JP2013216028A - Laser bonding method - Google Patents

Laser bonding method Download PDF

Info

Publication number
JP2013216028A
JP2013216028A JP2012089809A JP2012089809A JP2013216028A JP 2013216028 A JP2013216028 A JP 2013216028A JP 2012089809 A JP2012089809 A JP 2012089809A JP 2012089809 A JP2012089809 A JP 2012089809A JP 2013216028 A JP2013216028 A JP 2013216028A
Authority
JP
Japan
Prior art keywords
metal
laser
resin
pressurizing material
pressurizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012089809A
Other languages
Japanese (ja)
Other versions
JP5838116B2 (en
Inventor
Satoshi Arai
聡 荒井
Kenji Senda
健史 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012089809A priority Critical patent/JP5838116B2/en
Priority to PCT/JP2013/060421 priority patent/WO2013154037A1/en
Publication of JP2013216028A publication Critical patent/JP2013216028A/en
Application granted granted Critical
Publication of JP5838116B2 publication Critical patent/JP5838116B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/028Non-mechanical surface pre-treatments, i.e. by flame treatment, electric discharge treatment, plasma treatment, wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • B29C65/1658Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined scanning once, e.g. contour laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1687Laser beams making use of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1696Laser beams making use of masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/24Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools characterised by the means for heating the tool
    • B29C65/245Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools characterised by the means for heating the tool the heat transfer being achieved contactless, e.g. by radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/302Particular design of joint configurations the area to be joined comprising melt initiators
    • B29C66/3022Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined
    • B29C66/30223Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined said melt initiators being rib-like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7316Surface properties
    • B29C66/73161Roughness or rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8122General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the composition of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8126General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/81265Surface properties, e.g. surface roughness or rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8126General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/81266Optical properties, e.g. transparency, reflectivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8126General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/81266Optical properties, e.g. transparency, reflectivity
    • B29C66/81267Transparent to electromagnetic radiation, e.g. to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1687Laser beams making use of light guides
    • B29C65/169Laser beams making use of light guides being a part of the joined article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/022Mechanical pre-treatments, e.g. reshaping
    • B29C66/0224Mechanical pre-treatments, e.g. reshaping with removal of material
    • B29C66/02245Abrading, e.g. grinding, sanding, sandblasting or scraping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/026Chemical pre-treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/21Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being formed by a single dot or dash or by several dots or dashes, i.e. spot joining or spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3481Housings or casings incorporating or embedding electric or electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Laser Beam Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reliable laser bonding method for bonding a resin and a metal, configured to prevent thermal decomposition of resin without influence of light absorptivity of metal.SOLUTION: A laser bonding method is used for a pressing material made of metal or ceramics. Resin and metal is pressed from the metal side with the pressing material. The pressing material is laser-irradiated. Heat of the laser beam is thermally transferred via the metal from the pressing material to the resin for join them. High-strength, bubble-less, and highly reliable laser bonding can be achieved between the resin and the metal in a short tact.

Description

本発明は、樹脂と金属をレーザ光の照射により接合する技術に関するものである。   The present invention relates to a technique for bonding a resin and a metal by laser light irradiation.

熱可塑性樹脂は、優れた加工性と形状の自由度が大きいため、自動車や電機機器や医療・バイオ機器など一般産業用途に広く用いられている。そして、熱可塑性樹脂が使われていない分野はないと言えるほど普及し、身近な材料となっている。当初は、木材や紙などの天然素材の代替として利用されていたが、今やプラスチック材料でなければ作り得ないという特殊な製品も数多く開発されるようになった。そのため、最適な材料や最適な加工方法を設計開発のために提供できれば、今までにない新しい製品を生み出す可能性がある。   Thermoplastic resins are widely used in general industrial applications such as automobiles, electrical equipment, medical / bio equipment, and the like because of their excellent processability and large degree of freedom in shape. And it has become so popular that it can be said that there is no field where thermoplastic resins are not used. At first, it was used as an alternative to natural materials such as wood and paper, but now many special products that can only be made with plastic materials have been developed. Therefore, if the optimal materials and optimal processing methods can be provided for design and development, there is a possibility of creating new products that have never existed before.

また、近年のCO排出制限や低コスト化の流れから、熱可塑性樹脂の高機能化とともに、金属の代替が徐々になされつつある。また、金属の代替向けに炭素繊維を含んだ熱硬化性樹脂も普及しつつある。しかしながら、熱可塑性及び熱硬化樹脂は一般的に金属に比べて耐熱温度や機械的強度が低く、熱膨張が大きく、変形・分解しやすい、有機溶剤に溶けやすい、水分により膨潤しやすいなどの劣る点も多々あるため、完全に代替することは不可能である。 In addition, due to the recent trend of CO 2 emission restrictions and cost reduction, the replacement of metals is gradually being made along with the higher functionality of thermoplastic resins. In addition, thermosetting resins containing carbon fibers are becoming widespread for metal replacement. However, thermoplastic and thermosetting resins generally have lower heat resistance and mechanical strength than metals, have large thermal expansion, are easily deformed and decomposed, are easily dissolved in organic solvents, and are poorly swelled by moisture. Because there are many points, it is impossible to completely replace them.

特に、近年の製品構造の複雑化により、熱可塑性及び熱硬化樹脂と金属それぞれのメリットを生かした設計がなされ、それらの2次加工技術が重要となってきている。その中でも、半導体レーザの普及により、レーザ光を用いる方法を検討されることが多くなってきた。   In particular, due to the complexity of product structures in recent years, designs that take advantage of the advantages of thermoplasticity and thermosetting resins and metals have been made, and their secondary processing techniques have become important. Among them, due to the widespread use of semiconductor lasers, methods using laser light have been increasingly studied.

特許文献1には、アクリル樹脂とサンドペーパーで荒らされた凹凸面を持つスズを密着させた状態でレーザ照射することにより、アクリル樹脂が凹凸面に食い込み、強固な接合が形成されることが記載されている。   Patent Document 1 describes that acrylic resin bites into an uneven surface by laser irradiation in a state in which tin having an uneven surface roughened with an acrylic resin and sandpaper is adhered, and a strong bond is formed. Has been.

特許文献2には、プラスチックと金属を重ね合わせた状態で、ハイパワーのレーザ光を照射をすることにより、プラスチック界面近傍に微小な気泡を発生させ、その発生時の圧力効果により、強固な接合ができることが示されている。   In Patent Document 2, by irradiating a high-power laser beam in a state where plastic and metal are superposed, micro bubbles are generated in the vicinity of the plastic interface, and strong bonding is achieved by the pressure effect at the time of generation. It has been shown that you can.

特許文献3には、樹脂同士に溶着において、熱伝導率15W/mK以上の赤外線透過固体(赤外結晶材料)で加圧することにより、表面の熱損傷を抑制し、溶着することが示されている。   Patent Document 3 shows that, in welding between resins, by applying pressure with an infrared transmitting solid (infrared crystal material) having a thermal conductivity of 15 W / mK or more, surface thermal damage is suppressed and welding is performed. Yes.

特許文献4には、熱可塑性樹脂からなる成形体と金属を重ね合わせた状態で、金属側からレーザ照射することにより、成形体がレーザ光を透過しない場合であっても、強固に接合できることが示されている。また、金属の接合面側の表面への表面処理が接合強度向上に有効なことも記載されている。   In Patent Document 4, it is possible to firmly bond even if the molded body does not transmit laser light by irradiating laser from the metal side in a state where the molded body made of a thermoplastic resin and the metal are overlapped. It is shown. It is also described that the surface treatment of the metal on the bonding surface side is effective for improving the bonding strength.

特開2006−15405号公報JP 2006-15405 A WO2007/029440号公報WO2007 / 029440 特開2009−101560号公報JP 2009-101560 A 特開2010−76437号公報JP 2010-76437 A

特許文献1で開示されている技術では、入射するレーザ光に対して透過率が70%以上の透明な熱可塑性樹脂を用いる場合には特に有効な方法であるが、透明ではない熱可塑性樹脂の場合は適用不可能である。   The technique disclosed in Patent Document 1 is a particularly effective method when a transparent thermoplastic resin having a transmittance of 70% or more with respect to incident laser light is used. The case is not applicable.

特許文献2で開示されている技術では、レーザ照射時に、樹脂と金属が密着するまでの過程で、隙間に存在する空気の熱伝達によって、熱可塑性樹脂が熱分解温度まで達し、多量の気泡が発生してしまうという課題があった。そのため、長期的な信頼性が懸念され、特に、気密性の確保は困難であることがわかっている。   In the technique disclosed in Patent Document 2, the thermoplastic resin reaches the thermal decomposition temperature due to the heat transfer of the air existing in the gap in the process until the resin and the metal adhere to each other at the time of laser irradiation, and a large amount of bubbles are formed. There was a problem that it would occur. Therefore, long-term reliability is a concern, and in particular, it has been found that it is difficult to ensure airtightness.

特許文献3で開示されている技術では、熱可塑性樹脂側から光を照射する場合は、レーザ照射面の樹脂の劣化を抑制できるが、金属側からレーザ光を照射した場合は、熱が逃げてしまうため、接合に必要なレーザパワーが増大してしまうことが判明している。   In the technique disclosed in Patent Document 3, when light is irradiated from the thermoplastic resin side, deterioration of the resin on the laser irradiation surface can be suppressed, but when laser light is irradiated from the metal side, heat escapes. As a result, it has been found that the laser power required for bonding increases.

特許文献4で開示されている技術では、金属側からレーザ照射し、熱可塑性樹脂と金属を接合することが示されているが、金属の加圧方法については、記載されていない。   In the technique disclosed in Patent Document 4, it is shown that laser irradiation is performed from the metal side to join the thermoplastic resin and the metal, but the method for pressurizing the metal is not described.

このように、特許文献1−4のレーザ光を加熱源として樹脂と金属を接合する技術の中で、金属側からレーザ光を照射した時の課題については詳細が記載されていないが、本発明者らは、加圧方法や材質に応じて、樹脂の熱分解が生じやすくなり、信頼性の面で大きな課題があることを見出した。また、金属側からレーザ光を照射する場合、金属の材質に応じて、レーザ照射面に光を吸収させる照射を実施しなければならず、コスト面に加えて、接合性でも課題があり、適用が大幅に限定されていた。   As described above, in the technique of joining the resin and the metal using the laser light of Patent Documents 1-4 as a heating source, details on the problem when the laser light is irradiated from the metal side are not described, but the present invention The present inventors have found that there is a significant problem in terms of reliability because thermal decomposition of the resin tends to occur depending on the pressing method and material. In addition, when irradiating laser light from the metal side, it is necessary to carry out irradiation that absorbs light on the laser irradiation surface according to the material of the metal. Was greatly limited.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本発明では、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、金属またはセラミクスから構成される加圧材に用い、樹脂と金属とを金属側から加圧材により加圧するとともに、加圧材にレーザ照射し、レーザによる熱を加圧材から金属を介して樹脂へ熱伝導させて、接合することを特徴とする。   In order to solve the above problems, for example, the configuration described in the claims is adopted. In the present invention, a plurality of means for solving the above problems are included. For example, a pressurizing material composed of metal or ceramics is used, and resin and metal are added from the metal side by a pressurizing material. In addition, the pressure material is irradiated with a laser, and heat is transmitted from the pressure material to the resin through the metal to be bonded.

本発明により、金属表面の光吸収率に大きく左右されず、短タクトで高強度かつ気泡レスな信頼性の高い樹脂と金属のレーザ接合が可能となる。また、金属表面に特殊な処理をする必要がなくなり、レーザパワーを小さくできるため、コストの低減に寄与する。   According to the present invention, it is possible to perform laser bonding between a resin and a metal, which is highly independent of light absorption rate on the metal surface, and has a short tact, high strength, and no bubbles, and high reliability. In addition, it is not necessary to perform special treatment on the metal surface, and the laser power can be reduced, which contributes to cost reduction.

本発明の樹脂と金属のレーザ接合方法の一実施例を示す図である。It is a figure which shows one Example of the laser joining method of resin and metal of this invention. 本発明の樹脂と金属のレーザ接合方法の他の実施例を示す図である。It is a figure which shows the other Example of the laser joining method of resin and metal of this invention. 本発明の樹脂と金属のレーザ接合方法の他の実施例を示す図である。It is a figure which shows the other Example of the laser joining method of resin and metal of this invention. 本発明の樹脂と金属のレーザ接合方法の他の実施例を示す図である。It is a figure which shows the other Example of the laser joining method of resin and metal of this invention. 本発明の樹脂と金属のレーザ接合方法の他の実施例を示す図である。It is a figure which shows the other Example of the laser joining method of resin and metal of this invention. 本発明の樹脂と金属のレーザ接合方法の他の実施例を示す図である。It is a figure which shows the other Example of the laser joining method of resin and metal of this invention. 本発明の樹脂と金属のレーザ接合方法の他の実施例を示す図である。It is a figure which shows the other Example of the laser joining method of resin and metal of this invention. 本発明の樹脂と金属のレーザ接合方法の他の実施例を示す図である。It is a figure which shows the other Example of the laser joining method of resin and metal of this invention. 本発明の樹脂と金属のレーザ接合方法の他の実施例を示す図である。It is a figure which shows the other Example of the laser joining method of resin and metal of this invention. 本発明の樹脂と金属のレーザ接合方法の他の実施例を示す図である。It is a figure which shows the other Example of the laser joining method of resin and metal of this invention. 本発明の樹脂と金属のレーザ接合方法の他の実施例を示す図である。It is a figure which shows the other Example of the laser joining method of resin and metal of this invention. 本発明の金属と樹脂のレーザ接合方法を製品に適用した時の一例を示す模式図である。It is a schematic diagram which shows an example when the laser joining method of the metal of this invention and resin is applied to a product.

本発明の実施の形態について以下に説明する。本発明で用いる熱可塑性樹脂は、非結晶性もしくは結晶性樹脂からなる。非結晶性樹脂としては、ポリスチレン(PS)、アクリロニトリルスチレン(AS)、アクリロニトリルブタジエンスチレン共重合体(ABS)、ポリエーテルイミド(PEI)、ポリカーボネート(PC)、ポリアリレート(PAR)、ポリメチルメタアクリル酸メチル(PMMA)、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリ塩化ビニル(PVC)、ポリ塩化ビニルデン(PVDC)が挙げられる。結晶性樹脂としては、ポリエチレン(PE)、ポリプロプレン(PP)、ポリオキシメチレン(POM)、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリフェニレンサルファイド(PPS)、ナイロン6(PA6)、ナイロン66(PA66)、ナイロン6T(PA6T)、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)、ポリテトラフルオロエチレン(PTFE)が挙げられる。また、それらのアロイ材、ガラスファイバーなどの無機物、特殊な添加剤を含んだ熱可塑性樹脂も対象となる。一般的には、成形性や透明性は非結晶性樹脂が優れているのに対し、結晶性樹脂は耐熱性や耐薬品性に優れている。また、熱可塑性樹脂のみならず、エポキシ系などの熱硬化樹脂でも構わない。特に、本発明の場合、加圧材のレーザ光に対する光吸収が接合性に影響するため、熱可塑性樹脂や熱硬化樹脂の着色状態はどのような状態でも良い。   Embodiments of the present invention will be described below. The thermoplastic resin used in the present invention is made of an amorphous or crystalline resin. Non-crystalline resins include polystyrene (PS), acrylonitrile styrene (AS), acrylonitrile butadiene styrene copolymer (ABS), polyetherimide (PEI), polycarbonate (PC), polyarylate (PAR), and polymethylmethacrylic. Examples include methyl acid (PMMA), cycloolefin polymer (COP), cycloolefin copolymer (COC), polysulfone (PSF), polyethersulfone (PES), polyvinyl chloride (PVC), and polyvinylidene chloride (PVDC). As crystalline resins, polyethylene (PE), polypropylene (PP), polyoxymethylene (POM), polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN) ), Polyphenylene sulfide (PPS), nylon 6 (PA6), nylon 66 (PA66), nylon 6T (PA6T), polyetheretherketone (PEEK), liquid crystal polymer (LCP), polytetrafluoroethylene (PTFE). . In addition, those alloy materials, inorganic materials such as glass fibers, and thermoplastic resins containing special additives are also targeted. In general, an amorphous resin is excellent in moldability and transparency, whereas a crystalline resin is excellent in heat resistance and chemical resistance. Moreover, not only a thermoplastic resin but also an epoxy-based thermosetting resin may be used. In particular, in the case of the present invention, since the light absorption of the pressurizing material with respect to the laser beam affects the bonding property, the colored state of the thermoplastic resin or the thermosetting resin may be any state.

接合する金属としては、鉄、アルミニウム、銅、ニッケル、金、チタン、合金(ステンレス鋼、真鍮、アルミニウム合金、リン青銅など)、ダイカストなど挙げることができ、金属被膜(メッキ、蒸着膜など)された材質も対象となる。また、金属のみならず、セラミクスでも接合可能である。   Examples of metals to be joined include iron, aluminum, copper, nickel, gold, titanium, alloys (stainless steel, brass, aluminum alloys, phosphor bronze, etc.), die casting, etc., and metal coatings (plating, vapor deposition films, etc.). This also applies to other materials. Further, not only metal but also ceramics can be joined.

接合する金属材の加圧に使用する加圧材としては、鉄、アルミニウム、銅、ニッケル、金、チタン、合金(ステンレス鋼、真鍮、アルミニウム合金、リン青銅など)、ダイカスト、各種セラミクスなどの材料をベースとし、入射するレーザ波長に対して表面の吸収率が70%以上となっている必要がある。   The pressurizing materials used to press the metal materials to be joined include materials such as iron, aluminum, copper, nickel, gold, titanium, alloys (stainless steel, brass, aluminum alloys, phosphor bronze, etc.), die castings, and various ceramics. The surface absorptance must be 70% or more with respect to the incident laser wavelength.

レーザ接合に用いる光源は、半導体レーザ、YAGレーザ、ファイバーレーザを含めた赤外領域の波長を有するレーザがコスト面では有効であるが、加圧材の表面の光吸収に対応するため、その他の波長でも良い。また、レーザ光源の強度分布は、ガウシアン、トップハット、リング型など付属するレンズによって様々な強度分布にすることが可能である。   Lasers having wavelengths in the infrared region, including semiconductor lasers, YAG lasers, and fiber lasers, are effective in terms of cost as the light source used for laser bonding. It may be a wavelength. Further, the intensity distribution of the laser light source can be changed to various intensity distributions depending on attached lenses such as Gaussian, top hat and ring type.

レーザ接合の条件は、加圧材のレーザ照射波長における加圧材の光吸収率、熱伝導率、耐熱性、剛性を考慮した上で、レーザスポットサイズ、パワー、照射時間、加圧力を決定する。   Laser bonding conditions determine the laser spot size, power, irradiation time, and applied pressure in consideration of the optical absorption rate, thermal conductivity, heat resistance, and rigidity of the pressurized material at the laser irradiation wavelength of the pressurized material. .

図1は、本発明の樹脂と金属のレーザ接合方法の実施例を示す平面図である。本実施例では、樹脂1と金属2を重ね合わせた状態で、接合する金属2の上面部分を加圧材10で加圧し、加圧材10には、接合する金属2の光吸収率よりも光吸収率の大きい金属やセラミクス用い、加圧材10にレーザ光4を照射して樹脂1と金属2を接合したことを特徴とする。通常、金属2からレーザ光4を照射をする場合、光吸収率が小さい金属材、例えば赤外光に対するアルミや銅に対しては、接合する金属材のレーザ照射面に光吸収率を増大させる処理を実施しなければならず、コスト増が課題となっていた。また、製品形態によっては、そのような処理を実施できない場合や接合性を悪化させる場合があり、その結果、接合できない場合もあった。また、金属2側からレーザ照射をするため、金属2の反射によるレーザ光源の劣化を回避するため、例えばレーザ光源を接合する金属2に対して、10〜15°傾けてレーザ光4を照射する必要があった。しかしながら、10〜15°傾けた場合、レーザ接合部は、傾けない場合に比べ、均一になりにくいという問題も散見されていた。   FIG. 1 is a plan view showing an embodiment of the resin and metal laser bonding method of the present invention. In the present embodiment, the upper surface portion of the metal 2 to be joined is pressed with the pressurizing material 10 in a state where the resin 1 and the metal 2 are overlapped, and the pressurizing material 10 has a light absorption rate higher than that of the metal 2 to be joined. A metal or ceramic having a high light absorption rate is used, and the pressure material 10 is irradiated with the laser beam 4 to bond the resin 1 and the metal 2. Normally, when the laser beam 4 is irradiated from the metal 2, for a metal material having a small light absorption rate, such as aluminum or copper for infrared light, the light absorption rate is increased on the laser irradiation surface of the metal material to be joined. Processing has to be performed, and the increase in cost has been an issue. In addition, depending on the product form, such treatment may not be performed or bondability may be deteriorated, and as a result, bonding may not be possible. Further, since laser irradiation is performed from the metal 2 side, in order to avoid deterioration of the laser light source due to reflection of the metal 2, for example, the laser light 4 is irradiated at an angle of 10 to 15 ° with respect to the metal 2 to which the laser light source is bonded. There was a need. However, when tilted by 10 to 15 °, there has also been a problem that the laser junction is less likely to be uniform than when tilted.

これらに対して、本発明者らは、図1で示したように、光吸収率の大きい金属やセラミクスを加圧材10とし、加圧材10に対して傾けない状態でレーザ光4を照射して接合することにより、加圧材10を介して接合する金属2に熱伝導を起こし、樹脂1と金属2が高強度かつ均一に接合できることを見出した。例えば、アルミや銅を接合したい場合、赤外域でのレーザ光の吸収率の大きいSUS304を用いることで、アルミや銅に特殊な処理をせず、接合できることがわかっている。また、製品によってはレーザ光4を傾けて照射できないため、適用範囲が広がるというメリットもある。特に、品質の観点では、レーザ光4の照射の角度は、1°以下とすることが望ましい。   In contrast, as shown in FIG. 1, the present inventors use a metal or ceramic having a high light absorption rate as the pressure material 10 and irradiate the laser beam 4 without tilting the pressure material 10. Thus, it was found that heat conduction was caused in the metal 2 to be joined via the pressurizing material 10 and the resin 1 and the metal 2 could be joined with high strength and uniformity. For example, when aluminum or copper is to be bonded, it has been found that by using SUS304 having a high absorption rate of laser light in the infrared region, it is possible to bond aluminum or copper without any special treatment. In addition, depending on the product, since the laser beam 4 cannot be irradiated at an angle, there is an advantage that the application range is widened. In particular, from the viewpoint of quality, it is desirable that the irradiation angle of the laser beam 4 be 1 ° or less.

また、従来から、樹脂1と金属2のレーザ接合において、金属2側からレーザ照射する場合、レーザ4を照射する部分以外の場所を加圧することが行われている。従来の構成の場合、レーザ照射部分は加圧されていないため、レーザ4を照射した部分の金属2が膨張・変形し、樹脂1に密着することで接合がなされる。しかしながら、その密着するまでの過程で、隙間がより大きくなり、空気の熱伝達によって、樹脂1が熱分解温度まで達し、多量の気泡が発生してしまうという現象が見られた。この現象は、特に、樹脂1と金属2の隙間が50μm以上と大きい場合や金属2の厚みが0.5mm以下と薄い場合に、顕著に現れることがわかっている。また、通常の熱可塑性樹脂同士のレーザ溶着と同様に、金属2をガラスなどの透過率が高い材料で押えることも可能であるが、その場合、ガラスにより、熱が逃げてしまうこと及びレーザ照射部と密着しているガラス部分が割れてしまうなど課題があった。図1で示した本実施例では、加圧材10による圧力と金属2の熱膨張の双方の効果によって、樹脂1と金属2を密着させるため、隙間の影響をより小さくでき、樹脂1の気泡の発生を抑制することが可能となる。さらに、樹脂1の熱分解温度まで達しない状態で接合できることにより、界面強度の向上や樹脂1自体の強度低下も抑制でき、接合体の強度の向上が可能となる。また、必要なレーザパワーも小さくできるというメリットもある。なお、加圧材10の厚みが小さい場合、レーザ照射時の熱に応じて、反りが発生してしまう場合がある。そのため、加圧材10の厚み≧接合する金属材2の厚みとすることが望ましい。特に、加圧材10は1.0mm以上とし、接合部への加圧力は、0.4MPa以上とすることが望ましい。また、厚みのみならず、剛性、耐熱性、融点も接合する金属2に対して、加圧材10を大きくしておくことが望ましい形態である。   Conventionally, in laser joining of the resin 1 and the metal 2, when laser irradiation is performed from the metal 2 side, a place other than the portion irradiated with the laser 4 is pressurized. In the case of the conventional configuration, since the laser irradiated portion is not pressurized, the metal 2 in the portion irradiated with the laser 4 expands and deforms and is bonded to the resin 1 to be bonded. However, in the process until the contact, the gap became larger, and due to the heat transfer of the air, the resin 1 reached the thermal decomposition temperature and a large amount of bubbles was generated. It has been found that this phenomenon appears particularly when the gap between the resin 1 and the metal 2 is as large as 50 μm or more, or when the thickness of the metal 2 is as thin as 0.5 mm or less. Further, similarly to the usual laser welding of thermoplastic resins, it is possible to hold the metal 2 with a material having a high transmittance such as glass, but in that case, the heat escapes by the glass and the laser irradiation. There was a problem that the glass part that was in close contact with the part was broken. In the present embodiment shown in FIG. 1, since the resin 1 and the metal 2 are brought into close contact with each other by the effects of the pressure by the pressure member 10 and the thermal expansion of the metal 2, the influence of the gap can be reduced, and the bubbles of the resin 1 can be reduced. Can be suppressed. Furthermore, since it can join in the state which does not reach the thermal decomposition temperature of the resin 1, the improvement of interface strength and the strength reduction of the resin 1 itself can also be suppressed, and the strength of the joined body can be improved. There is also an advantage that the required laser power can be reduced. In addition, when the thickness of the pressurizing material 10 is small, warping may occur depending on the heat at the time of laser irradiation. Therefore, it is desirable that the thickness of the pressure material 10 is equal to or greater than the thickness of the metal material 2 to be joined. In particular, the pressure member 10 is preferably 1.0 mm or more, and the pressure applied to the joint is preferably 0.4 MPa or more. In addition, it is desirable that the pressurizing material 10 be made larger than the metal 2 to which not only the thickness but also the rigidity, heat resistance, and melting point are bonded.

加圧材10は、特に平板でなくても良く、接合する金属材2に段差がある場合は、図2で示したような形状の加圧材10を用いることで対応可能である。   The pressurizing material 10 may not be a flat plate in particular, and when there is a step in the metal material 2 to be joined, it can be dealt with by using the pressurizing material 10 having a shape as shown in FIG.

なお、これら構成において、樹脂1と接合する金属2の間に、接着剤を加えて、レーザ接合しても良い。特に、接着剤が存在する場合、接着剤部分で熱を伝導させることが可能であるため、隙間の影響も小さくできる。ただし、その間に挿入する接着剤は、熱伝導率0.25W/mK以下であることが望ましい。   In these structures, an adhesive may be added between the metal 2 to be bonded to the resin 1 and laser bonding may be performed. In particular, when an adhesive is present, it is possible to conduct heat in the adhesive portion, so that the influence of the gap can be reduced. However, it is desirable that the adhesive inserted between them has a thermal conductivity of 0.25 W / mK or less.

図3は、本発明の樹脂と金属のレーザ接合方法の他の実施例を示す平面図である。本実施例では、加圧材10のレーザ照射面に微細な凹凸11を形成し、レーザ吸収率を向上させたことを特徴とする。レーザ照射面は、加圧材10の反対面(金属2側を向いた面)及び金属2の加圧材側の表面よりも表面粗さが大きくなっている。本手法により、必要なレーザパワーを小さくでき、高効率のレーザ接合が可能となる。なお、この微細な凹凸11は、サンドブラスト、レーザ処理などを実施しておくことがより好適である。微細な凹凸11は、粗さに換算するとRz4〜10μm程度とすることが望ましい。また、金属2の材質がアルミニウムの場合は、上記サンドブラスト処理以外に、ナノポーラスの穴を形成する電解処理を実施しても良い。微細な凹凸11を形成する処理は、接合部界面の金属2にも有効な手段である。ただし、接合性を向上させるための粗さは樹脂1の高温時の粘度に依存するが、一般的には、接合面の金属2の粗さ>加圧材10の表面の粗さとした方が良い。一方、金属からなる加圧材10と接合する金属2の密着面は可能な限り、粗さは小さくすることが望ましい。   FIG. 3 is a plan view showing another embodiment of the resin and metal laser bonding method of the present invention. This embodiment is characterized in that fine irregularities 11 are formed on the laser irradiation surface of the pressure member 10 to improve the laser absorption rate. The surface of the laser irradiation surface has a larger surface roughness than the opposite surface of the pressure member 10 (the surface facing the metal 2 side) and the surface of the metal 2 on the pressure member side. This technique can reduce the required laser power and enables highly efficient laser bonding. The fine irregularities 11 are more preferably subjected to sandblasting, laser processing, or the like. The fine irregularities 11 are preferably about Rz 4 to 10 μm in terms of roughness. Moreover, when the material of the metal 2 is aluminum, in addition to the sandblasting process, an electrolytic process for forming nanoporous holes may be performed. The process for forming the fine irregularities 11 is an effective means for the metal 2 at the interface of the joint. However, the roughness for improving the bondability depends on the viscosity of the resin 1 at a high temperature, but in general, the roughness of the metal 2 on the bonding surface is greater than the roughness of the surface of the pressure member 10. good. On the other hand, it is desirable to reduce the roughness of the contact surface of the metal 2 to be bonded to the metal pressure member 10 as much as possible.

図4は、本発明の樹脂と金属のレーザ接合方法の他の実施例を示す平面図である。本実施例では、事前に加圧材10に電解処理などを施し、金属の酸化膜を適宜コントロールすることで、光吸収率を増大例えば黒色化コーティング12をすることを特徴とする。なお、加圧材10にセラミック皮膜をコーティング12しても良い。そのセラミック皮膜によるコーティング12は、例えば、シリカ、アルミナ、ジルコニア、炭化珪素などのセラミックパウダーと無機バインダー、溶媒の水が主成分となる。また、コーティング12として、TiOなどを電着塗装しても良い。これら加圧材10のコーティング12は金属2と密着される面に施されていても良く、熱輻射により、効率よく、金属2に熱伝導を起こすことが可能となる。 FIG. 4 is a plan view showing another embodiment of the resin and metal laser bonding method of the present invention. The present embodiment is characterized in that the light absorption rate is increased, for example, the blackened coating 12 is applied by subjecting the pressure member 10 to electrolytic treatment or the like in advance and appropriately controlling the metal oxide film. The pressurizing material 10 may be coated with a ceramic film 12. The coating 12 by the ceramic film is mainly composed of ceramic powder such as silica, alumina, zirconia, silicon carbide, etc., an inorganic binder, and solvent water. Further, TiO 2 or the like may be electrodeposited as the coating 12. The coating 12 of the pressurizing material 10 may be provided on a surface to be in close contact with the metal 2, and heat conduction can be efficiently caused to the metal 2 by heat radiation.

このようなコーティング12は、加圧材10の材料に依存し決定するが、接合する金属2と樹脂1の材料や厚みにも大きく影響する。加圧材10の内部の材料よりも光吸収率が大きいものがよい。さらに、接合する材料系によっては、光吸収性の顔料や塗料を加圧材10のレーザ照射面に塗布することも有効である。図の形態としては示さないが、加圧材10のレーザ照射面に微細な凹凸11を加えた上で、上記の光吸収率を増大させるコーティング12を併用しても良く、また、コーティング12自体に微細凹凸を形成しても良い。   Such a coating 12 is determined depending on the material of the pressure member 10, but greatly affects the material and thickness of the metal 2 and the resin 1 to be joined. What has a larger light absorption rate than the material inside the pressurizing material 10 is good. Further, depending on the material system to be joined, it is also effective to apply a light-absorbing pigment or paint to the laser irradiation surface of the pressure member 10. Although not shown in the figure, the coating 12 for increasing the light absorption rate may be used in combination with the addition of fine irregularities 11 on the laser irradiation surface of the pressure member 10, or the coating 12 itself. Fine irregularities may be formed on the surface.

図5は、本発明の樹脂と金属のレーザ接合方法の他の実施例を示す平面図である。本実施例では、加圧材10に加えて、さらにレーザ光は照射されない第二の加圧材20を使用したことを特徴とする。これまでの構造では、レーザ接合装置において、加圧材10のみを加圧機構としてきたが、装置や製品構成によっては、光吸収率が高い加圧材10をレーザ吸収用にして、第二の加圧材20で剛性を持たせて、加圧力を大きくした方が良い場合がある。そのため、第二の加圧材20の剛性>加圧材10の剛性、加圧材10の光吸収率>第二の加圧材20の光吸収率とした方が良い。なお、第二の加圧材20は、耐熱性が低い樹脂の場合は加圧材10と接合してしまう可能性があるが、加圧材10と接合しない耐熱性の高い金属やガラスを用いることが望ましい。   FIG. 5 is a plan view showing another embodiment of the resin and metal laser bonding method of the present invention. In this embodiment, in addition to the pressure member 10, a second pressure member 20 that is not irradiated with laser light is used. In the structure so far, in the laser bonding apparatus, only the pressurizing material 10 is used as the pressurizing mechanism. However, depending on the apparatus and the product configuration, the pressurizing material 10 having a high light absorption rate is used for laser absorption, In some cases, it is better to increase the pressure by giving the pressure member 20 rigidity. Therefore, it is better to set the rigidity of the second pressure member 20> the rigidity of the pressure member 10 and the light absorption rate of the pressure member 10> the light absorption rate of the second pressure member 20. The second pressure member 20 may be bonded to the pressure member 10 in the case of a resin having low heat resistance, but a metal or glass having high heat resistance that is not bonded to the pressure member 10 is used. It is desirable.

図6は、本発明の樹脂と金属のレーザ接合方法の他の実施例を示す平面図である。本実施例では、加圧材10の接合する金属2との密着面の形状を凸構造13としたことを特徴とする。本構造により、加圧材10の熱拡散を抑制することが可能となる。そのため、微細に接合したい場合には特に有効な手段である。また、局所的に加圧を増大させることも可能となるため、製品の構成上、接合部の長さが大きい場合などで有効な構造である。   FIG. 6 is a plan view showing another embodiment of the resin and metal laser bonding method of the present invention. The present embodiment is characterized in that the shape of the contact surface with the metal 2 to which the pressurizing material 10 is bonded is a convex structure 13. With this structure, it is possible to suppress thermal diffusion of the pressure member 10. For this reason, it is a particularly effective means when it is desired to perform fine bonding. In addition, since it is possible to increase the pressure locally, the structure is effective when the length of the joint portion is large due to the structure of the product.

図7は、本発明の樹脂と金属のレーザ接合方法の他の実施例を示す平面図である。本発明では、加圧材10の熱伝導率を、接合する金属2に対する熱伝導率よりも大きくしたことを特徴とする。例えば、加圧材10の熱伝導率を金属2に比べ、10倍以上大きくすると、レーザ照射径に比べて、より大きな面積で熱の拡散が起き、大面積での接合が可能となる。図7に示す通り、熱伝導率が高い加圧材10中では熱が面方向(図面の左右方向)に拡散しているが、金属2中ではあまり熱が面方向に拡散していない。通常、レーザ接合する場合、パワー密度が重要となる。レーザのパワー密度は、レーザパワーに比例し、スポット半径の2乗に半比例する。そのため、スポット半径を小さくしておけば、低いレーザパワーで接合できる。また、レーザを走査する場合、速度を高速にすると、接合性が均一にならない場合が多い。ただし、本構成を用いることで、熱伝導によりより均一に樹脂を溶融もしくは軟化させるため、高速かつ均一なレーザ接合も可能となる。その場合、レーザ発振にはパルスも有効な手段となる。   FIG. 7 is a plan view showing another embodiment of the resin and metal laser bonding method of the present invention. The present invention is characterized in that the thermal conductivity of the pressure member 10 is larger than the thermal conductivity of the metal 2 to be joined. For example, when the thermal conductivity of the pressure member 10 is increased by 10 times or more compared to the metal 2, heat diffusion occurs in a larger area than in the laser irradiation diameter, and bonding in a large area becomes possible. As shown in FIG. 7, heat is diffused in the surface direction (left and right direction in the drawing) in the pressurizing material 10 having a high thermal conductivity, but in the metal 2, heat is not diffused so much in the surface direction. Usually, when laser bonding is performed, the power density is important. The laser power density is proportional to the laser power and half proportional to the square of the spot radius. For this reason, if the spot radius is small, bonding can be performed with low laser power. In addition, when scanning with a laser, bonding speed is often not uniform when the speed is increased. However, by using this configuration, since the resin is melted or softened more uniformly by heat conduction, high-speed and uniform laser bonding is possible. In that case, a pulse is also an effective means for laser oscillation.

図8は、本発明の樹脂と金属のレーザ接合方法の他の実施例を示す平面図である。(a)は断面図、(b)はレーザ照射面からの図である。加圧材10の熱伝導率を、接合する金属2に対する熱伝導率よりも10倍以上大きくした上で、樹脂1と接合する金属材2の接合面側に突起6を設けて状態とし、レーザ接合することを特徴とする。レーザを一定間隔にパルスで照射することにより、レーザ照射位置4を離散的にしても、熱拡散により金属-樹脂界面での接合は連続的になり、より高速に接合でき、かつより微細な接合も可能となる。また、樹脂1は溶融もしくは軟化するため、本構造とした場合、突起6が溶融した樹脂1の中に入り込み、金属2が樹脂に埋め込んだ状態となる。このときには、樹脂1と金属2とが突起6の部分の周辺も含めて接合することが可能であり、突起6の凹凸形状により接合面積が増大する。そのため、同時に接合強度の大幅な向上も可能となる。   FIG. 8 is a plan view showing another embodiment of the resin and metal laser bonding method of the present invention. (A) is sectional drawing, (b) is a figure from a laser irradiation surface. After the thermal conductivity of the pressurizing material 10 is made 10 times or more larger than the thermal conductivity of the metal 2 to be joined, a projection 6 is provided on the joining surface side of the metal material 2 to be joined with the resin 1 to obtain a state. It is characterized by joining. By irradiating the laser with pulses at regular intervals, even if the laser irradiation position 4 is discrete, the bonding at the metal-resin interface is continuous by thermal diffusion, and can be bonded at higher speed and with finer bonding. Is also possible. Further, since the resin 1 is melted or softened, in the case of this structure, the protrusion 6 enters the molten resin 1 and the metal 2 is embedded in the resin. At this time, the resin 1 and the metal 2 can be bonded together including the periphery of the protrusion 6, and the bonding area is increased by the uneven shape of the protrusion 6. Therefore, at the same time, the joint strength can be greatly improved.

図9は、本発明の樹脂と金属のレーザ接合方法の他の実施例を示す平面図である。樹脂1と接合する金属2を第三の加圧材25で押さえた状態で、加圧材10にレーザ光4を照射することで、レーザ照射方向と異なる方向の熱伝導により、樹脂1と金属2を接合したことを特徴とする。製品の構造上、加圧方向が限定される場合には、本構造とすることで樹脂1と金属2をレーザにより効率良く、接合できる。ただし、本構成を適用する場合、接合する金属2の熱伝導率は100W/mK以上とすることが望ましい。本構成の場合、実施例3で示した第二の加圧材20と第三の加圧材25を同一としても良い。   FIG. 9 is a plan view showing another embodiment of the resin and metal laser bonding method of the present invention. In a state where the metal 2 to be bonded to the resin 1 is pressed by the third pressure member 25, the laser beam 4 is irradiated to the pressure member 10, so that the resin 1 and the metal are caused by heat conduction in a direction different from the laser irradiation direction. 2 is joined. When the pressing direction is limited due to the structure of the product, the resin 1 and the metal 2 can be efficiently bonded by a laser by adopting this structure. However, when this configuration is applied, it is desirable that the thermal conductivity of the metal 2 to be joined is 100 W / mK or more. In the case of this configuration, the second pressure member 20 and the third pressure member 25 shown in the third embodiment may be the same.

図10は、本発明の樹脂と金属のレーザ接合方法の他の実施例を示す平面図である。本実施例では、樹脂1と金属2のレーザ接合前に、樹脂1の接合界面側に、表面改質処理を施し、酸素官能基の増大もしくは生成させた酸化層7を形成した上で、接合したことを特徴とする。表面改質処理としては、環境性や他の部品への影響を考慮すると、UVオゾン処理、プラズマ処理、コロナ処理、短パルス(パルス幅がピコ秒以下)レーザ処理のいずれかのドライ処理を用いると良い。このような処理を施すことで、樹脂の主鎖や側鎖のCC、CH結合を切り、CO、COO、C=Oなどの酸素官能基を生成・増加させ、表面エネルギーが増大し、接合性が大幅に向上することがわかっている。このような樹脂への表面処理は、特に、主鎖に酸素官能基を含まない樹脂に有効である。一方、酸素官能基の導入は、表面の分子量の低下も伴うため、樹脂と金属の隙間が大きい場合や主鎖に酸素官能基を含まない樹脂を接合する場合、処理をしない場合に比べて、熱分解しやすく、微小な気泡が大量に発生してしまうという課題があった。ただし、本発明方法を採用することにより、熱分解をより抑制し、同時に接合強度をも大幅に向上させることが可能となる。そのため、信頼性も大幅に向上する。本手法は、樹脂1への表面改質処理による酸素官能基導入もしくは増加のメリットをより活かせる方法である。そのため、樹脂1と金属2の2層のみならず、金属-樹脂-樹脂、金属-樹脂-金属など3層以上の積層構造の接合にも高品質に実現できる。なお、樹脂の酸素が含有された酸化膜7は少なくとも5nm程度あることが望ましい。   FIG. 10 is a plan view showing another embodiment of the resin and metal laser bonding method of the present invention. In this embodiment, before laser bonding of the resin 1 and the metal 2, a surface modification treatment is performed on the bonding interface side of the resin 1 to form an oxide layer 7 in which oxygen functional groups are increased or generated, and then bonded. It is characterized by that. As the surface modification treatment, any of dry treatments such as UV ozone treatment, plasma treatment, corona treatment, and short pulse (pulse width is picosecond or less) laser treatment is used in consideration of environmental effects and influence on other parts. And good. By applying such treatment, the main chain and side chain of the resin are cleaved with CC and CH bonds, and oxygen functional groups such as CO, COO, and C = O are generated and increased, surface energy is increased, and bonding properties are increased. Is known to improve significantly. Such surface treatment on the resin is particularly effective for a resin that does not contain an oxygen functional group in the main chain. On the other hand, since the introduction of oxygen functional groups is accompanied by a decrease in the molecular weight of the surface, when the gap between the resin and the metal is large or when joining a resin that does not contain an oxygen functional group in the main chain, compared to the case without treatment There was a problem that it was easy to thermally decompose and a large amount of fine bubbles were generated. However, by adopting the method of the present invention, it is possible to further suppress thermal decomposition and at the same time greatly improve the bonding strength. Therefore, the reliability is also greatly improved. This method is a method in which the merit of introducing or increasing the oxygen functional group by the surface modification treatment to the resin 1 can be further utilized. Therefore, not only two layers of resin 1 and metal 2 but also high quality can be realized in the joining of a laminated structure of three or more layers such as metal-resin-resin and metal-resin-metal. The oxide film 7 containing resin oxygen is preferably at least about 5 nm.

図11は、本発明の樹脂と金属のレーザ接合方法の他の実施例を示す平面図である。レーザ光4を走査して接合する際に、樹脂1と金属2が密着している長さよりもレーザ照射長さを大きくしたことを特徴とする。一般的に、レーザ照射において、レーザ照射始点と終点は、その他の走査している部分に比べて、入熱エネルギーが異なるため、接合性も安定しないという課題がある。本構成では、加圧材10の熱伝導を用いており、樹脂1と金属2が密着している長さよりもレーザ照射長さを大きくすることにより、加圧材の熱伝導効果に応じて、始点と終点も均一に接合することが可能となる。   FIG. 11 is a plan view showing another embodiment of the resin and metal laser bonding method of the present invention. When the laser beam 4 is scanned and bonded, the laser irradiation length is made longer than the length in which the resin 1 and the metal 2 are in close contact with each other. In general, in laser irradiation, since the heat input energy is different between the laser irradiation start point and the end point compared to other scanned portions, there is a problem that the bonding property is not stable. In this configuration, the heat conduction of the pressurizing material 10 is used, and according to the heat conduction effect of the pressurizing material by making the laser irradiation length larger than the length in which the resin 1 and the metal 2 are in close contact with each other, The start point and the end point can also be joined uniformly.

図12は、本発明の樹脂と金属のレーザ接合方法を用いて、樹脂1と金属2の筐体を有する電子部品31を実装したセンサ30に適用する時の一例を示す模式図である。実施例のいずれかの方法によって、加圧材10を用いて、筐体である樹脂1と金属2を接合し、封止する。適用できる対象部は、電子部品31を実装した製品の筐体部のみならず、バイオチップ、電子制御ユニット(ECU)、コネクタ、パワーモジュールなどの製品及びレーザ接合できる全ての製品全般に有効である。   FIG. 12 is a schematic view showing an example when applied to a sensor 30 on which an electronic component 31 having a resin 1 and metal 2 casing is mounted using the resin and metal laser bonding method of the present invention. The resin 1 and the metal 2 that are the casings are joined and sealed using the pressure member 10 by any method of the embodiment. The applicable target part is effective not only for the housing part of the product on which the electronic component 31 is mounted, but also for all products that can be joined by laser, such as a biochip, an electronic control unit (ECU), a connector, and a power module. .

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。各実施例の構成の一部について、他の構成の追加・削除・置換することが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. It is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1・・・樹脂
2・・・金属
3・・・溶融プール
4・・・レーザ
5・・・熱伝導領域
6・・・接合する金属の突起
7・・・樹脂に形成された酸化層
10・・・加圧材
11・・・加圧材に形成された微小凹凸
12・・・加圧材に形成された光吸収率の高いコーティング層
13・・・加圧材に形成された突起部
20・・・第二の加圧材
25・・・第三の加圧材
30・・・センサ
31・・・電子部品
32・・・ワイヤ
33・・・接合材
DESCRIPTION OF SYMBOLS 1 ... Resin 2 ... Metal 3 ... Molten pool 4 ... Laser 5 ... Thermal conduction area | region 6 ... Metal protrusion 7 to join ... Oxide layer 10 formed in resin ..Pressure material 11... Fine irregularities 12 formed on the pressure material... Coating layer 13 formed on the pressure material and having a high light absorption rate... Projection 20 formed on the pressure material. ... Second pressure member 25 ... Third pressure member 30 ... Sensor 31 ... Electronic component 32 ... Wire 33 ... Joint material

Claims (16)

樹脂と金属の接合面をレーザ照射により接合する方法であって、
金属またはセラミクスから構成される加圧材に用い、
前記樹脂と前記金属とを前記金属側から前記加圧材により加圧するとともに、前記加圧材にレーザ照射し、当該レーザによる熱を加圧材から前記金属を介して前記樹脂へ熱伝導させて、接合することを特徴とするレーザ接合方法。
It is a method of joining the joint surface of resin and metal by laser irradiation,
Used for pressure materials composed of metal or ceramics,
The resin and the metal are pressed from the metal side by the pressurizing material, and the pressurizing material is irradiated with laser, and heat from the laser is conducted from the pressurizing material to the resin through the metal. A laser joining method characterized by joining.
請求項1において、
前記加圧材の前記レーザが照射されるレーザ照射面は、前記接合する金属に比べ、レーザ光吸収率が高いことを特徴とするレーザ接合方法。
In claim 1,
A laser bonding method, wherein a laser irradiation surface of the pressurizing material irradiated with the laser has a higher laser light absorption rate than the metal to be bonded.
請求項2において、
前記加圧材のレーザ照射面は、前記加圧材母材及び前記接合する金属よりもレーザ光吸収率が高いことを特徴とするレーザ接合方法。
In claim 2,
A laser bonding method, wherein a laser irradiation surface of the pressurizing material has a higher laser light absorption rate than the pressurizing material base material and the metal to be joined.
請求項3において、
前記加圧材のレーザ照射面は、前記金属の加圧材側表面及び前記加圧材の金属側表面よりも、表面粗さが大きいことを特徴とするレーザ接合方法。
In claim 3,
The laser irradiation method according to claim 1, wherein the laser irradiation surface of the pressurizing material has a surface roughness larger than that of the metal pressurizing material side surface and the metal side surface of the pressurizing material.
請求項3または請求項4において、
前記加圧材のレーザ照射面に、光吸収率を増大させるためのコーティングが形成されていることを特徴とするレーザ接合方法。
In claim 3 or claim 4,
A laser bonding method, wherein a coating for increasing a light absorption rate is formed on a laser irradiation surface of the pressurizing material.
請求項1乃至5のいずれかにおいて、
前記加圧材の剛性は、前記接合する金属の剛性よりも大きいことを特徴とするレーザ接合方法。
In any one of Claims 1 thru | or 5,
The laser joining method according to claim 1, wherein the pressure member has a rigidity higher than that of the metal to be joined.
請求項1乃至6のいずれかにおいて、
前記加圧材の厚みは、前記接合する金属の厚みよりも大きいことを特徴とするレーザ接合方法。
In any one of Claims 1 thru | or 6.
The laser joining method, wherein the pressure material has a thickness greater than a thickness of the metal to be joined.
請求項1乃至7のいずれかにおいて、
前記接合する金属よりも前記加圧材の方が耐熱性もしくは融点が高いことを特徴とするレーザ接合方法。
In any one of Claims 1 thru | or 7,
A laser bonding method, wherein the pressure material has higher heat resistance or melting point than the metal to be bonded.
請求項1乃至8のいずれかにおいて、
前記加圧材のレーザ照射面に対して、レーザ照射の角度は1°以下であることを特徴とするレーザ接合方法。
In any one of Claims 1 thru | or 8.
The laser bonding method, wherein an angle of laser irradiation is 1 ° or less with respect to a laser irradiation surface of the pressurizing material.
請求項1乃至9のいずれかにおいて、
前記加圧材には、接合を行う領域の前記金属側に突起が設けられていることを特徴とするレーザ接合方法。
In any one of Claims 1 thru | or 9,
The pressurizing material is provided with a protrusion on the metal side of a region to be joined.
請求項1乃至10のいずれかにおいて、
前記接合する金属には、接合を行う領域の前記樹脂側に突起が設けられており、前記接合する金属の熱伝導率よりも前記加圧材の熱伝導率が大きいことを特徴とするレーザ接合方法。
In any one of Claims 1 thru | or 10.
The joining metal has a protrusion on the resin side of the joining region, and the thermal conductivity of the pressurizing material is larger than the thermal conductivity of the joining metal. Method.
請求項1乃至11のいずれかにおいて、
前記加圧材の熱伝導率は、前記金属の熱伝導率よりも大きく、
パルス状の前記レーザを走査しながら前記加圧材に照射することを特徴とするレーザ接合方法。
In any one of Claims 1 thru | or 11,
The thermal conductivity of the pressurizing material is greater than the thermal conductivity of the metal,
A laser bonding method comprising irradiating the pressurizing material while scanning the pulsed laser.
請求項1乃至12のいずれかにおいて、前記加圧材は、前記レーザが照射される第1の加圧材と、前記第1の加圧材よりも剛性が高い第2の加圧材とを含むことを特徴とするレーザ接合方法。   The pressurizing material according to any one of claims 1 to 12, wherein the pressurizing material includes a first pressurizing material irradiated with the laser and a second pressurizing material having higher rigidity than the first pressurizing material. A laser bonding method comprising: 請求項1乃至13のいずれかにおいて、
前記樹脂の接合を行う表面に、レーザ接合前に、樹脂の表面に酸素官能基を生成・増加させる表面改質処理を行うことを特徴とするレーザ接合方法。
In any one of Claims 1 thru | or 13.
A laser bonding method comprising performing a surface modification treatment for generating and increasing oxygen functional groups on a surface of a resin before laser bonding on the surface to which the resin is bonded.
請求項14において、
前記樹脂は、主鎖に極性基を含まないことを特徴とするレーザ接合方法。
In claim 14,
The laser bonding method, wherein the resin does not contain a polar group in the main chain.
請求項1乃至15のいずれかにおいて、
樹脂と金属からなる3層以上の接合体を形成することを特徴とするレーザ接合方法。
In any one of Claims 1 thru | or 15,
A laser joining method comprising forming a joined body of three or more layers comprising a resin and a metal.
JP2012089809A 2012-04-11 2012-04-11 Laser bonding method Expired - Fee Related JP5838116B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012089809A JP5838116B2 (en) 2012-04-11 2012-04-11 Laser bonding method
PCT/JP2013/060421 WO2013154037A1 (en) 2012-04-11 2013-04-05 Method for laser bonding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012089809A JP5838116B2 (en) 2012-04-11 2012-04-11 Laser bonding method

Publications (2)

Publication Number Publication Date
JP2013216028A true JP2013216028A (en) 2013-10-24
JP5838116B2 JP5838116B2 (en) 2015-12-24

Family

ID=49327605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012089809A Expired - Fee Related JP5838116B2 (en) 2012-04-11 2012-04-11 Laser bonding method

Country Status (2)

Country Link
JP (1) JP5838116B2 (en)
WO (1) WO2013154037A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014123022A1 (en) * 2013-02-05 2014-08-14 株式会社日立製作所 Laser joining apparatus and laser joining method
JP2015168102A (en) * 2014-03-05 2015-09-28 マツダ株式会社 Joint method of metallic member and resin member and resin member used in the same method
JP2016129942A (en) * 2015-01-13 2016-07-21 オムロン株式会社 Method for producing joint structure and joint structure
KR20170118903A (en) 2015-03-30 2017-10-25 신닛테츠스미킨 카부시키카이샤 Method for bonding metal, resin member and carbon fiber reinforced resin member

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6511262B2 (en) * 2014-12-19 2019-05-15 三菱エンジニアリングプラスチックス株式会社 Resin-metal composite and method for producing the same
EP3386284B1 (en) * 2015-11-30 2021-05-05 Hitachi Automotive Systems, Ltd. Electronic control device and method for manufacturing electronic control device
WO2019117092A1 (en) * 2017-12-11 2019-06-20 サムコ株式会社 Method for bonding cycloolefin polymer to metal, method for manufacturing biosensor, and biosensor
CN112404728B (en) * 2019-08-23 2023-04-07 富联裕展科技(深圳)有限公司 Connecting piece, device, laser equipment and preparation method
CN113787255A (en) * 2021-09-30 2021-12-14 苏州大学 Laser welding method of transparent plastic film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010076437A (en) * 2008-08-29 2010-04-08 Toray Ind Inc Manufacturing method for composite of molding comprising thermoplastic resin composition and metal
JP2010194947A (en) * 2009-02-26 2010-09-09 Nitto Denko Corp Method of manufacturing sheet joint form and sheet joint form
JP2010225721A (en) * 2009-03-23 2010-10-07 Toyota Motor Corp Wire bonding method of semiconductor element
JP2011240346A (en) * 2010-05-14 2011-12-01 Panasonic Corp Joining method, joining device, and joined body
JP2012056308A (en) * 2010-08-11 2012-03-22 Hitachi Ltd Laser bonding method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4400243B2 (en) * 2004-02-18 2010-01-20 株式会社デンソー Laser welding equipment
JP5194629B2 (en) * 2007-08-10 2013-05-08 東洋紡株式会社 Joining method of thermoplastic resin material and metal material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010076437A (en) * 2008-08-29 2010-04-08 Toray Ind Inc Manufacturing method for composite of molding comprising thermoplastic resin composition and metal
JP2010194947A (en) * 2009-02-26 2010-09-09 Nitto Denko Corp Method of manufacturing sheet joint form and sheet joint form
JP2010225721A (en) * 2009-03-23 2010-10-07 Toyota Motor Corp Wire bonding method of semiconductor element
JP2011240346A (en) * 2010-05-14 2011-12-01 Panasonic Corp Joining method, joining device, and joined body
JP2012056308A (en) * 2010-08-11 2012-03-22 Hitachi Ltd Laser bonding method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014123022A1 (en) * 2013-02-05 2014-08-14 株式会社日立製作所 Laser joining apparatus and laser joining method
JP5941563B2 (en) * 2013-02-05 2016-06-29 株式会社日立製作所 Laser bonding apparatus and laser bonding method
JP2015168102A (en) * 2014-03-05 2015-09-28 マツダ株式会社 Joint method of metallic member and resin member and resin member used in the same method
JP2016129942A (en) * 2015-01-13 2016-07-21 オムロン株式会社 Method for producing joint structure and joint structure
WO2016114174A1 (en) * 2015-01-13 2016-07-21 オムロン株式会社 Method for producing bonded structure, and bonded structure
KR20170118903A (en) 2015-03-30 2017-10-25 신닛테츠스미킨 카부시키카이샤 Method for bonding metal, resin member and carbon fiber reinforced resin member
US10654221B2 (en) 2015-03-30 2020-05-19 Nippon Steel Corporation Method of joining metal, plastic member, and carbon fiber reinforced plastic member

Also Published As

Publication number Publication date
WO2013154037A1 (en) 2013-10-17
JP5838116B2 (en) 2015-12-24

Similar Documents

Publication Publication Date Title
JP5838116B2 (en) Laser bonding method
JP5835945B2 (en) Laser bonding method
JP5941563B2 (en) Laser bonding apparatus and laser bonding method
WO2012140873A1 (en) Method for laser bonding
WO2013125664A1 (en) Laser joining method
KR101763908B1 (en) Method for manufacturing a metal component, and composite molded body
JP5771516B2 (en) Laser bonding method
KR20110040928A (en) Method and apparatus for joining resin and metal
JP2008230224A (en) Thermoplastic composite body
WO2016114174A1 (en) Method for producing bonded structure, and bonded structure
Temesi et al. Integrated structures from dissimilar materials: the future belongs to aluminum–polymer joints
JP2015100959A (en) Metal-resin joint molded article, metal molded body for metal-resin joint molded article, and production method of those
WO2016140097A1 (en) Joining method, joined-structure production method, and joined structure
CN107471657A (en) A kind of non-transmissive welding method of the laser of thermoplastic
JP2008188953A (en) Manufacturing method of plastic-made stamper, plastic-made stamper and manufacturing method of plastic-made substrate
JP2016132246A (en) Method for producing joint structure and joint structure
JP6724443B2 (en) Laser joining method
JP2005104132A (en) Method for joining fluorine resin material
JP2016020098A (en) Laser joining device
CN111050983B (en) Method for producing joined body of dissimilar materials
JP2016502475A (en) Joining method of thermoplastic material bonding partner and glass bonding partner
JP5064986B2 (en) Beam welding apparatus and beam welding method
JP5608395B2 (en) Sheet member joining method and sheet joined body
JP2018058368A (en) Metal-resin joint molded article, metal part for molded article and method for manufacturing those
JP2012091400A (en) Laser joining method and laser joined material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151109

LAPS Cancellation because of no payment of annual fees