JP5941563B2 - Laser bonding apparatus and laser bonding method - Google Patents

Laser bonding apparatus and laser bonding method Download PDF

Info

Publication number
JP5941563B2
JP5941563B2 JP2014560722A JP2014560722A JP5941563B2 JP 5941563 B2 JP5941563 B2 JP 5941563B2 JP 2014560722 A JP2014560722 A JP 2014560722A JP 2014560722 A JP2014560722 A JP 2014560722A JP 5941563 B2 JP5941563 B2 JP 5941563B2
Authority
JP
Japan
Prior art keywords
metal material
laser
resin casing
resin
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014560722A
Other languages
Japanese (ja)
Other versions
JPWO2014123022A1 (en
Inventor
角田 重晴
重晴 角田
聡 荒井
聡 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of JP5941563B2 publication Critical patent/JP5941563B2/en
Publication of JPWO2014123022A1 publication Critical patent/JPWO2014123022A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work
    • B23K37/0408Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work for planar work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/244Overlap seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/324Bonding taking account of the properties of the material involved involving non-metallic parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/3568Modifying rugosity
    • B23K26/3584Increasing rugosity, e.g. roughening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/022Mechanical pre-treatments, e.g. reshaping
    • B29C66/0224Mechanical pre-treatments, e.g. reshaping with removal of material
    • B29C66/02245Abrading, e.g. grinding, sanding, sandblasting or scraping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/024Thermal pre-treatments
    • B29C66/0242Heating, or preheating, e.g. drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/242Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours
    • B29C66/2424Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain
    • B29C66/24243Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain forming a quadrilateral
    • B29C66/24244Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain forming a quadrilateral forming a rectangle
    • B29C66/24245Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain forming a quadrilateral forming a rectangle forming a square
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30321Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of protrusions belonging to at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • B29C66/652General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool moving the welding tool around the fixed article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7316Surface properties
    • B29C66/73161Roughness or rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8126General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/81266Optical properties, e.g. transparency, reflectivity
    • B29C66/81267Transparent to electromagnetic radiation, e.g. to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81431General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single cavity, e.g. a groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • B23K2103/26Alloys of Nickel and Cobalt and Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2791/00Shaping characteristics in general
    • B29C2791/004Shaping under special conditions
    • B29C2791/009Using laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73771General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73775General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74281Copper or alloys of copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74283Iron or alloys of iron, e.g. steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74285Noble metals, e.g. silver, gold, platinum or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/746Joining plastics material to non-plastics material to inorganic materials not provided for in groups B29C66/742 - B29C66/744
    • B29C66/7461Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3481Housings or casings incorporating or embedding electric or electronic elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、樹脂と金属をレーザ光により加熱接合する装置及び方法に関するものである。   The present invention relates to an apparatus and a method for heat-bonding resin and metal by laser light.

熱可塑性樹脂は、優れた加工性と形状の自由度が大きいため、自動車や電機機器や医療・バイオ機器など一般産業用途に広く用いられており、熱可塑性樹脂が使われていない分野はないと言えるほど普及し、身近な材料となっている。近年のCO排出制限や低コスト化の流れから、熱可塑性樹脂の高機能化とともに、金属の代替が徐々になされつつあり、金属の代替向けに炭素繊維を含んだ熱硬化性樹脂も普及しつつある。しかしながら、熱可塑性樹脂並びに熱硬化樹脂は一般的に金属に比べて耐熱温度や機械的強度が低い傾向にある。また、一般に使用されている熱可塑性樹脂や熱硬化性樹脂では、金属に比べ、熱膨張係数が大きいことや変形・分解しやすいこと、有機溶剤に溶けやすいことや水分により膨潤しやすいなどの弱点も多々あるため、完全に代替することは難しい状況にある。Thermoplastic resins are widely used in general industrial applications such as automobiles, electrical equipment, medical and biotechnology equipment because of their excellent processability and large degree of freedom in shape. There is no field where thermoplastic resins are not used. It is so popular that it is a familiar material. Due to the recent trend of CO 2 emission restrictions and cost reduction, as the functionality of thermoplastic resins increases, replacement of metals is gradually being made, and thermosetting resins containing carbon fibers have also become widespread for metal replacement. It's getting on. However, thermoplastic resins and thermosetting resins generally tend to have lower heat resistant temperatures and mechanical strength than metals. In addition, generally used thermoplastic resins and thermosetting resins have weaknesses such as higher thermal expansion coefficient, easier deformation and decomposition, easier to dissolve in organic solvents, and more likely to swell due to moisture. Because there are many, it is difficult to completely replace it.

特に、近年の製品構造の複雑化により、熱可塑性樹脂及び熱硬化樹脂と金属それぞれの特長を生かした設計がなされ、それらの2次加工技術が重要となってきている。その中でも、半導体レーザの普及により、レーザ光を用いて樹脂と金属を接合する方式が検討されることが多くなってきた。   In particular, due to the complexity of product structures in recent years, designs that make use of the characteristics of thermoplastic resins, thermosetting resins, and metals have been made, and their secondary processing techniques have become important. Among them, with the widespread use of semiconductor lasers, a method of joining a resin and a metal using laser light has been increasingly studied.

特許文献1には、樹脂と金属を加熱により接合する方法であって、樹脂と金属の接合界面をある温度範囲に加熱しつつ、その反対側の面を冷却しながら接合することが記載されている。これにより、十分な接合強度が得られることが記載されている。   Patent Document 1 describes a method of joining a resin and a metal by heating, in which the joining interface between the resin and the metal is heated to a certain temperature range and joined while cooling the opposite surface. Yes. Thus, it is described that sufficient bonding strength can be obtained.

特許文献2には、熱可塑性樹脂からなる成形体と金属を重ね合わせた状態で、金属側からレーザ照射することにより、成形体がレーザ光を透過しない場合であっても、強固に接合できることが示されている。また、金属の接合面側の表面への表面処理が接合強度向上に有効なことも記載されている。   In Patent Document 2, it is possible to firmly bond even if the molded body does not transmit laser light by irradiating laser from the metal side in a state where the molded body made of a thermoplastic resin and the metal are overlapped. It is shown. It is also described that the surface treatment of the metal on the bonding surface side is effective for improving the bonding strength.

日本国特開2010−46831号公報Japanese Unexamined Patent Publication No. 2010-46831 日本国特開2008−21356号公報Japanese Unexamined Patent Publication No. 2008-21356

特許文献1に開示されている技術では、樹脂と金属を一定の温度範囲に加熱して接合する時に接合面の温度が上昇過ぎないように反対側から同時に冷却する方式と複雑な構成となっており、省エネルギー化することが難しい。特に、本技術では、スポット溶接機構成への代替や加熱体をローラ状にしたもので板状品の接合方法などが記載されているが接合面の形状が複雑かつ小型である場合に適用することが難しいという課題がある。   The technique disclosed in Patent Document 1 has a complicated configuration and a system in which resin and metal are simultaneously cooled from the opposite side so that the temperature of the joint surface does not rise excessively when the resin and metal are heated to a certain temperature range and joined. It is difficult to save energy. In particular, the present technology describes an alternative to a spot welder configuration or a heating body in a roller shape and a method for joining plate-like products, but is applied when the shape of the joint surface is complicated and small. There is a problem that it is difficult.

また、レーザ光による加熱方式の開示もあるが透明樹脂側からの入光であり、透明ではない熱可塑性樹脂の場合は適用不可能である。以上、これらの構成では、接合面が複雑な形状になっている場合に適用することが難しいという課題がある。   Further, although there is a disclosure of a heating method using laser light, it is incident light from the transparent resin side, and is not applicable in the case of a thermoplastic resin that is not transparent. As described above, in these configurations, there is a problem that it is difficult to apply when the joint surface has a complicated shape.

特許文献2に開示されている技術では、金属側からレーザ照射し、それとは別に加熱用としてレーザ光を同時に接合面に照射し熱可塑性樹脂と金属を接合することが示されているが、接合面での加圧方法については、記載されていない。また、接合面は、熱可塑性樹脂が熱分解温度まで達し、多量の気泡を発生させることで接合強度の向上を図ることが記載されている。しかし、接合面の気泡は、長期的な信頼性が必要である製品に対しては、弱点となる恐れがある。特に、気密性の確保を優先する製品に対しては適用することが難しいという課題がある。   In the technique disclosed in Patent Document 2, it is shown that laser irradiation is performed from the metal side, and laser light is simultaneously irradiated onto the bonding surface for heating, and the thermoplastic resin and the metal are bonded. The pressurizing method on the surface is not described. Further, it is described that the bonding surface improves the bonding strength by causing the thermoplastic resin to reach the thermal decomposition temperature and generating a large amount of bubbles. However, bubbles on the joint surface can be a weak point for products that require long-term reliability. In particular, there is a problem that it is difficult to apply to products that prioritize ensuring airtightness.

上記課題を解決するために、本発明のレーザ接合装置は、樹脂筐体と金属材を加熱接合する接合装置であって、
前記金属材の前記樹脂筐体との接合面と反対側の面から前記金属材に対してレーザ光を照射する加熱接合用のレーザ光照射手段と、前記樹脂筐体及び前記金属材を位置決めして加圧するための加圧固定型と、該加圧固定型を加熱する加熱手段を備え、
前記加圧固定型は可動型及び固定型から成り、前記可動型と前記固定型の間に前記樹脂筐体と前記金属材を所定の位置にて挟み込み、前記可動型を前記加熱手段にて加熱すると共に、前記可動型によって前記金属材を前記樹脂筐体に加圧し、前記レーザ光照射手段によりレーザ光を照射して前記樹脂筐体と前記金属材の接合を行うことを特徴とする。
In order to solve the above problems, the laser bonding apparatus of the present invention is a bonding apparatus that heat-bonds a resin casing and a metal material,
Positioning the resin casing and the metal material, a laser beam irradiation means for heating and joining the metal material with a laser beam from a surface opposite to the surface of the metal material opposite to the joint surface with the resin casing. A pressure fixing mold for pressurizing and heating means for heating the pressure fixing mold,
The pressure fixed mold includes a movable mold and a fixed mold. The resin casing and the metal material are sandwiched between the movable mold and the fixed mold at a predetermined position, and the movable mold is heated by the heating means. In addition, the metal material is pressed against the resin housing by the movable mold, and the resin housing and the metal material are joined by irradiating the laser light with the laser light irradiation means.

さらに本発明のレーザ接合装置は、レーザ光照射手段によって接合する前記金属材に直接レーザ照射をすることを特徴とする。   Furthermore, the laser bonding apparatus of the present invention is characterized in that laser irradiation is directly performed on the metal material to be bonded by a laser beam irradiation means.

さらに本発明のレーザ接合装置は、前記レーザ光照射手段と前記金属材との間に、金属材とは別種材料から成る加圧材を前記金属材と密着するように配置し、前記加圧材の表面にレーザ照射して、前記金属材へ熱伝導させて前記樹脂筐体と接合することを特徴とする。   Furthermore, in the laser bonding apparatus of the present invention, a pressurizing material made of a material different from a metal material is disposed between the laser beam irradiation means and the metal material so as to be in close contact with the metal material, and the pressurizing material The surface of the substrate is irradiated with laser to conduct heat to the metal material and to be joined to the resin casing.

さらに本発明のレーザ接合装置は、前記レーザ光照射手段と前記金属材との間に、金属材とは別種材料から成る加圧材を前記金属材と密着するように配置し、前記加圧材の表面にレーザ照射して、前記金属材へ熱伝導させて前記樹脂筐体と接合することを特徴とする。   Furthermore, in the laser bonding apparatus of the present invention, a pressurizing material made of a material different from a metal material is disposed between the laser beam irradiation means and the metal material so as to be in close contact with the metal material, and the pressurizing material The surface of the substrate is irradiated with laser to conduct heat to the metal material and to be joined to the resin casing.

さらに本発明のレーザ接合装置は、前記金属材とは別種材料から成る前記加圧材が、前記金属材よりレーザ光吸収率が高い材料から成ることを特徴とする。   Furthermore, in the laser bonding apparatus of the present invention, the pressurizing material made of a material different from the metal material is made of a material having a higher laser light absorption rate than the metal material.

さらに本発明のレーザ接合装置は、前記金属材とは別種材料から成る前記加圧材が、前記金属材より熱伝導率の小さい材料から成ることを特徴とする。   Furthermore, the laser bonding apparatus of the present invention is characterized in that the pressurizing material made of a material different from the metal material is made of a material having a lower thermal conductivity than the metal material.

さらに本発明のレーザ接合装置は、前記金属材とは別種材料から成る前記加圧材が、前記金属材より耐熱性の高い材料から成ることを特徴とする。   Furthermore, the laser bonding apparatus of the present invention is characterized in that the pressurizing material made of a material different from the metal material is made of a material having higher heat resistance than the metal material.

さらに本発明のレーザ接合装置は、前記固定型にも加熱体を具備すること特徴とする。   Furthermore, the laser bonding apparatus of the present invention is characterized in that the fixed die is also provided with a heating element.

本発明のレーザ接合方法は、樹脂筐体と金属材を加熱接合する接合方法であって、
加圧固定型の可動型と固定型の間に前記樹脂筐体と前記金属材を所定の位置にて挟み込んで位置決めし、
加熱手段により前記加圧固定型を加熱すると共に、前記可動型によって前記金属材を前記樹脂筐体に加圧し、
加熱接合用のレーザ光照射手段によって、前記金属材の前記樹脂筐体との接合面と反対側の面から前記金属材に対してレーザ光を照射して前記樹脂筐体と前記金属材の接合を行うことを特徴とする。
The laser bonding method of the present invention is a bonding method in which a resin casing and a metal material are heated and bonded,
The resin casing and the metal material are sandwiched and positioned at a predetermined position between the movable mold and the fixed mold of the pressure fixed mold,
While heating the pressure fixed mold by a heating means, pressurizing the metal material to the resin casing by the movable mold,
By joining the resin casing and the metal material by irradiating the metal material with a laser beam from a surface opposite to the joint surface of the metal material with the resin casing by the laser beam irradiation means for heat bonding. It is characterized by performing.

さらに本発明のレーザ接合方法は、レーザ照射による加熱接合前に、前記加熱手段よって前記金属材の温度を前記樹脂筐体の温度よりも高い状態とすることを特徴とする。   Furthermore, the laser bonding method of the present invention is characterized in that the temperature of the metal material is set higher than the temperature of the resin casing by the heating means before heat bonding by laser irradiation.

さらに本発明のレーザ接合方法は、前記レーザ光照射手段と前記金属材との間に、金属材とは別種材料から成る加圧材を前記金属材と密着するように配置して前記加圧材の表面にレーザ照射し、前記金属材へ熱伝導させて前記樹脂筐体と接合することを特徴とする。   Further, in the laser bonding method of the present invention, a pressure material made of a different material from the metal material is disposed between the laser beam irradiation means and the metal material so as to be in close contact with the metal material. The surface of the substrate is irradiated with laser, and is thermally conducted to the metal material to be joined to the resin casing.

さらに本発明のレーザ接合方法は、樹脂筐体と金属材を加熱接合する接合方法であって、
加熱接合用のレーザ光照射手段によって、前記金属材の前記樹脂筐体との接合面を接合するとき前記樹脂筐体の接合部に凸状の部分を設け、
前金属材の接合部の表面形状を、
(1)粗化面をRa:0.4μm〜2.5μmとし,
(2)若しくは、溝形状を溝の幅:0.05mm〜0.2mm、溝の深さ:0.05mm〜0.2mmとし、
(3)若しくは、穴形状を直径:0.05mm〜0.2mm、穴の深さ:0.02mm〜0.2mmの何れかとし、
(4)又はこれら(1)(2)(3)から2以上を組み合わせたものとし、
前記接合部の反対側の面から前記金属材に対してレーザ光を照射して前記樹脂筐体と前記金属材の接合を行うことを特徴とする。
Furthermore, the laser joining method of the present invention is a joining method in which a resin casing and a metal material are joined by heating,
When the bonding surface of the metal material to the resin casing is bonded by the laser beam irradiation means for heat bonding, a convex portion is provided in the bonding portion of the resin casing,
The surface shape of the joint of the previous metal material
(1) The roughened surface is Ra: 0.4 μm to 2.5 μm,
(2) Or, the groove shape is a groove width: 0.05 mm to 0.2 mm, a groove depth: 0.05 mm to 0.2 mm,
(3) Or, the hole shape is any one of diameter: 0.05 mm to 0.2 mm, hole depth: 0.02 mm to 0.2 mm,
(4) or these (1) (2) (3) from the combination of two or more,
The resin case is bonded to the metal material by irradiating the metal material with laser light from a surface opposite to the bonding portion.

本発明により、金属表面の光吸収率に大きく左右されず、短かいタクトタイムで高強度かつ信頼性の高い樹脂と金属のレーザ接合が可能となる。また、樹脂筐体と金属材を事前に所定の温度に加熱することで接合に要するレーザパワーを大幅に小さくできるため、装置や製品コストの大幅な低減に寄与する。さらに、材料の制限を大幅に減らすことが可能となる。   According to the present invention, it is possible to perform laser bonding of a resin and a metal with high strength and high reliability with a short tact time without being greatly influenced by the light absorption rate of the metal surface. In addition, since the laser power required for bonding can be significantly reduced by heating the resin casing and the metal material to a predetermined temperature in advance, it contributes to a significant reduction in apparatus and product costs. In addition, material limitations can be greatly reduced.

図1は、本発明の樹脂筐体と金属材のレーザ接合装置の実施例を示す斜視図の例である。FIG. 1 is an example of a perspective view showing an embodiment of a laser bonding apparatus for a resin casing and a metal material according to the present invention. 図2は、図1の詳細な構成を示すA−A断面図である。2 is a cross-sectional view taken along the line AA showing the detailed configuration of FIG. 図3は、接合面のパターンの一例を示す平面図である。FIG. 3 is a plan view showing an example of the pattern of the joint surface. 図4は、樹脂筐体と金属材のレーザ接合装置の他の実施例を示す斜視図の例である。FIG. 4 is an example of a perspective view showing another embodiment of a laser bonding apparatus for a resin casing and a metal material. 図5は、図4の詳細な構成を示すA−A断面図である。FIG. 5 is a cross-sectional view taken along the line AA showing the detailed configuration of FIG. 図6は、本発明の樹脂筐体と金属材のレーザ接合装置の他の実施例を示す断面図である。FIG. 6 is a cross-sectional view showing another embodiment of a laser bonding apparatus for a resin casing and a metal material according to the present invention. 図7は、本発明の樹脂筐体と金属材のレーザ接合装置の他の実施例を示す断面図である。FIG. 7 is a cross-sectional view showing another embodiment of a laser bonding apparatus for a resin casing and a metal material according to the present invention. 図8は、本発明の樹脂筐体と金属材のレーザ接合装置の他の実施例を示す断面図である。FIG. 8 is a cross-sectional view showing another embodiment of the resin casing and metal material laser joining apparatus of the present invention. 図9は、本発明の樹脂筐体と金属材のレーザ接合装置の他の実施例を示す断面図である。FIG. 9 is a cross-sectional view showing another embodiment of the resin casing and metal material laser joining apparatus of the present invention. 図10は、本発明の樹脂筐体と金属材のレーザ接合装置の他の実施例を示す断面図である。FIG. 10 is a cross-sectional view showing another embodiment of a laser bonding apparatus for a resin casing and a metal material according to the present invention. 図11は、本発明の樹脂筐体と金属材のレーザ接合装置の他の実施例を示す断面図である。FIG. 11 is a cross-sectional view showing another embodiment of a laser bonding apparatus for a resin casing and a metal material according to the present invention. 図12は、本発明の樹脂筐体と金属材のレーザ接合するレーザ接合装置の所要部を模式的に表した斜視図である。FIG. 12 is a perspective view schematically showing a required portion of a laser joining apparatus for laser joining a resin casing and a metal material according to the present invention. 図13は、本発明のレーザ接合装置によって接合した試験片を作製する為の加熱加圧治具の所要部の断面図である。FIG. 13 is a cross-sectional view of a required portion of a heating and pressing jig for producing a test piece bonded by the laser bonding apparatus of the present invention. 図14は、室温時と150℃とで同一のレーザ照射条件でレーザ接合をした試験片の接合強さを対比したグラフである。FIG. 14 is a graph comparing the bonding strengths of test pieces laser-bonded at room temperature and 150 ° C. under the same laser irradiation conditions. 図15は、レーザ接合の際の加熱温度とレーザパワーの関係を示したグラフである。FIG. 15 is a graph showing the relationship between the heating temperature and laser power during laser bonding. 図16は、レーザ接合の際の加熱温度とレーザ照射装置の移動速度の関係を示したグラフである。FIG. 16 is a graph showing the relationship between the heating temperature during laser bonding and the moving speed of the laser irradiation apparatus. 図17Aは、溝加工を施した金属材の接合部を示す平面図である。FIG. 17A is a plan view showing a joint portion of a metal material subjected to grooving. 図17Bは、図17AのA-A面における断面図である。FIG. 17B is a cross-sectional view taken along plane AA in FIG. 17A. 図18Aは、孔加工を施した金属材の接合部を示す平面図である。FIG. 18A is a plan view showing a joint portion of a metal material subjected to hole machining. 図18Bは、図18AのA-A面における断面図である。18B is a cross-sectional view taken along plane AA in FIG. 18A. 図19は、異なる表面形状のアルミ材を同一の室温において接合した際の接合強さを示すグラフである。FIG. 19 is a graph showing the bonding strength when aluminum materials having different surface shapes are bonded at the same room temperature. 図20は、図13に示す樹脂試験片とは異なる形状の樹脂試験片をアルミ材に接合する際の加熱加圧治具を示す断面図である。FIG. 20 is a cross-sectional view showing a heating and pressing jig when a resin test piece having a shape different from that of the resin test piece shown in FIG. 13 is joined to an aluminum material. 図21は、図20に示す樹脂試験片及びアルミ材を150℃かつレーザパワーを0.3として接合した場合の、接合強さを示すグラフである。FIG. 21 is a graph showing the bonding strength when the resin test piece and the aluminum material shown in FIG. 20 are bonded at 150 ° C. and the laser power is 0.3.

本発明のレーザ接合装置の実施の形態について以下に説明する。本発明で用いる熱可塑性樹脂は、非結晶性もしくは結晶性樹脂からなる。非結晶性樹脂としては、ポリスチレン(PS)、アクリロニトリルスチレン(AS)、アクリロニトリルブタジエンスチレン共重合体(ABS)、ポリエーテルイミド(PEI)、ポリカーボネート(PC)、ポリアリレート(PAR)、ポリメチルメタアクリル酸メチル(PMMA)、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリ塩化ビニル(PVC)、ポリ塩化ビニルデン(PVDC)などが挙げられる。結晶性樹脂としては、ポリエチレン(PE)、ポリプロプレン(PP)、ポリオキシメチレン(POM)、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリフェニレンサルファイド(PPS)、ナイロン6(PA6)、ナイロン66(PA66)、ナイロン6T(PA6T)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、ポリテトラフルオロエチレン(PTFE)などが挙げられる。また、それらのアロイ材、ガラスファイバーなどの無機物、特殊な添加剤を含んだ熱可塑性樹脂も対象となる。一般的には、成形性や透明性は非結晶性樹脂が優れているのに対し、結晶性樹脂は耐熱性や耐薬品性に優れている。また、熱可塑性樹脂のみならず、エポキシ系樹脂などの熱硬化樹脂でも構わない。   Embodiments of the laser bonding apparatus of the present invention will be described below. The thermoplastic resin used in the present invention is made of an amorphous or crystalline resin. Non-crystalline resins include polystyrene (PS), acrylonitrile styrene (AS), acrylonitrile butadiene styrene copolymer (ABS), polyetherimide (PEI), polycarbonate (PC), polyarylate (PAR), and polymethylmethacrylic. Examples include methyl acid (PMMA), cycloolefin polymer (COP), cycloolefin copolymer (COC), polysulfone (PSF), polyethersulfone (PES), polyvinyl chloride (PVC), and polyvinylidene chloride (PVDC). . As crystalline resins, polyethylene (PE), polypropylene (PP), polyoxymethylene (POM), polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN) ), Polyphenylene sulfide (PPS), nylon 6 (PA6), nylon 66 (PA66), nylon 6T (PA6T), polyetheretherketone (PEEK), liquid crystal polymer (LCP), polytetrafluoroethylene (PTFE), and the like. It is done. In addition, those alloy materials, inorganic materials such as glass fibers, and thermoplastic resins containing special additives are also targeted. In general, an amorphous resin is excellent in moldability and transparency, whereas a crystalline resin is excellent in heat resistance and chemical resistance. Further, not only a thermoplastic resin but also a thermosetting resin such as an epoxy resin may be used.

特に、本発明の場合、金属材並びに樹脂を加熱するとともに加圧を治具により行い、レーザ光を金属材側より照射するため、熱可塑性樹脂や熱硬化樹脂の着色状態はどのような状態でも良い。また、レーザ光の吸収率の高い部材を介しての金属材の加熱も可能である。   In particular, in the case of the present invention, the metal material and the resin are heated and pressed with a jig, and the laser beam is irradiated from the metal material side, so that the colored state of the thermoplastic resin or the thermosetting resin can be any state. good. Further, it is possible to heat the metal material through a member having a high absorption rate of laser light.

接合する金属としては、鉄、アルミニウム、銅、ニッケル、金、チタン、合金(ステンレス鋼、真鍮、アルミニウム合金、リン青銅など)、ダイカストなど挙げることができ、金属被膜(メッキ、蒸着膜など)された材質も対象となる。また、金属のみならず、セラミクスでも接合可能である。   Examples of metals to be joined include iron, aluminum, copper, nickel, gold, titanium, alloys (stainless steel, brass, aluminum alloys, phosphor bronze, etc.), die casting, etc., and metal coatings (plating, vapor deposition films, etc.). This also applies to other materials. Further, not only metal but also ceramics can be joined.

接合する金属材を効率よく加熱するためのレーザ光の吸収率の高い部材としては、鉄、アルミニウム、銅、ニッケル、金、チタン、合金(ステンレス鋼、真鍮、アルミニウム合金、リン青銅など)、ダイカスト、各種セラミクスなどの材料をベースとし、入射するレーザ波長に対して表面の吸収率が70%以上となっている必要がある。   Materials that have a high absorption rate of laser light to efficiently heat the metal materials to be joined include iron, aluminum, copper, nickel, gold, titanium, alloys (stainless steel, brass, aluminum alloys, phosphor bronze, etc.), die casting The surface absorptance must be 70% or more with respect to the incident laser wavelength based on a material such as various ceramics.

レーザ接合に用いる光源は、半導体レーザ、YAGレーザ、ファイバーレーザを含めた赤外領域の波長を有するレーザがコスト面では有効であるが、加熱する金属材による光吸収に対応するため、その他の波長でも良い。また、レーザ光源の強度分布は、ガウシアン、トップハット、リング型など付属するレンズによって様々な強度分布にすることが可能である。   Lasers with wavelengths in the infrared region, including semiconductor lasers, YAG lasers, and fiber lasers, are effective in terms of cost for the light source used for laser bonding, but other wavelengths are used to support light absorption by the metal material to be heated. But it ’s okay. Further, the intensity distribution of the laser light source can be changed to various intensity distributions depending on attached lenses such as Gaussian, top hat and ring type.

レーザ接合の条件は、樹脂と金属の加熱温度を勘案し、金属材のレーザ照射波長における光吸収率、熱伝導率、耐熱性、剛性などを考慮した上で、レーザスポットサイズ、パワー、照射時間、加圧力を決定する。   Laser bonding conditions take into account the heating temperature of the resin and metal, and take into account the light absorption rate, thermal conductivity, heat resistance, rigidity, etc. of the metal material at the laser irradiation wavelength, and then the laser spot size, power, and irradiation time. Determine the pressure.

以下、実施例を図1〜図8を用いて説明する。   Hereinafter, examples will be described with reference to FIGS.

図1は、本発明の樹脂筐体と金属材のレーザ接合装置の実施例を示す斜視図の例である。本実施例では、加圧固定型として、額縁状の可動型たる上型1と固定型たる下型2の間に接合体(樹脂筐体と金属材)を挟んで加圧・加熱する構成となっている。   FIG. 1 is an example of a perspective view showing an embodiment of a laser bonding apparatus for a resin casing and a metal material according to the present invention. In the present embodiment, the pressure fixing mold is configured to pressurize and heat a joined body (resin housing and metal material) between the upper mold 1 which is a frame-shaped movable mold and the lower mold 2 which is a stationary mold. It has become.

図2は、図1の詳細な構成を示すA−A断面図である。ここでは、一例として、センサ部品6を接合する場合について模式図を用いて説明する。図2は、金属材3上に接着剤4などで固定された電子部品5を実装したセンサ部品6と樹脂筐体7を上型1と下型2で挟んだ状態となっている。上型1には、レーザ光集光ユニット部11が金属材3に接近できるように孔部1aが形成され額縁状となっている。上型1の孔部1aはその内周を上から下に向かって迫り出してテーパ状に形成される。これによって上型1及び下型2による圧力を、樹脂筐体7に対する金属材3の当接部、即ち接合面9に有効に加えることができる。これにより樹脂筐体7と金属材3の接合面9を密着させることができ、気密性が保たれ、また接合面9に気泡などが生じる恐れが無くなる。   2 is a cross-sectional view taken along the line AA showing the detailed configuration of FIG. Here, as an example, a case where the sensor component 6 is joined will be described with reference to schematic views. 2 shows a state in which a sensor component 6 and a resin casing 7 each having an electronic component 5 fixed on a metal material 3 with an adhesive 4 or the like are sandwiched between an upper mold 1 and a lower mold 2. The upper die 1 has a frame shape with a hole 1 a formed so that the laser beam condensing unit 11 can approach the metal material 3. The hole 1a of the upper mold 1 is formed in a taper shape with its inner periphery protruding from the top to the bottom. Thereby, the pressure by the upper mold 1 and the lower mold 2 can be effectively applied to the contact portion of the metal material 3 with respect to the resin casing 7, that is, the bonding surface 9. As a result, the joint surface 9 of the resin casing 7 and the metal material 3 can be brought into close contact with each other, airtightness is maintained, and there is no possibility that bubbles or the like are generated on the joint surface 9.

また、下型2には、センサ部品6と樹脂筐体7が上型1によって押圧されてもズレないよう、位置決め用の凹部2aが形成されている。この凹部2aによって、樹脂筐体7が上型1によって押圧されても、樹脂筐体7に変形が起こることを防止することができる。図2に示す状態において、金属材3は、額縁状の上型1に設けた加熱体たるヒータ8で所定の温度まで加熱された状態となっている。金属材3を加熱することで樹脂筐体7の接合部での軟化を促し、接合部間の密着度を高めることを図ったものである。樹脂筐体7においては、加熱する金属材3よりも温度を低くすることで樹脂筐体7自体の加熱による変形などを防いでいる。加熱方式については、ヒータ加熱のほかIRランプ、LEDなどのいずれの方式でも良いことは言うまでもない。また、レーザ光集光ユニット部11への温度変化の抑制するため、上型1よりの放熱を少なくするように上部並びに外周部に断熱構造(図示せず)を有することができる。さらに、金属材3と樹脂筐体7の接合面9は、所定の圧力を加えた状態にて保持され固定されている。この状態で、レーザ光集光ユニット部11からレーザ光10を金属材3へ照射し、所定のパターンに沿って走査を行いながら金属材3と樹脂筐体7の接合面9を連続的に接合する。   The lower mold 2 is provided with a positioning recess 2a so that the sensor component 6 and the resin casing 7 are not displaced even if they are pressed by the upper mold 1. Even if the resin casing 7 is pressed by the upper mold 1, the recess 2 a can prevent the resin casing 7 from being deformed. In the state shown in FIG. 2, the metal material 3 is heated to a predetermined temperature by a heater 8 which is a heating body provided on the frame-shaped upper mold 1. By heating the metal material 3, softening at the joint portion of the resin casing 7 is promoted, and the degree of adhesion between the joint portions is increased. In the resin casing 7, the temperature of the resin casing 7 is set lower than that of the metal material 3 to be heated, thereby preventing deformation of the resin casing 7 itself due to heating. As for the heating method, it goes without saying that any method such as an IR lamp or LED may be used in addition to the heater heating. Moreover, in order to suppress the temperature change to the laser beam condensing unit 11, it is possible to have a heat insulating structure (not shown) in the upper part and the outer peripheral part so as to reduce heat radiation from the upper mold 1. Further, the joint surface 9 between the metal material 3 and the resin casing 7 is held and fixed in a state where a predetermined pressure is applied. In this state, the laser beam 10 is irradiated from the laser beam condensing unit 11 to the metal material 3, and the bonding surface 9 of the metal material 3 and the resin casing 7 is continuously bonded while scanning along a predetermined pattern. To do.

図3に、接合面のパターンの一例を示す平面図である。接合順序20としては、例えば、C1→C2→C3→C4の順に連続照射を行い、接合面9において連続した軌跡21を形成し金属材3と樹脂筐体7を気密封止する。   FIG. 3 is a plan view showing an example of the pattern of the joint surface. As the joining order 20, for example, continuous irradiation is performed in the order of C 1 → C 2 → C 3 → C 4, and a continuous locus 21 is formed on the joining surface 9 to hermetically seal the metal material 3 and the resin casing 7.

通常、金属材3からレーザ光10を照射する場合、光吸収率が小さい金属材、例えば赤外光に対するアルミや銅に対しては、接合する金属材のレーザ照射面に光吸収率を増大させる処理を実施しなければならず、コスト増が課題となっていた。また、製品形態によっては、そのような処理を実施できない場合があり接合性が悪化する恐れがあった。さらに、製品形態によってはレーザ光10による接合方式を適用できない場合もあった。また、金属材3側からレーザ照射をするため、金属材3の反射によるレーザ光源の劣化を回避するため、例えばレーザ光源を接合する金属材3に対して、10〜15°程度傾けてレーザ光10を照射する必要があった。しかしながら、10〜15°程度傾けた場合、レーザ接合面は、傾けない場合に比べ、均一になりにくいという問題も散見されていた。   Normally, when the laser beam 10 is irradiated from the metal material 3, for a metal material having a small light absorption rate, for example, aluminum or copper for infrared light, the light absorption rate is increased on the laser irradiation surface of the metal material to be joined. Processing has to be performed, and the increase in cost has been an issue. In addition, depending on the product form, such treatment may not be performed, and there is a possibility that the bonding property is deteriorated. Furthermore, the joining method using the laser beam 10 may not be applied depending on the product form. Further, since laser irradiation is performed from the metal material 3 side, in order to avoid deterioration of the laser light source due to reflection of the metal material 3, for example, the laser beam is inclined by about 10 to 15 ° with respect to the metal material 3 to which the laser light source is bonded. 10 had to be irradiated. However, there has also been a problem that when the laser is tilted by about 10 to 15 °, the laser bonding surface is less likely to be uniform than when it is not tilted.

一方、樹脂筐体では、熱可塑性樹脂においては、射出成形などにより筐体形状を形成することが通常である。このとき、樹脂成形品においては、成形時に生じる内部応力により、成形品の外形に、反り、歪み、捩れあるいは成形表面のヒケなどが生じる恐れがあった。これら要因により、樹脂筐体の接合面形状の不均一性が生じる恐れがあった。この接合面の不均一性は、金属材と樹脂筐体を接合するときに接合状態のばらつきが生じる可能性があり、信頼性を確保する上で重要な課題となる。   On the other hand, in the case of a resin casing, it is usual for a thermoplastic resin to form a casing shape by injection molding or the like. At this time, in the resin molded product, there is a possibility that the outer shape of the molded product may be warped, distorted, twisted or sinked on the molded surface due to internal stress generated during molding. Due to these factors, there is a possibility that non-uniformity of the shape of the joint surface of the resin casing occurs. This non-uniformity of the joining surfaces may cause variations in the joining state when joining the metal material and the resin casing, and is an important issue in ensuring reliability.

これらに対して、本願発明は、図1で示したように、接合する前に、上型1と金属材3を所定の温度に加熱し、上型1と下型2とで接合品を加圧することで、樹脂筐体の接合面を軟らかくし、接合面に生じやすい反り、歪み、捩れや表面のヒケなどを矯正する効果がある。また、接合する金属材で加熱・加圧することで金属材の接合表面に倣わす効果が生じる。これにより、接合界面の密着度が向上することで効率的に熱伝達を行い、高強度かつ均一に接合できることを可能とした。また、上型1及び下型2によって金属材3と樹脂筐体7を押圧し密着度を向上させることにより、熱伝導の効率も向上し接合に必要となるレーザ光照射エネルギーを減らす効果がある。   In contrast, the present invention, as shown in FIG. 1, heats the upper mold 1 and the metal material 3 to a predetermined temperature before joining them, and adds the joined product between the upper mold 1 and the lower mold 2. By pressing, the joint surface of the resin casing is softened, and there is an effect of correcting warpage, distortion, twist, surface sink, and the like that are likely to occur on the joint surface. Moreover, the effect which imitates the joining surface of a metal material arises by heating and pressurizing with the metal material to join. As a result, the degree of adhesion at the bonding interface is improved, so that heat can be efficiently transferred and high strength and uniform bonding can be achieved. Moreover, the metal material 3 and the resin casing 7 are pressed by the upper mold 1 and the lower mold 2 to improve the adhesion, thereby improving the efficiency of heat conduction and reducing the laser beam irradiation energy required for bonding. .

特に、光吸収率が小さい金属材、例えば赤外光に対するアルミや銅に対しては、加熱をすることで大きくレーザ光照射エネルギーを減らす効果がある。また、対象となる製品としては、電子部品6を実装した製品の筐体部のみならず、バイオチップ、電子制御ユニット(ECU)、コネクタ、パワーモジュールなどの製品及びレーザ接合できる全ての製品全般に有効である。   In particular, a metal material having a low light absorption rate, such as aluminum or copper for infrared light, has an effect of greatly reducing the laser beam irradiation energy by heating. In addition, the target products include not only the housing of the product on which the electronic component 6 is mounted, but also products such as biochips, electronic control units (ECUs), connectors, power modules, and all products that can be laser-bonded. It is valid.

図4は、樹脂と金属のレーザ接合装置の他の実施例を示す斜視図の例である。図1、図2の樹脂とレーザ接合装置のうち、既に説明した図1に示された同一符号を付された構成と機能を有する部分については、説明を省略する。   FIG. 4 is an example of a perspective view showing another embodiment of a resin / metal laser bonding apparatus. Of the resin and laser bonding apparatus shown in FIGS. 1 and 2, the description of the parts having the same configurations and functions shown in FIG.

本実施例では、樹脂筐体と金属材の接合形状が大型化した場合の例について説明する。すなわち、額縁状の上型1の中央部に金属材3を均一に加圧するための加圧用駒30並びに上型1と加圧用駒30を固定するための透明材質31(例えば、ガラスなど)を備えた構成となっている。レーザ光10は透明材質31を透過する。   In the present embodiment, an example in which the joining shape of the resin casing and the metal material is increased will be described. That is, a pressure piece 30 for uniformly pressing the metal material 3 at the center of the frame-shaped upper mold 1 and a transparent material 31 (for example, glass) for fixing the upper mold 1 and the pressure piece 30 are provided. It has a configuration with. The laser beam 10 passes through the transparent material 31.

図5は、図4の詳細な構成を示すA−A断面図である。上型1と加圧用駒30を固定するための透明材質31を備えた構成となっている。加圧用駒30を設けることで大型化した場合の金属材3の中央部を加圧することで金属材3の変形を防ぎ、接合面の密着度を保持する効果がある。図示はしないが、接合形状によっては、加圧用駒30に加熱部を設けて加熱を行い、大型形状でも均一に加熱できる構成とすることが可能である。   FIG. 5 is a cross-sectional view taken along the line AA showing the detailed configuration of FIG. A transparent material 31 for fixing the upper mold 1 and the pressure piece 30 is provided. By providing the pressurization piece 30, pressurizing the central portion of the metal material 3 in the case of increasing the size prevents the deformation of the metal material 3 and has an effect of maintaining the adhesion degree of the joint surface. Although not shown, depending on the joining shape, it is possible to provide a heating part in the pressurizing piece 30 for heating so that even a large shape can be heated uniformly.

この加熱用駒30の材質としては、各種金属材料、各種セラミックスを用いても良いことは言うまでもない。また、接合形状によっては、断熱材を用いて、金属材加熱時の放熱を防ぎ、加熱温度の安定化を図っても良い。   It goes without saying that various metal materials and various ceramics may be used as the material of the heating piece 30. Depending on the bonding shape, a heat insulating material may be used to prevent heat dissipation during heating of the metal material and stabilize the heating temperature.

図6は、本発明の樹脂と金属のレーザ接合方法の他の実施例を示す断面図である。接合する金属材3の上面部分に接合する光吸収率の大きい別種材料40(金属材、セラミクスなど)を設置した構成となっている。これにより、別種材料40を介して接合する金属材3に熱伝導を起こし、樹脂筐体7と金属材3が高強度かつ均一に接合できることを見出した。例えば、アルミや銅を接合したい場合、赤外域でのレーザ光の吸収率の大きく、かつ、熱伝導率が小さなステンレス材などを用いることで、少ないレーザ光照射エネルギーで高強度かつ均一に接合できる効果がある。すなわち、熱伝導率の小さな別種材料40を使うことで接合部に照射したエネルギーが広く拡散せずに加熱するため狭い範囲で高温となる。このため、少ない照射エネルギーで高温となり熱伝導により金属材が効率的に加熱できる効果がある。また、別種材料40としては、接合する金属3より、剛性、耐熱性、融点の高い材料を選択して組み合わせることが望ましい形態である。   FIG. 6 is a cross-sectional view showing another embodiment of the resin and metal laser bonding method of the present invention. A different material 40 (metal material, ceramics, etc.) having a large light absorption rate to be bonded is installed on the upper surface portion of the metal material 3 to be bonded. As a result, it was found that heat conduction was caused in the metal material 3 to be bonded via the different material 40, and the resin casing 7 and the metal material 3 could be bonded with high strength and uniformity. For example, when joining aluminum or copper, high strength and uniform bonding can be achieved with less laser light irradiation energy by using a stainless steel material with a high absorption rate of laser light in the infrared region and a low thermal conductivity. effective. That is, by using another material 40 having a low thermal conductivity, the energy irradiated to the joint is heated without being widely diffused, and therefore, the temperature becomes high in a narrow range. For this reason, it becomes high temperature with little irradiation energy, and there exists an effect which can heat a metal material efficiently by heat conduction. In addition, as the different material 40, it is desirable to select and combine materials having higher rigidity, heat resistance, and melting point than the metal 3 to be joined.

図7は、本発明の樹脂と金属のレーザ接合方法の他の実施例を示す断面図である。本実施例では、樹脂と金属の接合形状が大型化した場合の例について説明する。すなわち、接合する金属材3の上面部分に接合する光吸収率の大きい別種材料40(金属材、セラミクスなど)を設置した構成となっている。これにより、別種材料40を介して接合する金属材3に熱伝導を起こし、樹脂筐体7と金属材3が高強度かつ均一に接合できることを見出した。接合する金属3より、剛性、耐熱性、融点の高い材料を選択して組み合わせることが望ましい形態である。   FIG. 7 is a cross-sectional view showing another embodiment of the resin and metal laser bonding method of the present invention. In the present embodiment, an example in which the joint shape between a resin and a metal is increased will be described. That is, another material 40 (metal material, ceramics, etc.) having a high light absorption rate to be bonded is installed on the upper surface portion of the metal material 3 to be bonded. As a result, it was found that heat conduction was caused in the metal material 3 to be bonded via the different material 40, and the resin casing 7 and the metal material 3 could be bonded with high strength and uniformity. It is desirable to select and combine materials having higher rigidity, heat resistance, and melting point than the metal 3 to be joined.

例えば、アルミや銅を接合したい場合、赤外域でのレーザ光の吸収率の大きいステンレス材などを用いることで、少ないレーザ光照射エネルギーで高強度かつ均一に接合できる効果がある。   For example, when aluminum or copper is desired to be joined, a stainless steel material having a high absorption rate of laser light in the infrared region can be used, which has the effect of being able to join with high intensity and uniformity with less laser light irradiation energy.

図8は、本発明の樹脂と金属のレーザ接合方法の他の実施例を示す断面図である。樹脂筐体3を加熱するため、上型1と同様なヒータ8を下型2へ設けた形態となっている。これは、高熱伝導の樹脂材料などを筐体材料として用いた場合の例である。下型2にヒータ8を設けることで接合面を所定の温度に加熱保持する効果がある。   FIG. 8 is a cross-sectional view showing another embodiment of the resin and metal laser bonding method of the present invention. In order to heat the resin casing 3, a heater 8 similar to the upper mold 1 is provided in the lower mold 2. This is an example in the case of using a highly heat conductive resin material or the like as a housing material. Providing the heater 8 in the lower mold 2 has the effect of heating and holding the joint surface at a predetermined temperature.

図9は、本発明の樹脂と金属のレーザ接合方法の他の実施例を示す断面図である。樹脂と金属の接合形状が大型化し、かつ、高熱伝導の樹脂材料などを筐体材料として用いた場合の例について説明する。樹脂筐体3を加熱するため、上型1と同様な加熱体8を下型2へ設けた形態となっている。下型2にヒータ8を設けることで高熱伝導の樹脂材料などで筐体材質として用いても接合面を所定の温度に加熱保持する効果がある。また、実施例3及び実施例4で説明した構造においても下型2にヒータ8を設けることで同様の効果があることは言うまでもない。   FIG. 9 is a cross-sectional view showing another embodiment of the resin and metal laser bonding method of the present invention. An example will be described in which the joint shape of the resin and metal is increased in size and a highly heat conductive resin material or the like is used as the casing material. In order to heat the resin casing 3, a heating body 8 similar to the upper mold 1 is provided on the lower mold 2. Providing the heater 8 in the lower mold 2 has the effect of heating and holding the bonding surface at a predetermined temperature even when used as a housing material with a resin material having high thermal conductivity. Needless to say, the same effects can be obtained by providing the heater 8 in the lower mold 2 in the structures described in the third and fourth embodiments.

図10は、本発明の樹脂と金属のレーザ接合方法の他の実施例を示す断面図である。本実施例では、金属材料3の接合面9上部のレーザ照射面側に微細な凹凸45を形成し、レーザ吸収率を向上させたことを特徴とする。これにより、接合に必要なレーザパワーを小さくでき、高効率のレーザ接合が可能となる。なお、上型1などが接する金属部分46は、高熱伝導を保つため、可能な限り粗さは小さくすることが望ましい。   FIG. 10 is a cross-sectional view showing another embodiment of the resin and metal laser bonding method of the present invention. This embodiment is characterized in that fine irregularities 45 are formed on the laser irradiation surface side above the joint surface 9 of the metal material 3 to improve the laser absorption rate. Thereby, the laser power required for bonding can be reduced, and high-efficiency laser bonding is possible. In addition, it is desirable that the metal portion 46 in contact with the upper mold 1 or the like is as small as possible in order to maintain high thermal conductivity.

図11は、本発明の樹脂と金属のレーザ接合方法の他の実施例を示す断面図である。樹脂と金属の接合形状が大型化し、かつ、高熱伝導の樹脂材料などを筐体材料として用いた場合の例について説明する。本実施例では、金属材料3上部に設置した別種材料40の上部のレーザ照射面側に微細な凹凸45を形成し、レーザ吸収率を向上させたことを特徴とする。これにより、接合に必要なレーザパワーを小さくでき、高効率のレーザ接合が可能となる。なお、上型1や加圧用駒30などが接する金属部分46は、高熱伝導を保つため、可能な限り粗さは小さくすることが望ましい。また、実施例3及び実施例4で説明した構造においてもレーザ照射面側に微細な凹凸45を設けることで同様の効果があることは言うまでもない。   FIG. 11 is a cross-sectional view showing another embodiment of the resin and metal laser bonding method of the present invention. An example will be described in which the joint shape of the resin and metal is increased in size and a highly heat conductive resin material or the like is used as the casing material. The present embodiment is characterized in that fine irregularities 45 are formed on the laser irradiation surface side of the upper part of the different kind material 40 placed on the upper part of the metal material 3 to improve the laser absorption rate. Thereby, the laser power required for bonding can be reduced, and high-efficiency laser bonding is possible. In addition, it is desirable that the metal portion 46 with which the upper mold 1 and the pressurizing piece 30 are in contact is as small as possible in order to maintain high thermal conductivity. Needless to say, the same effects can be obtained by providing the fine unevenness 45 on the laser irradiation surface side in the structures described in the third and fourth embodiments.

図12は、本発明の樹脂と金属のレーザ接合するレーザ接合装置の所要部を模式的に表した斜視図である。ここでは、X軸方向53、Y軸方向52、Z軸方向51の3軸駆動ユニットのZ軸にレーザ光集光ユニット50が固定された駆動ユニット部54が駆動し、加熱・加圧治具55がステージ56上に固定されている例で説明する。すなわち、駆動ユニットは、予め入力されたプログラムに従って所定のパターンを描くようになっている。また、Z軸方向51に固定されたレーザ光集光ユニット50は、接合体に焦点を合わせた高さに移動している。   FIG. 12 is a perspective view schematically showing a required part of a laser bonding apparatus for laser bonding a resin and a metal according to the present invention. Here, the drive unit 54 in which the laser beam condensing unit 50 is fixed to the Z-axis of the three-axis drive unit in the X-axis direction 53, the Y-axis direction 52, and the Z-axis direction 51 is driven, and the heating / pressurizing jig An example in which 55 is fixed on the stage 56 will be described. That is, the drive unit draws a predetermined pattern according to a program inputted in advance. Further, the laser beam condensing unit 50 fixed in the Z-axis direction 51 has moved to a height focused on the joined body.

一方、加熱・加圧を行う治具内には、樹脂筐体と金属材からなる接合体が設置されている。加熱としては、直接治具内での加熱方式あるいは別工程にて予め予備加熱を行い、その後治具内に設置する方法などがある。この方式により、安定生産ができ信頼性の高い製品が製造できる効果がある。   On the other hand, a joined body made of a resin casing and a metal material is installed in a jig for heating and pressurizing. As the heating, there is a heating method directly in the jig or a method in which preliminary heating is performed in advance in a separate process and then placed in the jig. By this method, there is an effect that stable production is possible and a highly reliable product can be manufactured.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。各実施例の構成の一部について、他の構成の追加・削除・置換することが可能である。例えば、上型1及び下型2による加圧の利点について説明するために樹脂筐体7の形状を箱型としたが、これに限定せず、端子やコードを挿通させるために樹脂筐体7に切欠部や孔部を形成しても良い。その際、金属材3と当接せずに接合面を形成しない箇所にはレーザ光を照射する必要はない。また、ヒータ8は抵抗の大きい素子に電流を流すことで発熱する抵抗加熱や、遠赤外線によって加熱をする赤外加熱など、種々の加熱手段を用いることができる。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. It is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment. For example, the shape of the resin casing 7 is a box shape in order to explain the advantages of pressurization by the upper mold 1 and the lower mold 2, but the present invention is not limited to this, and the resin casing 7 is used to insert terminals and cords. A notch or a hole may be formed. In that case, it is not necessary to irradiate the laser beam to the part which does not contact the metal material 3 and does not form the joint surface. Also, the heater 8 can use various heating means such as resistance heating that generates heat when an electric current is passed through an element having high resistance, and infrared heating that uses far infrared rays.

実施例1〜8での加熱加圧によるレーザ出力の低減効果を以下の図面を用いて説明する。一例として、実施例1、実施例2、実施例5、実施例6、実施例7で行った金属材と樹脂筐体の樹脂を試験片とした。図13は、接合強さを測定する試験片を作製する為の加熱加圧治具の断面を示したものである。ここでは、上型1にヒータ8が設置された構造を用いた。試験片105としては、アルミ材100(A5052P)、PBT樹脂として、例えば、ポリプラスチックス株式会社製のジュラネックス(登録商標)PBT樹脂 7407 を用いて作成した。試験片105の寸法は、20mm×70mm×1mm、試験速度は、1mm/分で行った。レーザ光照射側のアルミ材表面として、磨き面(Ra:0.4μm程度)、粗化面として#80サンドブラスト処理面(Ra:2.5μm程度)、#400サンドブラスト処理面(Ra:1.3μm程度)を用い、接合面はいずれも磨き面である。以降、磨き面、粗化面と称するが、処理面の粗さの程度をRaで表現する場合には、磨き面の表面状態と粗化面の表面状態を含めて表現する場合がある。   The effect of reducing laser output by heating and pressing in Examples 1 to 8 will be described with reference to the following drawings. As an example, the metal material performed in Example 1, Example 2, Example 5, Example 6, and Example 7 and the resin of the resin casing were used as test pieces. FIG. 13 shows a cross section of a heating and pressing jig for producing a test piece for measuring the bonding strength. Here, a structure in which the heater 8 is installed in the upper mold 1 was used. As the test piece 105, it created using the aluminum material 100 (A5052P) and the PBT resin, for example using the Duranex (trademark) PBT resin 7407 by Polyplastics Co., Ltd., for example. The dimensions of the test piece 105 were 20 mm × 70 mm × 1 mm, and the test speed was 1 mm / min. The surface of the aluminum material on the laser beam irradiation side is a polished surface (Ra: about 0.4 μm), the roughened surface is a # 80 sandblasted surface (Ra: about 2.5 μm), and the # 400 sandblasted surface (Ra: 1.3 μm). The joint surface is a polished surface. Hereinafter, although referred to as a polished surface and a roughened surface, when the degree of roughness of the treated surface is expressed by Ra, it may be expressed including the surface state of the polished surface and the surface state of the roughened surface.

図14は、レーザ照射条件(レーザパワー:350W、レーザ照射装置移動速度:3mm/秒)を同一とした時の室温時と150℃加熱での接合強さの比較例である。室温に対し150℃加熱における接合強さは、相対値=1.9と約2倍の向上となった。ただし、150℃に加熱した場合では、樹脂の破断が起こっており、実際の界面の接合強度はそれ以上と言える。したがって、加熱加圧効果により、接合強度の大幅な向上が起こっていると判断できる。
図15は、ヒータ8による加熱温度とレーザパワーの関係を示したものである。ここでは、レーザ照射装置の移動速度を一定とし、アルミ材表面を磨き面とし、室温(25℃)での接合強さを基準値=1とした時、その値と同等となるレーザパワーの値を示したものである。図14より、加熱温度が高くなるとともにレーザパワーが減少する傾向を示す。例えば、加熱温度150℃で比較すれば室温時に比べ相対値=0.3となり、室温時の1/3程度のレーザパワーで良い事を示しており、大幅な低減効果がある。また、レーザ光の吸収率の高い粗化面を用いれば、さらに低減効果は大きく約1/10となることがわかる。
FIG. 14 is a comparative example of the bonding strength at room temperature and 150 ° C. heating when the laser irradiation conditions (laser power: 350 W, laser irradiation apparatus moving speed: 3 mm / second) are the same. The bonding strength when heated at 150 ° C. with respect to room temperature was about twice as high as relative value = 1.9. However, when heated to 150 ° C., the resin breaks, and the actual bonding strength at the interface can be said to be higher. Therefore, it can be determined that the bonding strength is greatly improved by the heating and pressing effect.
FIG. 15 shows the relationship between the heating temperature by the heater 8 and the laser power. Here, when the moving speed of the laser irradiation device is constant, the surface of the aluminum material is a polished surface, and the bonding strength at room temperature (25 ° C.) is the reference value = 1, the value of the laser power equivalent to that value. Is shown. FIG. 14 shows that the laser power tends to decrease as the heating temperature increases. For example, when compared at a heating temperature of 150 ° C., the relative value is 0.3 as compared to the room temperature, indicating that a laser power of about 1/3 at room temperature is sufficient, and there is a significant reduction effect. It can also be seen that if a roughened surface with a high absorption rate of laser light is used, the reduction effect is further greatly reduced to about 1/10.

以上により、金属材の温度が室温と同一の場合と、金属材を予め加熱した場合の2つのケースにおいてレーザ照射装置の移動速度をそれぞれ同一として接合した時、同一の接合強さを得るためのレーザパワーは、金属材を予め加熱したケースの方がより大きく減少させることができることが分かった。従って、金属材を加熱した後レーザ接合を行うことによってレーザパワーを抑制でき、製造時のコストの低減及び省エネルギー化を図ることができる。   As described above, when joining the same moving speed of the laser irradiation device in the two cases where the temperature of the metal material is the same as the room temperature and when the metal material is pre-heated, the same bonding strength is obtained. It has been found that the laser power can be greatly reduced in the case where the metal material is preheated. Accordingly, laser power can be suppressed by heating the metal material and then performing laser bonding, thereby reducing the manufacturing cost and saving energy.

図16は、ヒータ8による加熱温度とレーザ照射装置の移動速度の関係を示したものである。ここでは、レーザパワーを一定とし、アルミ材表面に磨き面を用い、室温(25℃)での接合強さを基準値=1とした時、その値と同等となるレーザ照射装置の移動速度の値を示したものである。図より、加熱温度が高くなるとともにレーザ照射装置の移送速度は、速くなる傾向を示す。例えば、加熱温度150℃で比較すれば室温時と比べ相対値=15となり、室温時の15倍のレーザ照射装置の移動速度で良い事を示しており、製造工程の大幅な高速化が可能であることを示している。また、レーザ光の吸収率の高い粗化面を用いれば、さらに高速化でき約58倍となることがわかる。   FIG. 16 shows the relationship between the heating temperature by the heater 8 and the moving speed of the laser irradiation apparatus. Here, when the laser power is constant, a polished surface is used on the surface of the aluminum material, and the bonding strength at room temperature (25 ° C.) is set to the reference value = 1, the moving speed of the laser irradiation apparatus is equivalent to that value. The value is shown. From the figure, the heating temperature increases and the transfer speed of the laser irradiation device tends to increase. For example, when compared at a heating temperature of 150 ° C., the relative value is 15 compared to that at room temperature, which indicates that the moving speed of the laser irradiation device is 15 times that at room temperature, and the manufacturing process can be greatly speeded up. It shows that there is. Further, it can be seen that if a roughened surface having a high absorption rate of laser light is used, the speed can be further increased to about 58 times.

以上により、製品の接合距離の長短あるいは生産量の違いにより適宜接合装置を構成することでレーザパワー低減、レーザ照射装置移動速度の高速化など合理的な製造工程が可能となる。実施例3、実施例5でも同様の効果があることは言うまでもない。   As described above, a rational manufacturing process such as a reduction in laser power and an increase in moving speed of the laser irradiation apparatus can be realized by appropriately configuring a joining apparatus depending on the length of the product joining distance or the difference in production amount. Needless to say, Example 3 and Example 5 have the same effect.

続いて、粗化面の例として図17及び図18の2ケースについて行った実験について説明する。図17A及び図17Bは、縦横方向に溝加工を施した金属材たるアルミ材の接合部を示している。図17Aは、平面図であり、図17Bは、A−A断面図である。溝の幅Xは0.05mm〜0.2mm程度、溝の深さは0.05mm〜0.2mm程度が望ましい。   Subsequently, an experiment performed on two cases of FIGS. 17 and 18 as an example of a roughened surface will be described. FIG. 17A and FIG. 17B show a joining portion of an aluminum material, which is a metal material that is grooved in the vertical and horizontal directions. FIG. 17A is a plan view, and FIG. 17B is a cross-sectional view taken along line AA. The groove width X is preferably about 0.05 mm to 0.2 mm, and the groove depth is preferably about 0.05 mm to 0.2 mm.

図18は、縦横方向の溝加工に代えてアルミ材接合部に穴加工をした模式図である。図18Aは、平面図であり、図18Bは、A−A断面図である。穴の形状は、直径が0.05mm〜0.2mm程度、穴部の深さが0.02mm〜0.2mm程度が望ましい。この穴を穿設した表面でも同様に、樹脂が凹部へ浸入することは言うまでもない。また、突起部分115の形状としては、溝形状だけでなく、穴部を穿設した図19のような形状としても構わない。穴の形状としても四角柱だけでなく円柱状に形成したものであっても何ら問題ない。これら形状は、加熱による凹部への浸入効果を勘案して適宜選択し得るものである。   FIG. 18 is a schematic view in which holes are drilled in the aluminum joint portion in place of vertical and horizontal grooves. 18A is a plan view, and FIG. 18B is a cross-sectional view taken along line AA. As for the shape of the hole, the diameter is preferably about 0.05 mm to 0.2 mm, and the depth of the hole is preferably about 0.02 mm to 0.2 mm. Needless to say, the resin penetrates into the concave portion on the surface where the hole is formed. Further, the shape of the protruding portion 115 is not limited to the groove shape, and may be a shape as shown in FIG. There is no problem even if the shape of the hole is not only a quadrangular prism but also a cylindrical shape. These shapes can be selected as appropriate in consideration of the effect of penetration into the recess by heating.

ここでは、一例として、溝付アルミ材110の接合部分に溝の幅X:約0.1mm、溝の深さL:役0.1mmの加工を縦方向、横方向に施した。加工法は、レーザ加工、機械加工等適宜選定できる。また、突起部分115は、ここでは四角柱であり、約0.1mm×0.1mm×0.1mmの形状である。溝方向を一方向としても良いことは言うまでもない。   Here, as an example, the joining portion of the grooved aluminum material 110 was processed in the vertical and horizontal directions with a groove width X of about 0.1 mm and a groove depth L of 0.1 mm. The processing method can be selected as appropriate, such as laser processing or machining. Further, the protruding portion 115 is a quadrangular prism here, and has a shape of about 0.1 mm × 0.1 mm × 0.1 mm. It goes without saying that the groove direction may be one direction.

以上のように、本発明の実施例としての樹脂筐体と金属材を加熱接合する接合方法においては、
加熱接合用のレーザ光照射手段によって、前記金属材の前記樹脂筐体との接合面を接合するとき前記樹脂筐体の接合部に凸状の部分を設け、
前金属材の接合部の表面形状を、
(1)粗化面をRa:0.4μm〜2.5μmとし,
(2)若しくは、溝形状を溝の幅:0.05mm〜0.2mm、溝の深さ:0.05mm〜0.2mmとし、
(3)若しくは、穴形状を直径:0.05mm〜0.2mm、穴の深さ:0.02mm〜0.2mmの何れかとし、
(4)又はこれら(1)(2)(3)から2以上を組み合わせたものとし、
前記接合部の反対側の面から前記金属材に対してレーザ光を照射して前記樹脂筐体と前記金属材の接合を行うものである。
As described above, in the bonding method of heat bonding the resin casing and the metal material as an embodiment of the present invention,
When the bonding surface of the metal material to the resin casing is bonded by the laser beam irradiation means for heat bonding, a convex portion is provided in the bonding portion of the resin casing,
The surface shape of the joint of the previous metal material
(1) The roughened surface is Ra: 0.4 μm to 2.5 μm,
(2) Or, the groove shape is a groove width: 0.05 mm to 0.2 mm, a groove depth: 0.05 mm to 0.2 mm,
(3) Or, the hole shape is any one of diameter: 0.05 mm to 0.2 mm, hole depth: 0.02 mm to 0.2 mm,
(4) or these (1) (2) (3) from the combination of two or more,
The resin casing and the metal material are joined by irradiating the metal material with a laser beam from a surface opposite to the joint portion.

図19は、磨き面と溝加工面の異なる表面形状のアルミ材を、同一の条件で室温下において接合した際の接合強さの関係を示したものである。加圧は、図13に示した加熱加圧治具を用いて行った。磨き面の接合強さを1.0とした時、溝加工面では相対値=0.7程度と低下している。また、破壊面及び断面の観察により、破断は界面で起こっており、樹脂が溝部(凹部)に充填されていないことが確認できた。したがって、レーザ照射により溝加工面での溝部(凹部)に樹脂が浸入しないため接合強さが低下したと判断できる。そこで、加熱並びに成形品に生じやすいヒケ、捩れ、反り変形を考慮して樹脂試験片の形状を変更したものを次に示す。   FIG. 19 shows the relationship of bonding strength when aluminum materials having different surface shapes on the polished surface and grooved surface are bonded under the same conditions at room temperature. The pressurization was performed using the heating and pressurizing jig shown in FIG. When the bonding strength of the polished surface is 1.0, the relative value of the groove processed surface is reduced to about 0.7. Further, by observing the fracture surface and the cross section, it was confirmed that the fracture occurred at the interface and the resin was not filled in the groove (recess). Therefore, it can be determined that the bonding strength is reduced because the resin does not enter the groove (concave portion) on the groove processing surface by the laser irradiation. Therefore, the resin test piece whose shape has been changed in consideration of heat, sink marks, twists, and warp deformation that are likely to occur in the molded product is shown below.

図20は、樹脂試験片の形状を変更し、樹脂試験片をアルミ材に接合する際の加熱加圧治具の断面を示したものである。樹脂試験片120は、接合部分のみ凸状125になっている。ここでは、突起の形状は、高さ1mm程度、幅20mmとした。形状は、適宜変更しても構わない。上面に溝部を形成したアルミ試験片を設置し上方よりレーザ光10を照射する。
図21は、加熱温度を150℃とし、レーザパワーは室温に比べ0.3と小さく、すなわち、図15で示す加熱温度150℃と同一のレーザ照射条件とした時のアルミ材表面形状による接合強さの関係を示したものである。突起部を有した樹脂試験片との組み合わせで、磨き面と比べ溝加工面では、接合強さの相対値が1.1と高くなっていることがわかる。アルミ材を磨き面とした場合は、同等の強度になるのに対して、溝加工面では強度向上が確認できた。このことは、レーザ照射により溝加工面の溝部(凹部)に樹脂が浸入して接合強さが向上したと考えられる。
FIG. 20 shows a cross section of the heating and pressing jig when the shape of the resin test piece is changed and the resin test piece is joined to the aluminum material. The resin test piece 120 has a convex shape 125 only at the joint portion. Here, the shape of the protrusion was about 1 mm in height and 20 mm in width. The shape may be changed as appropriate. An aluminum test piece in which a groove is formed on the upper surface is placed and irradiated with laser light 10 from above.
In FIG. 21, the heating temperature is 150 ° C., and the laser power is as small as 0.3 compared to room temperature, that is, the bonding strength depending on the aluminum material surface shape when the laser irradiation conditions are the same as the heating temperature of 150 ° C. This shows the relationship. It can be seen that, in combination with the resin test piece having the protrusion, the relative value of the bonding strength is as high as 1.1 on the grooved surface compared to the polished surface. When the aluminum material was used as the polished surface, the strength was the same, whereas the strength improvement was confirmed on the grooved surface. This is presumably because the resin was infiltrated into the groove (concave portion) of the groove processing surface by laser irradiation and the bonding strength was improved.

これらのことより、成形品のヒケ、捩れ、反り変形など勘案して接合部分に突起をつけること及び加熱加圧を併用することは、上述の溝加工面のような大きな凸凹部を有する表面であっても十分に溶着し接合強度を増大させる効果がある。   From these facts, it is necessary to apply protrusions to the joints in consideration of sink marks, twists, warp deformation, etc. of the molded product and to use heating and pressurization together on the surface having a large convex recess such as the above-mentioned grooved surface. Even if it exists, there exists an effect which welds fully and increases joint strength.

1 上型(可動型)
1a 孔部
2 下型(固定型)
2a 溝部
3 金属材
4 接合剤
5 電子部品
6 センサ部品
7 樹脂筐体
8 ヒータ(加熱体)
9 接合面
10 レーザ光
11 レーザ光集光ユニット部(レーザ光照射手段)
20 接合順序
21 連続した軌跡
30 加圧用駒
40 光吸収率の大きい別種材料
45 レーザ照射面側に微細な凹凸
50 レーザ光集光ユニット
55 加熱・加圧治具
100 アルミ材
105 樹脂試験片
110 溝付アルミ材
115 突起部分
120 樹脂試験片
125 凸状部
1 Upper mold (movable)
1a Hole 2 Lower mold (fixed mold)
2a Groove 3 Metal material 4 Bonding agent 5 Electronic component 6 Sensor component 7 Resin housing 8 Heater (heating body)
9 Bonding surface 10 Laser beam 11 Laser beam condensing unit (Laser beam irradiation means)
20 Joining sequence 21 Consecutive locus 30 Pressing piece 40 Different material with large light absorption rate 45 Fine irregularities on laser irradiation surface side 50 Laser beam condensing unit 55 Heating / pressurizing jig 100 Aluminum material 105 Resin test piece 110 Groove Attached aluminum material 115 Protruding part 120 Resin test piece 125 Convex part

Claims (10)

樹脂筐体と金属材を加熱接合する接合装置であって、
前記金属材の前記樹脂筐体との接合面と反対側の面から前記金属材に対してレーザ光を照射する加熱接合用のレーザ光照射手段と、前記樹脂筐体及び前記金属材を位置決めして加圧するための加圧固定型と、該加圧固定型を加熱する加熱手段を備え、
前記加圧固定型は可動型及び固定型から成り、前記可動型と前記固定型の間に前記樹脂筐体と前記金属材を所定の位置にて挟み込み、前記可動型を前記加熱手段にて加熱すると共に、前記可動型によって前記金属材を前記樹脂筐体に加圧し、前記レーザ光照射手段によりレーザ光を照射して前記樹脂筐体と前記金属材の接合を行うことを特徴とするレーザ接合装置。
A joining device that heat-joins a resin casing and a metal material,
Positioning the resin casing and the metal material, a laser beam irradiation means for heating and joining the metal material with a laser beam from a surface opposite to the surface of the metal material opposite to the joint surface with the resin casing. A pressure fixing mold for pressurizing and heating means for heating the pressure fixing mold,
The pressure fixed mold includes a movable mold and a fixed mold. The resin casing and the metal material are sandwiched between the movable mold and the fixed mold at a predetermined position, and the movable mold is heated by the heating means. In addition, the metal member is pressed against the resin casing by the movable mold, and the laser casing is irradiated with the laser beam by the laser beam irradiating means to bond the resin casing and the metal member. apparatus.
請求項1に記載のレーザ接合装置において、レーザ光照射手段によって接合する前記金属材に直接レーザ照射をすることを特徴とするレーザ接合装置。   2. The laser bonding apparatus according to claim 1, wherein the metal material to be bonded by the laser beam irradiation means is directly irradiated with a laser beam. 請求項1又は2に記載のレーザ接合装置において、前記レーザ光照射手段と前記金属材との間に、金属材とは別種材料から成る加圧材を前記金属材と密着するように配置し、前記加圧材の表面にレーザ照射して、前記金属材へ熱伝導させて前記樹脂筐体と接合することを特徴とするレーザ接合装置。   The laser bonding apparatus according to claim 1 or 2, wherein a pressurizing material made of a different material from the metal material is disposed between the laser light irradiation means and the metal material so as to be in close contact with the metal material, A laser joining apparatus, wherein the surface of the pressurizing material is irradiated with a laser and thermally conducted to the metal material to be joined to the resin casing. 請求項3に記載のレーザ接合装置において、前記金属材とは別種材料から成る前記加圧材は、前記金属材よりレーザ光吸収率が高い材料から成ることを特徴とするレーザ接合装置。   4. The laser bonding apparatus according to claim 3, wherein the pressurizing material made of a material different from the metal material is made of a material having a higher laser light absorption rate than the metal material. 請求項3に記載のレーザ接合装置において、前記金属材とは別種材料から成る前記加圧材は、前記金属材より熱伝導率の小さい材料から成ることを特徴とするレーザ接合装置。   4. The laser bonding apparatus according to claim 3, wherein the pressurizing material made of a material different from the metal material is made of a material having a lower thermal conductivity than the metal material. 請求項3に記載のレーザ接合装置において、前記金属材とは別種材料から成る前記加圧材は、前記金属材より耐熱性の高い材料から成ることを特徴とするレーザ接合装置。   4. The laser bonding apparatus according to claim 3, wherein the pressurizing material made of a material different from the metal material is made of a material having higher heat resistance than the metal material. 請求項1に記載のレーザ接合装置において、前記固定型にも加熱体を具備すること特徴とするレーザ接合装置。   2. The laser bonding apparatus according to claim 1, wherein the fixed die is also provided with a heating body. 樹脂筐体と金属材を加熱接合する接合方法であって、
加圧固定型の可動型と固定型の間に前記樹脂筐体と前記金属材を所定の位置にて挟み込んで位置決めし、
加熱手段により前記加圧固定型を加熱すると共に、前記可動型によって前記金属材を前記樹脂筐体に加圧し、
加熱接合用のレーザ光照射手段によって、前記金属材の前記樹脂筐体との接合面と反対側の面から前記金属材に対してレーザ光を照射して前記樹脂筐体と前記金属材の接合を行うことを特徴とするレーザ接合方法。
A joining method in which a resin casing and a metal material are joined by heating,
The resin casing and the metal material are sandwiched and positioned at a predetermined position between the movable mold and the fixed mold of the pressure fixed mold,
While heating the pressure fixed mold by a heating means, pressurizing the metal material to the resin casing by the movable mold,
By joining the resin casing and the metal material by irradiating the metal material with a laser beam from a surface opposite to the joint surface of the metal material with the resin casing by the laser beam irradiation means for heat bonding. A laser bonding method characterized in that:
請求項8に記載のレーザ接合方法において、レーザ照射による加熱接合前に、前記加熱手段よって前記金属材の温度を前記樹脂筐体の温度よりも高い状態とすることを特徴とするレーザ接合方法。   9. The laser bonding method according to claim 8, wherein the temperature of the metal material is made higher than the temperature of the resin casing by the heating means before heat bonding by laser irradiation. 請求項8に記載のレーザ接合方法において、前記レーザ光照射手段と前記金属材との間に、金属材とは別種材料から成る加圧材を前記金属材と密着するように配置して前記加圧材の表面にレーザ照射し、前記金属材へ熱伝導させて前記樹脂筐体と接合することを特徴とするレーザ接合方法。   9. The laser bonding method according to claim 8, wherein a pressurizing material made of a different material from the metal material is disposed between the laser beam irradiation means and the metal material so as to be in close contact with the metal material. A laser joining method comprising: irradiating a surface of a pressure member with laser, conducting heat to the metal material, and joining to the resin casing.
JP2014560722A 2013-02-05 2014-01-27 Laser bonding apparatus and laser bonding method Expired - Fee Related JP5941563B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013020223 2013-02-05
JP2013020223 2013-02-05
PCT/JP2014/051669 WO2014123022A1 (en) 2013-02-05 2014-01-27 Laser joining apparatus and laser joining method

Publications (2)

Publication Number Publication Date
JP5941563B2 true JP5941563B2 (en) 2016-06-29
JPWO2014123022A1 JPWO2014123022A1 (en) 2017-02-02

Family

ID=51299619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014560722A Expired - Fee Related JP5941563B2 (en) 2013-02-05 2014-01-27 Laser bonding apparatus and laser bonding method

Country Status (3)

Country Link
JP (1) JP5941563B2 (en)
CN (1) CN104968483B (en)
WO (1) WO2014123022A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101509748B1 (en) * 2013-11-26 2015-04-07 현대자동차 주식회사 Adhering device and method of different kinds of materials
CN106794636B (en) * 2014-10-10 2019-05-07 日立汽车系统株式会社 The manufacturing method of laser connected structure and electronic control unit and laser connected structure
JP2016159578A (en) * 2015-03-04 2016-09-05 オムロン株式会社 Joining method, method for manufacturing joint structure, and joint structure
JP6742697B2 (en) * 2015-06-03 2020-08-19 三菱重工業株式会社 Curing device for resin composite material and curing method
CN105109035A (en) * 2015-09-25 2015-12-02 上海信耀电子有限公司 Semiconductor laser synchronous welding set and operating mode thereof
EP3386284B1 (en) * 2015-11-30 2021-05-05 Hitachi Automotive Systems, Ltd. Electronic control device and method for manufacturing electronic control device
DE102016204797B4 (en) 2016-03-23 2021-12-09 Technische Universität Dresden Device and method for producing or separating a cohesive or cohesive and form-fitting connection of at least one metallic or ceramic component and a component formed from or with a thermoplastic polymer
WO2019117092A1 (en) * 2017-12-11 2019-06-20 サムコ株式会社 Method for bonding cycloolefin polymer to metal, method for manufacturing biosensor, and biosensor
JP6896889B2 (en) 2017-12-28 2021-06-30 株式会社フジクラ Welded structure and wiring board with metal pieces
US11667767B2 (en) 2018-04-13 2023-06-06 Tokyo Ohka Kogyo Co., Ltd. Cladding composition, and method for producing metal/resin bonded member
CN109353012B (en) * 2018-10-30 2021-03-30 大族激光科技产业集团股份有限公司 Method for laser welding plastic and plastic product
CN111347614A (en) 2018-12-21 2020-06-30 大陆-特韦斯贸易合伙股份公司及两合公司 Laser activation
CN114012254B (en) * 2021-11-01 2024-03-08 浙江吉利控股集团有限公司 Dissimilar material joint piece of resin material and metal material, preparation method and vehicle
CN114346484A (en) * 2022-02-17 2022-04-15 谢文海 Cold and hot integral type laser welding preheating device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029440A1 (en) * 2005-09-01 2007-03-15 Osaka University Method for joining metal and resin and metal-resin composite, method for joining glass and resin and glass-resin composite, and method for joining ceramic and resin and ceramic-resin composite
JP2008213156A (en) * 2007-02-28 2008-09-18 Osaka Univ Metal resin jointing method using plurality of laser beam sources and metal resin composite
JP2009119832A (en) * 2007-11-19 2009-06-04 Mitsubishi Electric Corp Welding method and welding apparatus of resin material
JP2010046831A (en) * 2008-08-19 2010-03-04 Toyota Motor Corp Method and apparatus for joining resin and metal together
JP2011143539A (en) * 2010-01-12 2011-07-28 Nippon Light Metal Co Ltd Method for laser-joining of aluminum alloy plate and resin member together
JP2011255628A (en) * 2010-06-11 2011-12-22 Koito Mfg Co Ltd Laser welding structure
JP2013216028A (en) * 2012-04-11 2013-10-24 Hitachi Ltd Laser bonding method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4089440B2 (en) * 2003-01-17 2008-05-28 松下電工株式会社 Method of joining thermoplastic resin by laser
CN101253036A (en) * 2005-09-01 2008-08-27 国立大学法人大阪大学 Method for joining metal and resin and metal-resin composite, method for joining glass and resin and glass-resin composite, and method for joining ceramic and resin and ceramic-resin composite

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029440A1 (en) * 2005-09-01 2007-03-15 Osaka University Method for joining metal and resin and metal-resin composite, method for joining glass and resin and glass-resin composite, and method for joining ceramic and resin and ceramic-resin composite
JP2008213156A (en) * 2007-02-28 2008-09-18 Osaka Univ Metal resin jointing method using plurality of laser beam sources and metal resin composite
JP2009119832A (en) * 2007-11-19 2009-06-04 Mitsubishi Electric Corp Welding method and welding apparatus of resin material
JP2010046831A (en) * 2008-08-19 2010-03-04 Toyota Motor Corp Method and apparatus for joining resin and metal together
JP2011143539A (en) * 2010-01-12 2011-07-28 Nippon Light Metal Co Ltd Method for laser-joining of aluminum alloy plate and resin member together
JP2011255628A (en) * 2010-06-11 2011-12-22 Koito Mfg Co Ltd Laser welding structure
JP2013216028A (en) * 2012-04-11 2013-10-24 Hitachi Ltd Laser bonding method

Also Published As

Publication number Publication date
CN104968483B (en) 2017-03-08
JPWO2014123022A1 (en) 2017-02-02
CN104968483A (en) 2015-10-07
WO2014123022A1 (en) 2014-08-14

Similar Documents

Publication Publication Date Title
JP5941563B2 (en) Laser bonding apparatus and laser bonding method
JP5838116B2 (en) Laser bonding method
JP5835945B2 (en) Laser bonding method
CN108141979B (en) Electronic control device and method for manufacturing electronic control device
WO2013125664A1 (en) Laser joining method
KR101311965B1 (en) Method and apparatus for joining resin and metal
CN103862164B (en) The manufacture method of metal parts and composite shaped body
JP5985630B2 (en) Flow sensor and manufacturing method thereof
CN108788470B (en) Grooved resin molded article
JP4572118B2 (en) Method and apparatus for trajectory welding thermoplastic moldings
WO2012140873A1 (en) Method for laser bonding
JP6483718B2 (en) Electronic control device and method of manufacturing electronic control device
JP2018039247A (en) Composite body of cfrtp and metal
JP2015116684A (en) Method for joining metal surface to dissimilar material, production method for dissimilar material-joined metal material, and dissimilar material-joined metal material
KR20100051025A (en) Method of assembling housing of photoelectric sensor and photoelectric sensor
US8424030B2 (en) Optical pickup device and laser welding structure of optical components
CN107471657A (en) A kind of non-transmissive welding method of the laser of thermoplastic
KR101448256B1 (en) Methods for manufacturing a antenna
JP2009143190A (en) Method for fixing component and structure for fixing component
US20180084633A1 (en) Optoelectronic Assembly, and Method for Producing an Optoelectronic Assembly
JP2016502475A (en) Joining method of thermoplastic material bonding partner and glass bonding partner
Brunnecker et al. Laser Welding of Plastics—a Neat Thing: The story of a popular laser application
JP5064986B2 (en) Beam welding apparatus and beam welding method
WO2023032446A1 (en) Metal resin composite molded product, method for processing metal member, and method for manufacturing metal resin composite molded product
JP2022030445A (en) Method for manufacturing sealed composite molding

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160520

R150 Certificate of patent or registration of utility model

Ref document number: 5941563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees