래프에서 비교되는 처리 터널 내의 사각 기판의 다른 각도 위치에 해당하는 3가지 물리적 상황을 설명하기 위한 평면도이다.
도 10은 도 9에 도시된 각 상황들에 대하여 기판의 전체 좌측면에 나란한 긴 가스 채널 내의 압력분포를 설명하는 그래프이다.
도 11은, 도 9에 도시된 각 상황들에 대하여, 기판의 길이를 따라 다른 압력분포를 설명하는 그래프이다.
도 12는 도 1 및 2에 도시된 것과 비슷하지만 상부 및 하부 터널 벽들에 제공되는 추가적인 위치 결정 가스 주입 채널들을 가지는 본 발명에 따른 기판 처리 장치의 실시예에 배치되는 기판에 나란한 긴 가스 채널 내의 3가지 압력 분포를 설명하는 그래프이다.
본 발명에 따른 장치의 구조는 일반적인 용어로 이하에 설명될 것이다. 이 과정에서, 공간 원자층 증착(ALD) 장치로서 구성되는 도 1 및 2에 도시된 예시적인 실시예에 관하여 설명될 것이다. 도 1은 본 발명에 따른 ALD 장치의 예시적인 실시예의 일부를 보여주는 도식적인 긴 단면도이며, 처리 터널의 상부 및 하부 벽들은 비대칭적으로 구성된다. 도 2는 도 1에 도시된 원자층 증착 장치의 실시예를 보여주는 도식적인 측단면도이다.
본 발명에 따른 개시된 장치(100)는 기판(140), 예를 들어 실리콘 웨이퍼, 바람직하게는 기판열의 일부가 선형적인 방식으로 이송될 수 있는 처리 터널(102)을 포함할 수 있다. 즉, 기판(140)은 출구를 향하여 한 방향으로 이송되도록 그 입구에서 처리 터널(102) 안으로 삽입될 수 있다. 이와 달리, 처리 터널(102)은 폐쇄단부를 가질 수 있고 기판(140)은 처리 터널의 입구로부터 폐쇄단부를 향하여 그리고 다시 입구로 되돌아 오는 2방향성 운동을 겪을 수 있다. 상대적으로 작은 설치 공간을 가지는 장치가 요구된다면, 이러한 대체 2방향성 시스템이 오히려 나을 것이다. 처리 터널(102) 자체가 직선적이 될 수 있지만, 이러한 요구는 반드시 필요하지 않을 수 있다.
처리 터널(102)은 4개의 벽들, 즉 상부 벽(130), 하부 벽(120), 및 2개의 측벽들(108)을 구비할 수 있다. 상부 벽(130)과 하부 벽(120)은 서로 평행하게 수평으로 방향을 잡을 수 있고 약간, 예를 들면 0.5-1mm 서로 이격될 수 있어, 예를 들어 0.1-3mm의 두께를 가지고 상부 벽(130)과 하부 벽(120)에 평행한 실질적으로 평평하고 평탄한 기판(140)은 상부 벽(130)과 하부 벽(120)의 건들이지 않고 그 사이에 수용될 수 있다. 실질적으로 수직하고 서로 평행할 수 있는 측벽들(108)은 각 측면에서 상부 벽(130)과 하부 벽(120)을 연결할 수 있다. 측벽들(108)은 처리될 기판(140)의 폭보다 다소 먼 거리, 예를 들면 그 폭에 0.5-3mm만큼 이격될 수 있다. 따라서, 처리 터널(102)의 벽들(108, 120, 130)은 터널 길이의 비교적 작은 단위당 작은 체적을 가지며 터널의 길이 방향으로 연속적으로 정렬되는 하나 이상의 기판들(140)을 수용할 수 있는 긴 처리 터널 공간(104)을 구획한다.
상부 터널 벽(130)과 하부 터널 벽(120) 모두는 복수의 가스 주입 채널들(132, 122)을 구비할 수 있다. 벽들(130, 120) 내의 가스 주입 채널들(132, 122)은 적어도 다수의 채널들이 터널(102)의 길이를 가로질러 전파된 만큼 원하는 대로 배열될 수 있다. 가스 주입 채널들(132, 122)는 예를 들어 25mmX25mm 그리드와 같은 가상의 사각형 그리드의 모서리들에 개재될 수 있어 가스 주입 채널들은 각 벽의 전체 내면 위로, 그 길이방향과 횡방향 모두에서 일정하게 분포된다.
가스 주입 채널들(132, 122)은 가스 공급원, 바람직하게는 같은 터널 벽(120, 130) 그리고 같은 길이 방향 위치에 있는 가스 주입 채널들은 같은 가스나 혼합 가스의 가스 공급원에 연결된다. ALD 목적을 위해, 하부 벽(120)과 상부 벽(130) 중 적어도 하나 안에 있는 가스 주입 채널들(122, 132)은 이송 방향(T)에서 보았을 때 제1 전구 가스 공급원(first precursor gas source), 퍼지 가스 공급원, 제2 전구 가스 공급원, 그리고 퍼지 가스 공급원에 연속적으로 연결될 수 있어서 사용중에 각각 제1 전구 가스, 퍼지 가스, 제2 전구 가스, 그리고 퍼지 가스를 구비하는 연속적인(터널-폭) 가스 영역을 포함할 처리 터널 부분(114)을 생성한다. 하나의 터널 부분(114)은 단일 ALF 주기에 대응하는 것으로 이해된다. 따라서, 다중 터널 부분들(114)은 소정 두께의 박막의 증착이 가능하도록 이송 방향(T)으로 연속적으로 배치될 수 있다. 처리 터널(102) 내의 다른 부분들(114)은 필요하지 않지만 동일한 전구체의 조합을 포함할 수 있다. 다르게 구성된 부분들(114)은 예를 들어 혼합 박막의 증착을 가능하도록 사용될 수 있다.
동일한 처리 터널의 길이 방향 위치를 공유하지만 반대편 터널 벽들(120, 130) 내에 위치하게 되는 반대편 가스 주입 채널들(122, 132)이 동일한 가스 성분의 가스 공급원에 연결되는지는 장치(100)의 소정의 구성에 좌우될 수 있다. 이중면 증착이 바람직한 경우, 즉 처리 터널(102)을 통과하는 기판(140)의 상부면(140b)과 하부면(140a) 모두의 ALD 처리의 경우, 반대편 가스 주입 터널들(122, 132)은 동일한 가스 공급원에 연결될 수 있다. 대신에, 단 한면 증착이 요구되는 경우, 즉 처리될 기판(140)의 상부면(140b)과 하부면(140a) 중 단 하나만의 ALD 처리의 경우, 처리될 기판의 표면을 대면하는 터널 벽들(120, 130) 내의 가스 주입 채널들(122, 132)은 반응 가스 공급원과 비활성 가스 공급원에 교대로 연결될 수 있고 반면 다른 터널 벽에 있는 가스 주입 채널들은 모두 비활성 가스 공급원에 연결될 수 있다.
도 1 및 2의 예시적인 실시예에서, 상부 벽(130)에 있는 가스 주입 채널들(132)은 트리메틸 알루미늄(Al2(CH3)2, TMA) 공급원, 질소(N2) 공급원, 물(H2O) 공급원, 그리고 질소 공급원에 연속적으로 연결되어 산화알루미늄(Al2O3) 원자층 증착 주기를 수행하기에 적합한 일련의 동일한 터널 부분들(114)을 형성한다. 반대로, 하부 터널 벽(120)에 있는 가스 주입 채널들(122)은 모두 질소 공급원에 연결된다. 따라서, 예시적인 장치(100)는 모두 상부 증착 유동 베어링(134)과 하부 비증착 유동 베어링(124)을 통과되는 떠서 지지되는 기판(140)의 정상면(140b) 위에 단일면 증착을 수행하도록 구성되도록 유지하도록 구성된다.
처리 터널(102)의 측벽들(108)의 각각은, 그 전체 길이를 따라 또는 그 일부를 따라, 복수의 가스 배기 채널들(110)을 구비할 수 있다. 가스 배기 채널들(110)은 처리 터널의 길이 방향으로 바람직하게는 같은 거리로 이격될 수 있다. 동일한 측벽(108) 내의 2개의 이웃하는 또는 연속적인 가스 배기 채널들(110) 사이의 거리는 처리될 기판들(140)의 길이와 관련될 수 있다. 본 명세서에서, 사각형 기판(140)의 '길이'는 일반적으로 처리 터널(120)의 길이 방향으로 연장되는 기판의 치수로서 구성되어야 한다. 아래에서 분명해지는 이유 때문에, 기판(140)의 기판(140) 길이의 측벽 부분은 바람직하게는 약 5 내지 20 사이 그리고 더욱 바람직하게는 8 내지 15 사이의 배기 채널들(110)을 항상 포함할 수 있다. 2개의 연속적인 가스 배기 채널들(110) 사이의 중심에서 중심까지의 거리는 약 10-30mm의 범위 안에 있을 수 있다. 2개의 이웃하는 가스 배기 채널들(10)의 단부 사이의 길이 방향 거리는, 말하자면 가스 배기 채널들이 중심에서 중심까지 벌어진 거리에 비하여 상대적으로 '짧은' 중심에서 중심까지의 거리의 적어도 약 75%가 되는 것이 바람직하다. 가스 배기 채널들(110)은 어떠한 적절한 형상이나 크기를 가질 수 있다. 상술한 측벽(108) 내의 배기 채널들(110)은 서로 동일할 수 있으나 반드시 그럴 필요는 없다. 예를 들어, 기판 처리 장치(100)의 일 실시예에서, 모든 가스 배기 채널들(110)은 약 1X0.5mm2의 단면적을 가지는 사각형 단면을 가질 수 있다. 1mm는 처리 터널(102)의 길이 방향의 치수에 대응될 수 있는 반면 0.5mm는 처리 터널9102)의 높이 방향의 치수에 대응될 수 있다. 다른 실시예에서, 배기 채널들(110)은 물론 다른 형상과 다른 치수를 가질 수 있다.
가스 배기 채널들(110)은 처리 터널(102)의 외부에 제공되는 가스 배기관들(112)에 연결되어 그 안으로 배기될 수 있다. 기판 처리 장치(100)이 ALD를 수행하도록 구성되는 경우, 배기 가스들은 다양의 반응하지 않은 전구체들을 함유할 수 있다. 따라서, 서로 다른 반응성 가스 영역들과 관련된 가스 배기 채널들(110)을 (의도하지 않게 화학적 증착에 이르게 할 수 있는) 동일한 가스 배기관(112)에 연결하는 것은 바람직하지 않을 것이다. 결국, 다른 가스 배기관들(112)은 다른 전구체들용으로 제공될 수 있다.
기판 처리 장치(100)의 일반적인 작동은 다음에 설명될 것이다. 사용 중에, 상부 벽(130)과 하부 벽(120) 내의 가스 주입 채널들(132, 122) 모두는 가스를 처리 터널 공간(104) 안으로 주입한다. 각 가스 주입 채널(122, 132)은 연결된 가스 공급원에 의해 제공되는 가스를 주입할 것이다. 기판 처리 장치(100)는 대기압과 비대기압 모두에서 작동할 수 있으며 가스 주입은 적절한 압력 어디에서도 일어날 수 있다. 그러나, 진공 펌프들을 불필요하게 만들고 오염된 가스 유동이 처리 터널 환경에서 터널 공간(104) 안으로(특히 기판 입구와 출구 구간에서) 흐르는 것을 방지하기 위하여, 터널 공간은 바람직하게는 약간 대기압보다 높은 압력에서 유지될 수 있다. 따라서, 가스 주입은 대기압보다 약간 높은 압력, 예를 들어 1×103 Pa 정도의 과잉압력에서 발생될 수 있다. 낮은 압력이 가스 배기관들(112) 안에서 유지되는 경우, 예를 들면 대기압에서, 터널 공간(104) 안으로 주입된 가스는 자연스럽게 옆으로 흐를 것이고 처리 터널의 길이 방향으로 횡단하여 배기관들(112)에 접근하는 측벽들(108) 내의 가스 배기 채널들(110)을 향할 것이다.
기판(140)이 상부 및 하부 벽들(130, 120) 사이에 존재하는 경우, 상부 벽(130) 내의 가스 주입 채널들(132, 122)에 의해 터널 공간(104) 안으로 주입된 가스(들)는 기판의 상부 벽과 상부면(140b) 사이에서 측면으로 흐를 것이다. 기판(140)의 상부면(140b)을 가로지르는 이러한 측면 가스 유동은 상부 유동 베어링(134)를 효과적으로 규정한다. 마찬가지로, 하부 벽(120) 내의 가스 주입 채널들(122)에 의해 터널 공간(104) 안으로 주입된 가스(들)는 기판(140)의 하부 벽과 하부면(140a) 사이에서 옆으로 흐를 것이다. 기판(140)의 바닥면 (140a)을 가로질러 흐르는 이러한 측면 가스 유동은 하부 유동 베어링(124)를 효과적으로 규정한다. 하부 및 상부 유동 베어링들(124, 134)은 함께 기판(140)을 에워싸면서 부유시켜 지지할 수 있다.
기판(140)에 박막을 증착하기 위하여, 기판은 이송 방향(T)으로 처리 터널(102)을 통하여 이동될 수 있다. 기판(140)의 이동은 접촉이나 비접촉 방법에 의한 어떠한 적절한 방식으로 이루어질 수 있다. 일반적으로 기판들을 구동하는 마모성 기계적인 부품들이 장치의 설계를 복잡하게 하고 유지보수의 요구를 증가시키기 때문에 다른 이유들 중에서 비접촉 방법들이 선호된다. 기판(140)을 밀어내는 비접촉 방법들은 이송 방향에서 탄젠트 성분을 가지도록 이송 방향(T)에 대한 각도로 위치되는 가스 주입 채널들(122, 132)을 통하여 달성되는 방향성 가스 유동들에 의한 추진; 전기력 및/또는 자기력들에 의한 추진; (수평에 대하여 전체 처리 터널(120)을 기울임으로써 발생될 수 있는) 중력에 의한 추진과 기타 다른 적절한 방법을 포함할 수 있다.
기판(140)을 구동하는 어떠한 방법이 선택되든, 적절한 기판 이송 속도가 발휘될 수 있도록 보장하는 관리가 이루어져야 한다. 도 1 및 2의 ALD 장치에서, 기판(140)의 이송 속도는, 특정 전구 가스 영역을 통과할 때, 기판 표면적의 일부가 완전히 포화되도록 전구체에 충분히 길게 노출되는 것이 바람직하다. 보다 긴 전구체 영역은 일반적으로 더 빠른 이송 속도를 허용하고 반대의 경우도 마찬가지이다. 하지만, 포화 시간은 사용되는 전구체의 성질과 각각의 영역에 있는 전구체의 농도에 좌우될 수 있음을 유의해야 한다.
기판(140)이 도 1의 처리 터널(102)을 통하여 이동하면, 그 상부면(140b)은 연속적으로 배열되고 횡단 가스 영역들 각각에 존재하는 가스들에 벗겨지는 방식으로 노출된다. 영역들과 각각의 가스들의 배열들이 적절히 선택되도록 제공되면, 하나의 터널 부분(114)의 횡단은 하나의 원자층 증착 주기에 기판(140)을 노출시키는 것과 동일해질 수 있다. 터널(102)은 원하는 만큼 많은 부분들(114)을 포함할 수 있으므로, 임의 두께의 박막은 그 터널을 가로지르는 동안 기판(140) 위에서 성장될 수 있다. 처리 터널(102)의 선형 특정은 처리될 기판들(140)의 연속적인 흐름을 가능하게 하고, 따라서 분명한 처리 능력을 가지는 원자층 증착 장치(100)를 제공할 수 있다.
이제 본 발명에 따른 기판 처리 장치의 일반적인 작용에 대하여 설명할 것이며 그 설계에 포함되는 측면 안정화 기구에 대하여 주목해야 한다.
측면 안정화 기구는 처리 터널(102)을 이동하는 기판들(140)에 의해 들리는 2가지 종류의 운동/위치 이탈, 즉 병진 이탈과 회전 이탈을 보정한다. 병진 이탈은 처리 터널(102)의 측벽들(108) 중 하나를 향하고 다른 것과 멀어지는 전체 기판(140)의 원하지 않은 측면 운동에 관련된 것으로 도 3의 좌측도에 도시되어 있다. 회전 이탈은 사각형 기판의 길이 방향 단부가 측벽들(108)과 일렬로 정렬되도록 하는 기판(140)의 원하지 않은 회전에 관련된 것으로 도 3의 우측도에 도시되어 있다.
이러한 이탈에 있어서의 문제는 이러한 이탈들이 이동하는 기판(140)과 정지 상태의 측벽(108) 사이의 접촉을 야기한다는 것이다. 충돌의 충격 때문에, 기판(140)은 파손될 수 있다. 파손은 다음의 기판들과 접촉할 수 있고 기판들이 쌓이게 하고 처리 터널의 혼잡을 일으킬 것 같은 파편을 만들 수 있다. 사각형 기판(140)은 원형 대칭성 부족에서 야기되는, 회전이 그 유효폭을 변경시킬 수 있는 추가적인 문제를 가지고 있다. 결과적으로, 회전적으로 불안정한 사각형 기판은 처리 터널(102)의 2개의 측벽들(108) 사이에서 끼이거나 혼잡해질 수 있다. 다시, 서로 충돌하는 기판들이 쌓이는 결과를 낳을 수 있다. 어떤 경우에는 장치(100)는 처리 터널(102)을 깨끗하게 하도록 하는 유지 관리를 위해 정지되어야 할 것이다. 명백히, 파손된 기판들, 장치의 휴지시간, 그리고 공수(man-hour)는 기판들(140)과 터널 벽들9108) 사이의 어떠한 접촉을 막음으로써 최선으로 방지되는 경제적 손실로 나타나는 유지관리에 소비된다.
병진 및 회전 이탈 모두를 보정하기 위하여, 측면 안정화 기구가 도 3에 도시된 화살표로 나타낸 보정력을 제공할 수 있다. 즉, 말하자면, 좌측 병진 이탈은 기판(140)에 작용하고 우측으로 밀어내는 순 힘(net forces)에 의해 정정될 수 있는 반면, 기판의 반시계 방향 회전은 기판을 시계 방향으로 회전시키도록 작용하는 우력에 의해 정정될 수 있다. 이러한 보정들은 현재 개시된 측면 안정화 기구에 의해 이루어진다. 구조적으로, 이러한 측면 안정화 기구는 2개의 기본 '요소', 즉 측벽들(108)의 각각 옆의 긴 가스 채널(106)과 각 측벽(108)에 제공되는 복수의 가스 배기 채널들(110)을 포함한다고 말할 수 있다.
상술한 바와 같이, 처리 터널(102)은 바람직하게는 기판(140)보다 약간 더 넓을 수 있다. 그 결과, (좁고) 긴 가스 채널(106)은 기판의 측단과 처리 터널(102)의 각각의 측벽(108) 사이에 중심이 잡힌 기판(140)의 어느 한 측면에 존재할 수 있다. 긴 가스 채널(106)은 처리 터널9102)의 길이 방향에서 양호한 전도성을 가질 수 있고, 각각의 인접한 측벽(108)에서 길이 방향으로 이격된 가스 배기 채널들(110)에 분포되기 전에 기판면들(140a, 140b)을 가로질러 측면으로 흐르는 가스들을 포집한다고 말할 수 있다. 터널(102)의 측벽들 내의 가스 배기 채널들(110)은 처리 터널 공간(104)에서 배기관들(112) 안으로 흐르는 가스의 자유 유동을 제한하고 금지할 수 있다. 따라서, 압력은 인접한 가스 배기 채널들(110) 사이에서 증가될 수 있고 반면 상대적으로 낮은 압력들은 가스 배기 채널들이나 인접한 가스 배기 채널들에서 발생될 수 있다.
이제, 전체적으로 병진 때문이거나 부분적으로 회전 때문에 기판(140)이 불안정해지고 터널(102)의 측벽(108)을 향하여 이동되면, 이는 측벽을 따라 원천적으로 존재하는 긴 가스 채널(106)을 '침범' 할 수 있다. 이로 인해 긴 가스 채널(106)의 폭은 국부적으로 축소될 수 있고, 다음에는 터널 공간(104)에서 가스관들(112)로 진행되는 가스의 배기를 국부적으로 방해할 수 있다. 결론적으로, 압력들은, 긴 가스 채널(106)이 최고로 가압되는 지점들에서 최대가 될 수 있는 연속되는 배기 채널들(110) 사이에서 증가될 수 있다. 압력이 기판의 긴 단부를 따라 증가되면, 그 단부는 (분포된) 보정력을 경험한다. 실제, 보정력은 가장 가까이 접근하는 지점들에서 가장 클 수 있다.
도 3에 도시된 병진 이탈(좌측도)의 경우, 접근한 좌측벽(108)에 나란한 긴 가스 채널(106)은 가압되는 반면 반대 우측벽에 나란한 긴 가스 채널은 넓어진다. 따라서, 압력은 웨이퍼의 좌측면에서 증가될 수 있는 반면 우측면 상의 압력은 낮아질 수 있고, 이러한 효과 모두는 기판을 우측을 밀어내도록 작용하는 순 보정력을 일으킨다. 도 3에 도시된 회전 이탈(우측도)의 경우, 기판의 측단 옆에서 발달되는 압력들은 그 단부 상의 지점이 각 측벽(108)에 얼마나 가까운가에 따라 길이 방향으로 변하는데, 가까울수록 그 지점에서 압력은 높아진다. 2개의 측벽들 모두가 실질적으로 동일하고 서로에 대하여 대칭적으로 대립하고 있는 사실을 포함하여 구성의 대칭성의 결과, 기판(1400의 양 반대 단을 따라 형성되는 압력 프로파일들은 시계방향 보정 우력을 발생시킨다.
긴 가스 채널(106)이 기판(140)에 의해 가압될 때 발달될 수 있는 압력 분포는 가스 채널의 국부적인 폭 외에 연속적인 가스 배기 채널들(110) 사이의 중심에서 중심까지의 거리 중에서 다수의 매개변수들에 좌우될 수 있다. 따라서, 도 3에 도시된 상황 모두는 다소 더 상세하게 설명될 것이다. 병진 이탈은 도 4와 5 그리고 도 6 내지 8을 참조하여 먼저 설명될 것이고 회전 이탈은 도 9 내지 11을 참조하여 계속하여 설명될 것이다. 이 도면들에서 도시된 그래프들은 유체 역학 시뮬레이션을 통하여 얻어진 것이다. 그래프들은 측면 안정화 기구의 정성적인 거동을 우선적으로 설명한다.
도 4와 5는 기판(140)이 중심에서 평행하게 벗어나는 긴 가스 채널들(106)의 (균일한) 폭에서의 압력 프로파일의 의존성을 도시한다. 양 도면들은 이웃하는 가스 배기 채널들 사이의 중심에서 중심까지의 거리가 20mm인 상황과 관련되어 있다. 따라서 도시된 그래프들의 수평축은 가스 배기 채널의 중심(0.000m)부터 어느 지점(0.010m)까지의 길이 방향 길이, 즉 그 가스 배기 채널에서 이웃하는 가스 배기 채널까지의 중간 지점을 아우른다. 각각의 그래프들이 관계된 실제 상황은 그 우측에 삽화로서 도시되었다.
도 4의 상황에서, 기판(140)의 왼쪽이 긴 가스 채널(106)의 폭은 0.5mm까지 가압되는 반면 우측의 긴 가스 채널의 폭은 1.5mm까지 넓어지고, 따라서 기판(140)의 중심잡인 위치는 기판의 양측에서의 1mm 간격에 해당될 것이다. 그래프는, 기판(140)의 왼쪽에 있는 좁은 긴 가스 채널(106)에서, 압력은 배기 채널(110)의 위치에서 낮게 시작되지만 이웃하는 배기 채널의 방향으로 가파르게 증가된다. 기판(140) 우측의 넓은 긴 가스 채널(106)에서의 압력 프로파일은, 한편, 현저히 덜 증가된다. 그래프의 선들은 약 0.002m의 길이 방향 위치에서 서로 교차된다. 이는 0.000 내지 0.002m의 거리에 걸쳐, 말하자면 반대로 배치되는 가스 배기 채널들(110)을 특징으로 하는 길이 방향 위치 또는 인접한 길이 방향 위치에서, 기판(140)을 더 왼쪽으로 밀어내도록 작용하는 기판(140)에 작용하는 미분력이 있음을 의미한다. 그러나, 0.000 내지 0.002m의 거리에 걸쳐, 말하자면 인접한 가스 배기 채널들(110) 사이에 연장되는 반대로 배치되는 측벽부들을 특징으로 하는 길이 방향 위치에서, 기판(140)을 더 우측으로 밀어내도록 작용하는 기판(140)에 작용하는 미분력이 존재한다. 기판(1400의 길이에 걸쳐 결과적인 미분력을 적분하면 기판을 우측으로 밀어내는 기판에 작용하는 보정된 순 힘이 나온다는 결론에 이르게 된다.
도 5의 상황에서, 기판은 다소 왼쪽으로 이동되어 각각 기판의 좌측과 우측에 대하여 0.1mm와 1.9mm의 간격이 형성된다. 좁혀진 긴 가스 채널(106)의 왼쪽에서, 배기 채널(110) 근처의 압력은 도 4의 그래프에 도시된 것에 비하여 떨어졌고, 반면 인접한 가스 배기 채널들(110) 사이의 압력은 증가되었다(도 4 및 5의 그래프들 사이의 압력 축척이 다름에 주의할 것). 한편, 넓혀진 긴 가스 채널(106)의 우측에서, 압력 프로파일은 더 평평해졌다. 기판(140)의 길이에 걸쳐 결과적인 미분력을 적분하면, 기판을 우측으로 밀어내도록 작용하고 도 4에 도시된 상황에 대한 것보다 큰 보정 순 힘이 나타난다는 결론에 이르게 된다. 따라서, 기판(140)이 터널(102)의 측벽(108)에 가까울수록 기판이 경험하는 복원력은 더 커진다.
도 6 내지 8은 채널의 (균일한) 폭 위에서 기판(140)에 나란한 긴 가스 채널(106) 내의 이웃하는 가스 배기 채널들(110) 사이의 압력 분포의 의존도를 도시한다. 도 6 내지 8은 인접한 가스 배기 채널들 사이의 중심에서 중심까지의 거리가 각각 10mm, 20mm, 그리고 50mm인 상황에 관한 것이다. 각 도면은 긴 채널에 대한 데이터나 1.000mm, 0.500mm, 0.250mm, 0.125mm, 그리고 0.063mm의 간격 폭을 포함한다. 도시된 그래프의 수평축들은 다시 가스 배기 채널(110)의 중심(0.000m)에서 그 가스 배기 채널과 이에 가장 근접한 이웃한 가스 배기 채널까지의 중간까지의 지점까지의 길이 방향 거리를 아우른다.
개별적으로, 도 6 내지 8은 모두 동일한 일반적인 관계, 즉 긴 가스 채널(106)이 좁을수록 배기 채널(110)에서 도는 바로 근처의 배기 채널(110)의 위치와 2개의 인접한 배기 채널들 사이의 중간까지의 위치 사이의 압력 차이가 커지는 관계를 나타낸다. 함께 도시된 바와 같이, 도 6 내지 8은 또한 2개의 이웃하는 가스 배기 채널들 사이의 증가되는 중심에서 중심까지의 거리는 이 둘 사이에서 발생되는 최대 압력을 더 증가시키는 사실을 도시한다. 이러한 사실은 이웃하는 가스 배기 채널들(110) 사이의 중심에서 중심까지의 거리가 너무 커지기까지 할 수 있고 이들 사이에 형성되는 압력들은 이동하는 기판이 극복하기에 너무 커질 수 있음을 나타내는 실험에 의해 확증된다. 말하자면, 기판(140)은 중지될 수 있다. 더욱이, 배기 채널들(110) 바로 근처에서 발생되는 압력골들은 증가되는 채널 공간과 함께 깊어지고 측벽들(108)로 기판들이 빨려 들어가게 할 수 있다. 160mmX160mm 기판에 대하여, 대략 10 내지 30mm 사이의 가스 배기 채널의 중심에서 중심까지의 이격 거리들은 소정의 효과, 즉 복원력을 제공하도록 형성되는 충분한 압력과 기판(140)이 통과하는 것을 방지하도록 형성되는 불충분한 압력을 제공한다는 것이 발견되었다. 이러한 이격 거리들은 기판(140)의 길이에 걸쳐 약 5 내지 20 가스 배기 채널들(110)을 병진 이동시킨다.
도 9 내지 11은 회전 이탈에 관한 것이다. 도 9는 그 데이터가 도 10과 11의 그래프에서 비교되는 데이터를 가지는 3개의 물리적 상황을 도시한다. 이러한 물리적 상황들은 처리 터널(102) 내의 160mmX160mm 사각 기판(140)의 다른 각도 위치에 해당한다. 제1상황(위의 도면)에서, 기판(140)의 긴 단부는 터널의 측벽들(108)과 일렬로 정렬되거나 나란하고 기판은 전체적으로 그 사이에 대칭적으로 위치된다. 제2상황(중간 도면)에서, 기판(140)은 반대 구석들은 처리 터널(102)의 측벽들(108)과 각각 0.5 내지 1.5mm의 거리로 이격되는 위치까지 회전되었다. 그리고 제3상황(아래 도면)에서, 기판(140)은 반대 구석들이 각각 0.1mm 내지 1.9mm의 거리로 측벽(108)에서 이격되는 위치까지 더 회전되었다. 처리 터널(102)의 측벽들(108) 내의 인접하는 가스 배기 채널들(110) 사이의 중심에서 중심까지의 거리는 20mm로 측정되어 기판(140)의 단부의 길이의 측벽 부위는 8개(즉 160/20)의 가스 배기 채널들을 포함한다.
도 10은 도 9에 도시된 기판의 각각의 전체 좌측면에 나란한 긴 가스 채널 내의 압력분포를 도시한다. 압력 분포는 인접한 가스 배기 홀들(110) 사이에 위치하는 일련의 '압력 강하(bump)'를 나타낸다. 압력 강하는 긴 가스 채널(106)이 가장 많이 가압될 때 '최고'가 되고 긴 가스 채널(106)이 가장 넓을 때 가장 작다. 양의 길이 방향에서 볼 때(도 9에서 'z'로 표시된 방향), 압력 강하의 높이는 모든 다음의 가스 배기 채널들(110)의 쌍에 대하여 저하된다. 도 9에 도시된 제1상황(즉 회전하지 않은 상황)에 대하여, 모든 압력 강하는 같은 높이를 가진다.
도 10에 도시된 좌측면 압력 분포는 우측면에서 압력분포가 역방향으로 발달되기는 하지만 역시 기판들(140)의 우측면에도 나타난다. 이러한 역방향 분포를 도 10에 도시된 압력 분포에서 빼면 도 11에 도시된 압력 차이 분포를 얻는다. 압력 분포가 기판의 중심에 대하여 대칭이므로, 그 결과적인 효과는 시계방향의 복원 우력에 해당한다. 우력은 도 9의 제3상황(아래 도면)에서 기판(140)에 대하여 가장 크고, 위의 도면에 도시된 제2상황(중간 도면)의 기판에 대하여 약간 작으며, 실제 전혀 회전하지 않은 제1상황(위의 도면)에 있는 기판에 대하여는 영(0)이다.
복원 우력을 제공하는 반대 측벽들(108)의 능력은 기판(140)의 길이를 따라 분포되는 가스 배기 채널들(110)의 수에 좌우된다. 불과 몇 개의 가스 배기 채널들(110)만 있으면 압력 분포는 처리 트랙을 따라 이어지는 모든 길이 방향 위치에서 온화한 복원 우력을 발생시키기에 충분하지 않다. 너무 많은 배기 채널들(110)이 있으면, 배기 채널들(110) 사이의 높은 압력 강하들은 충분하게 발달하지 않는다. 이전과 같이, 5 내지 20의 가스 배기 채널 밀도, 즉 긴 기판 단부의 길이를 따라 존재하는 측벽(108) 내의 가스 배기 채널들(110)의 수가 작동 가능한 반면 8 내지 15의 배기 가스 채널 밀도가 바람직하다.
기판의 측면 안정화를 향상시키고, 특히 기판에 작용하는 어떠한 보정력의 크기를 증가시키기 위한 일반적인 조치로서, 특히 도 1 및 2와 관련하여 설명된 기판 처리 장치(100)는 추가적으로 복수의 위치 결정 가스 주입 채널들(123, 133)을 구비할 수 있다. 바람직한 실시예에서, 이러한 위치 결정 가스 주입 채널들(123, 133)은 하부 터널 벽(120) 및/또는 상부 터널 벽(130)에, 바람직하게는 실질적으로 처리 터널의 전체 길이를 따라 배치되고
(i) 평면도에서 볼 때: 중심이 잡힌 기판(140)의 측단부와 처리 터널(102)의 각각의 측벽(108) 사이의 간격으로(위치 결정 가스 주입 채널들(122, 123)이 중심이 잡힌 웨이퍼와 나란한 길이 방향으로 연장되는 가스 채널(106)(도 2 참조) 안으로 즉각적으로 주입하도록), 그리고
(ii) 터널(120)의 길이 방향에서 볼 때: 연속적인 가스 배기 채널들(110) 사이에
위치될 수 있다.
도 12의 상단 우측 모서리에 삽입된 것은 평면도에서의 위치 결정 가스 주입 채널들(123, 132)의 이러한 위치들을 개략적으로 도시하며, 위치들은 점선으로 표시되어 있다. 위치 결정 가스 주입 채널들(123, 132)은 하부 터널 벽(120)에만 제공되거나, 상부 터널 벽(130)에만 제공되거나, 또는 양측벽(120, 130) 모두에 제공될 수 있다. 후자의 경우, 위치 결정 가스 주입 채널들(122, 123)은 바람직하게 쌍으로 배열되고 한 쌍의 2개의 위치 결정 가스 주입 채널들(122, 123)은 서로 반대편에 배치된다. 장치(100)의 다른 실시예에서, 위치 결정 가스 주입 채널들은 하부 및/또는 상부 터널 벽들(120, 130)에 제공되지 않을 수 있지만 그 안에 제공되는 가스 주입 채널들(110) 사이에서 장치(100)의 측벽들(108)에는 제공될 수 있다. 측벽(108)과 하부 및/또는 상부 터널 벽(120, 130)이 조합된 위치 결정 가스 주입 채널들을 가지는 실시예들이 예상된다.
위치 결정 가스 주입 채널들(123, 133)은 예를 들어 질소와 같은 비활성 위치 결정 가스의 가스 공급원에 연결될 수 있고 바람직하게는 가스 주입 채널들(122, 132)과 독립적으로 제어될 수 있다. 즉, 위치 결정 가스 주입 채널들(123, 133)의 가스 주입 속도는 바람직하게는 가스 주입 채널들(122, 132)의 가스 주입 속도와 독립적으로 제어될 수 있다. 이와 달리, 위치 결정 가스 주입 채널들(123, 133)의 가스 주입 속도는 그 자체로서 제어될 수 있는 가스 주입 채널들(122, 132)의 가스 주입 속도에 비하여 고정될 수 있다. 이와 같은 주입 속도 사이의 고정된 관계의 경우, 위치 결정 가스 주입 채널들(123, 133)의 가스 주입 속도는 바람직하게는 가스 주입 채널들(122, 132)의 가스 주입 속도보다 크도록 구성될 수 있다. 가스 주입 채널들(122, 132)의 적어도 일부의 경우는 (예를 들어 ALD 구성에서 (퍼지) 가스 주입 채널들(122, 132)의 경우) 위치 결정 가스로서 사용될 수도 있는 비활성 처리 가스를 주입하도록 구성되고, 이러한 가스 주입 채널들(122, 132)과 위치 결정 가스 주입 채널들(123, 133)의 유동 속도들 사이의 고정된 관계는 경제적인 방식, 예를 들어 각각의 채널 그룹을 소정의 주입 속도 비를 반영하는 다른 직경들을 가지는 관에 의해 단일(메인) 비활성 가스 공급관에 연결함으로써 발휘될 수 있다.
도 12는 상단 우측 모서리에 삽입된 그림에 도시된 중심이 잡힌 사각형 기판(140)의 측면들과 나란한 긴 가스 채널들에서 발생될 수 있는 3개의 다른 압력 분포들을 도시한다. 압력 분포들은 위치 결정 가스의 다른 주입 속도들, 즉 각각 0 sccm(sccm=분당 표준 세제곱 센티미터), 47.5 sccm, 그리고 95 sccm과 관련되어 있다. 그래프는 본 예에서 15mm 이격된 증가된 위치 결정 가스 주입 유동 속도들은 가스 배기 채널들(110) 사이의 높은 '압력 강하들'에 해당한다는 것을 명확하게 한다. 높은 압력 강하는 이상적인 위치나 방향에서 벗어나는 경우 기판(140)에 작용하는 더 큰 보정력을 야기하므로, 위치 결정 가스를 주입하면 측면 안정화 기구의 작용을 향상시킨다.
이상 어느 정도 첨부 도면을 참조하여 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이러한 실시예들에 의해 한정되지 않는 것으로 이해되어야 한다. 개시된 실시예들에 대한 변형들은 도면과, 개시 내용, 그리고 특허청구의 범위를 연구함으로써 청구된 발명을 실시하는 분야의 통상의 기술자들에 의해 이해되고 실시될 수 있다. 본 명세서에서, "일 실시예"나 "하나의 실시예"는 실시예와 관련되어 설명된 특정한 특징, 구조 또는 특성이 본 발명의 적어도 하나의 실시예에 포함됨을 의미한다. 따라서, 본 명세서에 걸쳐 다양한 곳에서 "일 실시예에서" 또는 "하나의 실시예에서" 등의 문구들이 나타나는 것은 모두 같은 실시예를 참조할 필요는 없다. 나아가, 하나 이상의 실시예들의 특정한 특징, 구조, 또는 특성들은 새롭고 명시적으로 설명하지 않은 실시예들을 구성하는 어떠한 적합한 방식으로 조합될 수 있다.
100: 원자층 증착 장치 102: 처리 터널
104: 처리 터널 공간 106: 긴 가스 채널 인접 측벽
108: 처리 터널의 측벽 110: 가스 배기 채널
112: 가스 배기관
114: 4개의 측면으로 연장되는 가스 영역을 포함하는 터널 부분
120: 하부 터널 벽
122: 하부 터널 벽 내의 가스 주입 채널들
123: 하부 터널 벽 내의 위치 결정 가스 주입 채널
124: 하부 가스 베어링 130: 상부 터널 벽
132: 상부 터널 벽 내의 가스 주입 채널들
133: 상부 터널 벽 내의 위치 결정 가스 주입 채널
134: 상부 가스 베어링 140: 기판
140a, b: 기판의 하부면(a)과 상부면(b)
T: 처리 터널의 이송 방향

Claims (15)

  1. 하부 터널 벽(120), 상부 터널 벽(130), 및 2개의 측면 터널 벽(108)들을 구비하는 처리 터널(102)로서, 상기 터널 벽들이 함께 이송방향(T)으로 연장되고 적어도 하나의 실질적으로 평평하고 상기 상부 및 하부 터널 벽들과 평행하게 배향된 기판(140)을 수용하도록 구성되는 처리 터널 공간(104)을 구획하는 상기 처리 터널(102);
    상기 하부 터널 벽 및 상부 터널 벽 안에 제공되는 복수의 가스 주입 채널들(122, 132)로서, 상기 하부 터널 벽에 있는 상기 가스 주입 채널들은 하부 가스 베어링(124)를 제공하도록 구성되고 상기 상부 터널 벽에 있는 상기 가스 주입 채널들은 상부 가스 베어링(134)을 제공하도록 구성되며, 상기 가스 베어링들은 이들 사이에 상기 기판을 부유시켜 지지하고 수용하도록 구성되는 상기 복수의 가스 주입 채널들(122, 132); 및
    상기 측면 터널 벽들(108) 내에 제공되는 복수의 가스 배기 채널들(110)로서, 각 측면 터널 벽 내에 있는 상기 가스 배기 채널들은 상기 이송 방향으로 이격되는 상기 복수의 가스 배기 채널들(110)을 포함하는 것을 특징으로 하는 기판 처리 장치(100).
  2. 제 1 항에 있어서,
    사각형 기판들(140)을 처리하도록 구성되며, 터널 길이의 단위당 상기 측면 터널 벽(108) 내의 가스 배기 채널들(110)의 수는 상기 사각형 기판들의 길이에 관련되는 것을 특징으로 하는 기판 처리 장치.
  3. 제 2 항에 있어서,
    터널 길이의 상기 단위는 상기 장치가 처리하도록 구성되는 상기 기판들(140)의 길이와 같고 가스 배기 채널 밀도, 즉 상기 터널 길이의 단위 당 상기 측면 터널 벽(108) 내의 가스 배기 채널들(110)의 수는 5 내지 20의 범위에 있는 것을 특징으로 하는 기판 처리 장치.
  4. 제 3 항에 있어서,
    상기 양 측면 터널 벽들 내의 상기 가스 배기 채널 밀도는 적어도 그 길이의 일부를 따라 8 내지 15의 범위에 있는 것을 특징으로 하는 기판 처리 장치.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 측면 터널 벽(108) 내에 제공되는 상기 복수의 가스 배기 채널들의 임의의 2개의 이웃하는 가스 배기 채널들(110)은 그 중심에서 중심까지의 거리의 적어도 75%만큼 이격되는 것을 특징으로 하는 기판 처리 장치.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 측면 터널 벽(108) 내의 상기 가스 배기 채널들(110)은 동일한 거리로 이격되는 것을 특징으로 하는 기판 처리 장치.
  7. 제 1 항 내지 제 6 항 중 어느 한 항에 있어서,
    상기 측면 터널 벽들(108) 내의 상기 가스 배기 채널들(110)은 상기 측면 터널 벽들 중 하나에 제공되는 상기 복수의 배기 채널들의 각 가스 배기 채널이 상기 측면 터널 벽들의 다른 것에 제공되는 상기 복수의 배기 채널들의 대응하는 배기 채널을 대면하도록 반대로 배치되는 것을 특징으로 하는 기판 처리 장치.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,
    상기 측면 터널 벽(108) 내의 2개의 이웃하는 가스 배기 채널들(110) 사이의 중심에서 중심까지의 거리는 10 내지 30mm의 범위에 있는 것을 특징으로 하는 기판 처리 장치.
  9. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서,
    상기 상기 가스 배기 채널들(110)은 0.25 내지 2mm2의 범위 내의 유효 단면적을 가지는 것을 특징으로 하는 기판 처리 장치.
  10. 제 1 항 내지 제 9 항 중 어느 한 항에 있어서,
    상기 처리 터널 공간(104)은 그 내부에서 처리될 상기 기판들(140)보다 0.5 내지 3mm 더 넓은 것을 특징으로 하는 기판 처리 장치.
  11. 제 1 항 내지 제 10 항 중 어느 한 항에 있어서,
    상기 이송 방향(T)에서 볼 때, 사용 중에 제1 전구 가스, 퍼지 가스, 제2 전구 가스, 및 퍼지 가스를 각각 포함하는 연속적인 영역들을 포함하는 처리 터널 부분(114)를 생성하도록, 상기 하부 벽(120)과 상기 상부 벽(130) 중 적어도 하나 안에 있는 가스 주입 채널들(122, 132)은 제1 전구 가스 공급원, 퍼지 가스 공급원, 제2 전구 가스 공급원, 및 퍼지 가스 공급원에 연속적으로 연결되며, 이러한 터널 부분들 중 적어도 2개는 상기 이송 방향으로 연속적으로 배치되는 것을 특징으로 하는 기판 처리 장치.
  12. 제 1 항 내지 제 11 항 중 어느 한 항에 있어서,
    상기 가스가 상기 상부 벽(130) 또는 상기 하부 벽(120) 내에 제공되는 상기 가스 주입 채널들(132, 122)에 의해 상기 터널 공간(104) 안으로 주입되기 전에 가스를 적절한 온도로 가열하도록 구성되는 가열 수단을 더 포함하는 것을 특징으로 하는 기판 처리 장치.
  13. 제 1 항 내지 제 12 항 중 어느 한 항에 있어서,
    상기 상부 터널 벽(120) 및/또는 상기 하부 터널 벽(130) 내에 제공되며,
    (i) 그 내부의 중심이 잡힌 기판을 가지는 상기 기판 처리 장치의 평면도에서 볼 때: 상기 기판(140)의 측단부와 상기 처리 터널9102)의 각각의 측벽(108) 사이의 간격에, 그리고
    (ii) 상기 터널(120)의 길이 방향에서 볼 때: 연속되는 가스 배기 채널들(110) 사이에 배치되는,
    복수의 위치 결정 가스 주입 채널들(123, 133)을 더 포함하고,
    상기 위치 결정 가스 주입 채널들은 질소와 같은 비활성 위치 결정 가스를 주입하도록 구성되는 것을 특징으로 하는 기판 처리 장치.
  14. 제 13 항에 있어서,
    상기 기판 처리 장치(100)의 평면도에서 볼 때, 상기 위치 결정 가스 주입 채널들(123, 133)은 상기 각각의 측벽(108)로부터 1.5mm 이내에 배치되는 것을 특징으로 하는 기판 처리 장치.
  15. 제 13 항 또는 제 14 항에 있어서,
    상기 위치 결정 가스 주입 채널들(123, 133)은 가스가 상기 가스 주입 채널들(122, 132)로부터 주입되도록 구성되는 유동 속도보다 큰 유동 속도에서 위치 결정 가스를 주입하도록 구성되는 것을 특징으로 하는 기판 처리 장치.
KR1020127014116A 2009-11-19 2010-11-19 측면 안정화 기구를 가지는 부유 웨이퍼 트랙 KR101786475B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL2003836A NL2003836C2 (en) 2009-11-19 2009-11-19 Floating wafer track with lateral stabilization mechanism.
NL2003836 2009-11-19
PCT/NL2010/050772 WO2011062490A1 (en) 2009-11-19 2010-11-19 Floating wafer track with lateral stabilization mechanism

Publications (2)

Publication Number Publication Date
KR20120129872A true KR20120129872A (ko) 2012-11-28
KR101786475B1 KR101786475B1 (ko) 2017-11-15

Family

ID=42082573

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127014116A KR101786475B1 (ko) 2009-11-19 2010-11-19 측면 안정화 기구를 가지는 부유 웨이퍼 트랙

Country Status (8)

Country Link
US (2) US20120291707A1 (ko)
EP (1) EP2502265B1 (ko)
JP (1) JP5857304B2 (ko)
KR (1) KR101786475B1 (ko)
CN (1) CN102687261B (ko)
NL (1) NL2003836C2 (ko)
TW (1) TWI587429B (ko)
WO (1) WO2011062490A1 (ko)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2159304A1 (en) * 2008-08-27 2010-03-03 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Apparatus and method for atomic layer deposition
EP2360293A1 (en) 2010-02-11 2011-08-24 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Method and apparatus for depositing atomic layers on a substrate
EP2362411A1 (en) 2010-02-26 2011-08-31 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Apparatus and method for reactive ion etching
NL2005049C2 (en) 2010-07-07 2012-01-10 Levitech B V Method and apparatus for contactlessly advancing substrates.
EP2481832A1 (en) * 2011-01-31 2012-08-01 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Apparatus for atomic layer deposition
DE102011077833A1 (de) * 2011-06-20 2012-12-20 Gebr. Schmid Gmbh Verfahren zur Bearbeitung von Substraten und Vorrichtung dazu
NL2010471C2 (en) 2013-03-18 2014-09-24 Levitech B V Substrate processing apparatus.
US20160031752A1 (en) 2014-07-31 2016-02-04 Corning Incorporated Glass or glass-ceramic for windows, countertops, and other applications
US10611664B2 (en) 2014-07-31 2020-04-07 Corning Incorporated Thermally strengthened architectural glass and related systems and methods
US11097974B2 (en) 2014-07-31 2021-08-24 Corning Incorporated Thermally strengthened consumer electronic glass and related systems and methods
NL2013739B1 (en) * 2014-11-04 2016-10-04 Asm Int Nv Atomic layer deposition apparatus and method for processing substrates using an apparatus.
NL2014497B1 (en) 2015-03-20 2017-01-19 Asm Int Nv Method for cleaning deposition apparatus.
KR102492060B1 (ko) 2016-01-12 2023-01-26 코닝 인코포레이티드 얇은, 열적 및 화학적으로 강화된 유리-계 제품
US11795102B2 (en) 2016-01-26 2023-10-24 Corning Incorporated Non-contact coated glass and related coating system and method
JP6643215B2 (ja) 2016-09-29 2020-02-12 株式会社デンソー 他車線監視装置
CN111065609A (zh) 2017-08-24 2020-04-24 康宁股份有限公司 具有改进的回火能力的玻璃
TWI785156B (zh) 2017-11-30 2022-12-01 美商康寧公司 具有高熱膨脹係數及對於熱回火之優先破裂行為的非離子交換玻璃
NL2021536B1 (en) 2018-08-31 2020-04-30 Levitech B V Substrate processing apparatus and to a method for processing substrates
DE102018131751A1 (de) * 2018-12-11 2020-06-18 Aixtron Se Suszeptor eines CVD-Reaktors
CN114514115B (zh) 2019-08-06 2023-09-01 康宁股份有限公司 具有用于阻止裂纹的埋入式应力尖峰的玻璃层压体及其制造方法
NL2026895B1 (en) * 2020-11-13 2022-06-30 Levitech B V Multi-chamber apparatus and method for ALD

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663197A (en) * 1981-08-26 1987-05-05 Integrated Automation Limited Method and apparatus for coating a substrate
NL8203318A (nl) * 1982-08-24 1984-03-16 Integrated Automation Inrichting voor processing van substraten.
WO1987004853A1 (en) * 1986-02-03 1987-08-13 Edward Bok Installation for floating transport and processing of wafers
JPS63225026A (ja) * 1987-03-16 1988-09-20 Hitachi Ltd 保持装置
US4874273A (en) * 1987-03-16 1989-10-17 Hitachi, Ltd. Apparatus for holding and/or conveying articles by fluid
JP4105778B2 (ja) * 1997-04-24 2008-06-25 株式会社渡辺商行 気流搬送装置
NL1011017C2 (nl) * 1999-01-13 2000-07-31 Asm Int Inrichting voor het positioneren van een wafer.
JP2001010724A (ja) * 1999-06-28 2001-01-16 Watanabe Shoko:Kk 浮上搬送装置
US6821563B2 (en) * 2002-10-02 2004-11-23 Applied Materials, Inc. Gas distribution system for cyclical layer deposition
JP2005075497A (ja) * 2003-08-28 2005-03-24 Murata Mach Ltd 浮上搬送装置
JP4360545B2 (ja) * 2004-07-14 2009-11-11 光洋サーモシステム株式会社 連続熱処理炉
KR100527241B1 (ko) * 2004-11-17 2005-11-09 주식회사 에스에프에이 기판이송장치
JP4594241B2 (ja) * 2006-01-06 2010-12-08 東京エレクトロン株式会社 基板搬送装置、基板搬送方法及びコンピュータプログラム
US7513716B2 (en) * 2006-03-09 2009-04-07 Seiko Epson Corporation Workpiece conveyor and method of conveying workpiece
US7456429B2 (en) * 2006-03-29 2008-11-25 Eastman Kodak Company Apparatus for atomic layer deposition
US11136667B2 (en) * 2007-01-08 2021-10-05 Eastman Kodak Company Deposition system and method using a delivery head separated from a substrate by gas pressure
US8182608B2 (en) * 2007-09-26 2012-05-22 Eastman Kodak Company Deposition system for thin film formation
US20090291209A1 (en) * 2008-05-20 2009-11-26 Asm International N.V. Apparatus and method for high-throughput atomic layer deposition
EP2281300A4 (en) * 2008-05-30 2013-07-17 Alta Devices Inc METHOD AND DEVICE FOR A CHEMICAL STEAM SEPARATION REACTOR
US8688193B2 (en) * 2008-06-26 2014-04-01 Allegheny-Singer Research Institute Magnetic resonance imager, method and program which continuously applies steady-state free precession to k-space

Also Published As

Publication number Publication date
EP2502265A1 (en) 2012-09-26
WO2011062490A1 (en) 2011-05-26
CN102687261B (zh) 2015-11-25
JP5857304B2 (ja) 2016-02-10
NL2003836C2 (en) 2011-05-23
EP2502265B1 (en) 2016-09-14
US20170076935A1 (en) 2017-03-16
TW201133685A (en) 2011-10-01
TWI587429B (zh) 2017-06-11
JP2013511841A (ja) 2013-04-04
CN102687261A (zh) 2012-09-19
US20120291707A1 (en) 2012-11-22
KR101786475B1 (ko) 2017-11-15

Similar Documents

Publication Publication Date Title
KR20120129872A (ko) 측면 안정화 기구를 가지는 부유 웨이퍼 트랙
JP6096127B2 (ja) 原子層成膜のための装置
JP5857294B2 (ja) 動的流体弁およびその構築方法
JP6139412B2 (ja) 原子層成膜のための装置及び方法
KR101851814B1 (ko) 비접촉식으로 기판들을 전진시키기 위한 장치 및 방법
JP2014508221A (ja) 原子層成膜のための装置
CN103493178A (zh) 用于原子层沉积的设备与工艺
KR102599745B1 (ko) 원자층 증착 장치 및 장치를 사용한 기판 처리 방법
KR101243744B1 (ko) 이온주입장치
KR102588108B1 (ko) 유리판의 제조 방법 및 그 제조 장치
KR102399869B1 (ko) 기판 처리 장치
CN105051879A (zh) 具有光学测量的旋转式气体分配组件
CN111902925B (zh) 线上薄膜处理装置
KR20230060625A (ko) 웨이퍼 보관 장치
US20190131164A1 (en) Substrate processing apparatus
CN115103926A (zh) 用于辊运输系统的载体、辊运输系统和具有辊运输系统的真空处理设备
JP2009289778A (ja) シリコンウェーハの洗浄方法および洗浄装置

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant