KR20120115998A - Method of laser joining of aluminum alloy member and resin member - Google Patents

Method of laser joining of aluminum alloy member and resin member Download PDF

Info

Publication number
KR20120115998A
KR20120115998A KR1020127021049A KR20127021049A KR20120115998A KR 20120115998 A KR20120115998 A KR 20120115998A KR 1020127021049 A KR1020127021049 A KR 1020127021049A KR 20127021049 A KR20127021049 A KR 20127021049A KR 20120115998 A KR20120115998 A KR 20120115998A
Authority
KR
South Korea
Prior art keywords
aluminum alloy
alloy member
resin
less
etching
Prior art date
Application number
KR1020127021049A
Other languages
Korean (ko)
Other versions
KR101512888B1 (en
Inventor
마사노리 엔도오
모또시 홋따
히사시 호리
Original Assignee
니폰게이긴조쿠가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 니폰게이긴조쿠가부시키가이샤 filed Critical 니폰게이긴조쿠가부시키가이샤
Publication of KR20120115998A publication Critical patent/KR20120115998A/en
Application granted granted Critical
Publication of KR101512888B1 publication Critical patent/KR101512888B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/02Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving pretreatment of the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/324Bonding taking account of the properties of the material involved involving non-metallic parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/026Chemical pre-treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30321Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined making use of protusions belonging to at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30321Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined making use of protusions belonging to at least one of the parts to be joined
    • B29C66/30322Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined making use of protusions belonging to at least one of the parts to be joined in the form of rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30325Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined making use of cavities belonging to at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30325Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined making use of cavities belonging to at least one of the parts to be joined
    • B29C66/30326Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined making use of cavities belonging to at least one of the parts to be joined in the form of porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7316Surface properties
    • B29C66/73161Roughness or rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/20Acidic compositions for etching aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/009Using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/022Mechanical pre-treatments, e.g. reshaping
    • B29C66/0224Mechanical pre-treatments, e.g. reshaping with removal of material
    • B29C66/02245Abrading, e.g. grinding, sanding, sandblasting or scraping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/163Metal in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/166Metal in the pretreated surface to be joined
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/20Presence of organic materials
    • C09J2400/22Presence of unspecified polymer
    • C09J2400/226Presence of unspecified polymer in the substrate

Abstract

알루미늄 합금 부재로서 그 표면 형상을 복잡화한 것을 사용해서 레이저 접합함으로써, 수지 부재와의 접합 강도를 높인 복합체를 얻는다. 피접합 알루미늄 합금 부재에 에칭 처리를 실시해서 표면에 요철을 형성한 후, 당해 알루미늄 합금 부재의 한쪽 면과 수지 부재를 중첩하고, 그 후에, 상기 알루미늄 합금 부재의 다른 쪽 면에 레이저 광을 조사시켜서 알루미늄 합금 부재에 접하고 있는 수지 부재를 연화시켜서 당해 수지로 상기 요철을 충전한다. 에칭 처리 전에 블라스트 처리를 실시해도 좋다.By laser bonding using the thing which complicated the surface shape as an aluminum alloy member, the composite which raised the bonding strength with a resin member is obtained. After etching to the to-be-joined aluminum alloy member to form an unevenness | corrugation on the surface, one side of the said aluminum alloy member overlaps with a resin member, and after that, a laser beam is irradiated to the other surface of the said aluminum alloy member, The resin member in contact with the aluminum alloy member is softened to fill the irregularities with the resin. You may perform a blast process before an etching process.

Description

알루미늄 합금 부재와 수지 부재의 레이저 접합 방법{METHOD OF LASER JOINING OF ALUMINUM ALLOY MEMBER AND RESIN MEMBER}Laser joining method of aluminum alloy member and resin member {METHOD OF LASER JOINING OF ALUMINUM ALLOY MEMBER AND RESIN MEMBER}

본 발명은, 알루미늄 합금 부재와 수지 부재의 높은 접합 강도를 나타내는 레이저 접합 방법에 관한 것이다.The present invention relates to a laser bonding method showing high bonding strength between an aluminum alloy member and a resin member.

이종 재질인 알루미늄 부재와 합성 수지를 일체화한 알루미늄-수지 복합재는, 자동차, 가정 전기 제품, 산업 기기 등의 넓은 분야에서 사용되고 있다. 종래, 이러한 알루미늄-수지 복합재로서는, 알루미늄 부재와 수지 부재를 접착제의 개재 하에서 압착시킨 것이 사용되고 있었다.BACKGROUND ART An aluminum-resin composite material in which an aluminum member, which is a different material, and a synthetic resin are integrated is used in a wide range of fields such as automobiles, home appliances, and industrial equipment. Conventionally, as such an aluminum-resin composite material, one obtained by pressing an aluminum member and a resin member under an adhesive is used.

그러나, 요즘, 접착제의 개재 없이 고강도의 엔지니어링 수지를 일체화하는 방법이 제안되어 있다. 예를 들어 특허문헌 1에서는, 금속 재료와 수지 재료의 접합 방법에 있어서, 레이저 광원을 사용함으로써, 금속 재료와 수지 재료를 접합한 상태에서 접합부의 수지 재료에 기포를 발생시키는 온도까지 접합부를 가열시킴으로써 접합하는 금속 수지 접합 방법이 제안되어 있다.However, nowadays, a method of integrating high strength engineering resin without interposing an adhesive has been proposed. For example, in patent document 1, in the joining method of a metal material and a resin material, by using a laser light source, the joining part is heated to the temperature which produces a bubble in the resin material of a joining part in the state which joined the metal material and the resin material. A metal resin joining method to join is proposed.

상기 접합 방법도, 금속 재료와 수지 부재가 일체적으로 접합된 복합재를 얻는다는 관점에서는 유용한 기술이지만, 이러한 복합재를, 강력한 접착력(고착력)이나 강성이 요구되는 기계적인 구조물에 적용하고자 하면 충분하지 않다.The joining method is also a useful technique from the viewpoint of obtaining a composite material in which a metal material and a resin member are integrally bonded, but it is not sufficient to apply such a composite material to a mechanical structure requiring strong adhesion (sticking force) or rigidity. not.

따라서, 수지 부재로서 강도가 높은 것을 강력한 접착력으로 접착시킨 알루미늄-수지 복합체가 요구되고 있다.Therefore, there is a demand for an aluminum-resin composite in which a resin having high strength is bonded with a strong adhesive force.

예를 들어, 특허문헌 2, 3에서, 상기 요망을 충족시킨 알루미늄-수지 복합체의 제조 방법이 제안되어 있다. For example, in patent documents 2 and 3, the manufacturing method of the aluminum-resin composite which satisfy | filled the said request is proposed.

특허문헌 2에서는, 암모니아, 히드라진 및 수용성 아민 화합물로부터 선택되는 1종 이상의 수용액에 침지하는 공정을 거쳐서 전자 현미경 관찰로 수평균 내경 10 내지 80nm의 오목부에서 표면이 덮인 알루미늄 합금 부품과, 상기 알루미늄 합금 부품의 상기 표면에 사출 성형으로 고착되어, 주성분이 폴리아미드 수지이고 종성분이 내충격성 개량재인 수지분 조성의 열 가소성 합성 수지 조성물 부품으로 이루어진 금속 수지 복합체가 제안되어 있다.In patent document 2, the aluminum alloy component with which the surface was covered by the concave part of the number average internal diameters 10-80 nm by the electron microscope observation through the process immersed in one or more aqueous solution chosen from ammonia, a hydrazine, and a water-soluble amine compound, and the said aluminum alloy A metal resin composite composed of a thermoplastic synthetic resin composition component having a resin powder composition, which is adhered to the surface of a component by injection molding and whose main component is a polyamide resin and whose longitudinal component is an impact improving material, has been proposed.

이 복합체는, 알루미늄 합금 부품 표면을 초미세한 오목부나 구멍의 개구부로 덮는 형상으로 함으로써, 폴리아미드계 수지 조성을 견고하게 접착하고자 하는 것이다.This composite is intended to firmly adhere to the polyamide-based resin composition by forming the aluminum alloy component surface by covering with a very fine recess or hole.

특허문헌 3에서는, 열 가소성 수지 재료와 금속 재료의 접합에 있어서, 접합하는 계면에 열 가소성 수지 재료와 상용성이 있는 열 가소성 필름을 개재시켜, 레이저 광을 조사함으로써 금속 재료를 발열시켜서 필름을 용융하여 용착 접합하는 것을 특징으로 하는 열 가소성 수지 재료와 금속 재료의 접합 방법이 제안되어 있다.In Patent Document 3, in the bonding of the thermoplastic resin material and the metal material, a thermoplastic film having compatibility with the thermoplastic resin material is interposed through the interface to be bonded, and the metal material is generated by heating the laser light to melt the film. The joining method of the thermoplastic resin material and a metal material characterized by welding by welding is proposed.

이 접합 방법은, 열 가소성 수지 재료와 금속 재료의 계면에 미리 열 가소성 필름을 개재시켜서, 접합시에 발생하는 응력을 완화시킴으로써 높은 접합 강도를 유지하고자 하는 것이다.This bonding method is intended to maintain high bonding strength by interposing a thermoplastic film at an interface between the thermoplastic resin material and the metal material in advance to relieve stress generated during bonding.

WO2007/029440호 공보WO2007 / 029440 publication 일본 특허 공개 제2007-182071호 공보Japanese Patent Publication No. 2007-182071 일본 특허 공개 제2009-39987호 공보Japanese Patent Publication No. 2009-39987

그러나, 상기 특허문헌 2, 3에서 제안되는 복합체도, 기계적인 구조물로서의 사용에 견딜 수 있을 정도의 조인트 강도는 발휘되고 있지 않다.However, the composite strength proposed by the said patent documents 2, 3 also does not exhibit the joint strength to the extent which can endure use as a mechanical structure.

본 발명은, 이와 같은 과제를 해결하기 위해서 안출된 것이며, 알루미늄 합금 부재로서 그 표면 형상을 복잡화한 것을 사용함으로써, 수지 부재와의 접합 강도를 높인 알루미늄 합금 부재와 수지 부재의 레이저 접합 방법을 제공하는 것을 목적으로 한다.SUMMARY OF THE INVENTION The present invention has been devised to solve such a problem, and provides an aluminum alloy member and a laser joining method of a resin member which have increased the bonding strength with the resin member by using a complexed surface shape as the aluminum alloy member. For the purpose of

본 발명의 알루미늄 합금 부재와 수지 부재의 레이저 접합 방법은, 그 목적을 달성하기 위해서, 피접합 알루미늄 합금 부재에 에칭 처리를 실시해서 표면에 요철을 가진 요철부를 형성한 후, 당해 알루미늄 합금 부재의 한쪽 면과 수지 부재를 중첩하고, 그 후에, 상기 알루미늄 합금 부재의 다른 쪽 면에 레이저 광을 조사시켜서 알루미늄 합금 부재에 접하고 있는 수지 부재를 연화시켜 당해 수지로 상기 요철부를 충전하는 것을 특징으로 한다.In order to achieve the object, in the laser bonding method of the aluminum alloy member and the resin member of the present invention, one of the aluminum alloy members is formed after etching the bonded aluminum alloy member to form an uneven portion having irregularities on its surface. The surface and the resin member are superposed, and after that, the other side of the aluminum alloy member is irradiated with laser light to soften the resin member in contact with the aluminum alloy member, thereby filling the uneven portion with the resin.

에칭 처리에 앞서 알루미늄 합금 부재에 블라스트 처리를 행하는 것이 바람직하다.It is preferable to perform a blast process on an aluminum alloy member before an etching process.

피접합 알루미늄 합금 부재로서는, 상기 에칭 처리, 또는 블라스트 처리와 에칭 처리에 의해 얻어진 요철부에 기인하여 복수의 오목 형상부가 형성된 알루미늄 합금 부재를 사용하는 것이 좋고, 바람직하게는 상기 오목 형상부는, 개구 폭이 0.1㎛ 이상 30㎛ 이하의 크기인 동시에, 깊이가 0.1㎛ 이상 100㎛ 이하의 크기인 것이 좋다. 여기서, 상기 개구 폭은, 당해 알루미늄 합금 부재의 두께 방향 단면에 있어서, 이 두께 방향에 직교하고, 또한 요철부의 최고부를 통과하는 톱 라인과 최심부(最深部)를 통과하는 보텀 라인 사이의 하프 라인에 있어서, 주사형 전자 현미경 관찰에 의해 측정된 것이다. As the aluminum alloy member to be joined, it is preferable to use an aluminum alloy member having a plurality of concave portions resulting from the uneven portion obtained by the etching treatment or the blast treatment and the etching treatment, and the concave portion preferably has an opening width. It is good that it is 0.1 micrometer-30 micrometers in size, and depth is 0.1 micrometer-100 micrometers in size. Here, in the thickness direction cross section of the said aluminum alloy member, the said opening width is a half line between the top line which is orthogonal to this thickness direction, and passes through the highest part of the uneven part, and the bottom line which passes through the deepest part. It measured by scanning electron microscope observation.

또한, 상기 에칭 처리, 또는 블라스트 처리와 에칭 처리를 실시한 알루미늄 합금 부재로서는, 내면에 공정 실리콘 결정으로 이루어지는 볼록부를 복수 갖는 개구 폭이 0.1㎛ 이상 30㎛ 이하의 오목 형상부를 표면의 일부 또는 전체면에 복수 갖는 Al-Si계 알루미늄 합금 부재이며, 상기 공정 실리콘 결정으로 이루어지는 볼록부가 구 상당 입자 직경으로 0.1㎛ 이상 10㎛ 이하의 크기를 갖는 것을 사용하는 것이 바람직하다. 즉, 피접합 알루미늄 합금 부재가 Al-Si계 알루미늄 합금 부재로 이루어지고, 상기 에칭 처리, 또는 블라스트 처리와 에칭 처리에 의해 얻어진 요철부에 기인하여 상기와 같은 공정 실리콘 결정으로 이루어지는 볼록부를 내면에 가진 오목 형상부가, 피접합 알루미늄 합금 부재의 표면의 일부 또는 전체면에 복수 형성된 것을 사용하는 것이 바람직하다. 여기서, 상기 개구 폭은, 당해 알루미늄 합금 부재의 두께 방향 단면에 있어서 이 두께 방향에 직교하고, 또한 요철부의 최고부를 통과하는 톱 라인과 최심부를 통과하는 보텀 라인 사이의 하프 라인에 있어서, 주사형 전자 현미경 관찰에 의해 측정된 것이다.Moreover, as the aluminum alloy member which performed the said etching process or the blasting process and the etching process, the concave part of the opening width which has a several convex part which consists of eutectic silicon crystal on the inner surface is 0.1 micrometer or more and 30 micrometers or less to a part or whole surface of a surface. It is preferable to use what has a plurality of Al-Si type aluminum alloy members, and the convex part which consists of said process silicon crystal has the size of 0.1 micrometer-10 micrometers in spherical equivalent particle diameter. That is, the joined aluminum alloy member is composed of an Al-Si-based aluminum alloy member, and has a convex portion made of the above-described process silicon crystal due to the uneven portion obtained by the etching treatment or the blast treatment and the etching treatment. It is preferable to use what recessed part was formed in multiple numbers in one part or whole surface of the to-be-joined aluminum alloy member. Here, the said opening width is a scanning electron in the half line between the top line which is orthogonal to this thickness direction in the thickness direction cross section of the said aluminum alloy member, and passes through the highest part of the uneven part, and the bottom line which passes through the deepest part. It was measured by microscope observation.

상기 공정 실리콘 결정으로 이루어진 볼록부는, 상기 오목 형상부 내면에 0.001g/m2 이상 1g/m2 이하의 양으로 돌출?석출되어 있고, 또한 상기 공정 실리콘 결정의 볼록부를 갖지 않는 개구 폭이 0.1㎛ 이상 30㎛ 이하의 오목 형상부도 동시에 복수 존재하는 것이 바람직하다.Projections made of a silicon crystal wherein the step portion, the concave portion at least 0.001g / m 2 on the inner surface protruding in an amount of 1g / m 2 or less? And is precipitated, and the opening having no convex part of the process the silicon crystal width 0.1㎛ It is preferable that a plurality of concave portions equal to or larger than 30 μm also exist at the same time.

피접합 알루미늄 합금 부재에 에칭 처리를 실시할 때, 에칭액으로서, 할로겐 이온 농도를 0.1g/L 이상 300g/L 이하의 범위 내에서 포함하는 산 농도 0.1 중량% 이상 80 중량% 이하의 산 수용액이며, 산 수용액 중에 수용성 무기 할로겐 화합물을 첨가해서 제조된 것을 사용하는 것이 바람직하다. When etching to a to-be-joined aluminum alloy member, it is an acid aqueous solution of 0.1 weight%-80 weight% of acid concentration which contains a halogen ion concentration within the range of 0.1 g / L or more and 300 g / L or less as etching liquid, It is preferable to use what was manufactured by adding a water-soluble inorganic halogen compound in an acid aqueous solution.

또한, 에칭 처리 전에 실시하는 블라스트 처리로서는, 에어 노즐 방식에 의해 실시되는 것이 바람직하다.Moreover, as a blasting process performed before an etching process, what is performed by an air nozzle system is preferable.

또한, 레이저 광 조사 전에 실시하는 에칭 처리, 또는 블라스트 처리와 에칭 처리는, 접합 강도가 높은 접합체를 얻는다는 관점에서는, 피접합 알루미늄 합금 부재의 수지 부재와의 접합면만으로 충분하지만, 전체면이라도 좋다.In addition, although the etching process performed before laser beam irradiation, or a blast process, and an etching process are sufficient from the viewpoint of obtaining the bonded body with high joint strength, only the joint surface with the resin member of a to-be-joined aluminum alloy member may be sufficient, but the whole surface may be sufficient. .

본 발명의 방법에 의하면, 알루미늄-수지 복합재의 제조에 사용되는 알루미늄 합금 부재 표면에, 미리 복잡화된 요철 형상이 부여되어 있다. 이로 인해, 예를 들어 레이저 접합법으로 그 표면에 수지 부재를 접합했을 때, 상기 복잡화된 요철 형상에 의해 앵커 효과가 유효하게 작용하고, 접합 강도가 높은 알루미늄-수지 복합체가 용이하게 얻어진다.According to the method of this invention, the uneven | corrugated shape previously complicated by the aluminum alloy member used for manufacture of an aluminum resin composite material is given. For this reason, when the resin member is bonded to the surface by a laser joining method, for example, the complicated concave-convex shape effectively acts as an anchor effect, and an aluminum-resin composite having a high bonding strength is easily obtained.

게다가, 본 발명의 방법에서는 알루미늄 합금 소재로서, 일반적인 Al 합금 재에 사용할 수 있을 뿐만 아니라, Al-Si계 주조 합금을 사용할 수 있기 때문에, 형상적으로 자유도가 높은 복합체를 저렴하게 제조할 수 있게 된다. 또한, 이와 같이 제조된 알루미늄-수지 복합체는 알루미늄 합금 부재와 수지 성형체 사이의 계면(알루미늄/수지 계면)의 밀착 강도나 기밀성이 지극히 높고, 또한 가혹한 환경에 노출되어도 그 우수한 밀착 강도 및 기밀성을 유지할 수 있어 장기에 걸쳐 높은 신뢰성을 유지할 수 있는 것이다.In addition, in the method of the present invention, as an aluminum alloy material, not only can be used for general Al alloy materials, but also Al-Si casting alloys can be used, so that a composite having a high degree of freedom in shape can be manufactured at low cost. . In addition, the aluminum-resin composite thus prepared has extremely high adhesion strength and airtightness at the interface between the aluminum alloy member and the resin molded body (aluminum / resin interface), and can maintain excellent adhesion strength and airtightness even when exposed to harsh environments. It is possible to maintain high reliability over the long term.

따라서, 본 발명 방법에 의해 얻어지는 접합 강도가 높은 알루미늄-수지 복합체는, 예를 들어 자동차용 각종 센서 부품, 가전 기기용 각종 스위치 부품, 각종 산업 기기용 콘덴서 부품 등을 비롯하여, 폭 넓은 분야에 있어서의 금속-수지 일체 성형 부품에 적절하게 사용할 수 있고, 높은 결합 강도가 요구되는 금속-수지 일체 성형 부품에 적절하게 사용된다.Therefore, the aluminum-resin composite with high bonding strength obtained by the method of the present invention is widely used in a wide range of fields, including, for example, various sensor parts for automobiles, various switch parts for home appliances, and capacitor parts for various industrial devices. It can be suitably used for metal-resin integrally molded parts, and is suitably used for metal-resin integrally molded parts requiring high bonding strength.

도 1은 Al-Si계 합금 주물의 응고 조직을 설명하는 모식도.
도 2는 Al-Si계 합금 주물의 에칭 후의 단면 조직을 설명하는 모식도.
도 3은 Al-Si계 합금 주물의 에칭 표면을 주사 전자 현미경으로 관찰한 화면.
도 4는 알루미늄 합금 부재의 표면에 형성된 오목부의 개구 폭의 측정 방법을 설명하는 도면.
도 5는 알루미늄 합금 부재의 표면에 형성된 오목부의 단면 모사도.
BRIEF DESCRIPTION OF THE DRAWINGS The schematic diagram explaining the solidification structure of an Al-Si type alloy casting.
2 is a schematic diagram illustrating a cross-sectional structure after etching of an Al—Si alloy casting.
3 is a screen of the etching surface of the Al-Si-based alloy casting observed with a scanning electron microscope.
4 A diagram for describing a method for measuring the opening width of a recess formed in a surface of an aluminum alloy member.
Fig. 5 is a cross-sectional schematic view of a recess formed on the surface of the aluminum alloy member.

본 발명자들은, 상기 특허문헌 1이나 3에서 제안되어 있는 레이저 접합 방법을 채용한 알루미늄-수지 복합체의 제조법으로 충분한 접합 강도가 얻어지지 않는 원인 및 대책에 대해서 예의 검토를 거듭해 왔다.MEANS TO SOLVE THE PROBLEM The present inventors earnestly examined about the cause and countermeasure which a sufficient bonding strength is not obtained by the manufacturing method of the aluminum-resin composite which employ | adopted the laser bonding method proposed by the said patent document 1 or 3.

그 과정에서, 연화된 수지 부재와 알루미늄 표면의 요철부의 맞물림이 충분하지 않다고 가정하고, 알루미늄-수지 복합체를 제조할 때, 복합화하는 수지 부재와의 접합성을 높이기 위해, 알루미늄 합금 부재의 표면 성상의 개선책에 대해서 검토했다.In the process, assuming that the engagement between the softened resin member and the uneven portion of the aluminum surface is not sufficient, when producing an aluminum-resin composite, the improvement of the surface properties of the aluminum alloy member in order to increase the bonding property with the resin member to be compounded. Reviewed.

수지 부재와의 접합성을 높이기 위해서는, 알루미늄 합금 부재의 표면에 앵커 효과가 높은 요철부를 형성하는 것이 유효하다. 그러나, 금속 조성 범위가 넓고 금속 조직이 복잡한 Al 주조용 합금에 대하여는, 일반적인 에칭 처리로는 앵커 효과를 발휘시키는 것은 어렵다.In order to improve the adhesiveness with a resin member, it is effective to form the uneven part with high anchor effect on the surface of an aluminum alloy member. However, for Al casting alloys having a wide metal composition range and complex metal structures, it is difficult to exert the anchor effect with a general etching treatment.

따라서, 본 발명은, Al-Si계 주조용 합금에 있어서도, 효과적인 에칭 처리를 실시함으로써, 그 표면에 앵커 효과가 높은 요철을 형성할 수 있는 것을 발견하고 있다.Therefore, the present invention finds that even in an Al-Si casting alloy, by performing an effective etching treatment, irregularities having high anchor effect can be formed on the surface thereof.

이하에 그 상세를 설명한다.The detail is demonstrated below.

우선, Al-Si계 합금 부재의 표면에 복잡화된 요철부가 형성되기 쉬운 것에 관한 기본적인 원리를 설명한다.First, the basic principle regarding the easy formation of complicated concavo-convex portions on the surface of the Al-Si-based alloy member will be described.

실용적으로 다용되는 아공정-공정 근방 조성을 갖는 Al-Si계 합금의 용탕을 주형 내에서 응고시켰을 때, 도 1에 나타낸 바와 같이, 초정 α-Al(1) 사이를 라멜라 형상의 Al-Si 공정부(2)가 매립되는 형태로 되어 있다. 그리고, Al-Si 공정부(2)는 공정 α-Al(3)과 공정Si(4)로 구성되는 형태가 된다.When the molten Al-Si alloy having a composition near the eutectic-process, which is practically used, is solidified in the mold, as shown in FIG. 1, a lamellar Al-Si process section is formed between the primary α-Al (1). (2) is embedded. And the Al-Si process part 2 becomes a form comprised from process (alpha) -Al (3) and process Si (4).

이러한 금속 조직을 갖는 Al-Si계 합금 부재를, 염산 등의 산 액으로 화학적으로 에칭 처리하면, Al-Si 공정부의 공정 α-Al(3)이 선택적으로 용해된다. 공정α-Al이 초정 α-Al(1)보다도 Al 순도가 낮기 때문이다.When the Al-Si alloy member having such a metal structure is chemically etched with an acid solution such as hydrochloric acid, the step α-Al (3) of the Al-Si process portion is selectively dissolved. This is because step α-Al has lower Al purity than primary α-Al (1).

그 결과, 초정 α-Al(1) 사이를 매립하고 있는 라멜라 형상의 공정부에서 공정 Si(4)만이 잔존하게 되고, 오목부가 된 초정 α-Al 사이의 공극부(5)에 잔존 Si가 상기 오목부 벽에 돌출된 형태가 된다(도 2 참조).As a result, only the process Si (4) remains in the lamellar process part which fills in between the primary α-Al (1), and the remaining Si remains in the void portion 5 between the primary α-Al which becomes the recess. It protrudes into the recess wall (see FIG. 2).

도 3은, 후술하는 실시예에서 사용한 시료의 표면을 주사 전자 현미경으로 관찰한 결과를 나타내는 것이다. 초정 α-Al 사이에 형성된 오목 형상부의 내부에 Si 결정이 돌출되어, 볼록부를 형성하고 있는 것을 안다.FIG. 3 shows the results of observing the surface of the sample used in Examples described later with a scanning electron microscope. It is understood that the Si crystal protrudes inside the concave portion formed between the primary α-Al to form a convex portion.

Al-Si계 Al 합금에 대한 본 발명의 방법에서는, 초정 α-Al 사이의, 잔존 Si가 벽면에 돌출된 오목 형상부에, 레이저 광 조사에 의해 수지 부재를 접합할 때의 앵커 기능을 다 하도록 하는 것이다.In the method of the present invention for the Al-Si-based Al alloy, the anchor Si at the time of joining the resin member by laser light irradiation to the concave portion in which the remaining Si between the primary α-Al protrudes on the wall surface. It is.

상기 앵커 효과를 유효하게 발현시키기 위해서는, 형성되는 오목 형상부를 미세하고, 돌출된 Si 결정이 구성하는 볼록부를 미세하고 또한 많게 하는 것이 유효하며, 화학 에칭 조건을 조정하는 것이 필요해진다. 바람직한 에칭 조건에 대해서는 후기한다.In order to express the anchor effect effectively, it is effective to make the concave portion to be formed fine, and to increase the fine and convex portions formed by the protruding Si crystals, and it is necessary to adjust the chemical etching conditions. Preferred etching conditions are described later.

특히, Al-Si계 합금인 Al 주조용 합금에 있어서 돌출된 Si 결정이 구성하는 볼록부를 미세하고 또한 많게 하기 위해서는, 에칭 처리 전의 전 처리로서 블라스트 처리하는 것이 바람직하다. 특히 블라스트 방식으로서는 에어 노즐식 블라스트가 바람직하다. 에칭 처리 전에 블라스트 처리를 권장하는 이유로서는 이하를 들 수 있다. 금속 조직이 복잡한 Al-Si계 Al 주조용 합금에서는, 블라스트 처리를 하지 않을 경우, 경우에 따라 에칭의 불균일이 발생해서 균일한 에칭 처리는 곤란해진다. 블라스트 처리에서는, 샷 미디어의 충돌에 의해 금속 최표면에 있어서 급열, 급냉이 반복되어, 표면 조직이 미세화, 균일화된다. 따라서, 블라스트 처리 후에 에칭 처리를 함으로써 균일한 처리가 가능하게 된다.In order to make fine and many convex parts which the Si crystal which protrudes in the Al casting alloy which is Al-Si type alloy especially become large, it is preferable to carry out a blast process as a pre-process before an etching process. Especially as a blast system, an air nozzle type blast is preferable. The following is mentioned as a reason to recommend the blasting process before an etching process. In an Al-Si-based Al casting alloy having a complicated metal structure, in some cases, uneven etching occurs and uniform etching treatment becomes difficult. In the blasting process, rapid heat and quenching are repeated on the outermost surface of the metal due to the collision of the shot media, and the surface structure is refined and uniformized. Therefore, the uniform treatment is possible by performing the etching treatment after the blast treatment.

또한, 블라스트 처리 후의 알루미늄 표면은 조면화되기 때문에, 그 후에 오목부 구조를 형성시키는 에칭 처리를 실시함으로써 이중 조면화 구조에 의한 수지 접합성의 향상을 바랄 수 있다. 블라스트 처리 방식으로서, 에어 노즐식이 특히 바람직한 이유로서, 예를 들어 샷식과 비교하여, 미디어의 분사 압력이 높은 것을 들 수 있고, 예를 들어 분사 압력이 낮은 샷식 블라스트와 비교하여, 보다 강한 압력으로 미디어를 표면에 충돌시키는 것이 가능하기 때문에, 결과적으로 균일한 에칭 처리에 바람직한 표면 조직을 형성할 수 있다. 또한, 에칭 처리와 조합함으로써 수지 접합성에 효과적인 이중 조면화 구조를 형성할 수 있다.Moreover, since the aluminum surface after a blasting process is roughened, the resin bonding property by a double roughening structure can be improved by performing the etching process which forms a recessed structure after that. As a blast treatment method, an air nozzle type is particularly preferable, and for example, the injection pressure of the media is higher than that of the shot type, and for example, the media is formed at a higher pressure than the shot blast of which the injection pressure is low. Since it is possible to impinge the surface on the surface, the surface structure suitable for a uniform etching process can be formed as a result. Moreover, the double roughening structure effective for resin bonding property can be formed by combining with an etching process.

한편, 전 처리로서 블라스트 처리하지 않는 경우에는, 에칭 처리 후에 초음파 처리를 하는 것이 바람직하다. 상기 기재와 같이, 특히 초기의 에칭 거동에 있어서 에칭 불균일이 발생한다. 이것을 방지하기 위해서는, 에칭시의 욕온을 높게 하거나 또는 침지 시간을 길게 함으로써, 에칭 처리에 의한 용해량을 크게 할 필요가 있지만, 이 경우, 알루미늄 용해량의 증가에 수반해, 공정 Si 결정이 최표면에 퇴적된다고 하는 문제가 발생한다. 공정 Si 결정의 퇴적층은 다공성 구조이기 때문에 수지가 인입되기 쉽지만,한편으로 Al-Si계 Al 합금과의 밀착성은 매우 작기 때문에 접합 강도를 얻는 것은 곤란하다. 에칭 처리 후에 초음파 처리함으로써, 최표층에 존재하는 퇴적된 공정 Si 결정을 선택적으로 제거하고, 수지 접합성에 기여하는 표면 오목부 내의 공정 Si 결정만 잔존시키는 것이 가능하게 된다.On the other hand, when not blasting as a pretreatment, it is preferable to perform ultrasonication after an etching process. Like the substrate, etching irregularities occur, particularly in the initial etching behavior. In order to prevent this, it is necessary to increase the amount of dissolution by the etching treatment by increasing the bath temperature at the time of etching or by lengthening the immersion time. A problem arises that it accumulates in. Since the deposited layer of the step Si crystal has a porous structure, the resin is easily introduced, but on the other hand, it is difficult to obtain the bonding strength because the adhesion with the Al-Si-based Al alloy is very small. By the ultrasonic treatment after the etching treatment, it becomes possible to selectively remove the deposited process Si crystals present in the outermost layer and to leave only the process Si crystals in the surface recesses that contribute to the resin bonding property.

Al-Si계의 Al 주조용 합금에 있어서 앵커 기능을 효과적으로 발휘하는 볼록부의 크기, 분포 상태에 대해서 설명한다. 알루미늄 합금 부재의 표면 구조를 주사형 전자 현미경(히타치제 FE-SEM, S-4500형태)로 관찰했을 때, 공정 Si 결정으로 이루어진 볼록부의 크기는 구 상당 입자 직경으로 0.1㎛ 이상 10㎛ 이하로 하는 것이 바람직하다. Si 결정 크기가 0.1㎛ 이하의 크기에 미치지 않으면 공정 Si 결정으로 이루어진 볼록부 자체가 꺾이기 쉬워 앵커 작용을 발휘할 수 없는 경우가 있다. 한편, Si 결정 크기가 10㎛를 초과하는 크기의 경우에도 크기가 지나치게 커서 앵커 작용을 발휘할 수 없는 경우가 있다.The size and distribution state of the convex portion which effectively exhibits the anchor function in the Al-Si alloy for Al casting will be described. When the surface structure of the aluminum alloy member was observed with a scanning electron microscope (FE-SEM made by Hitachi, in the form of S-4500), the size of the convex portion formed of the eutectic Si crystal was 0.1 µm or more and 10 µm or less with a spherical equivalent particle diameter. It is preferable. If the Si crystal size is less than 0.1 µm or less, the convex portion itself formed of the eutectic Si crystal is likely to be bent, so that the anchoring action may not be exhibited. On the other hand, even in the case where the Si crystal size is larger than 10 µm, the size may be too large to exhibit an anchoring action.

또한, 잔존 Si가 벽면에 돌출된 오목 형상부는, 알루미늄 합금 부재의 두께 방향 단면에 있어서 이 두께 방향에 직교하고, 또한 요철부의 최고부를 통과하는 톱 라인과 최심부를 통과하는 보텀 라인 사이의 하프 라인에 있어서, 주사형 전자 현미경 관찰에 의해 측정되는 개구 폭이 0.1㎛ 이상 30㎛ 이하, 바람직하게는 0.5㎛ 이상 20㎛ 이하, 보다 바람직하게는 1㎛ 이상 10㎛ 이하의 크기이며, 톱 라인부터 보텀 라인까지의 깊이가 0.1㎛ 이상 100㎛ 이하, 바람직하게는 0.5㎛ 이상 50㎛ 이하의 크기인 것이 좋다.Further, the concave portion in which the remaining Si protrudes from the wall surface is in the half line between the top line passing perpendicular to the thickness direction in the thickness direction cross section of the aluminum alloy member and passing through the top of the uneven portion and the bottom line passing through the deepest portion. WHEREIN: The aperture width measured by scanning electron microscope observation is 0.1 micrometer or more and 30 micrometers or less, Preferably they are 0.5 micrometer or more and 20 micrometers or less, More preferably, they are the sizes of 1 micrometer or more and 10 micrometers or less, and are top line to bottom line The depth up to 0.1 micrometer or more and 100 micrometers or less, Preferably it is 0.5 micrometer or more and 50 micrometers or less.

이 오목 형상부의 개구 폭이 0.1㎛보다 좁으면, 수지 접합시에 용융 수지가 진입하기 어려워지고, 알루미늄 합금 부재와 수지 부재의 계면에 미소한 공극이 발생하여, 우수한 밀착 강도나 기밀성이 얻어지기 어려운 경우가 있고, 반대로, 30㎛ 보다 넓게 하고자 하면, 알루미늄 성형체의 표면 처리(에칭 처리)시에 용해 반응이 과잉으로 진행하여, 재료 표면의 결락 혹은 재료의 판 두께 감소량의 증대라는 문제가 발생하는 경우가 있으며, 재료 강도 부족인 제품이 발생해서 생산성 저하의 원인이 된다. 또한, 깊이에 대해서도, 0.1㎛보다 얕으면, 충분한 수지 성형체의 감입부가 얻어지기 어려운 경우가 있고, 반대로, 100㎛보다 깊게 하고자 하면, 알루미늄 성형체의 표면 처리(에칭 처리)시에 용해 반응이 과잉 진행되어, 재료 표면의 결락 혹은 재료의 판 두께 감소량의 증대라는 문제가 발생하는 경우가 있다.If the opening width of this concave portion is narrower than 0.1 micrometer, it will become difficult for molten resin to enter at the time of resin bonding, a micro void will generate | occur | produce in the interface of an aluminum alloy member and a resin member, and it will be hard to obtain the outstanding adhesive strength and airtightness. On the contrary, when it wants to make it wider than 30 micrometers, when the surface reaction (etching process) of an aluminum molded object progresses excessively, the problem of the lack of a material surface or the increase of the thickness reduction of a material arises. In addition, a product having insufficient material strength is generated, which causes a decrease in productivity. Also, when the depth is shallower than 0.1 µm, the immersion portion of a sufficient resin molded body may be difficult to be obtained. On the contrary, when it is intended to be deeper than 100 µm, the dissolution reaction proceeds excessively during the surface treatment (etching treatment) of the aluminum molded body. This may cause problems such as missing of the surface of the material or an increase in the reduction in sheet thickness of the material.

본 발명에 있어서, Al-Si계 Al 합금의 잔존 Si가 벽면에 돌출된 복수의 오목 형상부의 밀도에 대해서는, 0.1mm 사방당 개구 폭 0.5㎛ 이상 20㎛ 이하 및 깊이 0.5㎛ 이상 20㎛ 이하의 범위 내의 1종 또는 2종 이상의 크기인 것이 5개 이상 200개 이하 정도의 범위로 존재하는 것이 좋다.In the present invention, the density of the plurality of concave portions in which the remaining Si of the Al-Si-based Al alloy protrudes from the wall surface is in the range of 0.5 µm or more and 20 µm or less in the opening width per 0.1 mm and 0.5 µm or more and 20 µm or less in depth. It is good to exist in the range of 5 or more and about 200 or less of 1 type or 2 or more types of insides.

또한, 상기 Al-Si계 알루미늄 합금 부재의 표면 구조를 에너지 분산형 X선 분석 장치(호리바 세이사꾸쇼제 EMAX-7000)의 맵핑 분석에 의해 실리콘 원소 및 알루미늄 원소 분석을 행했을 때, 공정 부분에 존재하는 Si만이 분포하는 부위가 5% 이상 80% 이하를 차지하도록 하는 것이 바람직하다. Si 분포 부위가 5% 미만에서는 유효한 앵커 효과는 발현되지 않는 경우가 있다. 반대로 80%를 초과하면 오목 형상부 벽면을 형성하는 초정 α-Al의 용해도 무시할 수 없고, 상기 벽면이 용해하여, Si 결정이 오목 형상부 내에 퇴적되는 상태로 되고, 수지 성분에 대하여 앵커 효과가 작용하지 않게 되는 경우가 있다.Further, when the surface structure of the Al-Si-based aluminum alloy member is analyzed by silicon and aluminum element analysis by mapping analysis of an energy dispersive X-ray analyzer (EMAX-7000 manufactured by Horiba Seisakusho Co., Ltd.), It is preferable to make the site | part which only Si which exists exists occupy 5% or more and 80% or less. If the Si distribution site is less than 5%, the effective anchor effect may not be expressed. On the contrary, if it exceeds 80%, the solubility of primary α-Al forming the concave wall surface cannot be ignored, and the wall surface dissolves and Si crystals are deposited in the concave portion, and the anchor effect acts on the resin component. You may not do it.

공정 Si 결정으로 이루어진 볼록부의 돌출량은, 상기 오목 형상부 내면에 0.001 이상 1g/m2 이하의 양으로 돌출?석출되어 있는 것이 바람직하다. 0.001g/m2에 미치지 않으면 유효한 앵커 효과가 발현되기 어려운 경우가 있다. 반대로 1g/m2를 초과하면 오목 형상부 벽면을 형성하는 초정 α-Al의 용해도 무시할 수 없고, 상기 벽면이 용해하여, Si 결정이 오목 형상부 내에 퇴적되는 상태로 되어, 수지 성분에 대하여 앵커 효과가 작용하지 않게 되는 경우가 있다.It is preferable that the protrusion amount of the convex part which consists of process Si crystals protrudes and precipitates in the quantity of 0.001 or more and 1 g / m <2> or less on the inner surface of the said recessed part. If it is less than 0.001 g / m <2> , an effective anchor effect may be hard to express. On the contrary, when it exceeds 1 g / m 2 , the solubility of primary α-Al forming the concave wall surface cannot be ignored, and the wall surface dissolves, and Si crystals are deposited in the concave portion, and the anchor effect is applied to the resin component. May not work.

또한, 볼록부의 돌출량은, Al-Si계 알루미늄 합금 부재의 표면에 형성된 Si 결정을, 브러시를 사용해서 깎아 떨어뜨린 후, 0.1㎛ PC 멤브레인 필터를 사용해서 채취한 결정 입자를 중량법에 의해 측정한 것이다.In addition, the protrusion amount of the convex part measured the crystal grains collected using the 0.1 micrometer PC membrane filter by the gravimetric method after shaving off the Si crystal formed on the surface of the Al-Si type aluminum alloy member using the brush. will be.

여기에서는, 상기 공정 α-Al의 선택적 용해에 의해 형성된 공정 Si 결정의 돌출부를 갖는 오목 형상부와 함께 앵커 기능을 효과적으로 발휘하는 초정 α-Al에 형성되는 오목 형상부에 대해서 설명한다. 알루미늄 부재의 표면의 요철부에 기인해서 형성되는 복수의 오목 형상부는, 도 4에 도시한 바와 같이, 알루미늄 합금 부재의 두께 방향 단면에 있어서 이 두께 방향에 직교하고, 또한 요철부의 최고부를 통과하는 톱 라인과 최심부를 통과하는 보텀 라인 사이의 하프 라인에 있어서, 주사형 전자 현미경 관찰에 의해 측정된다. 그 개구 폭이 0.1㎛ 이상 30㎛ 이하, 바람직하게는 0.5㎛ 이상 20㎛ 이하, 보다 바람직하게는 1㎛ 이상 10㎛ 이하의 크기이며, 톱 라인부터보텀 라인까지의 깊이가 0.1㎛ 이상 100㎛ 이하, 바람직하게는 0.5㎛ 이상 50㎛ 이하의 크기인 것이 좋다.Here, the concave portion formed in the primary α-Al which effectively exhibits the anchor function together with the concave portion having the protruding portion of the step Si crystal formed by the selective dissolution of the step α-Al will be described. As shown in FIG. 4, the plurality of concave portions formed due to the uneven portion of the surface of the aluminum member are orthogonal to the thickness direction in the thickness direction cross section of the aluminum alloy member and pass through the top of the uneven portion. In the half line between the line and the bottom line passing through the deepest part, it is measured by scanning electron microscope observation. The opening width is 0.1 µm or more and 30 µm or less, preferably 0.5 µm or more and 20 µm or less, more preferably 1 µm or more and 10 µm or less, and the depth from the top line to the bottom line is 0.1 µm or more and 100 µm or less. Preferably, they are 0.5 micrometer-50 micrometers in size.

이 오목 형상부의 개구 폭이 0.1㎛보다 좁으면, 수지 접합시에 용융 수지가 진입하기 어려워져 알루미늄 합금 부재와 수지 성형체의 계면에 미소한 공극이 발생하여 우수한 밀착 강도나 기밀성이 얻어지기 어려운 경우가 있고, 반대로, 30㎛보다 넓게 하고자 하면, 알루미늄 성형체의 표면 처리(에칭 처리)시에 용해 반응이 과잉 진행하여, 재료 표면의 결락 혹은 재료의 판 두께 감소량의 증대라는 문제가 발생하며, 재료 강도 부족인 제품이 발생해서 생산성 저하의 원인이 되는 경우가 있다. 또한, 깊이에 대해서도, 0.1㎛보다 얕으면, 충분한 수지 성형체의 감입부가 얻어지기 어려운 경우가 있고, 반대로, 30㎛보다 깊게 하고자 하면, 알루미늄 성형체의 표면 처리(에칭 처리)시에 용해 반응이 과잉으로 진행하여, 재료 표면의 결락 혹은 재료의 판 두께 감소량의 증대라는 문제가 발생하는 경우가 있다.When the opening width of the concave portion is smaller than 0.1 mu m, it is difficult for molten resin to enter during resin bonding, and micro voids are generated at the interface between the aluminum alloy member and the resin molded body, so that excellent adhesion strength and airtightness are difficult to be obtained. On the contrary, if it is intended to be wider than 30 µm, the dissolution reaction proceeds excessively during the surface treatment (etching treatment) of the aluminum molded body, resulting in a problem of missing the surface of the material or an increase in the plate thickness reduction of the material. Phosphorus product may arise and may cause productivity fall. Also, when the depth is shallower than 0.1 µm, the immersion portion of a sufficient resin molded body may be difficult to be obtained. On the contrary, when it is intended to be deeper than 30 µm, the dissolution reaction is excessive during the surface treatment (etching treatment) of the aluminum molded body. Proceeding, there may be a problem that there is a problem of missing the material surface or increasing the amount of sheet thickness reduction of the material.

본 발명에 있어서, 알루미늄 합금 부재의 표면의 요철부에 기인해서 형성되는 복수의 오목 형상부의 밀도에 대해서는, 0.1mm 사방당 개구 폭 0.5㎛ 이상 20㎛ 이하 및 깊이 0.5㎛ 이상 20㎛ 이하의 범위 내의 1종 또는 2종 이상의 크기인 것이 5개 이상 200개 이하 정도의 범위로 존재하는 것이 좋다.In the present invention, the density of the plurality of concave portions formed due to the uneven portion of the surface of the aluminum alloy member is within the range of 0.5 µm or more and 20 µm or less in the opening width per 0.1 mm, and 0.5 µm or more and 20 µm or less in depth. One or two or more sizes are preferably present in the range of about 5 or more and 200 or less.

또한, 알루미늄 합금 부재의 복수의 오목 형상부는, 도 5에 나타내는 바와 같이, 개구 테두리부의 일부분으로부터 개구 폭 방향 중심을 향해서 적설 형상으로 돌출된 돌출부를 갖는 오목 형상부[도 5의 (a) 참조]나, 개구 테두리부의 전체에서 개구 폭 방향 중심을 향해서 적설 형상으로 돌출된 돌출부를 갖는 오목 형상부[도 5의 (b) 참조]라도 좋지만, 내부에 오목 형상부가 더 형성된 이중 오목 형상부 구조를 갖는 오목 형상부[도 5의 (c) 참조], 또는 내부의 벽면에 내부 돌기부가 형성된 내부 요철 구조를 갖는 오목 형상부[도 5의 (d) 참조]인 것이 바람직하다. 또한, 이들 이중 오목 형상부 구조나 내부 요철 구조가 병존하고 있어도 좋다. 알루미늄 합금 부재의 복수의 오목 형상부의 일부 또는 전부에 있어서, 이러한 이중 오목 형상부 구조나 내부 요철 구조가 존재함으로써, 알루미늄 합금 부재의 오목 형상부와 수지 성형체의 감입부는 서로 더욱 견고하게 결합하여, 알루미늄 합금 부재와 수지 성형체 사이의 더욱 우수한 밀착 강도나 기밀성이 발휘된다.Moreover, as shown in FIG. 5, the some concave-shaped part of an aluminum alloy member has a concave-shaped part which has the protrusion part which protruded in the snow-covered shape toward the center of opening width direction from a part of opening edge part (refer FIG. 5 (a)). 2 may be a concave portion having a protrusion projecting in a snow-covered shape toward the center of the opening width direction from the entire opening edge portion (see FIG. 5B), but having a double concave portion structure in which a concave portion is further formed therein. It is preferable that it is a recessed part (refer FIG. 5 (c)), or a recessed part (refer FIG. 5 (d)) which has an internal uneven structure in which the internal protrusion part was formed in the inside wall surface. Moreover, these double concave structure and internal uneven structure may coexist. In some or all of the plurality of concave portions of the aluminum alloy member, such a double concave portion structure and an internal concave-convex structure exist, whereby the concave portion of the aluminum alloy member and the indentation portion of the resin molded body are more firmly bonded to each other, and aluminum More excellent adhesive strength and airtightness between the alloy member and the resin molded body are exhibited.

이어서, 알루미늄 합금 부재의 수지 접합 표면에 원하는 요철부를 형성하는 방법에 대해서 설명한다.Next, the method of forming a desired uneven | corrugated part in the resin bonding surface of an aluminum alloy member is demonstrated.

구체적으로는, 알루미늄 합금재를 염산, 인산, 황산, 아세트산, 옥살산, 아스코르브산, 벤조산, 부티르산, 시트르산, 포름산, 락트산, 이소부틸산, 말산, 프로비온산, 타르타르산 등의 산 용액으로 이루어진 에칭액에 침지하고, 이 알루미늄 합금재의 표면에 소정의 요철부를 형성하는 에칭 처리 방법을 들 수 있다.Specifically, the aluminum alloy material is etched into an etching solution composed of an acid solution such as hydrochloric acid, phosphoric acid, sulfuric acid, acetic acid, oxalic acid, ascorbic acid, benzoic acid, butyric acid, citric acid, formic acid, lactic acid, isobutyl acid, malic acid, propionic acid, tartaric acid, and the like. The etching process method of immersing and forming a predetermined uneven | corrugated part on the surface of this aluminum alloy material is mentioned.

이 목적으로 사용되는 에칭액으로서는, 산 용액으로 하고, 산 농도 0.1 중량% 이상 80 중량% 이하, 바람직하게는 10 중량% 이상 50 중량% 이하의 염산 용액, 인산 용액, 희류산 용액, 아세트산 용액 등이나, 산 농도 0.1 중량% 이상 30 중량% 이하, 바람직하게는 10 중량% 이상 20 중량% 이하의 옥살산 용액 등을 들 수 있다.As an etching solution used for this purpose, it is set as an acid solution, The acid concentration is 0.1 weight% or more and 80 weight% or less, Preferably it is 10 weight% or more and 50 weight% or less hydrochloric acid solution, phosphoric acid solution, dilute acid solution, acetic acid solution, etc. And 0.1 wt% or more and 30 wt% or less of acid concentration, Preferably 10 wt% or more and 20 wt% or less of oxalic acid solution etc. are mentioned.

또한, Al 주조용 합금에 있어서는 공정 α-Al의 용해를 더욱 촉진한다고 하는 목적에서, 이들 산 용액 중에 할로겐화물을 첨가해도 좋다. 할로겐화물로서는, 예를 들어 염화나트륨, 염화칼륨, 염화마그네슘, 염화알루미늄 등의 염화물이나, 불화칼슘 등의 불화물, 또한 브롬화칼륨 등의 브롬화물 등을 들 수 있다.In addition, in the alloy for casting of Al, halides may be added to these acid solutions for the purpose of further promoting dissolution of the step α-Al. Examples of the halide include chlorides such as sodium chloride, potassium chloride, magnesium chloride and aluminum chloride, fluorides such as calcium fluoride, and bromide such as potassium bromide.

바람직하게는 안전성 등을 고려해서 염화물이며, 또한 에칭액 중에 있어서의 할로겐 이온 농도가, 0.1그램/리터(g/L) 이상 300g/L 이하, 바람직하게는 1g/L 이상 100g/L 이하인 것이 바람직하다. 0.1g/L 미만이라면 할로겐 이온의 효과가 작기 때문에, 공정 α-Al의 용해가 일어나기 어렵고, Si 결정의 돌출부를 갖는 오목 형상부가 형성되지 않는다는 문제가 발생하는 경우가 있으며, 300g/L를 초과하는 경우에는 알루미늄 성형체의 표면 처리(에칭 처리)시에 용해 반응이 급격하게 진행되기 때문에, 공정 α-Al의 선택 용해에 의해 형성되는 오목 형상부 및 Si 결정의 돌출부 제어가 곤란해진다고 하는 문제가 발생하는 경우가 있다.Preferably, it is a chloride in consideration of safety | security, etc., and halogen ion concentration in etching liquid is 0.1 g / liter (g / L) or more and 300 g / L or less, Preferably it is 1 g / L or more and 100 g / L or less. . If the amount is less than 0.1 g / L, since the effect of halogen ions is small, the dissolution of the process α-Al is less likely to occur, and there may be a problem that concave portions having protrusions of Si crystals are not formed, which exceeds 300 g / L. In this case, since the dissolution reaction proceeds rapidly during the surface treatment (etching treatment) of the aluminum molded body, there arises a problem that it becomes difficult to control the concave portion formed by the selective dissolution of the step α-Al and the protrusion of the Si crystal. There is a case.

또한, 본 발명에 있어서는, 알루미늄 합금 부재의 표면에 원하는 오목 형상부를 형성하기 위한 에칭액으로서, 질산이나 80 중량%를 초과하는 농도의 농황산 등의 산화력이 강한 산 용액이나 수산화나트륨이나 수산화칼륨 등의 알칼리 용액은 적당하지 않다. 농황산 등의 비교적 산화력이 강한 산 용액은, 알루미늄 합금에 대하여 피막 생성 능력을 갖고, 오히려 알루미늄 합금 부재의 표면에 견고한 산화 피막을 형성하여, 산화 피막의 용해가 곤란해진다.In the present invention, an etching solution for forming a desired concave portion on the surface of an aluminum alloy member, which is a strong acid solution such as nitric acid or concentrated sulfuric acid at a concentration exceeding 80% by weight, alkali such as sodium hydroxide or potassium hydroxide. The solution is not suitable. A relatively strong oxidizing acid solution such as concentrated sulfuric acid has a film-forming ability with respect to the aluminum alloy, and rather forms a firm oxide film on the surface of the aluminum alloy member, making it difficult to dissolve the oxide film.

본 발명에 있어서, 상기 에칭액을 사용해서 알루미늄 합금 부재의 표면을 에칭 처리할 때의 처리 조건에 대해서는, 사용하는 에칭액의 종류, 산 농도, 할로겐 이온 농도 등이나, 알루미늄 합금 부재에 형성해야 할 복수의 오목 형상부의 수나 크기 등에 따라서도 상이하다. 통상, 염산 용액의 경우에는 욕온 20℃ 이상 80℃ 이하에서, 침지 시간 1분간 이상 40분간 이하, 인산 용액의 경우에는 욕온 20℃ 이상 60℃ 이하에서 침지 시간 1분간 이상 60분간 이하, 황산 용액의 경우에는 욕온 20℃ 이상 70℃ 이하에서 침지 시간 1분간 이상 50분간 이하, 질산 수용액의 경우에는 욕온 20℃ 이상 60℃ 이하에서 침지 시간 1분간 이상 60분간 이하, 옥살산 용액의 경우에는 욕온 20℃ 이상 50℃ 이하에서 침지 시간 1분간 이상 20분간 이하, 아세트산 용액의 경우에는 욕온 20℃ 이상 80℃ 이하에서 침지 시간 1분간 이상 30분간 이하의 범위인 것이 좋다. 사용하는 에칭액의 산 농도나 욕온이 높을수록 에칭 처리의 효과가 현저해지고, 단시간 처리가 가능하게 되지만, 욕온에 대해서는, 20도 미만에서는 용해 속도가 늦기 때문에, 생산성이 나쁘고, 또한 80℃를 초과하는 욕온에서는 용해 반응이 급격하게 진행되어 제어가 곤란해진다. 침지 시간에 대해서는, 1분 미만에서는 용해의 제어가 어렵고, 반대로 60분을 초과하는 침지 시간에서는 생산성 저하의 원인이 된다.In this invention, about the processing conditions at the time of etching the surface of an aluminum alloy member using the said etching liquid, the kind of etching liquid to be used, acid concentration, halogen ion concentration, etc., and the some which should be formed in an aluminum alloy member It also differs depending on the number and size of the concave portions. Usually, in the case of hydrochloric acid solution, the soaking time is 20 minutes or more and 80 degrees C or less, soaking time 1 minute or more and 40 minutes or less, and in the case of phosphoric acid solution, the soaking time is 20 minutes or more and 60 degrees C or less, soaking time 1 minute or more and 60 minutes or less, In the case of immersion time 1 minute or more and 50 minutes or less in bath temperature 20 degreeC or more and 70 degrees C or less, in the case of nitric acid aqueous solution, the bath temperature is 20 degreeC or more and 60 degreeC or less, soaking time 1 minute or more and 60 minutes or less, and in the case of oxalic acid solution, bath temperature 20 degreeC or more In the case of an acetic acid solution, it is preferable that it is the range of bath temperature 20 degreeC or more and 80 degreeC or less in immersion time for 1 minute or more and 30 minutes or less at 50 degreeC or less immersion time for 1 minute or more and 20 minutes or less. The higher the acid concentration and the bath temperature of the etching solution to be used, the more effective the etching treatment becomes and the shorter time treatment becomes possible. However, since the dissolution rate is slow at the bath temperature of less than 20 degrees, the productivity is poor and exceeds 80 ° C. At bath temperature, a dissolution reaction advances rapidly and becomes difficult to control. About immersion time, it is difficult to control melt | dissolution for less than 1 minute, and conversely, it becomes a cause of productivity fall at immersion time exceeding 60 minutes.

본 발명에 있어서, 상기와 같이 알루미늄 합금재에 에칭 처리를 실시해서 오목 형상부를 갖는 알루미늄 합금 부재를 형성할 때, 필요에 따라, 이 에칭 처리 전의 알루미늄 합금재의 표면에, 탈지나 표면 조정, 표면 부착물?오염물 등의 제거를 목적으로 하고, 산 용액에 의한 산 처리 및/또는 알칼리 용액에 의한 알칼리 처리로 이루어진 전처리를 실시해도 좋다.In the present invention, when etching the aluminum alloy material as described above to form an aluminum alloy member having a concave portion, if necessary, degreasing, surface adjustment, surface attachments on the surface of the aluminum alloy material before the etching treatment. For the purpose of removing contaminants and the like, a pretreatment consisting of an acid treatment with an acid solution and / or an alkali treatment with an alkaline solution may be performed.

여기서, 이 전처리에 사용하는 산 용액으로서는, 예를 들어 시판되는 산성 탈지제로 제조한 것, 황산, 질산, 불산, 인산 등의 무기산이나 아세트산, 시트르산 등의 유기산이나, 이들 산을 혼합해서 얻어진 혼합 산 등의 산 시약을 사용해서 제조한 것 등을 사용할 수 있고, 또한 알칼리 용액으로서는, 예를 들어 시판되는 알칼리성 탈지제로 제조한 것, 가성 소다 등의 알칼리 시약으로 제조한 것, 또는 이들을 혼합해서 제조한 것 등을 사용할 수 있다.Here, the acid solution used for this pretreatment may be, for example, one prepared with a commercially available acidic degreasing agent, inorganic acids such as sulfuric acid, nitric acid, hydrofluoric acid, phosphoric acid, organic acids such as acetic acid and citric acid, or mixed acids obtained by mixing these acids. What was manufactured using acid reagents, such as these, etc. can be used, Moreover, as an alkaline solution, what was manufactured, for example with the commercially available alkaline degreasing agent, what was manufactured with alkali reagents, such as caustic soda, or it mixed and manufactured these, Can be used.

상기 산 용액 및/또는 알칼리 용액을 사용해서 행하는 전처리의 조작 방법 및 처리 조건에 대해서는, 종래 이러한 종류의 산 용액 또는 알칼리 용액을 사용해서 행해지고 있는 전 처리의 조작 방법 및 처리 조건과 마찬가지라도 되고, 예를 들어 침지법, 스프레이법 등의 방법으로 행할 수 있다.About the operation method and processing conditions of the pretreatment performed using the said acid solution and / or alkaline solution, it may be the same as the operation method and processing conditions of the pretreatment currently performed using this kind of acid solution or alkaline solution, and the example For example, it can carry out by methods, such as an immersion method and a spray method.

그리고, 알루미늄 합금재의 표면에 상기 전처리를 실시한 후나, 오목 형상부를 형성하기 위한 에칭 처리를 실시한 후에, 필요에 따라 수세 처리해도 좋고, 이 수세 처리에는 공업용수, 지하수, 수돗물, 이온 교환수 등을 사용할 수 있으며, 제조되는 알루미늄 합금 부재에 따라서 적절히 선택된다. 또한, 전 처리나 에칭 처리가 실시된 알루미늄 합금재에 대해서는, 필요에 따라 건조 처리되지만, 이 건조 처리에 대해서도, 실온에 방치하는 자연 건조도 좋고, 에어 블로우, 드라이어, 오븐 등을 사용해서 행하는 강제 건조도 좋다.After the pretreatment is performed on the surface of the aluminum alloy material or after the etching treatment for forming the concave portion, water washing may be performed as necessary. Industrial water, ground water, tap water, ion exchange water, or the like may be used for this washing process. It may be appropriately selected depending on the aluminum alloy member to be produced. In addition, the aluminum alloy material subjected to the pretreatment or the etching treatment is dried as necessary, but natural drying may also be performed at room temperature for this drying treatment, and is performed by using an air blow, a dryer, an oven, or the like. Drying is also good.

실시예Example

계속해서, 실제로, 표면 처리를 실시한 알루미늄 합금 부재에 수지 부재를 접합한 사례를 소개한다.Then, the case where the resin member was joined to the aluminum alloy member which surface-treated was actually introduced is introduced.

시험에는, 알루미늄 합금 부재로서, i) 두께 2mm, 폭 50mm, 길이 100mm의 JISADC12 합금판과 ii) 두께 2mm, 폭 50mm, 길이 100mm의 A5052 합금판의 2종류를 사용하고, 수지 부재로서, 두께 10mm, 폭 50mm, 길이 100mm의 PBT(폴리부틸렌테레프탈레이트)를 사용했다. JISADC12 합금판은 다이캐스트 공법으로 제작했다. 또한, A5052 합금판은 A5052-H34이다. 접합 강도에 미치는 표면 상태의 영향을 조사하기 위해서, 알루미늄 합금 부재마다 표면 처리 방법을 바꾸어 5종류의 시험재를 준비했다.For the test, two kinds of aluminum alloy members were used: i) a JISADC12 alloy plate having a thickness of 2 mm, a width of 50 mm, and a length of 100 mm, and ii) an A5052 alloy plate having a thickness of 2 mm, a width of 50 mm and a length of 100 mm. PBT (polybutylene terephthalate) having a width of 50 mm and a length of 100 mm was used. JISADC12 alloy plate was produced by the die-cast method. In addition, the A5052 alloy plate is A5052-H34. In order to investigate the influence of the surface state on the joint strength, five types of test materials were prepared by changing the surface treatment method for each aluminum alloy member.

5종류의 시험재의 제조 방법에 대해서는 후기한다.The manufacturing method of five types of test materials is mentioned later.

그리고, 표면 처리를 실시한 시험재에 대해서는, 후술하는 방법으로 그 표면 상태를 관찰했다. 그 결과를 표 1 및 표 2에 나타낸다.And about the test material which surface-treated, the surface state was observed with the method of mentioning later. The results are shown in Table 1 and Table 2.

2종류의 알루미늄 합금 부재에 대하여 각각 5종류의 방법으로 처리한 시험재(전부 10장)를, 1매씩 PBT 위에 겹치고, 알루미늄 합금 시험재의 상방으로부터 레이저 광을 조사시켜, 알루미늄 합금 시험재와 PBT를 접합했다. 그 때, 표 3에 나타낸 바와 같이 레이저 용접 조건을 여러 가지 바꾸어 행하였다.The test materials (10 pieces in total) treated by each of the five types of methods for the two types of aluminum alloy members were superimposed on the PBT one by one, and irradiated with laser light from above the aluminum alloy test material, and the aluminum alloy test material and the PBT were applied. Spliced. At that time, as shown in Table 3, laser welding conditions were changed in various ways.

그리고, 각 알루미늄 합금 시험재와 PBT의 접합체에 대해서, 인장 전단 강도를 측정했다. 또한, 인장 전단 강도의 측정 방법도 후기한다.And the tensile shear strength was measured about the joined body of each aluminum alloy test material and PBT. Moreover, the measuring method of tensile shear strength is also mentioned later.

접합 재의 인장 전단 강도(N/mm)의 측정 결과를 표 4에 나타낸다.Table 4 shows the measurement results of the tensile shear strength (N / mm) of the bonding material.

비교예인 에어 노즐식 블라스트 처리나 에칭 처리를 하지 않는 알루미늄 합금판(시험재 5)에서는, 모든 레이저 용접 조건에서 PBT와는 접합되지 않았다. 또한, 에어 노즐식 블라스트 처리재에서는 접합되는 것의 접합 강도가 낮다. 한편, 본 발명의 에칭 처리재는 비교예에 비하여 높은 접합 강도가 얻어지고 있다. 또한, 에어 노즐식 블라스트 처리와 에칭 처리를 조합함으로써, 가장 높은 접합 강도가 얻어졌다.In the aluminum alloy plate (test material 5) which does not perform the air nozzle type blasting process or the etching process which is a comparative example, it did not join with PBT on all the laser welding conditions. Moreover, in the air nozzle type blasting material, the joining strength of what is joined is low. On the other hand, as for the etching process material of this invention, the high bonding strength is obtained compared with the comparative example. Moreover, the highest joining strength was obtained by combining the air nozzle type blasting process and the etching process.

[시험재의 조정 방법] [Adjustment Method of Test]

상기 JISADC12 합금판과 A5052 합금판의 2종류의 알루미늄 합금판에 대하여, 각각 이하의 조건의 시험재 1 내지 5를 준비했다.About the two types of aluminum alloy plates of the said JISADC12 alloy plate and A5052 alloy plate, the test materials 1-5 of the following conditions were prepared, respectively.

(시험재 1) (Test Material 1)

알루미늄 합금판을, 에어 노즐식 블라스트 처리에 의해 표면 거칠기를 Rz:40㎛로 조정한 후, 1.2 wt% 염산 용액 중에 90g/L(염화물 이온 농도: 61g/L)의 염화알루미늄육수화물을 첨가해서 제조한 에칭액 중에 40℃에서 1분간 침지한 후에 수세하는 에칭 처리를 실시한 후, 120℃의 열풍으로 5분간 건조시켜, 알루미늄 합금 시험재 1로 했다.After adjusting the surface roughness to Rz: 40 micrometers by the air nozzle type blasting process of an aluminum alloy plate, 90 g / L (chloride ion concentration: 61 g / L) aluminum chloride hexahydrate is added to 1.2 wt% hydrochloric acid solution, After immersing in manufactured etching liquid at 40 degreeC for 1 minute, and performing the etching process to wash with water, it dried for 5 minutes by hot air of 120 degreeC, and it was set as aluminum alloy test material 1.

(시험재 2)(Test Material 2)

알루미늄 합금판을, 에어 노즐식 블라스트 처리에 의해 표면 거칠기를 Rz:40로 조정한 후, 1.2 wt% 염산 용액 중에 90g/L(염화물 이온 농도: 61g/L)의 염화알루미늄육수화물을 첨가해서 제조한 에칭액 중에 40℃에서 4분간 침지한 후에 수세하는 에칭 처리를 실시한 후, 120℃의 열풍으로 5분간 건조시켜, 알루미늄 주물 합금 시험재 2로 했다.The aluminum alloy plate was prepared by adjusting the surface roughness to Rz: 40 by air nozzle blasting, and then adding 90 g / L (chloride ion concentration: 61 g / L) of aluminum chloride hexahydrate in 1.2 wt% hydrochloric acid solution. After immersing in one etching liquid at 40 degreeC for 4 minutes, and performing the water-washing etching process, it dried for 5 minutes by 120 degreeC hot air, and it was set as the aluminum casting alloy test material 2.

(시험재 3)(Test Material 3)

알루미늄 합금판을, 에어 노즐식 블라스트 처리에 의해 표면 거칠기를 Rz:40로 조정한 후에 수세하고, 그 후, 120℃의 열풍으로 5분간 건조시켜, 알루미늄 합금 시험재 3으로 했다.The aluminum alloy plate was washed with water after adjusting the surface roughness to Rz: 40 by an air nozzle type blasting treatment, and then dried for 5 minutes by hot air at 120 ° C to obtain aluminum alloy test material 3.

(시험재 4)(Test Material 4)

알루미늄 합금판을, 블라스트 처리를 행하지 않고, 그대로 1.2 wt% 염산 용액 중에 90g/L(염화물 이온 농도: 61g/L)의 염화알루미늄육수화물을 첨가해서 제조한 에칭액 중에 40℃에서 4분간 침지한 후에 수세하는 에칭 처리를 실시한 후, 120℃의 열풍으로 5분간 건조시켜, 알루미늄 합금 시험재 4로 했다.The aluminum alloy plate was immersed at 40 ° C. for 4 minutes in an etching solution prepared by adding 90 g / L (chloride ion concentration: 61 g / L) of aluminum chloride hexahydrate in a 1.2 wt% hydrochloric acid solution without performing a blast treatment. After the etching process performed with water washing, it dried for 5 minutes by 120 degreeC hot air, and used as the aluminum alloy test material 4.

(시험재 5)(Test Material 5)

알루미늄 합금판을, 블라스트 처리나 에칭 처리를 행하지 않고, 그대로 수세하고, 그 후 120℃의 열풍으로 5분간 건조시켜, 알루미늄 합금 시험재 5로 했다. The aluminum alloy plate was washed with water without performing a blast treatment or an etching treatment, and dried for 5 minutes by hot air at 120 ° C after that to obtain an aluminum alloy test material 5.

[각 시험재의 표면 관찰 방법] [Surface Observation Method of Each Test Material]

JISADC12 합금판을 처리해서 얻어진 각 알루미늄 합금 시험재의 표면을, 주사형 전자 현미경(히타치제 FE-SEM, S-4500형태)을 사용해서 관찰하고, 실리콘 결정의 크기를 관찰하며, 또한 그 석출량을 중량법에 의해 측정했다. 또한, 석출량은, Al 합금 시험편 표면에 형성된 실리콘 결정을, 브러시를 사용해 깎아 낸 후, 채취한 결정 입자를, 0.1㎛ PC 멤브레인 필터를 사용한 중량법으로 계측했다.The surface of each aluminum alloy test material obtained by treating the JISADC12 alloy plate was observed using a scanning electron microscope (FE-SEM made by Hitachi, S-4500 form), the size of the silicon crystal was observed, and the amount of precipitation It measured by the gravimetric method. In addition, the amount of precipitation measured the silicon crystal formed on the surface of Al alloy test piece using the brush, and measured the collected crystal particle by the gravimetric method using a 0.1 micrometer PC membrane filter.

또한, 2종류의 알루미늄 합금판으로 얻어진 각 알루미늄 합금 시험재에 대해서, 그 두께 방향 단면 중 어떤 영역의 단면을, 주사형 전자 현미경(히타치제 FE-SEM, S-4500형태)을 사용해서 배율 1000배로 관찰하고, 얻어진 단면 관찰 사진(측정 시야수 3)에 기초하여 이하와 같이 계측했다.In addition, about each aluminum alloy test material obtained with the two types of aluminum alloy plates, the cross section of the area | region of the thickness direction cross section was 1000 magnification using a scanning electron microscope (FE-SEM made by Hitachi, S-4500 form). It observed by the ship and measured as follows based on the obtained cross-sectional observation photograph (measured field of view 3).

우선, 알루미늄 합금 시험재의 두께 방향 단면에 있어서 이 두께 방향에 직교하고, 또한 요철부의 최고부를 통과하는 톱 라인(TL)을 결정하며, 다음에 상기와 대강 마찬가지로, 알루미늄 합금 시험재의 두께 방향에 직교하고, 또한 요철부의 최심부를 통과하는 보텀 라인을 결정하며, 또한 톱 라인(TL)부터 보텀 라인(BL)에 대하여 수직 방향으로 선분을 긋고, 이 선분의 중간부를 통과하며, 또한 톱 라인(TL) 혹은 보텀 라인(BL)과 평행하게 그어진 하프 라인(HL) 상의 알루미늄 합금 시험재와 알루미늄 합금 시험재 사이에 존재하는 공극 간의 거리를 오목 형상부의 개구 폭(d)으로 하여(도 4 참조), 알루미늄 합금 시험재의 표면의 요철부에 기인해서 형성된 오목 형상부의 형상과 크기(개구 폭)를 관찰했다. 동일한 알루미늄 합금 시험재의 2시야에 대해서도 마찬가지로 관찰을 행하고, 계 3시야로부터 관찰된 모든 개구 폭에 대해서 전체 측정 점수로 나눈 값을 평균 개구 폭으로서 측정했다. 한편, 상기톱 라인(TL)부터 보텀 라인(BL)까지의 거리로 정의되는 오목 형상부의 깊이에 대해서도 마찬가지로 관찰하여 평균 깊이를 측정했다. 또한, 오목 형상부의 밀도에 대해서는, EDX에 의해 배율 1000배로 원소 맵핑 분석을 행하고, 미처리 경우와 비교하며, 알루미늄 원소의 형광 X선 강도가 낮은 영역을 오목 형상부라고 정의하여, 측정된 맵핑 사진에 대해서 화상 처리 소프트(ImageJ)를 사용해서 오목 형상부의 밀도를 측정했다.First, in the thickness direction cross section of an aluminum alloy test material, the top line TL orthogonal to this thickness direction and passing through the highest part of an uneven part is determined, and similarly to the above, orthogonal to the thickness direction of an aluminum alloy test material, Also, the bottom line passing through the innermost part of the uneven portion is determined, and a line segment is drawn in the vertical direction from the top line TL to the bottom line BL, and passes through the middle portion of the line segment, and also the top line TL or The aluminum alloy test piece on the half line HL drawn in parallel with the bottom line BL and the distance between the gaps present between the aluminum alloy test piece are defined as the opening width d of the concave portion (see FIG. 4). The shape and size (opening width) of the concave portion formed due to the uneven portion of the surface of the test material were observed. Observation was similarly performed about the 2 views of the same aluminum alloy test material, and the value divided by the total measurement score with respect to all the opening widths observed from the system 3 views was measured as the average opening width. On the other hand, the depth of the concave portion defined by the distance from the top line TL to the bottom line BL was similarly observed and the average depth was measured. In addition, about the density of a recessed part, element mapping analysis is performed by EDX at 1000 times magnification, and compared with the untreated case, the area | region where the fluorescent X-ray intensity of an aluminum element is low is defined as a recessed part, and it measures to the measured mapping photograph. The density of the concave portion was measured using image processing software (ImageJ).

표 1에 나타내는 수치는, 이들의 계측값을 나타내고 있다.The numerical value shown in Table 1 has shown these measured values.

[인장 전단 강도의 측정 방법] [Measurement method of tensile shear strength]

상기 5종류의 방법으로 처리한 두께 2mm, 폭 50mm, 길이 100mm의 알루미늄 합금 시험재와, 두께 10mm, 폭 50mm, 길이 100mm의 PBT(폴리부틸렌테레프탈레이트) 수지판을, 길이 방향으로 15mm씩 중첩되도록 세트하고, 알루미늄 합금 시험재의 상방으로부터 레이저 광을 조사시켜서 폭 방향으로 레이저 용접했다. 레이저 용접 후, 폭 100mm의 시험편의 단부로부터 30mm의 위치에서 폭 10mm로 절단 가공한 인장 시험편을 3개 채취하고, 이 인장 시험편에 대해서, 인장 시험기로 인장 시험을 행하여, 얻어진 하중 (N)을 시험편의 폭으로 나눈 값을 인장 전단 강도로 했다. 또한, 인장 속도는 8×10-3m/초로 했다.An aluminum alloy test material having a thickness of 2 mm, a width of 50 mm, and a length of 100 mm, and a PBT (polybutylene terephthalate) resin plate having a thickness of 10 mm, a width of 50 mm, and a length of 100 mm treated by the above five kinds of methods are overlapped by 15 mm in the longitudinal direction. It set so that it might irradiate a laser beam from the upper direction of the aluminum alloy test material, and laser-welded in the width direction. After laser welding, three tensile test pieces cut | disconnected by the width 10mm were taken at the position of 30 mm from the edge part of the test piece of width 100mm, and the tension test piece was tested with the tensile tester, and the load (N) obtained was tested. The value divided by the width of was taken as the tensile shear strength. In addition, the tensile velocity was 8x10 <-3> m / sec.

Figure pct00001
Figure pct00001

Figure pct00002
Figure pct00002

Figure pct00003
Figure pct00003

Figure pct00004
Figure pct00004

Claims (7)

피접합 알루미늄 합금 부재에 에칭 처리를 실시하여 표면에 요철을 가진 요철부를 형성한 후, 당해 알루미늄 합금 부재의 한쪽 면과 수지 부재를 중첩하고, 그 후에, 상기 알루미늄 합금 부재의 다른 쪽 면에 레이저 광을 조사시켜서 알루미늄 합금 부재에 접하고 있는 수지 부재를 연화시켜 당해 수지로 상기 요철부를 충전하는 것을 특징으로 하는, 알루미늄 합금 부재와 수지 부재의 레이저 접합 방법.After etching to the bonded aluminum alloy member to form an uneven portion having irregularities on the surface, one side of the aluminum alloy member and the resin member are superimposed, and thereafter, laser light is applied to the other surface of the aluminum alloy member. The resin bonding method which softens the resin member which contact | connects an aluminum alloy member, and fills the said uneven part with the said resin, The laser bonding method of an aluminum alloy member and a resin member characterized by the above-mentioned. 제1항에 있어서, 에칭 처리에 앞서 알루미늄 합금 부재에 블라스트 처리를 행하는, 알루미늄 합금 부재와 수지 부재의 레이저 접합 방법.The laser bonding method of the aluminum alloy member and the resin member according to claim 1, wherein the aluminum alloy member is blasted prior to the etching treatment. 제1항 또는 제2항에 있어서, 피접합 알루미늄 합금 부재로서, 상기 에칭 처리, 또는 블라스트 처리와 에칭 처리에 의해 얻어진 요철부에 기인해서 복수의 오목 형상부가 형성된 알루미늄 합금 부재를 사용하고, 상기 오목 형상부는, 개구 폭이 0.1㎛ 이상 30㎛ 이하의 크기인 동시에, 깊이가 0.1㎛ 이상 100㎛ 이하의 크기이며, 상기 개구 폭은, 당해 알루미늄 합금 부재의 두께 방향 단면에 있어서, 이 두께 방향에 직교하고, 또한 요철부의 최고부를 통과하는 톱 라인과 최심부(最深部)를 통과하는 보텀 라인 사이의 하프 라인에 있어서, 주사형 전자 현미경 관찰에 의해 측정된 것인, 알루미늄 합금 부재와 수지 부재의 레이저 접합 방법.The aluminum alloy member according to claim 1 or 2, wherein an aluminum alloy member having a plurality of concave portions formed by the uneven portion obtained by the etching treatment or the blast treatment and the etching treatment is used as the joined aluminum alloy member. The shape portion has an opening width of 0.1 µm or more and 30 µm or less, and a depth of 0.1 µm or more and 100 µm or less, and the opening width is perpendicular to the thickness direction in the thickness direction cross section of the aluminum alloy member. And a half line between the top line passing through the highest part of the uneven portion and the bottom line passing through the deepest part, which is measured by scanning electron microscope observation, wherein the laser of the aluminum alloy member and the resin member is measured. Bonding method. 제1항 또는 제2항에 있어서, 피접합 알루미늄 합금 부재가 Al-Si계 알루미늄 합금 부재로 이루어지고, 상기 에칭 처리, 또는 블라스트 처리와 에칭 처리에 의해 얻어진 요철부에 기인하여 복수의 오목 형상부가 표면의 일부 또는 전체면에 형성되어 있고, 상기 오목 형상부는, 개구 폭이 0.1㎛ 이상 30㎛ 이하의 크기이며, 또한 내면에 공정 실리콘 결정으로 이루어지는 볼록부를 복수 갖고, 상기 개구 폭은, 당해 알루미늄 합금 부재의 두께 방향 단면에 있어서, 이 두께 방향에 직교하고, 또한 요철부의 최고부를 통과하는 톱 라인과 최심부를 통과하는 보텀 라인 사이의 하프 라인에 있어서, 주사형 전자 현미경 관찰에 의해 측정된 것이며, 또한 상기 공정 실리콘 결정으로 이루어지는 볼록부가 구 상당 입자 직경으로 0.1㎛ 이상 10㎛ 이하의 크기를 갖는, 알루미늄 합금 부재와 수지 부재의 레이저 접합 방법.The concave-shaped portion according to claim 1 or 2, wherein the joined aluminum alloy member is made of an Al-Si-based aluminum alloy member, and a plurality of concave portions are formed due to the uneven portion obtained by the etching treatment or the blast treatment and the etching treatment. It is formed in part or the whole surface of the surface, The said recessed part has the opening width of 0.1 micrometer or more and 30 micrometers or less, and has a some convex part which consists of process silicon crystal on the inner surface, The said opening width is the said aluminum alloy In the thickness direction cross section of a member, it measured by scanning electron microscope observation in the half line between the top line which is orthogonal to this thickness direction, and passes through the highest part of the uneven part, and the bottom line which passes through the deepest part. A convex portion made of the eutectic silicon crystal has a size of 0.1 µm or more and 10 µm or less in terms of a sphere equivalent particle diameter. Laser bonding method of minyum alloy member and the resin member. 제4항에 있어, 상기 공정 실리콘 결정으로 이루어지는 볼록부는, 상기 오목 형상부 내면에 0.001g/m2 이상 1g/m2 이하의 양으로 돌출?석출하고 있고, 또한 상기 공정 실리콘 결정의 볼록부를 갖지 않는 개구 폭이 0.1㎛ 이상 30㎛ 이하의 오목 형상부도 동시에 복수 존재하는, 알루미늄 합금 부재와 수지 부재의 레이저 접합 방법.In claim 4, wherein the step portion formed of the convex silicon crystals, the recessed portion on the inner surface 0.001g / m 2 at least 1g / m 2 or less in an amount of protrusion? Precipitation and, and also having a convex part of the process the silicon crystal A laser bonding method of an aluminum alloy member and a resin member, wherein a plurality of concave portions having an opening width of 0.1 μm or more and 30 μm or less exist simultaneously at the same time. 제1항 내지 제5항 중 어느 한 항에 있어서, 피접합 알루미늄 합금 부재에 에칭 처리를 실시할 때, 에칭액으로서, 할로겐 이온 농도를 0.1g/L 이상 300g/L 이하의 범위 내에서 포함하는 산 농도 0.1 중량% 이상 80 중량% 이하의 산 수용액이며, 산 수용액 중에 수용성 무기 할로겐 화합물을 첨가해서 제조된 것을 사용하는, 알루미늄 합금 부재와 수지 부재의 레이저 접합 방법.The acid according to any one of claims 1 to 5, wherein when the etching treatment is performed on the aluminum alloy member to be bonded, an acid containing a halogen ion concentration within a range of 0.1 g / L or more and 300 g / L or less as an etching solution. A laser bonding method of an aluminum alloy member and a resin member using an acid aqueous solution having a concentration of 0.1% by weight or more and 80% by weight or less and using one prepared by adding a water-soluble inorganic halogen compound to the acid aqueous solution. 제2항 내지 제6항 중 어느 한 항에 있어서, 에칭 처리 전에 실시하는 블라스트 처리가, 에어 노즐 방식에 의해 실시되는, 알루미늄 합금 부재와 수지 부재의 레이저 접합 방법.The laser bonding method of the aluminum alloy member and resin member in any one of Claims 2-6 with which the blasting process performed before an etching process is performed by the air nozzle system.
KR1020127021049A 2010-01-12 2011-01-11 Method of laser joining of aluminum alloy member and resin member KR101512888B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2010-003566 2010-01-12
JP2010003566A JP5577707B2 (en) 2010-01-12 2010-01-12 Laser joining method of aluminum alloy plate and resin member
PCT/JP2011/050238 WO2011086984A1 (en) 2010-01-12 2011-01-11 Method of laser joining of aluminum alloy member and resin member

Publications (2)

Publication Number Publication Date
KR20120115998A true KR20120115998A (en) 2012-10-19
KR101512888B1 KR101512888B1 (en) 2015-04-16

Family

ID=44304258

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127021049A KR101512888B1 (en) 2010-01-12 2011-01-11 Method of laser joining of aluminum alloy member and resin member

Country Status (5)

Country Link
JP (1) JP5577707B2 (en)
KR (1) KR101512888B1 (en)
CN (1) CN102712136A (en)
TW (1) TW201143951A (en)
WO (1) WO2011086984A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180098700A (en) * 2013-07-18 2018-09-04 다이셀폴리머 주식회사 Composite moulded body
KR20200094412A (en) * 2019-01-30 2020-08-07 한국기계연구원 Composite and method for manufacturing composite
WO2022260488A1 (en) * 2021-06-10 2022-12-15 삼성전자 주식회사 Electronic device having housing with matte surface and manufacturing method therefor

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2762289A4 (en) * 2011-09-26 2015-05-06 Nippon Light Metal Co Aluminum resin bonded body and method for producing same
JP2014046599A (en) * 2012-08-31 2014-03-17 Nippon Light Metal Co Ltd Metal member for producing metal-resin complex, and production method of the member
JP5843750B2 (en) * 2012-12-14 2016-01-13 ポリプラスチックス株式会社 Metal part manufacturing method and composite molded body
CN103009626B (en) * 2012-12-28 2015-06-10 江苏大学 Laser-transmission welded connection method
CN103071922B (en) * 2012-12-28 2016-08-03 江苏大学 A kind of high-strength laser transmission method of attachment
CN103056525A (en) * 2012-12-28 2013-04-24 江苏大学 Novel method of laser transmission welding connection
CN103071923B (en) * 2012-12-28 2016-05-25 江苏大学 A kind of laser-transmitting composite connecting method
CN103057117A (en) * 2012-12-28 2013-04-24 江苏大学 Method for improving laser transmission welding connection strength
JP6061384B2 (en) * 2013-01-17 2017-01-18 国立大学法人静岡大学 Manufacturing method of aluminum / resin bonded body and aluminum / resin bonded body
JP5941563B2 (en) * 2013-02-05 2016-06-29 株式会社日立製作所 Laser bonding apparatus and laser bonding method
KR101509748B1 (en) * 2013-11-26 2015-04-07 현대자동차 주식회사 Adhering device and method of different kinds of materials
CN106715108A (en) * 2014-08-22 2017-05-24 欧姆龙株式会社 Junction structure and method for manufacturing the junction structure
JP6417786B2 (en) * 2014-08-22 2018-11-07 オムロン株式会社 Manufacturing method of bonded structure
JP6287897B2 (en) * 2014-08-22 2018-03-07 オムロン株式会社 LIGHTING DEVICE, ELECTRONIC DEVICE, FRAME STRUCTURE, AND METHOD FOR MANUFACTURING FRAME STRUCTURE
TWI548429B (en) 2014-11-07 2016-09-11 財團法人工業技術研究院 Medical composite material method for fabricating the same and applications thereof
TWI522231B (en) 2014-12-01 2016-02-21 財團法人工業技術研究院 Metal/polymer composite material and method for fabricating the same
KR20160084257A (en) * 2015-01-05 2016-07-13 삼성전자주식회사 Aluminum-resin composite and method for producing the same
JP5953559B1 (en) * 2015-01-08 2016-07-20 輝創株式会社 Method of joining members using laser
JP6414477B2 (en) * 2015-02-02 2018-10-31 オムロン株式会社 Manufacturing method of bonded structure
JP2016141092A (en) * 2015-02-04 2016-08-08 オムロン株式会社 Production method of joint structure, and joint structure
JP6451370B2 (en) * 2015-02-09 2019-01-16 オムロン株式会社 Manufacturing method of bonded structure
JP2016147404A (en) * 2015-02-10 2016-08-18 オムロン株式会社 Method for producing joint structure, and joint structure
JP6398778B2 (en) * 2015-02-19 2018-10-03 オムロン株式会社 Manufacturing method of bonded structure and bonded structure
CN104630872A (en) * 2015-02-27 2015-05-20 深圳市梦之坊通信产品有限公司 Aluminum alloy surface nano hole processing method and method for bonding aluminum alloy to plastic
JP2016159578A (en) * 2015-03-04 2016-09-05 オムロン株式会社 Joining method, method for manufacturing joint structure, and joint structure
JP2017039274A (en) * 2015-08-20 2017-02-23 トヨタ自動車株式会社 Joining structure
EP3153302A1 (en) 2015-10-05 2017-04-12 C.R.F. Società Consortile per Azioni Method for obtaining a welded joint between elements of different materials, and a hybrid component obtained through this method
CN108349046A (en) * 2015-12-17 2018-07-31 沙特基础工业全球技术有限公司 The method for manufacturing plastic-metal engagement by laser
JP6561302B2 (en) * 2016-04-11 2019-08-21 輝創株式会社 Method for forming superposed fine particle structure and method for joining metal and plastic member using the same
BE1024182B1 (en) * 2016-05-02 2017-12-04 LASER ENGINEERING APPLICATIONS S.A. en abrégé LASEA S.A. METHOD OF STRUCTURING A SUBSTRATE
CN106273414A (en) * 2016-08-11 2017-01-04 武汉凌云光电科技有限责任公司 A kind of plastics and the permanent preparation method being directly connected to of metal
US11529790B2 (en) * 2016-09-30 2022-12-20 Lg Chem, Ltd. Joint body of different materials and method for manufacturing the same
JP6678880B2 (en) * 2016-12-28 2020-04-15 株式会社ヒロテック Metal resin bonding method and metal resin bonded body
JP6902950B2 (en) * 2017-07-20 2021-07-14 ポリプラスチックス株式会社 Metal resin composite molded product and its manufacturing method
CN108500455A (en) * 2018-04-04 2018-09-07 北京航空航天大学 A kind of connection method of metal material and nonmetallic materials
EP3650207B1 (en) 2018-11-09 2021-09-29 C.R.F. Società Consortile per Azioni Method for obtaining a joint between elements of different materials
JP7282531B2 (en) * 2019-01-23 2023-05-29 ポリプラスチックス株式会社 METAL PLATE, METHOD FOR MANUFACTURING METAL PLATE, METAL-RESIN COMPOSITE MOLDED PRODUCT AND METHOD FOR MANUFACTURING SAME
JP7319610B2 (en) * 2019-02-15 2023-08-02 国立大学法人 東京大学 Composite member manufacturing method and composite member
CN111795626B (en) * 2019-04-09 2024-03-26 国誉商业(上海)有限公司 Ruler
JP7268568B2 (en) * 2019-10-10 2023-05-08 新東工業株式会社 Composite member manufacturing method and composite member
CN114585596B (en) * 2019-10-23 2024-01-19 佳能株式会社 Method for manufacturing ceramic article, liquid containing metal component, kit for manufacturing ceramic article and ceramic article
JP7111691B2 (en) * 2019-12-26 2022-08-02 株式会社神戸製鋼所 METAL COMPOSITE AND METHOD FOR MANUFACTURING METAL COMPOSITE

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05277772A (en) * 1992-03-16 1993-10-26 Toshiba Corp Welded structural body containing heat treatment type aluminum alloy
SG75958A1 (en) * 1998-06-01 2000-10-24 Hitachi Ulsi Sys Co Ltd Semiconductor device and a method of producing semiconductor device
JP2001219263A (en) * 2000-02-09 2001-08-14 Honda Motor Co Ltd Aluminum alloy member and method for manufacturing the same
JP5292828B2 (en) * 2007-01-30 2013-09-18 東レ株式会社 Method for producing composite of thermoplastic resin molded article and metal
JP5194629B2 (en) * 2007-08-10 2013-05-08 東洋紡株式会社 Joining method of thermoplastic resin material and metal material
US20110111214A1 (en) * 2008-06-12 2011-05-12 Masanori Endo Integrally injection-molded aluminum/resin article and process for producing the same
JP2010076437A (en) * 2008-08-29 2010-04-08 Toray Ind Inc Manufacturing method for composite of molding comprising thermoplastic resin composition and metal
JP5381687B2 (en) * 2008-12-29 2014-01-08 日本軽金属株式会社 Aluminum alloy member excellent in resin bondability and manufacturing method thereof
JP5690051B2 (en) * 2009-05-27 2015-03-25 公益財団法人名古屋産業科学研究所 Method of joining members using laser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180098700A (en) * 2013-07-18 2018-09-04 다이셀폴리머 주식회사 Composite moulded body
US10434741B2 (en) 2013-07-18 2019-10-08 Daicel Polymer Ltd. Composite molded article
KR20200094412A (en) * 2019-01-30 2020-08-07 한국기계연구원 Composite and method for manufacturing composite
WO2022260488A1 (en) * 2021-06-10 2022-12-15 삼성전자 주식회사 Electronic device having housing with matte surface and manufacturing method therefor

Also Published As

Publication number Publication date
CN102712136A (en) 2012-10-03
JP2011143539A (en) 2011-07-28
KR101512888B1 (en) 2015-04-16
JP5577707B2 (en) 2014-08-27
TW201143951A (en) 2011-12-16
WO2011086984A1 (en) 2011-07-21

Similar Documents

Publication Publication Date Title
KR20120115998A (en) Method of laser joining of aluminum alloy member and resin member
JP5381687B2 (en) Aluminum alloy member excellent in resin bondability and manufacturing method thereof
JP5581680B2 (en) Aluminum / resin composite with excellent weather resistance and method for producing the same
KR20110043530A (en) Integrally injection-molded aluminum/resin article and process for producing the same
JP5295741B2 (en) Composite of metal alloy and fiber reinforced plastic and method for producing the same
JP5569932B2 (en) Member in which metal body and resin body are joined and method for producing the same
JP5733999B2 (en) Method for producing metal resin composite
JP2011052292A (en) Aluminum alloy article, aluminum alloy member, and method for producing the same
JPWO2014024877A1 (en) Aluminum resin bonded body and manufacturing method thereof
JP5673814B2 (en) Aluminum shape body for manufacturing aluminum / resin injection integrated molded article, aluminum / resin injection integrated molded article using the same, and manufacturing method thereof
JP5302315B2 (en) Composite of metal alloy and polyamide resin composition and method for producing the same
KR101291062B1 (en) Method of surface treatment for exterior decor of car
JP7405905B2 (en) A base material at least in whole or in part made of a metal material, the surface of the metal material having pores, and a composite of the base material and a cured resin material, including the base material and a cured resin material.
WO2011071062A1 (en) Bonded aluminium composite and manufacturing method for same
JP2011124142A (en) Aluminum/resin/copper composite article, its manufacturing method, and lid member for sealed battery
US20160194518A1 (en) Aluminum-resin composite and method for producing the same
JP2010269534A (en) Bonded composite containing metal, and method for manufacturing the same
JP2013159834A (en) Method for manufacturing resin-bonding aluminum-casting alloy member and resin-bonding aluminum-casting alloy member obtained by the method
JP5834345B2 (en) Aluminum alloy article, aluminum alloy member and manufacturing method thereof
KR20170092210A (en) Integrally injection-molded aluminum/resin article and process for producing the same
JP7319634B2 (en) A method for producing an aluminum-resin composite.
JP6967953B2 (en) Etching agent for roughening the surface of a base material whose surface is at least all or part of aluminum or an aluminum alloy, a method for producing a roughened base material, a roughened base material, a base material-a cured resin product. Manufacturing method of the bonded body and the bonded body of the base material-resin cured product

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E90F Notification of reason for final refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee