JP5834345B2 - Aluminum alloy article, aluminum alloy member and manufacturing method thereof - Google Patents
Aluminum alloy article, aluminum alloy member and manufacturing method thereof Download PDFInfo
- Publication number
- JP5834345B2 JP5834345B2 JP2012273720A JP2012273720A JP5834345B2 JP 5834345 B2 JP5834345 B2 JP 5834345B2 JP 2012273720 A JP2012273720 A JP 2012273720A JP 2012273720 A JP2012273720 A JP 2012273720A JP 5834345 B2 JP5834345 B2 JP 5834345B2
- Authority
- JP
- Japan
- Prior art keywords
- phosphate
- aluminum alloy
- metal compound
- resin
- aluminum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Laminated Bodies (AREA)
- Chemical Treatment Of Metals (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
本発明は、表面の少なくとも一部に樹脂が接合されているアルミニウムおよびアルミニウム合金物品と表面の少なくともに一部に樹脂を被覆するために表面処理を行ったアルミニウム合金部材ならびにこれらの製造方法に関し、とりわけ、樹脂とアルミニウム合金基体との接合強度に優れるアルミニウム合金物品およびアルミニウム合金部材ならびにこれらの製造方法に関する。 The present invention relates to an aluminum and aluminum alloy article in which a resin is bonded to at least a part of a surface, an aluminum alloy member subjected to a surface treatment for coating a resin on at least a part of the surface, and a method for manufacturing the same. In particular, the present invention relates to an aluminum alloy article and an aluminum alloy member excellent in bonding strength between a resin and an aluminum alloy substrate, and a method for producing them.
アルミニウムおよびアルミニウム合金は、軽量で比強度も高くまた加工性に優れることから、産業用材料として広く使用されている。そして、アルミニウム合金基体表面の少なくとも一部に樹脂を接合したアルミニウム合金物品は、アルミニウム合金基体により樹脂成形品単独では得られない、優れた強度および剛性を確保するとともに、樹脂によりアルミウム合金基体単独では形成できない複雑形状や審美性を得ることが可能であり、前述の用途を含む多くの分野で使用されている。 Aluminum and aluminum alloys are widely used as industrial materials because they are lightweight, have high specific strength, and are excellent in workability. An aluminum alloy article in which a resin is bonded to at least a part of the surface of the aluminum alloy substrate ensures excellent strength and rigidity that cannot be obtained by the resin molded product alone by the aluminum alloy substrate. It is possible to obtain complex shapes and aesthetics that cannot be formed, and it is used in many fields including the above-mentioned applications.
従来、アルミニウム合金基体に予め切り欠きまたは穿孔を設け、例えば射出成形により樹脂をアルミニウム合金基体にインモールド成形を行う際に、樹脂がこれらの部分に入ることにより樹脂をアルミニウム合金基体に固定する方法が用いられている。 Conventionally, a method of fixing a resin to an aluminum alloy substrate by providing a notch or a perforation in an aluminum alloy substrate in advance, and performing resin in-mold molding on the aluminum alloy substrate by, for example, injection molding. Is used.
しかし、この方法では、切り欠きまたは穿孔を設ける場所を確保する必要があり、デザイン上の制約が大きいという問題、および切り欠きまたは穿孔部以外では、樹脂と基体との間に接合力が作用しないため基体と樹脂との間に隙間を生じる場合があるという問題がある。従って、この手法では、アルミニウム合金基体と樹脂が完全に一体化していないため、変形応力が作用した時に、変形しやすい樹脂部分が容易に変形してしまう場合がある。 However, in this method, it is necessary to secure a place where a notch or a perforation is to be provided, and there is a problem that design restrictions are large, and a bonding force does not act between the resin and the substrate except for the notch or the perforated part. Therefore, there is a problem that a gap may be generated between the base and the resin. Therefore, in this method, since the aluminum alloy substrate and the resin are not completely integrated, the deformable resin portion may be easily deformed when a deformation stress is applied.
そこで切り欠きや穿孔を必要とせず、また、樹脂とアルミニウム合金基体との接合面の全体に亘り接合力を作用できる方法として、例えば特許文献1には、アルミニウム合金基体をヒドラジン水溶液等に浸漬し表面に直径30〜300nmの凹部を形成した後、ポリフェニレンスルフィドを含む熱可塑性樹脂をこのアルミニウム合金基体表面に射出成形したアルミニウム合金物品(アルミニウム合金と樹脂の複合体)が開示されている。
Therefore, as a method that does not require notches or perforations and can apply a bonding force over the entire bonding surface between the resin and the aluminum alloy substrate, for example, in
また、例えば特許文献2には、アルミニウム合金基体表面を有機溶剤、酸により洗浄して汚れおよび酸化膜を除去した後、メタノール、エタノール等の有機溶剤を溶媒とするトリアジンチオール溶液により表面処理を行うこと、およびこの表面処理を行った金属基体にゴム成分またはトリアジンチオール類を添加剤として添加した樹脂を射出成形により一体に複合成形することが開示されている。 Further, for example, in Patent Document 2, the surface of an aluminum alloy substrate is washed with an organic solvent and an acid to remove stains and oxide films, and then subjected to a surface treatment with a triazine thiol solution using an organic solvent such as methanol or ethanol as a solvent. In addition, it is disclosed that a resin obtained by adding a rubber component or a triazine thiol as an additive to a metal substrate subjected to this surface treatment is integrally molded by injection molding.
しかしながら、特許文献1に記載の方法では、用いる樹脂がポリフェニレンスルフィドを含む必要があるため、使用可能な樹脂が制限されるという問題があった。
However, the method described in
一方、特許文献2の方法では、アルミニウムおよびアルミニウム合金の表面は極めて容易に酸化され、極めて短時間のうちに表面に緻密な酸化被膜が形成されることから、例え酸化被膜を除去した後短時間でトリアジンチオール溶液により表面処理を行っても十分な接合強度が得られないという問題があった。 On the other hand, in the method of Patent Document 2, the surfaces of aluminum and aluminum alloy are oxidized very easily, and a dense oxide film is formed on the surface in a very short time. However, there is a problem that sufficient bonding strength cannot be obtained even if the surface treatment is performed with a triazine thiol solution.
そこで、本発明は、アルコキシシラン含有トリアジンチオールを用いて、樹脂とアルミニウム合金との間に優れた接合力を有するアルミ合金物品およびその製造方法を提供することを目的とする。また、本発明は、表面に樹脂を接合するためのアルミニウム合金部材の提供およびその製造方法の提供も目的とする。 Accordingly, an object of the present invention is to provide an aluminum alloy article having an excellent bonding force between a resin and an aluminum alloy using an alkoxysilane-containing triazine thiol and a method for producing the same. Another object of the present invention is to provide an aluminum alloy member for bonding a resin to the surface and to provide a manufacturing method thereof.
本発明は、アルミニウムまたはアルミニウム合金より成る基体と、該基体の表面の少なくとも一部分に、脱水シラノール含有トリアジンチオール誘導体被覆を介して接合する樹脂とを含むアルミニウム合金物品であって、前記基体と前記脱水シラノール含有トリアジンチオール誘導体被覆との間に、水酸化物、水和酸化物、アンモニウム塩、カルボン酸塩、リン酸塩、炭酸塩、ケイ酸塩およびフッ化物よりなる群から選ばれる少なくとも1つを含む金属化合物皮膜を含むことを特徴とするアルミニウム合金物品である。 The present invention is an aluminum alloy article comprising a base made of aluminum or an aluminum alloy, and a resin bonded to at least a part of the surface of the base via a dehydrated silanol-containing triazine thiol derivative coating, the base and the dehydration Between the silanol-containing triazine thiol derivative coating, at least one selected from the group consisting of hydroxide, hydrated oxide, ammonium salt, carboxylate, phosphate, carbonate, silicate and fluoride An aluminum alloy article comprising a metal compound film.
本発明は、また、アルミニウムまたはアルミニウム合金より成る基体の少なくとも一部分に、アルコキシシラン含有トリアジンチオール誘導体を用いて樹脂を接合する、アルミニウム合金物品の製造方法であって、水蒸気、I族元素の水酸化物、I族元素の塩、II族元素の水酸化物、II族元素の塩、アンモニア、アンモニウム塩、ヒドラジン、ヒドラジン誘導体、アミン類、リン酸、リン酸塩、炭酸塩、カルボン酸、カルボン酸塩、ケイ酸、ケイ酸塩およびフッ化物から選択される少なくとも1つの水溶液を用いて前記基体の表面の少なくとも一部に、水酸化物、水和酸化物、アンモニウム塩、カルボン酸塩、リン酸塩、炭酸塩、ケイ酸塩およびフッ化物よりなる群から選ばれる少なくとも1つを含む金属化合物皮膜を形成する工程と、前記金属化合物皮膜に、アルコキシシラン含有トリアジンチオール誘導体を接触させる工程と、前記アルコキシシラン含有トリアジンチオール誘導体を接触させた部分に樹脂を接合する工程と、を含むことを特徴とする製造方法である。 The present invention also relates to a method for producing an aluminum alloy article, wherein a resin is bonded to at least a part of a substrate made of aluminum or an aluminum alloy using an alkoxysilane-containing triazine thiol derivative, wherein water vapor, hydroxylation of a group I element is performed. Products, Group I element salts, Group II element hydroxides, Group II element salts, ammonia, ammonium salts, hydrazine, hydrazine derivatives, amines, phosphoric acid, phosphates, carbonates, carboxylic acids, carboxylic acids Using at least one aqueous solution selected from a salt, silicic acid, silicate, and fluoride, at least a part of the surface of the substrate is provided with hydroxide, hydrated oxide, ammonium salt, carboxylate, phosphoric acid Forming a metal compound film comprising at least one selected from the group consisting of a salt, carbonate, silicate and fluoride; The serial metal compound film, a manufacturing method which comprises a step of contacting the alkoxysilane-containing triazine thiol derivative, and a step of bonding the resin to the alkoxy silane moiety contacting the containing triazine thiol derivative.
本発明は、更に、アルミニウムまたはアルミニウム合金より成る基体と、該基体の表面の少なくとも一部分に、脱水シラノール含有トリアジンチオール誘導体またはシラノール含有トリアジンチオール誘導体を被覆したアルミニウム合金部材であって、前記基体と前記脱水シラノール含有トリアジンチオール誘導体被覆または前記シラノール含有トリアジンチオール誘導体被覆との間に、水酸化物、水和酸化物、アンモニウム塩、カルボン酸塩、リン酸塩、炭酸塩、ケイ酸塩およびフッ化物よりなる群から選ばれる少なくとも1つを含む金属化合物皮膜を含むことを特徴とするアルミニウム合金部材である。 The present invention further includes a base made of aluminum or an aluminum alloy, and an aluminum alloy member in which at least a part of the surface of the base is coated with a dehydrated silanol-containing triazine thiol derivative or a silanol-containing triazine thiol derivative. Between the dehydrated silanol-containing triazine thiol derivative coating or the silanol-containing triazine thiol derivative coating, from hydroxide, hydrated oxide, ammonium salt, carboxylate, phosphate, carbonate, silicate and fluoride An aluminum alloy member comprising a metal compound film containing at least one selected from the group consisting of:
本発明は、更にまた、アルミニウムまたはアルミニウム合金より成る基体の少なくとも一部分に、アルコキシシラン含有トリアジンチオール誘導体を接触させるアルミニウム合金部材の製造方法であって、水蒸気、またはI族元素の水酸化物、I族元素の塩、II族元素の水酸化物、II族元素の塩、アンモニア、アンモニウム塩、ヒドラジン、ヒドラジン誘導体、アミン類、リン酸、リン酸塩、炭酸塩、カルボン酸、カルボン酸塩、ケイ酸、ケイ酸塩およびフッ化物から選択される少なくとも1つの水溶液を用いて前記基体の表面の少なくとも一部に、水酸化物、水和酸化物、アンモニウム塩、カルボン酸塩、リン酸塩、炭酸塩、ケイ酸塩およびフッ化物よりなる群から選ばれる少なくとも1つを含む金属化合物皮膜を形成する工程と、前記金属化合物皮膜に、アルコキシシラン含有トリアジンチオール誘導体を接触させる工程と、を含むことを特徴とする製造方法である。 The present invention is also a method for producing an aluminum alloy member in which an alkoxysilane-containing triazine thiol derivative is brought into contact with at least a part of a substrate made of aluminum or an aluminum alloy, which comprises water vapor or a hydroxide of a group I element, I Group element salt, Group II element hydroxide, Group II element salt, ammonia, ammonium salt, hydrazine, hydrazine derivatives, amines, phosphoric acid, phosphate, carbonate, carboxylic acid, carboxylate, silica Using at least one aqueous solution selected from acids, silicates and fluorides, at least a part of the surface of the substrate is coated with hydroxide, hydrated oxide, ammonium salt, carboxylate, phosphate, carbonate, Forming a metal compound film containing at least one selected from the group consisting of a salt, a silicate, and a fluoride, and the metal And a step of bringing the alkoxysilane-containing triazine thiol derivative into contact with the compound film.
本発明により、アルミニウム合金基体の表面に所定の金属化合物皮膜を導入し、アルコキシシラン含有トリアジンチオール誘導体(例えば、アルコキシシラン含有トリアジンチオール金属塩)を用いて、この金属化合物皮膜表面に反応性官能基を導入することにより、その表面に樹脂を高い接合力で接合可能なアルミニウム合金部材、およびアルミニウム合金基体と樹脂との間に高い接合強度を有するアルミニウム合金物品、ならびにそれらの製造方法を提供することが可能となる。 According to the present invention, a predetermined metal compound film is introduced on the surface of an aluminum alloy substrate, and a reactive functional group is formed on the surface of the metal compound film using an alkoxysilane-containing triazine thiol derivative (for example, an alkoxysilane-containing triazine thiol metal salt). To provide an aluminum alloy member capable of bonding a resin to the surface thereof with a high bonding force, an aluminum alloy article having a high bonding strength between the aluminum alloy substrate and the resin, and a method for producing the same Is possible.
1 アルミニウム合金基体、2 金属化合物皮膜、3 脱水シラノール含有トリアジンチオール誘導体被膜、4 樹脂 1 Aluminum alloy substrate, 2 metal compound film, 3 dehydrated silanol-containing triazine thiol derivative film, 4 resin
アルミニウム合金基体と樹脂とを接合するアルコキシシラン含有トリアジンチオール誘導体を用いて接合する場合、銅合金等の他の金属よりなる基体を用いる場合と比べ、十分に高い結合力が得られない理由について、本発明の発明者らは検討を行った。その結果、アルミニウム合金基体の表面の酸化膜に起因する可能性が高いことを見出した。 When joining using an alkoxysilane-containing triazine thiol derivative that joins an aluminum alloy substrate and a resin, compared to the case of using a substrate made of another metal such as a copper alloy, the reason why a sufficiently high bonding force cannot be obtained, The inventors of the present invention have studied. As a result, it was found that there is a high possibility that it is caused by the oxide film on the surface of the aluminum alloy substrate.
アルコキシシラン含有トリアジンチオール誘導体を用いて、金属と樹脂とを接合する場合、アルコキシシラン部分が金属と化学結合し、金属表面にトリアジンチオール誘導体部分よりなる反応性官能基が導入される。この官能基(トリアジンチオール誘導体部分)が樹脂と化学結合することにより、金属と樹脂との間を、脱水シラノール含有トリアジンチオール誘導体(上記アルコキシシラン部分が金属と化学結合の結果、アルコキシシラン含有トリアジンチオール誘導体より生じる生成物)を介して化学的に結合でき、これにより強い結合力を得ることが可能となる。 When a metal and a resin are bonded using an alkoxysilane-containing triazine thiol derivative, the alkoxysilane part chemically bonds to the metal, and a reactive functional group composed of the triazine thiol derivative part is introduced onto the metal surface. This functional group (triazine thiol derivative part) is chemically bonded to the resin, so that the dehydrating silanol-containing triazine thiol derivative (the result of the above-mentioned alkoxysilane part being chemically bonded to the metal is the result of the alkoxysilane-containing triazine thiol). The product can be chemically bonded via a product generated from the derivative, thereby making it possible to obtain a strong bonding force.
通常、アルコキシシラン含有トリアジンチオール誘導体のアルコキシシラン基と金属との結合は、アルコキシシラン含有トリアジンチオール誘導体の溶液を調製し、この溶液中に金属を浸漬することで金属表面の水酸基(OH基)とアルコキシシラン基が反応することで行われる。このため、プラズマ処理等によって金属表面の酸化被膜を除去すると共に、金属表面に水酸基(OH基)を導入する方法が一般的に用いられている。 Usually, the bond between the alkoxysilane group of the alkoxysilane-containing triazine thiol derivative and the metal is prepared by preparing a solution of the alkoxysilane-containing triazine thiol derivative, and immersing the metal in this solution to form a hydroxyl group (OH group) on the metal surface. This is performed by reacting an alkoxysilane group. For this reason, a method of removing an oxide film on the metal surface by plasma treatment or the like and introducing a hydroxyl group (OH group) into the metal surface is generally used.
しかし、アルミニウムは酸素との結合力が強く、アルミニウム合金表面に形成される酸化被膜が緻密で、かつ強固なために、OH基が十分に導入されず、アルミニウム合金とアルコキシシラン基との間で十分な結合数(密度)を得ることができないものと推測できる。また、単に酸化被膜を取り除くだけでは、アルミニウムが水中または空気中の酸素と結びついて直ちに新たな酸化被膜を形成してしまうため、高い結合力を得ることができない。 However, aluminum has a strong binding force with oxygen, and the oxide film formed on the surface of the aluminum alloy is dense and strong, so that OH groups are not sufficiently introduced, and the aluminum alloy and the alkoxysilane group It can be presumed that a sufficient number of bonds (density) cannot be obtained. Further, simply removing the oxide film makes it impossible to obtain a high bonding force because aluminum is immediately combined with oxygen in water or air to form a new oxide film.
そこで、本発明者らは、アルミニウム合金基体を表面処理することで、アルミニウム合金表面にアルコキシシラン基と反応して結合する、水酸化物、水和酸化物、アンモニウム塩、カルボン酸塩、リン酸塩、炭酸塩、ケイ酸塩、およびフッ化物よりなる群から選ばれる少なくとも1つを含む金属化合物皮膜を形成した後に、アルコキシシラン含有トリアジンチオールを用いて、アルミニウム合金基体とその表面に配置される樹脂とを強く結合するという本願記載の発明に至った。
以下に本発明の詳細を説明する。
Therefore, the present inventors surface-treated the aluminum alloy substrate, thereby reacting and binding to the alkoxysilane group on the surface of the aluminum alloy, hydroxide, hydrated oxide, ammonium salt, carboxylate, phosphoric acid. After forming a metal compound film containing at least one selected from the group consisting of a salt, carbonate, silicate, and fluoride, an aluminum silane-containing triazine thiol is used to dispose the aluminum alloy substrate and the surface thereof. The inventors have arrived at the invention described in the present application, which strongly bonds the resin.
Details of the present invention will be described below.
図1は、全体が100で表される本発明にかかるアルミニウム合金物品の一部分を模式的に示す断面図である。アルミニウムまたはアルミニウム合金から成るアルミニウム合金基体1と樹脂層4とが、詳細を後述する金属化合物皮膜2と脱水シラノール含有トリアジンチオール誘導体被覆3とを介して接合している。
脱水シラノール含有トリアジンチオール誘導体被膜3を用いて、アルミニウム合金基体1と樹脂層4とを接合した従来のアルミニウム合金物品200の断面を図2に示す。従来のアルミニウム合金物品200は、金属化合物皮膜2を有していない。
FIG. 1 is a cross-sectional view schematically showing a part of an aluminum alloy article according to the present invention, the whole of which is represented by 100. An
FIG. 2 shows a cross section of a conventional
本発明にかかるアルミニウム合金物品100の特徴である金属化合物皮膜2は、水酸化物、水和酸化物、カルボン酸塩、リン酸塩、炭酸塩、ケイ酸塩およびフッ化物よりなる群から選ばれる少なくとも1つである。
この金属化合物皮膜2を用いることでアルミニウム合金基体1と樹脂4との間が強く接合されている本発明のアルミニウム合金物品100を製造する方法を以下に詳述する。
The metal compound film 2 that is a feature of the
A method for producing the
1.洗浄処理
アルミニウム合金基体1の表面は、製造工程で生じる偏析、酸化被膜により不均一となったり、加工成形時に使用した圧延油、切削油、プレス油などが付着したり、あるいは搬送時に、発錆、指紋の付着等などで汚れる場合がある。このため、アルミニウム合金基体1の表面の状態によっては適切な洗浄方法を用いて洗浄処理を行うのが好ましい。
1. Cleaning treatment The surface of the
洗浄方法には、研削、バフ研磨、ショットブラストなどの物理的方法、例えばアルカリ性の脱脂液中で電解処理を行い、発生する水素や酸素を利用して洗浄を行う電気化学的方法、アルカリ性、酸性および中性の溶剤(洗浄剤)による化学的方法を用いることができる。 Cleaning methods include physical methods such as grinding, buffing, and shot blasting, for example, electrochemical methods in which electrolytic treatment is performed in an alkaline degreasing liquid and cleaning is performed using generated hydrogen and oxygen, alkaline and acidic methods. Further, a chemical method using a neutral solvent (cleaning agent) can be used.
操作の簡便性、コストの優位性から、化学的洗浄法を用いるのが好ましい。化学洗浄に用いる洗浄剤としては、硫酸−フッ素系、硫酸−リン酸系、硫酸系、硫酸−シュウ酸系、硝酸系のような酸性洗浄剤や水酸化ナトリウム系、炭酸ナトリウム系、重炭酸ナトリウム系、ホウ酸−リン酸系、リン酸ナトリウム系、縮合リン酸系、フッ化物系、ケイ酸塩系のようなアルカリ性洗浄剤を含む工業的に使用可能ないずれの洗浄剤を用いてもよい。安価であること、操作性が良いこと、アルミニウム合金基体1表面を荒らさないことから、縮合リン酸系、リン酸ナトリウム系、重炭酸ナトリウム系のような弱アルカリ性水溶液(弱アルカリ性洗浄剤)を用いるのが好ましい。
It is preferable to use a chemical cleaning method from the viewpoint of simplicity of operation and cost advantage. Cleaning agents used for chemical cleaning include acidic cleaning agents such as sulfuric acid-fluorine, sulfuric acid-phosphoric acid, sulfuric acid, sulfuric acid-oxalic acid, and nitric acid, sodium hydroxide, sodium carbonate, and sodium bicarbonate. Any industrially usable cleaning agent may be used, including alkaline cleaners, such as alkaline, boric acid-phosphoric acid, sodium phosphate, condensed phosphoric acid, fluoride, silicate. . Since it is inexpensive, has good operability, and does not roughen the surface of the
本発明においては、洗浄処理に続いて、必要に応じて表面の粗面化処理を行った後、金属化合物処理により、アルミニウム合金基体1の表面に所望の金属化合物皮膜2を形成することが不可欠である。従って、その前工程である洗浄処理では、アルミニウム合金基体1の表面の付着物を除去し、次工程での処理が阻害されない程度に、基体表面のアルミニウムやその他の金属の酸化物皮膜を除去し、均一化しておくこととともにアルミニウム合金基体1が洗浄時に溶解等により過度に損傷しないことが好ましい。このため、アルミニウム合金基体1の溶解が僅かであるオルソケイ酸ナトリウム、メタケイ酸ナトリウム、リン酸ナトリウムのような弱エッチングタイプを用いるのが好ましく、表面を溶解しない非エッチングタイプを用いることがさらに好ましい。
In the present invention, it is indispensable to form a desired metal compound film 2 on the surface of the
非エッチングタイプの洗浄剤としては、縮合リン酸塩を主体とした洗浄剤を用いるのが好ましい。縮合リン酸塩としては、ピロリン酸ナトリウム、トリポリリン酸ナトリウム、テトラポリリン酸ナトリウム等を用いることができ、例えば、アルカリ成分が30g/L(そのうち縮合リン酸塩の占める割合が50〜60%)のpH約9.5の水溶液を用いることができる。処理温度は、40〜90℃、処理時間5〜20分程度で良好な洗浄を行うことができる。洗浄後には、水洗を行う。アルカリ成分の好ましい濃度20〜100g/L、より好ましくは20〜60g/L、最も好ましくは20〜40g/Lであり、好ましいpHは9〜12、好ましい温度は40℃〜60℃である。このような条件を満たす弱アルカリ性水溶液中にアルミニウム合金基体1を浸漬することで、表面の洗浄および均一化を行うことができる。
As the non-etching type cleaning agent, it is preferable to use a cleaning agent mainly composed of condensed phosphate. As the condensed phosphate, sodium pyrophosphate, sodium tripolyphosphate, sodium tetrapolyphosphate, and the like can be used. For example, the alkali component is 30 g / L (of which the condensed phosphate accounts for 50-60%). An aqueous solution having a pH of about 9.5 can be used. A good cleaning can be performed at a treatment temperature of 40 to 90 ° C. and a treatment time of about 5 to 20 minutes. After washing, wash with water. The preferred concentration of the alkali component is 20 to 100 g / L, more preferably 20 to 60 g / L, most preferably 20 to 40 g / L, the preferred pH is 9 to 12, and the preferred temperature is 40 ° C. to 60 ° C. By immersing the
上記以外にも、オルソケイ酸ナトリウム、ケイ酸ナトリウム、炭酸ナトリウム、重炭酸ナトリウム、ホウ砂のようなナトリウム塩または第1リン酸ナトリウム、第2リン酸ナトリウム、第3リン酸ナトリウム等の各種リン酸ナトリウム、ヘキサメタリン酸ナトリウムのようなリン酸塩類を用いてもよい。 In addition to the above, various phosphoric acids such as sodium orthosilicate, sodium silicate, sodium carbonate, sodium bicarbonate, sodium salt such as borax or primary sodium phosphate, secondary sodium phosphate, tertiary sodium phosphate Phosphate salts such as sodium and sodium hexametaphosphate may be used.
2.粗面化処理
詳細を後述する金属化合物処理の前処理として、アルミニウム合金基体1の表面を粗面化する(荒らす)ことが好ましい。アルミニウム合金基体1の表面が粗面化されていると、その表面に形成される金属化合物皮膜2および脱水シラノール含有トリアジンチオール誘導体被膜3の表面も粗面化されて微小な凹凸を生じる。そして、接合される樹脂4が脱水シラノール含有トリアジンチオール誘導体被膜3の表面の凹部に入り込むことによりに所謂アンカー効果が生じて接合強度をよりいっそう向上することができる。
2. Roughening treatment As a pretreatment for the metal compound treatment described in detail later, it is preferable to roughen (roughen) the surface of the
粗面化の好ましい方法の1つは、両性金属であるアルミニウムの特性を利用し、アルミニウム合金が溶解する酸性またはアルカリ性のpH領域で、アルミニウム合金基体を処理して、表面を粗面化する。すなわち、pHが2以下、好ましくはpH0〜2の酸性溶液またはpHが12以上、好ましくはpH12〜14のアルカリ性溶液と接触させる。 One preferred method of roughening utilizes the properties of aluminum, an amphoteric metal, to treat the aluminum alloy substrate in an acidic or alkaline pH region where the aluminum alloy dissolves to roughen the surface. That is, it is brought into contact with an acidic solution having a pH of 2 or less, preferably pH 0 to 2, or an alkaline solution having a pH of 12 or more, preferably pH 12 to 14.
pH2以下の酸性領域での粗面化には、リン酸、塩酸、硫酸、硝酸、硫酸−フッ酸、硫酸−リン酸、硫酸−シュウ酸等を用いるのが好ましい。例えば、塩酸10〜20gを1リットルの水に溶解しpHを1以下とし、この塩酸水溶液を温度40℃に加熱しアルミニウム合金基体1を0.5〜2分浸漬し、その後、水洗する。pH12以上のアルカリ領域での粗面化には、水酸化ナトリウム、水酸化カリウム、アンモニア、炭酸ナトリウム等を用いるのが好ましい。例えば、水酸化ナトリウム10〜20gを1リットルの水に溶解しpH13以上とし、40℃でアルミニウム合金基体1を0.5〜2分浸漬し、その後、水洗する。これらの処理により、日本工業規格(JIS B0601:2001)で規定される算術平均粗さ(表面粗さ)Raを0.1〜0.6μmとすることが好ましい。より好ましい表面粗さRaは、0.1〜0.4μmである。
It is preferable to use phosphoric acid, hydrochloric acid, sulfuric acid, nitric acid, sulfuric acid-hydrofluoric acid, sulfuric acid-phosphoric acid, sulfuric acid-oxalic acid, etc. for roughening in the acidic region at pH 2 or lower. For example, 10 to 20 g of hydrochloric acid is dissolved in 1 liter of water to adjust the pH to 1 or less, the aqueous hydrochloric acid solution is heated to a temperature of 40 ° C., the
なお、アルミニウム合金基体1は、アルミニウムまたはアルミニウム合金より成り、アルミニウム合金としては工業上用いられるいずれのアルミニウム合金も使用可能である。好ましいアルミニウム合金の例は、(1)展伸用合金としては、日本工業規格(JIS)で規定されている1000番系(純アルミニウム系)、2000番系(Al−CuおよびAl−Cu−Mg系)、3000番系(Al−Mn系)、4000番系(Al−Si系)、5000番系(Al−Mg系)、6000番系(Al−Mg−Si系)、7000番系(Al−Zn−Mg系)および8000番系(Al−Fe−Mn系)があり、(2)鋳造用合金としては、JISで規定されるAC1AとAC1B(Al−Cu系)、AC2AとAC2B(Al−Cu−Si系)、AC3A(Al−Si系)、AC4AとAC4C(Al−Si−Mg系)、AC4D(Al−Si−Cu−Mg系)、AC5A(Al−Cu−Ni−Mg系)、AC7A(Al−Mg系)、AC8AとAC8B(Al−Si−Cu−Ni−Mg系)およびAC9AとAC9B(Al−Si−Cu−Ni−Mg系)があり、(3ダイカスト合金としては、JISで規定されるADC1(Al−Si系)、ADC3(Al−Si−Mg系)、ADC5とADC6(Al−Mg系)およびADC10とADC12とADC14(Al−Si−Cu系)がある。
The
そして、その形状は、圧延板等の板(シート)状、パイプ等の管状、ワイヤー等の円筒状を含む如何なる形状であってもよい。 And the shape may be any shape including a plate shape such as a rolled plate, a tubular shape such as a pipe, and a cylindrical shape such as a wire.
3.金属化合物処理
必要に応じて上述の洗浄処理および/または粗面化処理を実施した後、アルミニウム合金基体1の表面に、金属化合物処理(「化合物処理」ともいう)を実施して、水酸化物、水和酸化物、アンモニウム塩、カルボン酸塩、リン酸塩、ケイ酸塩およびフッ化物の少なくとも1つを含む金属化合物皮膜2(「化合物皮膜」ともいう)を形成する。
金属化合物処理は以下に示す化合物、酸等の少なくとも1つを用いて、例えばこれらの水溶液に浸漬することにより実施する。
3. Metal Compound Treatment After performing the above-described cleaning treatment and / or roughening treatment as necessary, the surface of the
The metal compound treatment is performed by immersing in, for example, an aqueous solution of at least one of the following compounds and acids.
なお、本明細書に示す「金属化合物被膜」の「金属」とは、アルミニウム合金基体1に含まれる金属および詳細を以下に示す金属化合物処理に用いる溶液(金属化合物処理液)に含まれる金属のうちの少なくとも一種を意味する。
The “metal” in the “metal compound coating” shown in this specification refers to the metal contained in the
金属化合物処理は、アルカリ性の溶液を用いるアルカリ処理と、酸性の溶液を用いる酸性処理に大別できる。以下にそれぞれの詳細を示す。 The metal compound treatment can be roughly divided into an alkali treatment using an alkaline solution and an acid treatment using an acidic solution. Details of each are shown below.
アルカリ処理は詳細を以下に示す中性またはアルカリ性を示す溶液を用いて、例えばこれらの溶液に浸漬することにより金属化合物処理を行う。アルカリ処理ではpH7〜12の中性から弱アルカリ性を示す、化合物の水溶液を用いるのが好ましい。 The alkali treatment is performed by using a solution showing neutrality or alkalinity described in detail below, for example, by immersing in these solutions. In the alkali treatment, it is preferable to use an aqueous solution of a compound exhibiting neutral to weak alkalinity at pH 7-12.
酸性処理とは詳細を以下に示す酸性を示す溶液を用いて、例えばこれらの溶液に浸漬することにより金属化合物処理を行う。酸性処理ではpH2〜5の弱酸性を示す、化合物の水溶液を用いるのが好ましい。 With the acid treatment, a metal compound treatment is performed by immersing in a solution having the acidity described below in detail, for example. In the acid treatment, it is preferable to use an aqueous solution of a compound exhibiting weak acidity of pH 2 to 5.
すなわち、アルミニウムは、25℃の水溶液の場合、pH4〜8では、安定な酸化物の不動態皮膜形成するため、金属化合物皮膜の形成が困難となる場合があり、pH2〜4およびpH8〜12の範囲では、アルミニウムが徐々に溶解し、生じたアルミニウムイオンと溶液中の化合物との交換反応による不溶化またはアルミニウムの溶解によりアルミニウム合金基体近傍のpH変化による化合物の不溶化によって、金属化合物がアルミニウム合金基体上に析出し、容易に金属化合物皮膜を形成できる。処理時間短縮などの理由で、処理液温度を40℃以上とする場合があることを考慮した、実用的な好ましいpHの範囲が、上述のpH2〜5(酸性処理)およびpH7〜12(アルカリ処理)である。粗面化処理に適用するpH2以下およびpH12以上の粗面化処理の範囲は、アルミニウム合金基体の溶解速度が高く金属化合物皮膜の形成が困難な場合があることから金属化合物処理にとっては好ましい範囲となっていない。
アルカリ処理および酸性処理について、以下に具体的に用いる溶液を示して説明する。
That is, in the case of an aqueous solution at 25 ° C., since aluminum forms a stable oxide passive film at pH 4 to 8, formation of a metal compound film may be difficult, and pH 2 to 4 and pH 8 to 12 may occur. In the range, the metal compound is dissolved on the aluminum alloy substrate by the dissolution of aluminum gradually and insolubilization by exchange reaction between the generated aluminum ions and the compound in the solution or by insolubilization of the compound due to pH change in the vicinity of the aluminum alloy substrate by dissolution of aluminum. The metal compound film can be easily formed. Considering that the treatment liquid temperature may be 40 ° C. or higher for reasons such as shortening the treatment time, the practical and preferable pH ranges are the above pH 2-5 (acid treatment) and pH 7-12 (alkali treatment). ). The range of the roughening treatment at pH 2 or lower and the pH 12 or higher applied to the roughening treatment is a preferable range for the metal compound treatment because the dissolution rate of the aluminum alloy substrate is high and the formation of the metal compound film may be difficult. is not.
The alkali treatment and the acid treatment will be described with reference to the solutions specifically used below.
3−1.アルカリ処理
アルカリ処理に用いる金属化合物処理液(アルカリ化合物の水溶液)にアルミニウム合金基体1を浸漬し金属化合物処理を行うことができる。
3-1. Alkali treatment The metal compound treatment can be performed by immersing the
(1)I族元素の水酸化物、I族元素の塩、II族元素の水酸化物、II族元素の塩
リチウム、ナトリウム、カリウム、ルビジウムまたはセシウムのようなI族元素(周期律表でI族の元素)の水酸化物;I族元素の塩;ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムまたはラジウムのようなII族元素(周期律表でII族の元素)の水酸化物およびII族元素の塩の水溶液を用いることができる。これらの何れかを用いることにより、アルミニウム合金基体1の表面に、水酸化物を主成分とする金属化合物皮膜2が生成する。このような金属化合物皮膜2の主成分となる水酸化物の例として水酸化アルミニウム、金属水酸化物(金属はアルミニウム合金基体1に含まれる金属)がある。
(1) Group I element hydroxide, Group I element salt, Group II element hydroxide, Group II element salt Group I elements such as lithium, sodium, potassium, rubidium or cesium (in the periodic table) Group I element hydroxides; Group I element salts; Group II elements (group II elements in the periodic table) such as beryllium, magnesium, calcium, strontium, barium or radium hydroxide and group II An aqueous solution of an elemental salt can be used. By using any of these, the metal compound film 2 mainly composed of hydroxide is formed on the surface of the
金属化合物処理に用いるI族元素の水酸化物、I族元素の塩、II族元素の水酸化物およびII族元素の塩をより詳細に示す。
I族元素の水酸化物として、水酸化ナトリウム、水酸化カリウムが例示される。例えば、水酸化ナトリウムの水溶液を用いて金属化合物処理を行う場合、水酸化ナトリウムの濃度0.04〜0.4g/L、温度30〜80℃で処理を行うのが好ましい。
The group I element hydroxide, group I element salt, group II element hydroxide and group II element salt used in the metal compound treatment are shown in more detail.
Examples of group I element hydroxides include sodium hydroxide and potassium hydroxide. For example, when the metal compound treatment is performed using an aqueous solution of sodium hydroxide, the treatment is preferably performed at a sodium hydroxide concentration of 0.04 to 0.4 g / L and a temperature of 30 to 80 ° C.
I族元素の塩とは、I族元素と酸とにより生ずる塩であり、その水溶液がアルカリ性を示す金属塩である。主に弱酸とI族元素とが結合して生じる塩であり、このようなI族元素の塩としては、オルソケイ酸ナトリウム、メタケイ酸ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、酢酸ナトリウム、酢酸カリウム、ラウリン酸ナトリウム、ラウリン酸カリウム、パルミチン酸ナトリウム、パルミチン酸カリウム、ステアリン酸ナトリウム、およびステアリン酸カリウムが例示される。例えば、炭酸カリウムの水溶液を用いて金属化合物処理を行う場合、炭酸カリウムの濃度0.05〜15g/L、温度30〜80℃で処理を行うのが好ましい。 The salt of a group I element is a salt produced by a group I element and an acid, and an aqueous solution of the salt is a metal salt exhibiting alkalinity. It is a salt produced mainly by combining a weak acid and a group I element. Examples of such a group I element salt include sodium orthosilicate, sodium metasilicate, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, Examples include sodium acetate, potassium acetate, sodium laurate, potassium laurate, sodium palmitate, potassium palmitate, sodium stearate, and potassium stearate. For example, when the metal compound treatment is performed using an aqueous solution of potassium carbonate, the treatment is preferably performed at a potassium carbonate concentration of 0.05 to 15 g / L and a temperature of 30 to 80 ° C.
II族元素の水酸化物として、水酸化カルシウム、水酸化バリウムが例示される。例えば、水酸化バリウム八水和物の水溶液を用いて金属化合物処理を行う場合、水酸化バリウム八水和物の濃度0.05〜5g/L、温度30〜80℃で処理を行うのが好ましい。
また、II族元素の塩とは、II族元素と弱酸とにより生ずる塩であり、その水溶液がアルカリ性を示す金属塩である。主に弱酸とII族元素とが結合して生じる塩であり、このようなII族元素の塩としては、酢酸カルシウム、酢酸ストロンチウム、および酢酸バリウムが例示される。例えば、酢酸バリウムの水溶液を用いて金属化合物処理を行う場合、酢酸バリウムの濃度0.05〜100g/L、温度30〜80℃で処理を行うのが好ましい。
Examples of Group II element hydroxides include calcium hydroxide and barium hydroxide. For example, when the metal compound treatment is performed using an aqueous solution of barium hydroxide octahydrate, the treatment is preferably performed at a concentration of barium hydroxide octahydrate of 0.05 to 5 g / L and a temperature of 30 to 80 ° C. .
Further, the salt of a group II element is a salt generated by a group II element and a weak acid, and a metal salt whose aqueous solution shows alkalinity. The salt is mainly formed by combining a weak acid and a Group II element. Examples of the Group II element salt include calcium acetate, strontium acetate, and barium acetate. For example, when the metal compound treatment is performed using an aqueous solution of barium acetate, the treatment is preferably performed at a barium acetate concentration of 0.05 to 100 g / L and a temperature of 30 to 80 ° C.
例えばI族元素の塩およびII族元素の塩として、オルソケイ酸ナトリウム、メタケイ酸ナトリウム、ケイ酸カリウム等のような、I族元素のケイ酸塩の水溶液を用いて金属化合物処理を行った場合は、形成された金属化合物皮膜2は主成分として水酸化物に加えケイ酸塩も含む場合が多い。なお、このようなケイ酸塩の例としてケイ酸アルミニウム、金属ケイ酸塩(金属はアルミニウム合金基体1に含まれる金属)がある。例えば、オルソケイ酸ナトリウムの水溶液を用いて金属化合物処理を行う場合、オルソケイ酸ナトリウムの濃度は0.05〜1g/L、温度は30〜80℃であることが好ましい。 For example, when a metal compound treatment is performed using an aqueous solution of a silicate of a group I element such as sodium orthosilicate, sodium metasilicate, potassium silicate, etc. as a salt of a group I element and a salt of a group II element The formed metal compound film 2 often contains silicate as a main component in addition to hydroxide. Examples of such silicates include aluminum silicate and metal silicate (metal is a metal contained in the aluminum alloy substrate 1). For example, when the metal compound treatment is performed using an aqueous solution of sodium orthosilicate, the concentration of sodium orthosilicate is preferably 0.05 to 1 g / L and the temperature is preferably 30 to 80 ° C.
(2)アンモニア、ヒドラジン、ヒドラジン誘導体または水溶性アミン化合物
アンモニア、ヒドラジン、ヒドラジン誘導体または水溶性アミンの化合物の水溶液もアルカリ性を示す。これらの水溶液にアルミニウム合金基体1を浸漬しても金属化合物皮膜を形成できる。アルミニウム合金基体1の表面に、水酸化アルミニウム、金属水酸化物(金属はアルミニウム合金基体1に含まれる金属)のような水酸化物を主成分とする金属化合物皮膜2が生成する。アンモニア、ヒドラジン、ヒドラジン誘導体、水溶性アミンは、広い意味でのアミン系化合物であり、アンモニア、ヒドラジン以外ではヒドラジン誘導体として加水ヒドラジン、炭酸ヒドラジン等を、水溶性アミンとしてメチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、エチレンジアミン、アリルアミン等を用いることができる。例えば、ヒドラジンの水溶液を用いて金属化合物処理を行う場合、ヒドラジンの濃度0.5〜100g/L、温度30〜80℃であることが好ましい。
(2) Ammonia, hydrazine, hydrazine derivatives or water-soluble amine compounds Aqueous solutions of ammonia, hydrazine, hydrazine derivatives or water-soluble amine compounds are also alkaline. Even if the
以上に説明した「(1)I族元素の水酸化物、I族元素の塩、II族元素の水酸化物、II族元素の塩」および「(2)アンモニア、ヒドラジン、ヒドラジン誘導体または水溶性アミン化合物」の具体例は、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素アンモニウムのような炭酸塩を含む。これらの炭酸塩の水溶液を用いて金属化合物処理を行うことで、アルミニウム合金基体1の表面に、これら炭酸塩、炭酸水素塩及び/または水酸化物を主成分とする金属化合物皮膜2が形成される。これらの炭酸塩、炭酸水素塩および/または水酸化物は、炭酸アルミニウムおよび/または炭酸金属塩(金属はアルミニウム合金基体1に含まれる金属)を含んでもよい。また、種類の異なる金属の炭酸塩を混合した溶液中で金属化合物処理を行うことにより、炭酸アルミニウムおよびアルミニウム合金基体1に含まれる金属の炭酸塩以外の複数の炭酸塩を形成してもよい。
例えば、炭酸ナトリウムの水溶液を用いて金属化合物処理を行う場合、水溶液は炭酸ナトリウムの濃度:0.05〜10g/L、温度:30〜90℃の範囲内であることが好ましい。
“(1) Group I element hydroxides, Group I element salts, Group II element hydroxides, Group II element salts” and “(2) Ammonia, hydrazine, hydrazine derivatives or water-solubility described above. Specific examples of “amine compounds” include carbonates such as sodium carbonate, potassium carbonate, ammonium carbonate, sodium bicarbonate, potassium bicarbonate, ammonium bicarbonate. By performing a metal compound treatment using an aqueous solution of these carbonates, a metal compound film 2 mainly composed of these carbonates, bicarbonates and / or hydroxides is formed on the surface of the
For example, when the metal compound treatment is performed using an aqueous solution of sodium carbonate, the aqueous solution preferably has a sodium carbonate concentration of 0.05 to 10 g / L and a temperature of 30 to 90 ° C.
(3)ベーマイト処理
ベーマイト処理液を用いたベーマイト処理により金属化合物処理を行うことができる。
ベーマイト処理とは、(1)水(純水)または0.3%トリエタノールアミン水溶液もしくは0.3%アンモニア水溶液のような弱アルカリ性(pH7より大きく12以下(好ましくは12未満))水溶液(ベーマイト処理液)を50℃以上(好ましくは80℃以上)に加熱し、この加熱した水または弱アリカリ性水溶液にアルミニウム合金基体1を浸漬する、または(2)加圧水蒸気中にアルミニウム合金基体1に暴露する処理である。
金属化合物処理液として純水または水蒸気を用いる場合は、金属化合物処理液は中性であるため厳密にはアルカリ処理ではないが、本明細書においては便宜上「アルカリ処理」の項目に記載した。
なお、ベーマイト処理に用いる金属化合物処理液は、反応が水和反応であり、水酸基を効率よく形成させるために弱アリカリ性であることが好ましい。
(3) Boehmite treatment Metal compound treatment can be performed by boehmite treatment using a boehmite treatment solution.
Boehmite treatment refers to (1) weakly alkaline (pH 7 to 12 (preferably less than 12)) aqueous solution (boehmite) such as water (pure water) or 0.3% triethanolamine aqueous solution or 0.3% ammonia aqueous solution. (Treatment liquid) is heated to 50 ° C. or higher (preferably 80 ° C. or higher), and the
When pure water or water vapor is used as the metal compound treatment liquid, the metal compound treatment liquid is neutral and is not strictly an alkali treatment. However, in this specification, it is described in the item of “alkali treatment” for convenience.
In addition, it is preferable that the metal compound processing liquid used for a boehmite process is weak antariness, in order that reaction may be a hydration reaction and a hydroxyl group may be formed efficiently.
このベーマイト処理を行うことでアルミニウムおよびアルミニウム合金基体1に含まれる金属の水和酸化物(水和物)を主体とする化合物皮膜2がアルミニウム合金基体1の表面に生成する。多くの場合、このベーマイト処理により形成するベーマイト皮膜は、γ−AlO・OHまたはγ−AlO・OHとα−Al2O3とを主成分とする無孔性の皮膜である。ベーマイト処理により、皮膜厚さが0.02〜10μm、より好ましくは、厚さ0.05〜2μmの比較的一様な金属化合物皮膜2を形成できる。
By performing the boehmite treatment, a compound film 2 mainly composed of aluminum and a metal hydrated oxide (hydrate) contained in the
このようにベーマイト処理は、主成分としてγ−AlO・OHを含む金属化合物皮膜を形成でき、すなわちアルミニウム基材表面にOH基を密に均一に形成できること、および表面に微細な凹凸が多く形成されることにより接触表面積が増加することから、接合強度向上に有効であり、本発明に係る金属化合物処理として好ましい。 Thus, the boehmite treatment can form a metal compound film containing γ-AlO.OH as a main component, that is, the surface of the aluminum base can be formed densely and uniformly, and many fine irregularities are formed on the surface. This increases the contact surface area, which is effective for improving the bonding strength and is preferable as the metal compound treatment according to the present invention.
好ましいベーマイト処理の条件は以下の通りである。
純水に添加剤としてアンモニア、アミン、アルコールアミン、アミド系物質の少なくとも1つを添加し、pHを10〜12程度に調整したベーマイト処理液を用いる。好ましいベーマイト処理液の一例は、3g/Lのトリエチルアミン水溶液であり、そのpHは約10である。処理温度は好ましくは50〜100℃の範囲で、より好ましくは80〜100℃、さらに好ましくは90〜100℃である。この範囲内であれば、比較的短い時間で緻密な金属化合物皮膜を得ることが可能である。処理時間は1〜120分が好ましい。形成される皮膜の厚さは、0.02〜10μm程度である。
Preferred conditions for boehmite treatment are as follows.
A boehmite treatment solution is used in which at least one of ammonia, an amine, an alcohol amine, and an amide-based substance is added to pure water as an additive, and the pH is adjusted to about 10 to 12. An example of a preferred boehmite treatment solution is a 3 g / L aqueous triethylamine solution, and its pH is about 10. Processing temperature becomes like this. Preferably it is the range of 50-100 degreeC, More preferably, it is 80-100 degreeC, More preferably, it is 90-100 degreeC. Within this range, a dense metal compound film can be obtained in a relatively short time. The treatment time is preferably 1 to 120 minutes. The thickness of the film to be formed is about 0.02 to 10 μm.
3−2.酸性処理 3-2. Acid treatment
以下に酸性処理に用いる金属化合物処理液の具体例を示す。
(1)リン酸、リン酸塩
リン酸、例えばリン酸水素亜鉛、リン酸水素マンガン、リン酸水素カルシウムのようなリン酸水素金属塩、例えばリン酸二水素カルシウムのようなリン酸二水素金属塩、および例えばリン酸亜鉛、リン酸マンガン、リン酸カルシウム、リン酸カルシウムナトリウム、リン酸ジルコニウムのようなリン酸金属塩等の−H2PO4、−HPO4または−PO4を含有するリン酸およびリン酸塩の溶液を用い、金属化合物処理を行う。なお、本明細書でいうリン酸とはオルトリン酸、メタリン酸、ピロリン酸等を含む広義の酸性のリン酸であり、リン酸塩とは、オルトリン酸、メタリン酸、ピロリン酸等の広義の酸性のリン酸の化合物を含む概念である。
Specific examples of the metal compound treatment liquid used for the acid treatment are shown below.
(1) Phosphoric acid, phosphate Phosphoric acid, metal hydrogen phosphate such as zinc hydrogen phosphate, manganese hydrogen phosphate, calcium hydrogen phosphate, metal dihydrogen phosphate such as calcium dihydrogen phosphate salts and, for example zinc phosphate, manganese phosphate, calcium phosphate, sodium calcium phosphate, -H 2 PO 4, such as phosphoric acid metal salts such as zirconium phosphate, phosphoric acid and phosphate containing -HPO 4 or -PO 4 The metal compound treatment is performed using a salt solution. In this specification, phosphoric acid is a broadly defined acidic phosphoric acid including orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, etc., and a phosphate is a broadly acidic acid such as orthophosphoric acid, metaphosphoric acid, pyrophosphoric acid, etc. It is a concept including a compound of phosphoric acid.
リン酸を用いることで、アルミニウム合金基体1の表面にリン酸アルミニウムおよび/またはリン酸金属塩および/または水酸化物を主成分とする金属化合物皮膜2が形成される。
By using phosphoric acid, the metal compound film 2 mainly composed of aluminum phosphate and / or metal phosphate and / or hydroxide is formed on the surface of the
一方、リン酸亜鉛、リン酸水素亜鉛、リン酸マンガン、リン酸水素マンガン、リン酸水素金属塩、リン酸二水素金属塩、リン酸金属塩、リン酸水素カルシウム、リン酸二水素カルシウム、リン酸カルシウム、リン酸カルシウムナトリウム、リン酸ジルコニウム、リン酸バナジウム、リン酸ジルコニウムバナジウムのようなリン酸塩(リン酸の金属塩)の水溶液を用いて金属化合物処理を行うことにより、アルミニウム合金基体1の表面に、これらリン酸塩および/または水酸化物を主成分とする金属化合物皮膜2を形成できる。これらのリン酸塩および/または水酸化物の金属化合物皮膜2は、リン酸アルミニウムおよび/またはアルミニウム合金基体1に含まれるアルミニウム以外の金属のリン酸金属塩を含んでもよい。また、種類の異なる金属のリン酸塩を混合した溶液中で金属化合物処理を行うことにより、複数のリン酸塩を形成してもよい。
Meanwhile, zinc phosphate, zinc hydrogen phosphate, manganese phosphate, manganese hydrogen phosphate, metal hydrogen phosphate, metal dihydrogen phosphate, metal phosphate, calcium hydrogen phosphate, calcium dihydrogen phosphate, calcium phosphate By performing a metal compound treatment using an aqueous solution of a phosphate (metal salt of phosphoric acid) such as sodium calcium phosphate, zirconium phosphate, vanadium phosphate, and zirconium vanadium phosphate, A metal compound film 2 mainly composed of these phosphates and / or hydroxides can be formed. These phosphate and / or hydroxide metal compound film 2 may contain aluminum phosphate and / or metal phosphate metal other than aluminum contained in
例えば、リン酸ジルコニウムの水溶液を用いて金属化合物処理を行う場合、水溶液は、濃度:1〜100g/L、温度:20〜90℃であることが好ましい。また、これ以外のリン酸、リン酸亜鉛、リン酸水素亜鉛、リン酸マンガン、リン酸水素マンガン、リン酸水素金属塩、リン酸二水素金属塩、リン酸金属塩、リン酸水素カルシウム、リン酸二水素カルシウム、リン酸カルシウムのようなリン酸、リン酸塩の水溶液を用いる場合は、水溶液は、濃度:5〜30g/L、温度:20〜90℃であるのことが好ましく、温度については25℃〜75℃であることがより好ましい。一方、リン酸ジルコニウム、リン酸バナジウム、リン酸ジルコニウムバナジウムの水溶液を用いる場合は、水溶液は、濃度:0.2〜2g/L、温度:30〜70℃であるのことが好ましく、温度については50℃〜70℃であることがより好ましい。 For example, when the metal compound treatment is performed using an aqueous solution of zirconium phosphate, the aqueous solution preferably has a concentration of 1 to 100 g / L and a temperature of 20 to 90 ° C. Other than this, phosphoric acid, zinc phosphate, zinc hydrogen phosphate, manganese phosphate, manganese hydrogen phosphate, hydrogen phosphate metal salt, dihydrogen phosphate metal salt, metal phosphate phosphate, calcium hydrogen phosphate, phosphorus When using an aqueous solution of phosphoric acid and phosphate such as calcium dihydrogen phosphate and calcium phosphate, the aqueous solution preferably has a concentration of 5 to 30 g / L and a temperature of 20 to 90 ° C. It is more preferable that the temperature is from 75C to 75C. On the other hand, when an aqueous solution of zirconium phosphate, vanadium phosphate, or zirconium vanadium phosphate is used, the aqueous solution preferably has a concentration of 0.2 to 2 g / L and a temperature of 30 to 70 ° C. It is more preferable that it is 50 degreeC-70 degreeC.
(2)カルボン酸、カルボン酸塩
タンニン酸のようなカルボン酸水溶液を用い、アルミニウム合金基体1に金属化合物処理を行う。これにより、アルミニウム合金基体1の表面に、カルボン酸のアルミニウム塩および/または金属塩、および/または水酸化物を主成分とする金属化合物皮膜が生成する。
(2) Carboxylic acid, carboxylate salt The
ギ酸、酢酸、シュウ酸、コハク酸の金属塩の水溶液を用いて金属化合物処理を行ってもよい。この場合、アルミニウム合金基体1の表面には、主にアルミニウム塩および/または金属塩とその一部に水酸基が付いた塩基性の金属化合物皮膜2が生成する。例えばシュウ酸金属塩水溶液を用いて金属化合物処理を行う場合、水溶液は、濃度:0.5〜100g/L、温度30〜70℃であることが好ましい。
The metal compound treatment may be performed using an aqueous solution of a metal salt of formic acid, acetic acid, oxalic acid, or succinic acid. In this case, on the surface of the
(3)フッ化物
フッ化水素酸、フッ化ナトリウム、フッ化カリウム、フッ化アンモニウム、フッ化水素アンモニウム、ケイフッ化水素酸、ケイフッ化アンモニウム、ホウフッ化水素酸、ホウフッ化アンモニウムのようなフッ化物水溶液にアルミニウム合金基体1を浸漬しても金属化合物皮膜を形成ができる。これにより、アルミニウム合金基体1の表面に、フッ化アルミニウムおよび/またはアルミニウム以外の金属を含む金属フッ化物および/または水酸化アルミニウムおよびアルミニウム合金基体1に含まれる金属の水酸化物のような水酸化物を主成分とする金属化合物皮膜2が形成される。例えば、フッ化水素アンモニウム水溶液を用いて金属化合物処理を行う場合、水溶液は、濃度:1〜60g/L、温度:30〜70℃であることが好ましい。
(3) Fluoride aqueous solution of fluoride such as hydrofluoric acid, sodium fluoride, potassium fluoride, ammonium fluoride, ammonium hydrogen fluoride, silicofluoric acid, ammonium silicofluoride, borohydrofluoric acid, ammonium borofluoride Even if the
以上に示した示す金属化合物処理の中でもアルカリ処理の、「(1)I族元素の水酸化物、I族元素の塩、II族元素の水酸化物、II族元素の塩」および「(3)ベーマイト処理」ならびに酸性処理の「(1)リン酸、リン酸塩」に記載の方法を用いるのが好ましい。
I族元素の水酸化物、I族元素の塩、II族元素の水酸化物、II族元素の塩を用いた処理およびベーマイト処理が好ましい理由は、水酸化物、水和酸化物がアルミニウム合金基体表面に密に形成されやすく、そのOH基および酸基がトリアジンチオール誘導体のアルコキシシランが加水分解して生成するシラノールと結合しやすいこと、及びその結合強度が大きいからである。リン酸、リン酸塩による処理が好ましい理由は、金属化合物皮膜として形成されるリン酸塩化合物は大きな極性を有し、トリアジンチオール誘導体のアルコキシシランが加水分解して生成するシラノールと結合しやすいためと考えられる。
また、これらのなかでもベーマイト処理が、より好ましい。
Among the metal compound treatments shown above, alkali treatment, “(1) Group I element hydroxide, Group I element salt, Group II element hydroxide, Group II element salt” and “(3 It is preferable to use the method described in “(1) Phosphoric acid, phosphate” in “Boehmite treatment” and acid treatment.
Group I element hydroxide, Group I element salt, Group II element hydroxide, Group II element salt treatment and boehmite treatment are preferred because the hydroxide and hydrated oxide are aluminum alloys. This is because it is easily formed densely on the surface of the substrate, and its OH group and acid group are easily bonded to silanol produced by hydrolysis of the alkoxysilane of the triazine thiol derivative, and its bonding strength is high. The reason why the treatment with phosphoric acid and phosphate is preferable is that the phosphate compound formed as a metal compound film has a large polarity, and the alkoxysilane of the triazine thiol derivative is easily bonded to silanol produced by hydrolysis. it is conceivable that.
Of these, boehmite treatment is more preferable.
アルコキシシラン含有トリアジンチオール誘導体が金属化合物皮膜2に浸透して、金属化合物皮膜2と反応するサイトが多くなり、トリアジンチオール誘導体のアルコキシシランが加水分解して生成するシラノールと金属化合物皮膜2の水酸基、リン酸基、炭酸基、カルボン酸基、またはフッ化物とが、加熱処理によって脱水反応または脱ハロゲン反応を起こし、化学的に結合する。この様にして、生成する脱水シラノール含有トリアジンチオール誘導体被覆3と金属化合物皮膜2との間に、より強固な結合を得ることができる。
The alkoxysilane-containing triazine thiol derivative penetrates into the metal compound film 2, and there are more sites that react with the metal compound film 2, and the silanol produced by hydrolysis of the alkoxysilane of the triazine thiol derivative and the hydroxyl group of the metal compound film 2, A phosphoric acid group, a carbonic acid group, a carboxylic acid group, or a fluoride undergoes a dehydration reaction or a dehalogenation reaction by heat treatment, and is chemically bonded. In this way, a stronger bond can be obtained between the resulting dehydrated silanol-containing triazine thiol
さらに、樹脂4が接合後に冷却されて収縮する際に、比較的厚い金属化合物皮膜2が樹脂4と金属化合物皮膜2との間に生じる応力を分散吸収し、樹脂4の剥離および金属化合物皮膜2のクラックの発生を防ぐ効果を有する。 Further, when the resin 4 is cooled and contracts after bonding, the relatively thick metal compound film 2 disperses and absorbs the stress generated between the resin 4 and the metal compound film 2, and the resin 4 is peeled off and the metal compound film 2. Has the effect of preventing the occurrence of cracks.
なお、上記の溶液を用いた金属化合物処理は、アルミニウム合金基体1の全体または一部を、溶液(金属化合物処理液)に浸漬することのみでなく、アルミニウム合金基体2の表面の全部または一部を、スプレー、塗布等により溶液で被覆すること、または溶液と接触させることも含む。
The metal compound treatment using the above solution not only immerses the whole or part of the
従って、上記から明らかなように、金属化合物皮膜2は、必ずしもアルミニウム合金基体2の表面全体に形成される必要はなく、適宜、必要な部分にのみ形成してもよい。 Therefore, as is apparent from the above, the metal compound film 2 is not necessarily formed on the entire surface of the aluminum alloy substrate 2, and may be formed only on necessary portions as appropriate.
また、上述した金属化合物被膜を形成する方法を2つ以上組み合わせて、金属化合物処理としてもよいことは言うまでもない。
すなわち、複数の上述した金属化合物処理に用いる溶液(金属化合物処理液)を混合した溶液を用いて金属化合物皮膜を形成してもよい。また、上述した金属化合物処理に用いる溶液(金属化合物処理液)のうちの一種類を用いて金属化合物処理を行った後、別の種類の金属化合物処理液を用いて更に金属化合物処理を行ってもよい。
It goes without saying that the metal compound treatment may be performed by combining two or more methods of forming the metal compound film described above.
That is, the metal compound film may be formed by using a solution obtained by mixing a plurality of solutions used for the metal compound treatment (metal compound treatment liquid). Moreover, after performing a metal compound process using one kind of the solution (metal compound process liquid) used for the metal compound process mentioned above, a metal compound process is further performed using another kind of metal compound process liquid. Also good.
上述の金属化合物処理により得られた金属化合物被膜2は通常、粗面化している。すなわち、金属化合物被膜2の表面粗さは金属化合物処理を行う前のアルミニウム合金基体1の表面粗さより粗くなっている。
例えば、表面粗さRaが0.10μm以下であるアルミニウム合金基体1の表面に、上述した粗面化処理を行って、Raを0.12〜0.60μmとした後、更に上述の金属化合物処理を施すことで、Raが0.15μm以上の金属化合物皮膜2を形成することができる。また、粗面化処理を行わない場合、すなわち例えばRaが0.10μm以下であるアルミニウム合金基体1の表面に粗面化処理を行わずに金属化合物処理を行った場合、形成された金属化合物皮膜2の表面粗さRaは0.15μm未満である。
金属化合物被膜2の表面粗面化は、金属化合物被膜2の上に形成される脱水シラノール含有トリアジンチオール誘導体被膜3と金属化合物皮膜2との接触面積を増加できることから、接合強度の向上に寄与する。
The metal compound film 2 obtained by the above-described metal compound treatment is usually roughened. That is, the surface roughness of the metal compound coating 2 is rougher than the surface roughness of the
For example, the surface of the
The surface roughening of the metal compound coating 2 can increase the contact area between the dehydrated silanol-containing triazine thiol
3.アルコキシシラン含有トリアジンチオール誘導体の被覆
上述の方法により、アルミニウム合金基体1の表面に金属化合物皮膜2を形成した後、金属化合物皮膜2にアルコキシシラン含有トリアジンチオール誘導体を被覆する。
用いるアルコキシシラン含有トリアジンチオール誘導体は、例えばアルコキシシラン含有トリアジンチオール金属塩のような、既知のものでよい。
即ち、以下の(式1)または(式2)に示した一般式で表される。
3. Coating of Alkoxysilane-Containing Triazine Thiol Derivative After forming the metal compound film 2 on the surface of the
The alkoxysilane-containing triazine thiol derivative used may be a known one such as an alkoxysilane-containing triazine thiol metal salt.
That is, it is represented by the general formula shown in the following (Formula 1) or (Formula 2).
式中のR1、R2およびR3は炭化水素である。R1は、例えば、H−、CH3−、C2H5−、CH2=CHCH2−、C4H9−、C6H5−、C6H13−のいずれかである。R2は、例えば、−CH2CH2−、−CH2CH2CH2−、−CH2CH2CH2CH2CH2CH2−、−CH2CH2SCH2CH2−、−CH2CH2NHCH2CH2CH2−のいずれかである。R3は、例えば、−(CH2CH2)2CHOCONHCH2CH2CH2−、または、−(CH2CH2)2N−CH2CH2CH2−であり、この場合、NとR3とが環状構造となる。 R 1 , R 2 and R 3 in the formula are hydrocarbons. R 1 is, for example, any one of H—, CH 3 —, C 2 H 5 —, CH 2 ═CHCH 2 —, C 4 H 9 —, C 6 H 5 —, and C 6 H 13 —. R 2 is, for example, —CH 2 CH 2 —, —CH 2 CH 2 CH 2 —, —CH 2 CH 2 CH 2 CH 2 CH 2 CH 2 —, —CH 2 CH 2 SCH 2 CH 2 —, —CH. 2 CH 2 NHCH 2 CH 2 CH 2 —. R 3 is, for example, — (CH 2 CH 2 ) 2 CHOCONHCH 2 CH 2 CH 2 — or — (CH 2 CH 2 ) 2 N—CH 2 CH 2 CH 2 —, in which case N and R 3 is a ring structure.
式中のXは、CH3−、C2H5−、n−C3H7−、i−C3H7−、n−C4H9−、i−C4H9−、t−C4H9−のいずれかである。Yは、CH3O−、C2H5O−、n−C3H7O−、i−C3H7O−、n−C4H9O−、i−C4H9O−、t−C4H9O−等のアルコキシ基である。式中のnは1、2、3のいずれかの数字である。Mはアルカリ金属であり、好ましくはLi、Na、KまたはCeである。 X in the formula is, CH 3 -, C 2 H 5 -, n-C 3 H 7 -, i-C 3 H 7 -, n-C 4 H 9 -, i-C 4 H 9 -, t- One of C 4 H 9 —. Y is, CH 3 O-, C 2 H 5 O-, n-C 3 H 7 O-, i-C 3 H 7 O-, n-C 4 H 9 O-, i-C 4 H 9 O- a t-C 4 H 9 O- and alkoxy groups. N in a formula is either 1, 2, or 3 numbers. M is an alkali metal, preferably Li, Na, K or Ce.
金属化合物皮膜2を被覆形成した後、金属化合物皮膜2の表面にアルコキシシラン含有トリアジンチオール誘導体の被覆を形成するためにアルコキシシラン含有トリアジンチオール誘導体の溶液を作製する。用いる溶媒は、アルコキシシラン含有トリアジンジチオール誘導体が溶解するものであればよく、水およびアルコール系溶剤がこれに該当する。例えば、水、メタノール、エタノール、プロパノール、カルビトール、エチレングリコール、ポリエチレングリコールおよびこれらの混合溶媒も使用可能である。アルコキシシラン含有トリアジンジチオール誘導体の好ましい濃度は0.001g〜20g/Lであり、より好ましい濃度は0.01g〜10g/Lである。 After coating the metal compound film 2, a solution of the alkoxysilane-containing triazine thiol derivative is prepared in order to form a coating of the alkoxysilane-containing triazine thiol derivative on the surface of the metal compound film 2. The solvent to be used is not particularly limited as long as the alkoxysilane-containing triazine dithiol derivative can be dissolved, and water and alcohol solvents correspond to this. For example, water, methanol, ethanol, propanol, carbitol, ethylene glycol, polyethylene glycol, and a mixed solvent thereof can be used. A preferable concentration of the alkoxysilane-containing triazine dithiol derivative is 0.001 g to 20 g / L, and a more preferable concentration is 0.01 g to 10 g / L.
得られた、アルコキシシラン含有トリアジンジチオール誘導体溶液中に、金属化合物皮膜2を備えたアルミニウム合金基体1を浸漬する。溶液の好ましい温度範囲、より好ましい温度範囲は、それぞれ0℃〜100℃、20℃〜80℃である。一方、浸漬時間は、1分〜200分が好ましく、3分〜120分がより好ましい。
The
この浸漬により、アルコキシシラン含有トリアジンチオール誘導体のアルコキシシラン部分は、加水分解してシラノールになるので、浸漬後のアルコキシシラン含有トリアジンチオール誘導体は、シラノール含有トリアジンチオール誘導体となり、金属化合物皮膜2との間に水素結合的な緩い結合を生じ化学的結合力を得ることができる。 By this immersion, the alkoxysilane portion of the alkoxysilane-containing triazine thiol derivative is hydrolyzed to become silanol. Therefore, the alkoxysilane-containing triazine thiol derivative after the immersion becomes a silanol-containing triazine thiol derivative, and between the metal compound film 2 It is possible to obtain a chemical bond strength by forming a hydrogen bond and a loose bond.
従って、これにより、アルミニウム合金基体1と金属化合物皮膜2およびシラノール含有トリアジンチオール誘導体被覆よりなる、表面に樹脂を接合するのに用いるアルミニウム合金部材を得ることができる。
Therefore, this makes it possible to obtain an aluminum alloy member used for bonding a resin to the surface, which is composed of the
そして、このアルミニウム合金部材を、乾燥および脱水反応促進熱処理を目的に100℃〜450℃まで加熱する。この加熱により、シラノール含有トリアジンチオール誘導体のシラノール部分に、上述した金属化合物皮膜2に含まれる水酸化物、カルボン酸塩、リン酸塩、ケイ酸およびフッ化物の少なくとも1つと脱水または脱ハロゲン結合反応が起こることから、シラノール含有トリアジンチオール誘導体は、脱水シラノール含有トリアジンチオール誘導体に変わり、金属化合物皮膜2との間で化学的に結合する。 Then, this aluminum alloy member is heated to 100 ° C. to 450 ° C. for the purpose of drying and dehydration reaction promoting heat treatment. By this heating, the silanol portion of the silanol-containing triazine thiol derivative is dehydrated or dehalogenated with at least one of the hydroxide, carboxylate, phosphate, silicic acid and fluoride contained in the metal compound film 2 described above. Therefore, the silanol-containing triazine thiol derivative is changed to a dehydrated silanol-containing triazine thiol derivative and chemically bonded to the metal compound film 2.
従って、この加熱処理の結果、アルミニウム合金基体1と金属化合物皮膜2および脱水シラノール含有トリアジンチオール誘導体被覆3よりなる、表面に樹脂を接合するのに用いるアルミニウム合金部材を得ることができる。
Therefore, as a result of this heat treatment, an aluminum alloy member used for joining the resin to the surface, which is composed of the
次に、この脱水シラノール含有トリアジンチオール誘導体と樹脂との接合力をより強くするために、金属化合物皮膜2の上に形成された脱水シラノール含有トリアジンチオール誘導体を、必要に応じ適宜、接合補助剤として例えば、ジマレイミド類であるN,N’−m−フェニレンジマレイミドやN、N‘−ヘキサメエチレンジマレイミドのようなラジカル反応により結合性を有する化合物とジクルミルパーオキサイド、ベンゾイルパーオキサイドのような過酸化物またはその他のラジカル開始剤とを含む溶液に浸漬する。浸漬後、アルミニウム合金部材を、30℃〜270℃で、1分〜600分間、乾燥・熱処理する。 Next, in order to strengthen the bonding force between the dehydrated silanol-containing triazine thiol derivative and the resin, the dehydrated silanol-containing triazine thiol derivative formed on the metal compound film 2 is appropriately used as a bonding aid as necessary. For example, compounds having binding properties by radical reaction such as N, N′-m-phenylene dimaleimide, which is a dimaleimide, and N, N′-hexameethylene dimaleimide, and diclemyl peroxide, benzoyl peroxide, etc. Immerse in a solution containing peroxide or other radical initiator. After the immersion, the aluminum alloy member is dried and heat-treated at 30 ° C. to 270 ° C. for 1 minute to 600 minutes.
これにより、脱水シラノール含有トリアジンチオール誘導体は、トリアジンチオール金属塩(トリアジンチオール誘導体)部分の金属イオンが除去され、硫黄がメルカプト基になって、このメルカプト基がN,N’−m−フェニレンジマレイミドのマレイン酸の2つの二重結合部の一方と反応してN,N’−m−フェニレンジマレイミドを結合した脱水シラノール含有トリアジンチオール誘導体となる。
ラジカル開始剤は、樹脂を成形する際に行う加熱等の熱による分解でラジカルを生じ、上記マレイン酸による2つの二重結合部の他方の結合を開き、樹脂と反応、結合させる作用を有する。
As a result, the dehydrated silanol-containing triazine thiol derivative removes the metal ion of the triazine thiol metal salt (triazine thiol derivative) portion, and the sulfur becomes a mercapto group, and this mercapto group becomes N, N′-m-phenylenedimaleimide. It reacts with one of the two double bonds of maleic acid to form a dehydrated silanol-containing triazine thiol derivative bonded with N, N′-m-phenylene dimaleimide.
The radical initiator has a function of generating a radical by decomposition by heat such as heating performed when molding a resin, opening the other bond of the two double bonds by the maleic acid, and reacting and bonding with the resin.
さらに、必要に応じ適宜、過酸化物、レドックス触媒などのラジカル開始剤をベンゼン、エタノールなどの有機溶媒に溶解させた溶液を、浸漬またはスプレーにより噴霧する等によりアルミニウム合金部材表面に付着させて、風乾する。 Furthermore, if necessary, a solution prepared by dissolving a radical initiator such as a peroxide or a redox catalyst in an organic solvent such as benzene or ethanol is attached to the surface of the aluminum alloy member by spraying by dipping or spraying. Air dry.
ラジカル開始剤は、樹脂を成形する際に行う加熱等の熱による分解でラジカルを生じ、上記マレイン酸による2つの二重結合部の他方の結合を開き、または、トリアジンチオール誘導体の金属塩部分に働いて、樹脂と反応、結合させる作用を有する。 The radical initiator generates radicals by thermal decomposition such as heating performed when molding the resin, opens the other bond of the two double bonds by the maleic acid, or forms a metal salt part of the triazine thiol derivative. It works to react and bond with the resin.
なお、本願発明に係るアルミニウム物品100の金属化合物皮膜2および脱水シラノール含有トリアジンチオール誘導体層3は、例えばXPS分析(X線光電子分光分析)によりその成分を同定することができる。
The components of the metal compound film 2 and the dehydrated silanol-containing triazine thiol
4.樹脂との接合
アルミニウム金属基体1の表面に金属化合物皮膜2および脱水シラノール含有トリアジンチオール誘導体層3を有するアルミニウム合金部材と樹脂4とを接合(複合一体化)してアルミニウム物品100を得る。樹脂4は、加熱した状態で脱水シラノール含有トリアジンチオール誘導体層3と接触するように配置される。これにより、樹脂4と脱水シラノール含有トリアジンチオール誘導体3のトリアジンチオール誘導体部分(トリアジンチオール金属塩部分またはビスマレイミド類を結合したトリアジンチオール誘導体)が、ラジカル開始剤のラジカルを媒介として反応し、化学的結合を生じる。
なお、樹脂は、脱水シラノール含有トリアジンチオール誘導体被膜3の一部にのみ配置してもよい。
4). Bonding with Resin An
The resin may be disposed only on a part of the dehydrated silanol-containing triazine thiol
本願発明において樹脂4は、接着剤を含む概念である。すなわち、樹脂4として接着剤として機能する樹脂を選択した場合には、得られたアルミニウム合金物品100と、別の物品とを樹脂4により接着することが可能となる。このような別の物品の例としては、アルミニウム、ステンレス、鉄、マグネシウム、チタン、亜鉛、銅もしくはこれらの金属またはそれらの合金からなる金属製物品、および樹脂等から成る物品がある。別の物品が金属製物品である場合には、金属化合物皮膜2および脱水シラノール含有トリアジンチオール誘導体層3をその表面に形成しておくことにより、接着剤樹脂4との接合強度を更に高くできる。
In the present invention, the resin 4 is a concept including an adhesive. That is, when a resin that functions as an adhesive is selected as the resin 4, the obtained
加熱した樹脂4を脱水シラノール含有トリアジンチオール誘導体被覆3の上に配置する方法として、以下の4つの方法を例示できる。
As a method for disposing the heated resin 4 on the dehydrated silanol-containing triazine thiol
第1の方法は、金型にアルミニウム合金部材(金属基体1と金属化合物皮膜2と脱水シラノール含有トリアジンチオール誘導体被覆3を含む)を配置し、金型中に溶融樹脂を射出してインサート成形物品またはアウトサート成形物品を得る際に、金型および樹脂の熱によりラジカル開始剤を分解し、ラジカル反応によりトリアジンチオール誘導体被覆と樹脂を化学的に結合させてアルミニウム合金部材と樹脂4とを接合する射出成形法である。
In the first method, an aluminum alloy member (including a
第2の方法は、射出成形によりアルミニウム合金部材と樹脂とを一体にした射出成形品を得た後、荷重を付与した状態でこの射出成形品をオーブンまたは熱板上で加熱して、ラジカル開始剤を分解し、ラジカル反応により化学結合させてアルミニウム合金部材と樹脂を接合する第1の溶着法である。 In the second method, after obtaining an injection molded product in which an aluminum alloy member and a resin are integrated by injection molding, the injection molded product is heated in an oven or a hot plate in a state where a load is applied to start radicals. This is a first welding method in which the agent is decomposed and chemically bonded by radical reaction to join the aluminum alloy member and the resin.
第3の方法は、アルミニウム合金部材(金属基体1と金属化合物皮膜2と脱水シラノール含有トリアジンチオール誘導体被覆3を含む)を熱板上に置いて加熱し、その上に樹脂成形物品(樹脂4)を配置し、荷重を付与して持することで金属基体と樹脂を密着させて反応・接合する第2の溶着方法である。
In the third method, an aluminum alloy member (including a
第4の方法は、アルミニウム合金部材(金属基体1と金属化合物皮膜2と脱水シラノール含有トリアジンチオール誘導体被覆3を含む)に樹脂からなる接着剤(樹脂4)を塗布し、この接着剤上に接着しようとする別の物品を配置した後、所定の荷重を付与して、室温に放置するかオーブン内で加熱硬化することでアルミニウム合金物品と樹脂4を接合するのと同時に樹脂4と別の物品との間を接着する方法である。
接着剤(樹脂4)は、ガラス繊維、セラミック粉体、カーボン繊維等の強化材を含んでもよい。また、熱硬化樹脂に充填剤を配合し、強化繊維に含浸してシート状にした未硬化材料のシート・モールディング・コンパウンド(SMC)またはプレプリグや熱硬化性樹脂に充填剤とガラス繊維などをミキサーで混合してバルク状にしたバルク・モールディング・コンパウンド(BMC)でもよい。室温で接着する場合は、接着剤が室温で反応硬化するものである必要がある。
In the fourth method, an adhesive (resin 4) made of a resin is applied to an aluminum alloy member (including a
The adhesive (resin 4) may include a reinforcing material such as glass fiber, ceramic powder, and carbon fiber. In addition, a filler, glass fiber, etc. are mixed into a sheet molding compound (SMC) or prepreg or thermosetting resin of uncured material that is made into a sheet by blending a filler with a thermosetting resin and impregnating the reinforcing fiber. Bulk molding compound (BMC) that is mixed in a bulk form. In the case of bonding at room temperature, the adhesive needs to be reactively cured at room temperature.
第1の方法を用いる場合、金型温度を20〜220℃として、金型内でアルミ合金部材と樹脂とを45秒〜10分間保持するのが好ましい。第2〜第4の方法を用いる場合、オーブンまたは熱板の温度を30〜430℃のとし、加重を負荷した状態で1分〜10時間保持するのが好ましい。温度は、ラジカル開始剤の分解温度以上であることが必要であり、保持時間は、ラジカルがトリアジンチオール誘導体と樹脂との化学結合を生じるのに十分な時間が必要である。 In the case of using the first method, it is preferable that the mold temperature is 20 to 220 ° C. and the aluminum alloy member and the resin are held in the mold for 45 seconds to 10 minutes. When the second to fourth methods are used, it is preferable that the temperature of the oven or the hot plate be 30 to 430 ° C. and the load is applied for 1 minute to 10 hours. The temperature needs to be equal to or higher than the decomposition temperature of the radical initiator, and the holding time needs a sufficient time for the radical to form a chemical bond between the triazine thiol derivative and the resin.
なお、アルミニウム合金部材と樹脂との接合は、上述の射出成形および射出成形品を加熱する溶着法に限定されるものではなく、工業的に用いられるアルミニウム合金と樹脂との任意の接合手法を用いることができる。このような接合方法の好適な例として熱板溶着等が挙げられる。熱板溶着とは高温の板等の熱源に樹脂を接触させて溶融し、溶融した樹脂が冷えて固まる前にアルミニウム合金部材を押し付けて接合する方法である。 The joining of the aluminum alloy member and the resin is not limited to the above-described injection molding and the welding method for heating the injection-molded product, and any joining technique for industrially used aluminum alloy and resin is used. be able to. A preferred example of such a joining method is hot plate welding. Hot plate welding is a method in which a resin is brought into contact with a heat source such as a high-temperature plate and melted, and the aluminum alloy member is pressed and joined before the molten resin cools and hardens.
また、接合する樹脂4は、工業的に使用可能ないずれの樹脂も用いることが可能であるが、ラジカルに反応する元素、官能基を持った樹脂が好ましい。このような好ましい樹脂の例は、フェノール樹脂、ハイドロキノン樹脂、クレゾール樹脂、ポリビニルフェノール樹脂、レゾルシン樹脂、メラミン樹脂、グリプタル樹脂、エポキシ樹脂、変成エポキシ樹脂、ポリビニルホルマール樹脂、ポリヒドロキシメチルメタクリレートとその共重合体、ポリヒドロキシエチルアクリレートとその共重合体、アクリル樹脂、ポリビニルアルコールとその共重合体、ポリ酢酸ビニル、ポリエチレンテレフタレート樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリケトンイミド樹脂、ポリブチレンテレフタレート樹脂、不飽和ポリエステル樹脂、ポリフェニレンサルファイド樹脂、ポリフェニレンオキサイド樹脂、ポリスチレン樹脂、ABS樹脂、ポリカーボネート樹脂(PC樹脂)、6−ナイロン樹脂、66−ナイロン樹脂、610−ナイロン樹脂、芳香族ポリアミド樹脂、尿素樹脂、スチレン系エラストマー樹脂、オレフィン系エラストマー樹脂、塩ビ系エラストマー樹脂、ウレタン系エラストマー樹脂、エステル系エラストマー樹脂、アミド系エラストマー樹脂、およびこれらの樹脂から選ばれた2種以上を複合した複合樹脂、ならびにこれら樹脂をガラス繊維、カーボン繊維、セラミックス等で強化した強化樹脂である。 As the resin 4 to be joined, any industrially usable resin can be used, but a resin having an element that reacts with a radical or a functional group is preferable. Examples of such preferred resins are phenol resin, hydroquinone resin, cresol resin, polyvinyl phenol resin, resorcin resin, melamine resin, glyphtal resin, epoxy resin, modified epoxy resin, polyvinyl formal resin, polyhydroxymethyl methacrylate and its co-polymer. Polymer, polyhydroxyethyl acrylate and copolymer, acrylic resin, polyvinyl alcohol and copolymer, polyvinyl acetate, polyethylene terephthalate resin, polyimide resin, polyetherimide resin, polyketoneimide resin, polybutylene terephthalate resin, unsaturated Polyester resin, polyphenylene sulfide resin, polyphenylene oxide resin, polystyrene resin, ABS resin, polycarbonate resin (PC resin), 6-nylon resin , 66-nylon resin, 610-nylon resin, aromatic polyamide resin, urea resin, styrene elastomer resin, olefin elastomer resin, vinyl chloride elastomer resin, urethane elastomer resin, ester elastomer resin, amide elastomer resin, and A composite resin in which two or more selected from these resins are combined, and a reinforced resin in which these resins are reinforced with glass fibers, carbon fibers, ceramics, or the like.
また、樹脂4として接着剤を用いる場合、接着剤の種類は特に限定されるものではないが、エポキシ系接着剤、アクリル系接着剤、ポリウレタン系接着剤、シリコーン系接着剤、ゴム系接着剤、ポリエステル系接着剤、フェノール系接着剤、ポリイミド系接着剤、シアノアクリレート系接着剤、エラストマー系接着剤、ホットメルト系接着剤などの工業的に利用される接着剤を使用できる。シート・モールディング・コンパウンド(SMC)としては、不飽和ポリエステル樹脂に炭酸カルシウムを配合し、ガラス繊維に含浸してシート状にしたもの、バルク・モールディング・コンパウンド(BMC)としては、不飽和ポリエステル樹脂に炭酸カルシウム、ガラス繊維短繊維を混合したものを使用できる。 Further, when an adhesive is used as the resin 4, the type of the adhesive is not particularly limited, but an epoxy adhesive, an acrylic adhesive, a polyurethane adhesive, a silicone adhesive, a rubber adhesive, Industrially available adhesives such as polyester adhesives, phenol adhesives, polyimide adhesives, cyanoacrylate adhesives, elastomer adhesives, hot melt adhesives, and the like can be used. As a sheet molding compound (SMC), an unsaturated polyester resin is blended with calcium carbonate and impregnated into glass fiber to form a sheet. As a bulk molding compound (BMC), an unsaturated polyester resin is used. A mixture of calcium carbonate and short glass fiber can be used.
以上により、アルミニウム合金基体1と樹脂4とを金属化合物皮膜2と脱水シラノール含有トリアジンチオール誘導体被覆3とを介して接合したアルミニウム合金物品100を製造することが可能となる。
As described above, an
なお、本方法で得られるアルミニウム合金物品は、アルミニウム合金基体と樹脂間の接合強度が高いという利点の他にも、アルミニウム物品の表面に特に機械加工を施す必要がなく、また、接着剤、応力緩和用の弾性樹脂等を使用しなくても樹脂を接合できることから、加工工数が少なく、接合部がきれいに仕上がり、寸法精度良く仕上げることが出来るという利点を有する。 The aluminum alloy article obtained by this method does not require any special machining on the surface of the aluminum article in addition to the advantage that the bonding strength between the aluminum alloy substrate and the resin is high. Since the resin can be joined without using a relaxing elastic resin or the like, there is an advantage that the number of processing steps is small, the joint is finished cleanly, and the finish can be finished with high dimensional accuracy.
さらに、アルミニウム基体1の成形精度が悪い部分を樹脂4で覆うことにより、樹脂成形精度で物品が仕上がり、製品の歩留まりを高くできるという利点を有する。
Furthermore, by covering the portion of the
(1)洗浄処理
長さ80mm、幅20mm、厚さ1.5mmのA5052(日本工業規格、JIS A5052P)のアルミニウム合金圧延板(実施例1〜22、比較例1〜30)、および長さ80mm、幅20mm、厚さ2.0mmのADC12(日本工業規格、JIS ADC12)のアルミニウム合金ダイカスト板(実施例23〜44)を以下に詳細を示す方法により処理した。
洗浄処理の前に、株式会社キーエンス製レーザー顕微鏡VK−8710を用い、表面粗さRa(JIS B0601:2001に規定されている算術平均粗さRa)を測定した。A5052の圧延板のRaは0.08μmであり、ADC12ダイカスト板のRaは0.10μmであった。
(1) Cleaning treatment Aluminum alloy rolled plates (Examples 1-22, Comparative Examples 1-30) of A5052 (Japanese Industrial Standard, JIS A5052P) having a length of 80 mm, a width of 20 mm, and a thickness of 1.5 mm, and a length of 80 mm An aluminum alloy die cast plate (Examples 23 to 44) of ADC12 (Japanese Industrial Standard, JIS ADC12) having a width of 20 mm and a thickness of 2.0 mm was processed by the method described in detail below.
Prior to the cleaning treatment, a surface roughness Ra (arithmetic average roughness Ra defined in JIS B0601: 2001) was measured using a laser microscope VK-8710 manufactured by Keyence Corporation. Ra of the rolled plate of A5052 was 0.08 μm, and Ra of the ADC12 die cast plate was 0.10 μm.
洗浄処理は温度40℃のアルカリ成分が30g/L(そのうち縮合リン酸塩の占める割合が50〜60%)のpH約9.5の水溶液にアルミニウム合金基体1を5分間浸漬させることにより行った。洗浄処理後は、純水で1分間水洗した。
洗浄処理後に測定した表面粗さRaは、A5052圧延材では、0.08μmであり、ADC12ダイカスト板では0.11μmであり、洗浄処理前のサンプルとほとんど変わらなかった。
The cleaning treatment was performed by immersing the
The surface roughness Ra measured after the cleaning treatment was 0.08 μm for the A5052 rolled material and 0.11 μm for the ADC12 die-cast plate, which was almost the same as the sample before the cleaning treatment.
洗浄処理を行った後、粗面化処理と金属化合物処理を行った。
これらの条件について表1および表2に示す。
After the cleaning treatment, the surface roughening treatment and the metal compound treatment were performed.
These conditions are shown in Tables 1 and 2.
(2)粗面化処理
表1に用いた処理液(水溶液)の種類、濃度およびpHと、それぞれの処理液に浸漬した時間とを示す。
実施例1〜6および実施例23〜28のサンプルについては粗面化処理を実施しなかった。
(2) Roughening treatment The type, concentration and pH of the treatment liquid (aqueous solution) used in Table 1 and the time of immersion in each treatment liquid are shown.
The roughening treatment was not performed on the samples of Examples 1 to 6 and Examples 23 to 28.
なお、粗面化処理を行ったサンプルの表面粗さRaはA5052圧延材では0.12〜0.22μm、ADC12ダイカスト板では0.16〜0.19μmであった。 The surface roughness Ra of the sample subjected to the roughening treatment was 0.12 to 0.22 μm for the A5052 rolled material and 0.16 to 0.19 μm for the ADC12 die cast plate.
(3)金属化合物処理
次に表1および表2に示す条件で金属化合物処理を行った。
なお、比較例1〜22のサンプルについては金属化合物処理を行わなかった。
(3) Metal Compound Treatment Next, metal compound treatment was performed under the conditions shown in Tables 1 and 2.
In addition, the metal compound process was not performed about the sample of Comparative Examples 1-22.
リン酸亜鉛水溶液を用いて金属化合物処理を行った実施例1、7、23、29のサンプルおよび比較例23のサンプルではアルミニウム合金基体1の表面に、リン酸亜鉛を主成分とする金属化合物皮膜が形成された。
In the samples of Examples 1, 7, 23, and 29 and the sample of Comparative Example 23 in which the metal compound treatment was performed using the zinc phosphate aqueous solution, the metal compound film mainly composed of zinc phosphate was formed on the surface of the
リン酸ジルコニウム水溶液を用いて金属化合物処理を行った実施例2、8、24、30のサンプルおよび比較例24のサンプルではアルミニウム合金基体1の表面に、リン酸ジルコニウムを主成分とする金属化合物皮膜が形成された。
In the samples of Examples 2, 8, 24, and 30 and the sample of Comparative Example 24 in which the metal compound treatment was performed using the zirconium phosphate aqueous solution, the metal compound film mainly containing zirconium phosphate was formed on the surface of the
リン酸ジルコニウムバナジウム水溶液を用いて金属化合物処理を行った実施例3、9、25、31のサンプルおよび比較例25のサンプルではアルミニウム合金基体1の表面に、リン酸ジルコニウムおよびリン酸バナジウムを主成分とする金属化合物皮膜が形成された。
In the samples of Examples 3, 9, 25, and 31 and the sample of Comparative Example 25 in which the metal compound treatment was performed using the zirconium vanadium phosphate aqueous solution, zirconium phosphate and vanadium phosphate were the main components on the surface of the
水酸化ナトリウム水溶液を用いて金属化合物処理を行った実施例4、10、26、32のサンプルおよび比較例26のサンプルではアルミニウム合金基体1の表面に、水酸化物を主成分とする金属化合物皮膜が形成された。
In the samples of Examples 4, 10, 26, and 32 and the sample of Comparative Example 26 in which the metal compound treatment was performed using the sodium hydroxide aqueous solution, the metal compound film mainly composed of hydroxide was formed on the surface of the
アンモニア水溶液を用いて金属化合物処理を行った実施例5、11、27、33のサンプルおよび比較例27のサンプルではアルミニウム合金基体1の表面に、水酸化物を主成分とする金属化合物皮膜が形成された。
In the samples of Examples 5, 11, 27, and 33 and the sample of Comparative Example 27 in which the metal compound treatment was performed using an aqueous ammonia solution, a metal compound film mainly composed of hydroxide was formed on the surface of the
実施例6、12〜22、28、34〜44および比較例28〜30のサンプルについてはベーマイト処理を行った。
ベーマイト処理液として濃度3g/L、pH8.0のトリエタノールアミン水溶液を用いた。水溶液の温度を95℃にして、サンプルを水溶液中に15分浸漬した。そしてアルミニウムの水和酸化物であるベーマイト(γ−AlO・OHとα−Al2O3)を主成分とする金属化合物皮膜を得た。
The samples of Examples 6, 12-22, 28, 34-44 and Comparative Examples 28-30 were subjected to boehmite treatment.
A triethanolamine aqueous solution having a concentration of 3 g / L and pH 8.0 was used as the boehmite treatment solution. The temperature of the aqueous solution was set to 95 ° C., and the sample was immersed in the aqueous solution for 15 minutes. And to obtain a metal compound coating that boehmite is a hydrated oxide of aluminum (γ-AlO · OH and α-Al 2 O 3) as a main component.
なお、上記のようにして金属化合物処理を行ったサンプルの表面粗さRaは粗面化処理を行った場合、A5052圧延材では0.16〜0.25μm、ADC12ダイカスト板では0.18〜0.22μmであり、粗面化処理を行なわなかった場合、A5052圧延材では0.11〜0.13μm、ADC12ダイカスト板では0.13〜0.15μmであった。 The surface roughness Ra of the sample subjected to the metal compound treatment as described above is 0.16 to 0.25 μm for the A5052 rolled material and 0.18 to 0 for the ADC12 die-cast plate when the surface roughening treatment is performed. When the surface roughening treatment was not performed, the thickness was 0.11 to 0.13 μm for the A5052 rolled material and 0.13 to 0.15 μm for the ADC12 die-cast plate.
表3〜4に実施例および比較例サンプルの金属化合物処理後の表面粗さRaの測定結果を示す。金属化合物処理を行わなかったサンプルについては粗面化処理後の表面粗さRaの測定結果を示している。 Tables 3 to 4 show the measurement results of the surface roughness Ra of the examples and comparative examples after the metal compound treatment. About the sample which did not perform a metal compound process, the measurement result of surface roughness Ra after a roughening process is shown.
(3)アルコキシシラン含有トリアジンチオール誘導体の被覆
次に実施例サンプルの全て(実施例1〜44)および比較例12〜22のサンプルについてアルコキシシラン含有トリアジンチオール溶液中に浸漬した。
用いたアルコキシシラン含有トリアジンチオール誘導体は、トリエトキシシリルプロピルアミノトリアジンチオールモノナトリウムであり、濃度が0.7g/Lとなるようにエタノール95:水5(体積比)の溶媒に溶解し、溶液を得た。このトリエトキシシリルプロピルアミノトリアジンチオールモノナトリウム溶液に室温で30分間浸漬した。
(3) Coating of alkoxysilane-containing triazine thiol derivative Next, all of the examples (Examples 1 to 44) and the samples of Comparative Examples 12 to 22 were immersed in an alkoxysilane-containing triazine thiol solution.
The alkoxysilane-containing triazine thiol derivative used was triethoxysilylpropylaminotriazine thiol monosodium, dissolved in a solvent of ethanol 95: water 5 (volume ratio) so that the concentration was 0.7 g / L, and the solution was dissolved. Obtained. This triethoxysilylpropylaminotriazine thiol monosodium solution was immersed for 30 minutes at room temperature.
その後、これらサンプルをオーブン内にて160℃で10分間熱処理し、反応を完了させるとともに乾燥した。そして、濃度1.0g/LのN,N’−m−フェニレンジマレイミド(N,N’−1,3−フェニレンジマレイミド)と濃度2g/Lのジクミルパーオキシドを含有するアセトン溶液に室温で10分間浸漬し、オーブン内にて150℃で10分間熱処理した。その後、サンプルの表面全体に、濃度2g/Lのジクミルパーオキシドのエタノール溶液を室温で噴霧し、風乾した。 Thereafter, these samples were heat-treated in an oven at 160 ° C. for 10 minutes to complete the reaction and dry. Then, an acetone solution containing N, N′-m-phenylene dimaleimide (N, N′-1,3-phenylene dimaleimide) having a concentration of 1.0 g / L and dicumyl peroxide having a concentration of 2 g / L was added to room temperature. And then heat-treated in an oven at 150 ° C. for 10 minutes. Thereafter, an ethanol solution of dicumyl peroxide having a concentration of 2 g / L was sprayed on the entire surface of the sample at room temperature and air-dried.
(4)樹脂との接合
表1および表2に示す樹脂とそれぞれのサンプルを接合して、アルミニウム合金物品のサンプルを得た。
実施例16、18、20、22、38、40、42および44のサンプルでは射出成形により接合を行った。
すなわち、樹脂は金型内で、長さ80mm、幅20mm、厚さ3mmの板となるように成形され、1つの面の端末部の長さ12mm、幅20mmの部分が、上述の処理を行ったアルミニウム合金板サンプルの端末部上に配置され長さ12mm、幅20mmの部分と接触し、この部分を接合させた。
(4) Bonding with resin The samples shown in Tables 1 and 2 were bonded to the respective samples to obtain samples of aluminum alloy articles.
The samples of Examples 16, 18, 20, 22, 38, 40, 42 and 44 were joined by injection molding.
That is, the resin is molded into a plate having a length of 80 mm, a width of 20 mm, and a thickness of 3 mm in the mold, and the end portion of one surface having a length of 12 mm and a width of 20 mm is subjected to the above processing. The aluminum alloy plate sample was placed on the end portion of the sample and contacted with a portion having a length of 12 mm and a width of 20 mm, and this portion was joined.
実施例1〜15、17、19、21、23〜37、39、41、43および比較例1〜28のサンプルでは溶着法(上述の第2の溶着法)により接合を行った。
すなわち、表1および表2に示す種類の樹脂板と接触するように耐熱テープでそれぞれのサンプルを固定し、そして各々の樹脂の樹脂融点(または溶融可能な温度)に設定した加熱体の上に耐熱テープで固定したサンプルを配置し、このサンプルを上方から9kgfの荷重で加圧して、熱融着させることにより上述の射出成形で得たアルミニウム合金物品サンプルと同じ形状のアルミニウム合金物品サンプルを得た。
In the samples of Examples 1 to 15, 17, 19, 21, 23 to 37, 39, 41, and 43 and Comparative Examples 1 to 28, bonding was performed by a welding method (the above-described second welding method).
That is, each sample is fixed with a heat-resistant tape so as to come into contact with the types of resin plates shown in Tables 1 and 2, and the heating point is set to the resin melting point (or meltable temperature) of each resin. An aluminum alloy article sample having the same shape as the aluminum alloy article sample obtained by the injection molding described above is obtained by placing a sample fixed with heat-resistant tape, pressurizing the sample with a load of 9 kgf from above, and thermally fusing it. It was.
用いた樹脂の詳細を以下に示す。
実施例16および38のサンプルでは、ポリプラスチックス株式会社製PPS樹脂(フォートロンPPS 1140A64)を320℃で射出成形し、アルミニウム物品サンプルを得た。
Details of the resin used are shown below.
In the samples of Examples 16 and 38, PPS resin (Fortron PPS 1140A64) manufactured by Polyplastics Co., Ltd. was injection molded at 320 ° C. to obtain aluminum article samples.
実施例18および40のサンプルでは、三菱エンジニアリングプラスチックス株式会社製PC/ABS樹脂(ユーピロン MB2215R)を270℃で射出成形し、アルミニウム物品サンプルを得た。 In the samples of Examples 18 and 40, PC / ABS resin (Iupilon MB2215R) manufactured by Mitsubishi Engineering Plastics Co., Ltd. was injection molded at 270 ° C. to obtain aluminum article samples.
実施例20および42のサンプルでは、東レ株式会社製66ナイロン(アミラン CM3001−N)を295℃で射出成形し、アルミニウム物品サンプルを得た。 In the samples of Examples 20 and 42, 66 nylon (Amilan CM3001-N) manufactured by Toray Industries, Inc. was injection molded at 295 ° C. to obtain aluminum article samples.
実施例22および44のサンプルでは、三菱化学株式会社製TPEEエラストマー樹脂(プリマロイ B1600N)を230℃で射出成形し、アルミニウム物品サンプルを得た。 In the samples of Examples 22 and 44, a TPEE elastomer resin (Primalloy B1600N) manufactured by Mitsubishi Chemical Corporation was injection molded at 230 ° C. to obtain aluminum article samples.
実施例1〜14、23〜36および比較例1〜30のサンプルでは、旭化成ケミカルズ株式会社製ABS樹脂(スタイラック(R)―ABS汎用026)の樹脂板を用いて上述の形状となるように固定し、得られたサンプルを230℃に設定した加熱体の上に配置し、溶着することでアルミニウム合金物品サンプルを得た。 In the samples of Examples 1 to 14, 23 to 36, and Comparative Examples 1 to 30, the above-described shape is obtained using a resin plate of ABS resin (Stylac (R) -ABS General Purpose 026) manufactured by Asahi Kasei Chemicals Corporation. The sample obtained was fixed and placed on a heating body set at 230 ° C. and welded to obtain an aluminum alloy article sample.
実施例15および37のサンプルでは、ポリプラスチックス株式会社製PPS樹脂(フォートロンPPS 1140A64)の樹脂板を用いて上述の形状となるように固定し、得られたサンプルを320℃に設定した加熱体の上に配置し、熱融着することでアルミニウム合金物品サンプルを得た。 In the samples of Examples 15 and 37, a PPS resin (Fortron PPS 1140A64) manufactured by Polyplastics Co., Ltd. was used to fix the sample to the shape described above, and the obtained sample was heated to 320 ° C. An aluminum alloy article sample was obtained by placing on the body and heat-sealing.
実施例17および39のサンプルでは、三菱エンジニアリングプラスチックス株式会社製PC/ABS樹脂(ユーピロン MB2215R)の樹脂板を用いて上述の形状となるように固定し、得られたサンプルを260℃に設定した加熱体の上に配置し溶着することでアルミニウム合金物品サンプルを得た。 In the samples of Examples 17 and 39, the resin plate of PC / ABS resin (Iupilon MB2215R) manufactured by Mitsubishi Engineering Plastics Co., Ltd. was used to fix the sample to the shape described above, and the obtained sample was set at 260 ° C. An aluminum alloy article sample was obtained by placing and welding on the heating element.
実施例19および41のサンプルでは、東レ株式会社製66ナイロン(アミラン CM3001−N)の樹脂板を用いて上述の形状となるように固定し、得られたサンプルを290℃に設定した加熱体の上に配置し、熱融着することでアルミニウム合金物品サンプルを得た。 In the samples of Examples 19 and 41, the resin plate of 66 nylon (Amilan CM3001-N) manufactured by Toray Industries, Inc. was used to fix the sample to the shape described above, and the resulting sample was heated to 290 ° C. An aluminum alloy article sample was obtained by placing on and heat-sealing.
実施例21および43のサンプルでは、三菱化学株式会社製TPEEエラストマー樹脂(プリマロイ B1600N)の樹脂板を用いて上述の形状となるように固定し、得られたサンプルを230℃に設定した加熱体の上に配置し、熱融着することでアルミニウム合金物品サンプルを得た。 In the samples of Examples 21 and 43, a TPEE elastomer resin (Primalloy B1600N) manufactured by Mitsubishi Chemical Corporation was used to fix the sample to the shape described above, and the obtained sample was set to 230 ° C. An aluminum alloy article sample was obtained by placing on and heat-sealing.
(5)強度評価
実施例1〜20、23〜42および比較例1〜30のサンプルについては以下に詳細を示す引張試験を行った。
一方、実施例21、22、43および44のサンプルについては、以下に詳細を示す90度剥離試験を行った。
(5) Strength evaluation About the samples of Examples 1-20, 23-42, and Comparative Examples 1-30, the tension test which shows a detail below was done.
On the other hand, the samples of Examples 21, 22, 43 and 44 were subjected to a 90-degree peel test which will be described in detail below.
引張り試験には島津製作所製オートグラフAG−10TD試験器を用い、アルミニウム合金物品サンプルのアルミニウム板部(アルミニウム合金基材)と樹脂板部(樹脂)の端末部(接合部と反対側の端末部)をそれぞれフラットチャックで掴み、引張速度5mm/分の引張速度で破断するまで引張った。破断に至るまでの最高到達荷重を接合面積(長さ12mmX幅20mm)で除して求めた応力を接合強度(引張りせん断強度)とした。試験は各サンプルについて3回行った。 The autograph AG-10TD tester manufactured by Shimadzu Corporation was used for the tensile test, and the aluminum plate part (aluminum alloy substrate) of the aluminum alloy article sample and the terminal part of the resin plate part (resin) (the terminal part on the opposite side to the joint part) ) Were each gripped with a flat chuck and pulled at a pulling speed of 5 mm / min until breaking. The stress obtained by dividing the maximum ultimate load up to the break by the joining area (length 12 mm × width 20 mm) was defined as joining strength (tensile shear strength). The test was performed three times for each sample.
また、90度剥離試験においては、アルミニウム合金物品サンプルのアルミニウム板部(アルミニウム合金基材)および樹脂の接合面が水平になるように該合金基体を、固定治具を用いて引張り試験機の固定台に固定し、樹脂の接合部から離れた部分をフラットチャックで掴み、該フラットチャックを接合面と90度の角度を成す方向に動かすことにより、速度100mm/分で剥離し、剥離強度(最高到達荷重を接合長さ(長さ20mm)で除して求めた応力)を求めた。試験は各サンプルについて3回行った。 In the 90-degree peel test, the alloy substrate is fixed by a tensile tester using a fixing jig so that the aluminum plate portion (aluminum alloy base material) of the aluminum alloy article sample and the joint surface of the resin are horizontal. It is fixed to the base, the part away from the joint of the resin is gripped with a flat chuck, and the flat chuck is moved in a direction that forms an angle of 90 degrees with the joint surface, thereby peeling at a speed of 100 mm / min. The stress obtained by dividing the ultimate load by the joining length (length 20 mm) was determined. The test was performed three times for each sample.
表3およぶ表4に引張り試験結果(引張りせん断強度)および90度剥離試験結果(90度剥離強度)を示す。
表3および表4の結果は各サンプルについて3回行った試験結果の平均値を示している。
Tables 3 and 4 show the tensile test results (tensile shear strength) and 90-degree peel test results (90-degree peel strength).
The results in Table 3 and Table 4 show the average value of the test results performed three times for each sample.
実施例サンプルは、全て3.0MPa以上と優れた引張せん断強度を示した。一方、比較例サンプルについては最も高いサンプルでも1.6MPaであり実施例サンプルに比べ、大きく劣る結果となった。実施例サンプルでは、破断は接合面または、樹脂部での破断が確認された。さらに、接合面での破断面(アルミニウム合金板側)に関しては、樹脂または、接着剤の付着が認められ、破断の一部は樹脂内で起こっていることが確認された。 All of the example samples showed an excellent tensile shear strength of 3.0 MPa or more. On the other hand, as for the comparative sample, even the highest sample was 1.6 MPa, which was significantly inferior to the example sample. In the example sample, the fracture was confirmed at the joint surface or the resin part. Furthermore, regarding the fracture surface (aluminum alloy plate side) at the joint surface, adhesion of resin or adhesive was observed, and it was confirmed that part of the fracture occurred in the resin.
90度剥離試験を行った実施例サンプルは、90度剥離強度が1.3N/mmと十分に高い値を示した。 The example samples subjected to the 90-degree peel test showed a sufficiently high value of the 90-degree peel strength of 1.3 N / mm.
Claims (12)
前記基体と前記脱水シラノール含有トリアジンチオール誘導体被覆との間に、リン酸塩を主成分とする金属化合物皮膜を含むことを特徴とするアルミニウム合金物品。 An aluminum alloy article comprising a substrate made of aluminum or an aluminum alloy, and a resin bonded to at least a part of the surface of the substrate via a dehydrated silanol-containing triazine thiol derivative coating,
Between the dewatering silanol-containing triazinethiol derivative coating and the substrate, the aluminum alloy article, which comprises a metal compound film mainly composed of Li down salt.
リン酸およびリン酸塩から選択される少なくとも1つの水溶液を用いて前記基体の表面の少なくとも一部に、リン酸塩を主成分とする金属化合物皮膜を形成する工程と、
前記金属化合物皮膜に、アルコキシシラン含有トリアジンチオール誘導体を接触させる工程と、
前記アルコキシシラン含有トリアジンチオール誘導体を接触させた部分に樹脂を接合する工程と、
を含むことを特徴とする製造方法。 A method for producing an aluminum alloy article, wherein a resin is bonded to at least a part of a substrate made of aluminum or an aluminum alloy using an alkoxysilane-containing triazine thiol derivative,
At least a portion of the substrate surface using at least one aqueous solution selected-phosphate and-phosphate salt or al, forming a metal compound film mainly composed of Li down salt,
Contacting the metal compound film with an alkoxysilane-containing triazine thiol derivative;
Bonding a resin to a portion in contact with the alkoxysilane-containing triazine thiol derivative;
The manufacturing method characterized by including.
前記基体と前記脱水シラノール含有トリアジンチオール誘導体被覆または前記シラノール含有トリアジンチオール誘導体被覆との間に、リン酸塩を主成分とする金属化合物皮膜を含むことを特徴とするアルミニウム合金部材。 A base made of aluminum or an aluminum alloy, and an aluminum alloy member in which at least a part of the surface of the base is coated with a dehydrated silanol-containing triazine thiol derivative or a silanol-containing triazine thiol derivative,
Between the dewatering silanol-containing triazinethiol derivative coating or the silanol-containing triazinethiol derivative coating and the substrate, an aluminum alloy member, characterized in that it comprises a metal compound film mainly composed of Li down salt.
リン酸およびリン酸塩から選択される少なくとも1つの水溶液を用いて前記基体の表面の少なくとも一部に、リン酸塩を主成分とする金属化合物皮膜を形成する工程と、
前記金属化合物皮膜に、アルコキシシラン含有トリアジンチオール誘導体を接触させる工程と、
を含むことを特徴とする製造方法。 A method for producing an aluminum alloy member, wherein an alkoxysilane-containing triazine thiol derivative is brought into contact with at least a part of a substrate made of aluminum or an aluminum alloy,
At least a portion of the substrate surface using at least one aqueous solution selected-phosphate and one phosphate al, forming a metal compound film mainly composed of Li down salt,
Contacting the metal compound film with an alkoxysilane-containing triazine thiol derivative;
The manufacturing method characterized by including.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012273720A JP5834345B2 (en) | 2012-12-14 | 2012-12-14 | Aluminum alloy article, aluminum alloy member and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012273720A JP5834345B2 (en) | 2012-12-14 | 2012-12-14 | Aluminum alloy article, aluminum alloy member and manufacturing method thereof |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009203786A Division JP2011052292A (en) | 2009-09-03 | 2009-09-03 | Aluminum alloy article, aluminum alloy member, and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013083005A JP2013083005A (en) | 2013-05-09 |
JP5834345B2 true JP5834345B2 (en) | 2015-12-16 |
Family
ID=48528458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012273720A Expired - Fee Related JP5834345B2 (en) | 2012-12-14 | 2012-12-14 | Aluminum alloy article, aluminum alloy member and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5834345B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6178612B2 (en) * | 2013-05-10 | 2017-08-09 | 古河電気工業株式会社 | Aluminum / resin composite, aluminum insulated wire and flat cable, and production method thereof |
US20210252756A1 (en) * | 2018-09-21 | 2021-08-19 | Mitsui Chemicals, Inc. | Metal/resin composite structure, method for manufacturing metal/resin composite structure, and cooling device |
JP2023072423A (en) * | 2021-11-12 | 2023-05-24 | 新東工業株式会社 | Method for manufacturing composite member and composite member |
CN115961282B (en) * | 2022-12-29 | 2023-11-14 | 东莞富盛发智能科技有限公司 | High-strength wear-resistant aluminum mobile phone middle frame and preparation method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11222683A (en) * | 1998-02-03 | 1999-08-17 | Kobe Steel Ltd | Surface treated aluminum alloy sheet and its production |
JP3823189B2 (en) * | 2000-01-18 | 2006-09-20 | 株式会社東亜電化 | Reactivity retention method of metal surface film |
JP4512825B2 (en) * | 2005-02-07 | 2010-07-28 | 国立大学法人岩手大学 | Water-soluble alkoxysilane-containing triazine dithiol metal salt, method for producing the same, method for imparting reactivity to a solid surface using the same, and surface-reactive solid |
JP4124471B2 (en) * | 2005-03-28 | 2008-07-23 | 地方独立行政法人 岩手県工業技術センター | Metal surface treatment method |
JP2008174798A (en) * | 2007-01-19 | 2008-07-31 | Furukawa Sky Kk | Surface-treated aluminum material, resin-coated aluminum materials, and manufacturing method thereof |
JP4750096B2 (en) * | 2007-11-07 | 2011-08-17 | 株式会社新技術研究所 | Magnesium alloy article, magnesium alloy member and manufacturing method thereof |
-
2012
- 2012-12-14 JP JP2012273720A patent/JP5834345B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013083005A (en) | 2013-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011027854A1 (en) | Aluminum alloy article, aluminum alloy member, and production method therefor | |
KR101254543B1 (en) | Iron alloy article, iron alloy member, and method for producing the iron alloy article | |
JP4750096B2 (en) | Magnesium alloy article, magnesium alloy member and manufacturing method thereof | |
KR101512888B1 (en) | Method of laser joining of aluminum alloy member and resin member | |
JP4685139B2 (en) | Aluminum alloy / resin composite and method for producing the same | |
JP4927864B2 (en) | Method for producing high corrosion resistance composite | |
JP6387301B2 (en) | Aluminum resin bonded body and manufacturing method thereof | |
WO2011071102A1 (en) | Aluminium/resin composite exhibiting excellent weather resistance and manufacturing method for same | |
JP5834345B2 (en) | Aluminum alloy article, aluminum alloy member and manufacturing method thereof | |
JP2011235570A (en) | Member formed by bonding metal body and resin body, and method for manufacturing the same | |
JP5205109B2 (en) | Magnesium alloy article and magnesium alloy member | |
JP6503936B2 (en) | Metal-resin composite molded article and method for producing the same | |
WO2011071062A1 (en) | Bonded aluminium composite and manufacturing method for same | |
JP5673814B2 (en) | Aluminum shape body for manufacturing aluminum / resin injection integrated molded article, aluminum / resin injection integrated molded article using the same, and manufacturing method thereof | |
JP7405905B2 (en) | A base material at least in whole or in part made of a metal material, the surface of the metal material having pores, and a composite of the base material and a cured resin material, including the base material and a cured resin material. | |
JP2011124142A (en) | Aluminum/resin/copper composite article, its manufacturing method, and lid member for sealed battery | |
JP6967953B2 (en) | Etching agent for roughening the surface of a base material whose surface is at least all or part of aluminum or an aluminum alloy, a method for producing a roughened base material, a roughened base material, a base material-a cured resin product. Manufacturing method of the bonded body and the bonded body of the base material-resin cured product | |
JP2018184633A (en) | Porous aluminum alloy and method for producing the same, and laminate | |
JP2019005927A (en) | Laminate aluminum alloy and method for producing the same, and laminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20130128 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20130307 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130416 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130820 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131021 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140128 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20140708 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151014 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5834345 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |