JP6414477B2 - Manufacturing method of bonded structure - Google Patents

Manufacturing method of bonded structure Download PDF

Info

Publication number
JP6414477B2
JP6414477B2 JP2015018814A JP2015018814A JP6414477B2 JP 6414477 B2 JP6414477 B2 JP 6414477B2 JP 2015018814 A JP2015018814 A JP 2015018814A JP 2015018814 A JP2015018814 A JP 2015018814A JP 6414477 B2 JP6414477 B2 JP 6414477B2
Authority
JP
Japan
Prior art keywords
laser
metal member
concave portion
resin member
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015018814A
Other languages
Japanese (ja)
Other versions
JP2016141052A (en
Inventor
和義 西川
和義 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2015018814A priority Critical patent/JP6414477B2/en
Priority to PCT/JP2016/051729 priority patent/WO2016125595A1/en
Publication of JP2016141052A publication Critical patent/JP2016141052A/en
Application granted granted Critical
Publication of JP6414477B2 publication Critical patent/JP6414477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/324Bonding taking account of the properties of the material involved involving non-metallic parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/024Thermal pre-treatments
    • B29C66/0246Cutting or perforating, e.g. burning away by using a laser or using hot air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30325Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined making use of cavities belonging to at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/21Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being formed by a single dot or dash or by several dots or dashes, i.e. spot joining or spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/23Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations
    • B29C66/232Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations said joint lines being multiple and parallel, i.e. the joint being formed by several parallel joint lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/23Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations
    • B29C66/234Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being multiple and parallel or being in the form of tessellations said joint lines being in the form of tessellations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74281Copper or alloys of copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74283Iron or alloys of iron, e.g. steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0079Liquid crystals

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Laser Beam Processing (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、接合構造体の製造方法に関する。 The present invention relates to the production how the joined structure.

従来、金属部材と樹脂部材とを接合する接合方法が知られている(たとえば、特許文献1参照)。   Conventionally, the joining method which joins a metal member and a resin member is known (for example, refer to patent documents 1).

特許文献1の接合方法は、金属部材の表面に凹凸面を形成する工程と、凹凸面上に光吸収皮膜を形成する工程と、金属部材の表面に樹脂部材を接触させた状態で、樹脂部材側から金属部材の表面にレーザ光を照射することにより、樹脂部材と金属部材とを接合する工程とを備えている。この樹脂部材と金属部材とを接合する工程では、金属部材の表面にレーザ光が照射されると、金属部材が高温になり、その熱により樹脂部材が溶融される。そして、その溶融された樹脂部材が凹凸面に入り込み、その後樹脂部材が固化されることにより、樹脂部材と金属部材とがアンカー効果によって機械的に接合される。   The bonding method of Patent Document 1 includes a step of forming an uneven surface on the surface of the metal member, a step of forming a light absorption film on the uneven surface, and a state in which the resin member is in contact with the surface of the metal member. And irradiating the surface of the metal member with laser light from the side to join the resin member and the metal member. In the step of joining the resin member and the metal member, when the surface of the metal member is irradiated with laser light, the metal member becomes high temperature and the resin member is melted by the heat. Then, the melted resin member enters the uneven surface, and then the resin member is solidified, whereby the resin member and the metal member are mechanically joined by the anchor effect.

この接合方法では、凹凸面上に光吸収皮膜が形成されることから、接合用のレーザ光が照射されたときに、そのレーザ光を効率的に熱に変換することができるので、接合品質の向上を図ることが可能である。なお、光吸収皮膜は、陽極酸化処理またはめっき処理により形成される。   In this bonding method, since the light absorption film is formed on the uneven surface, when the laser beam for bonding is irradiated, the laser beam can be efficiently converted into heat. It is possible to improve. The light absorption film is formed by anodizing treatment or plating treatment.

特開2014−46599号公報JP 2014-46599 A

しかしながら、特許文献1に記載された接合方法では、光吸収皮膜を形成することにより、接合品質の向上を図ることが可能であるが、陽極酸化処理またはめっき処理を施す必要があるので、製造工程が長くなり、生産性が悪化するという問題点がある。   However, in the bonding method described in Patent Document 1, it is possible to improve the bonding quality by forming a light absorption film, but it is necessary to perform anodizing treatment or plating treatment. However, there is a problem that productivity becomes worse.

本発明は、上記の課題を解決するためになされたものであり、本発明の目的は、接合品質の向上を図りながら、生産性の悪化を抑制することが可能な接合構造体の製造方法を提供することである。 The present invention has been made to solve the above problems, an object of the present invention, while improving bond quality, manufacturing how the possible joint structure to suppress the deterioration of productivity Is to provide.

本発明による接合構造体の製造方法は、金属部材と、接合用のレーザに対して透過性を有する樹脂部材とが接合された接合構造体の製造方法であり、金属部材の表面に第1凹状部を形成する工程と、第1凹状部を形成した後に、金属部材の表面に、第1凹状部に比べて浅い第2凹状部を形成する工程と、金属部材の表面に樹脂部材を配置し、樹脂部材側から金属部材の表面に向けて接合用のレーザを照射することにより、樹脂部材を第1凹状部に充填して固化させることによって、金属部材と樹脂部材とを接合する工程とを備える。第1凹状部は、平面的に見て円形の穿孔部を含み、穿孔部の内周面には、内側に突出する突出部が形成され、第2凹状部の深さは、金属部材の表面から突出部の下端までの距離よりも短くなるように形成されている。 A method for manufacturing a bonded structure according to the present invention is a method for manufacturing a bonded structure in which a metal member and a resin member that is transparent to a laser for bonding are bonded, and the first concave shape is formed on the surface of the metal member. Forming the first concave portion, forming the second concave portion shallower than the first concave portion on the surface of the metal member, and disposing the resin member on the surface of the metal member. Irradiating a laser for bonding from the resin member side toward the surface of the metal member, filling the resin member into the first concave portion and solidifying it, thereby bonding the metal member and the resin member; Prepare. The first concave portion includes a circular perforated portion when seen in a plan view, and a projecting portion projecting inward is formed on the inner peripheral surface of the perforated portion, and the depth of the second concave portion is determined by the surface of the metal member. It is formed so that it may become shorter than the distance from the lower end of a protrusion part.

上記接合構造体の製造方法において、第1凹状部は、金属部材と樹脂部材とを機械的に接合するために設けられ、第2凹状部は、接合用のレーザの吸収率を向上させるために設けられていてもよい。   In the manufacturing method of the bonded structure, the first concave portion is provided for mechanically bonding the metal member and the resin member, and the second concave portion is for improving the absorption rate of the laser for bonding. It may be provided.

上記接合構造体の製造方法において、第1凹状部および第2凹状部は、加工用のレーザにより形成されていてもよい。   In the manufacturing method of the joined structure, the first concave portion and the second concave portion may be formed by a processing laser.

本発明の接合構造体の製造方法によれば、接合品質の向上を図りながら、生産性の悪化を抑制することができる。 According to the manufacturing how the joined structure of the present invention, while improving the welding quality, it is possible to suppress the deterioration of productivity.

本発明の一実施形態による接合構造体の断面の模式図である。It is a schematic diagram of the cross section of the joining structure body by one Embodiment of this invention. 図1の接合構造体の金属部材に形成された凹部を平面的に見た模式図である。It is the schematic diagram which looked at the recessed part formed in the metal member of the joining structure of FIG. 1 planarly. 接合構造体の製造方法を説明するための図であって、金属部材に穿孔部を形成する工程を示した図である。It is a figure for demonstrating the manufacturing method of a joining structure, Comprising: It is the figure which showed the process of forming a perforated part in a metal member. 接合構造体の製造方法を説明するための図であって、金属部材に凹部を形成する工程を示した図である。It is a figure for demonstrating the manufacturing method of a joining structure, Comprising: It is the figure which showed the process of forming a recessed part in a metal member. 接合構造体の製造方法を説明するための図であって、金属部材と樹脂部材とを接合する工程を示した図である。It is a figure for demonstrating the manufacturing method of a joining structure, Comprising: It is the figure which showed the process of joining a metal member and a resin member. 本実施形態の第1変形例による金属部材を平面的に見た模式図である。It is the schematic diagram which looked at the metal member by the 1st modification of this embodiment planarly. 本実施形態の第2変形例による金属部材を平面的に見た模式図である。It is the schematic diagram which looked at the metal member by the 2nd modification of this embodiment planarly. 本実施形態の第3変形例による金属部材を平面的に見た模式図である。It is the schematic diagram which looked at the metal member by the 3rd modification of this embodiment planarly. 実施例1による接合構造体を示した斜視図である。FIG. 3 is a perspective view showing a joint structure according to Example 1.

以下、本発明の一実施形態について図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

まず、図1を参照して、本発明の一実施形態による接合構造体100について説明する。   First, with reference to FIG. 1, the joining structure 100 by one Embodiment of this invention is demonstrated.

接合構造体100は、図1に示すように、金属部材1および樹脂部材2を備え、金属部材1および樹脂部材2が接合されている。   As shown in FIG. 1, the bonded structure 100 includes a metal member 1 and a resin member 2, and the metal member 1 and the resin member 2 are bonded to each other.

金属部材1の材料の一例としては、鉄系金属、ステンレス系金属、銅系金属、アルミ系金属、マグネシウム系金属、および、それらの合金が挙げられる。また、金属成型体であってもよく、亜鉛ダイカスト、アルミダイカスト、粉末冶金などであってもよい。   As an example of the material of the metal member 1, iron-based metal, stainless-based metal, copper-based metal, aluminum-based metal, magnesium-based metal, and alloys thereof can be cited. Moreover, a metal molding may be sufficient and zinc die-casting, aluminum die-casting, powder metallurgy, etc. may be sufficient.

金属部材1の表面1aには、穿孔部11および凹部12が形成されている。そして、金属部材1の穿孔部11および凹部12には、樹脂部材2が充填されて固化されている。これにより、金属部材1と樹脂部材2とがアンカー効果によって機械的に接合されている。   A perforated portion 11 and a concave portion 12 are formed on the surface 1 a of the metal member 1. The perforated part 11 and the recessed part 12 of the metal member 1 are filled with the resin member 2 and solidified. Thereby, the metal member 1 and the resin member 2 are mechanically joined by the anchor effect.

穿孔部11は、金属部材1と樹脂部材2とをアンカー効果により機械的に接合するために設けられている。これに対して、凹部12は、穿孔部11に比べて浅くなるように形成されており、後述する接合用のレーザL3(図5参照)の吸収率を向上させるために設けられている。なお、穿孔部11は、本発明の「第1凹状部」の一例であり、凹部12は、本発明の「第2凹状部」の一例である。   The perforated part 11 is provided for mechanically joining the metal member 1 and the resin member 2 by the anchor effect. On the other hand, the concave portion 12 is formed so as to be shallower than the perforated portion 11, and is provided in order to improve the absorption rate of a laser L3 for bonding (see FIG. 5) described later. The perforated part 11 is an example of the “first concave part” in the present invention, and the concave part 12 is an example of the “second concave part” in the present invention.

穿孔部11は、平面的に見てほぼ円形の非貫通孔であり、金属部材1の表面1aに複数形成されている。穿孔部11の内周面には、内側に突出する突出部11aが形成されている。突出部11aは、周方向における全長にわたって形成されており、環状に形成されている。   The perforated part 11 is a substantially circular non-through hole when seen in a plan view, and a plurality of perforated parts 11 are formed on the surface 1 a of the metal member 1. On the inner peripheral surface of the perforated part 11, a protruding part 11 a that protrudes inward is formed. The protrusion 11a is formed over the entire length in the circumferential direction, and is formed in an annular shape.

具体的には、穿孔部11は、深さ方向において表面1a側から底部に向けて開口径が小さくなる縮径部11bと、深さ方向において表面1a側から底部に向けて開口径が大きくなる拡径部11cと、深さ方向において表面1a側から底部に向けて開口径が小さくなる縮径部11dとが連なるように形成されている。縮径部11bは、直線状に縮径するように形成され、拡径部11cは、曲線状に拡径するように形成され、縮径部11dは、曲線状に縮径するように形成されている。すなわち、縮径部11bと拡径部11cとにより突出部11aが構成されている。   Specifically, the perforated part 11 has a reduced diameter part 11b in which the opening diameter decreases from the surface 1a side to the bottom part in the depth direction, and an opening diameter increases from the surface 1a side to the bottom part in the depth direction. The enlarged diameter portion 11c and the reduced diameter portion 11d having a smaller opening diameter from the surface 1a side to the bottom portion in the depth direction are formed to be continuous. The reduced diameter portion 11b is formed to linearly reduce the diameter, the enlarged diameter portion 11c is formed to expand in a curved shape, and the reduced diameter portion 11d is formed to reduce in a curved shape. ing. That is, the protruding portion 11a is configured by the reduced diameter portion 11b and the enlarged diameter portion 11c.

穿孔部11の開放端の開口径は、30μm以上、100μm以下が好ましい。これは、開口径が30μmを下回ると、樹脂部材2の充填性が悪化してアンカー効果が低下する場合があるためである。一方、開口径が100μmを上回ると、単位面積あたりの穿孔部11の数が減少してアンカー効果が低下する場合があるためである。   The opening diameter of the open end of the perforated part 11 is preferably 30 μm or more and 100 μm or less. This is because if the opening diameter is less than 30 μm, the filling property of the resin member 2 is deteriorated and the anchor effect may be lowered. On the other hand, if the opening diameter exceeds 100 μm, the number of perforated portions 11 per unit area may decrease and the anchor effect may be reduced.

また、穿孔部11の間隔(所定の穿孔部11の中心と、所定の穿孔部11と隣接する穿孔部11の中心との距離)は、200μm以下であることが好ましい。これは、穿孔部11の間隔が200μmを上回ると、単位面積あたりの穿孔部11の数が減少してアンカー効果が低下する場合があるためである。   Moreover, it is preferable that the space | interval (distance of the center of the predetermined perforation part 11 and the center of the perforation part 11 adjacent to the predetermined perforation part 11) of the perforation part 11 is 200 micrometers or less. This is because when the interval between the perforated portions 11 exceeds 200 μm, the number of the perforated portions 11 per unit area decreases, and the anchor effect may be reduced.

この穿孔部11は、たとえば加工用のレーザL1(図3参照)によって形成されている。すなわち、穿孔部11は、レーザL1による物理的な加工によって形成されている。なお、レーザL1の種類としては、パルス発振が可能なものが好ましく、ファイバレーザ、YAGレーザ、YVO4レーザ、半導体レーザ、炭酸ガスレーザ、エキシマレーザが選択でき、波長を考慮すると、ファイバレーザ、YAGレーザ、YAGレーザの第2高調波、YVO4レーザ、半導体レーザが好ましい。 The perforated part 11 is formed by, for example, a processing laser L1 (see FIG. 3). That is, the perforated part 11 is formed by physical processing with the laser L1. The type of laser L1 is preferably a laser capable of pulse oscillation, and can be selected from a fiber laser, a YAG laser, a YVO 4 laser, a semiconductor laser, a carbon dioxide gas laser, and an excimer laser. The second harmonic of YAG laser, YVO 4 laser, and semiconductor laser are preferable.

このような穿孔部11は、1パルスが複数のサブパルスで構成されるレーザL1によって形成される。このレーザL1では、エネルギを深さ方向に集中させやすいので、穿孔部11を形成するのに好適である。このようなレーザL1を照射可能な加工装置の一例としては、オムロン製のファイバレーザマーカMX−Z2000またはMX−Z2050を挙げることができる。   Such a perforated part 11 is formed by a laser L1 in which one pulse is composed of a plurality of sub-pulses. This laser L1 is suitable for forming the perforated portion 11 because energy can be easily concentrated in the depth direction. As an example of a processing apparatus capable of irradiating such a laser L1, fiber laser marker MX-Z2000 or MX-Z2050 manufactured by OMRON can be mentioned.

上記ファイバレーザマーカによる加工条件としては、サブパルスの1周期が15ns以下であることが好ましい。これは、サブパルスの1周期が15nsを超えると、熱伝導によりエネルギが拡散しやすくなり、穿孔部11を形成しにくくなるためである。なお、サブパルスの1周期は、サブパルスの1回分の照射時間と、そのサブパルスの照射が終了されてから次回のサブパルスの照射が開始されるまでの間隔との合計時間である。   As processing conditions by the fiber laser marker, it is preferable that one period of the sub-pulse is 15 ns or less. This is because when one period of the sub-pulse exceeds 15 ns, energy is easily diffused due to heat conduction, and it becomes difficult to form the perforated part 11. Note that one cycle of the subpulse is a total time of the irradiation time for one subpulse and the interval from the end of the irradiation of the subpulse to the start of the irradiation of the next subpulse.

また、1パルスのサブパルス数は、2以上50以下であることが好ましい。これは、サブパルス数が50を超えると、サブパルスの単位あたりの出力が小さくなり、穿孔部11を形成しにくくなるためである。   Further, the number of subpulses of one pulse is preferably 2 or more and 50 or less. This is because when the number of subpulses exceeds 50, the output per unit of subpulses becomes small, and it becomes difficult to form the perforated part 11.

凹部12は、金属部材1の表面1aの平坦な領域を減少させ、粗面化された領域を増加させるために形成されている。すなわち、凹部12は、接合用のレーザL3が表面1aで反射されるのを低減して、そのレーザL3の表面1aでの吸収率を向上させるために設けられている。   The recess 12 is formed to reduce the flat area of the surface 1a of the metal member 1 and increase the roughened area. That is, the recess 12 is provided in order to reduce the reflection of the bonding laser L3 from the surface 1a and to improve the absorption rate at the surface 1a of the laser L3.

凹部12は、平面的に見てほぼ円形の非貫通孔であり、金属部材1の表面1aに複数形成されている。この凹部12は、深さ方向において表面1a側から底部に向けて開口径が徐々に小さくなるように、すり鉢状に形成されている。   The recesses 12 are non-through holes that are substantially circular in a plan view, and a plurality of the recesses 12 are formed on the surface 1 a of the metal member 1. The recess 12 is formed in a mortar shape so that the opening diameter gradually decreases from the surface 1a side toward the bottom in the depth direction.

また、凹部12の深さは、表面1aから突出部11aの下端(拡径部11cと縮径部11dとの境界部分)までの距離よりも短くなるように形成されている。好ましくは、凹部12の深さは、表面1aから突出部11aの頂点(縮径部11bと拡径部11cとの境界部分)までの距離よりも短くなるように形成されている。たとえば、凹部12の深さは40μm以下である。   Further, the depth of the concave portion 12 is formed to be shorter than the distance from the surface 1a to the lower end of the protruding portion 11a (the boundary portion between the enlarged diameter portion 11c and the reduced diameter portion 11d). Preferably, the depth of the concave portion 12 is formed to be shorter than the distance from the surface 1a to the apex of the protruding portion 11a (the boundary portion between the reduced diameter portion 11b and the enlarged diameter portion 11c). For example, the depth of the recess 12 is 40 μm or less.

凹部12は、平面的な位置関係において穿孔部11と重ならない領域に設けられている。なお、複数の凹部12のうちの一部が穿孔部11と重なっていてもよい。たとえば、凹部12は、図2に示すように、ドット状(マトリクス状)に配置されている。なお、図2では、見やすさを考慮して、凹部12のみを示し、穿孔部11の図示を省略した。   The concave portion 12 is provided in a region that does not overlap the perforated portion 11 in a planar positional relationship. A part of the plurality of recesses 12 may overlap with the perforated part 11. For example, the recesses 12 are arranged in a dot shape (matrix shape) as shown in FIG. In FIG. 2, only the concave portion 12 is shown for ease of viewing, and the illustration of the perforated portion 11 is omitted.

この凹部12は、たとえば加工用のレーザL2(図4参照)によって形成されている。すなわち、凹部12は、レーザL2による物理的な加工によって形成されている。なお、レーザL2の種類としては、ファイバレーザ、YAGレーザ、YVO4レーザ、半導体レーザ、炭酸ガスレーザ、エキシマレーザを挙げることができる。凹部12は、1パルスが単パルスで構成されるレーザL2によって形成される。なお、穿孔部11および凹部12は、同じ加工装置を用いて形成され、表面1aに対して穿孔部11が形成された後に凹部12が形成される。 The recess 12 is formed by, for example, a processing laser L2 (see FIG. 4). That is, the recess 12 is formed by physical processing with the laser L2. Examples of the laser L2 include fiber laser, YAG laser, YVO 4 laser, semiconductor laser, carbon dioxide laser, and excimer laser. The recess 12 is formed by a laser L2 in which one pulse is a single pulse. In addition, the perforated part 11 and the recessed part 12 are formed using the same processing apparatus, and the recessed part 12 is formed after the perforated part 11 is formed with respect to the surface 1a.

樹脂部材2は、たとえば、接合用のレーザL3に対して透過性を有する熱可塑性樹脂であり、その一例としては、PVC(ポリ塩化ビニル)、PS(ポリスチレン)、AS(アクリロニトリル・スチレン)、ABS(アクリロニトリル・ブタジエン・スチレン)、PMMA(ポリメチルメタクリレート)、PE(ポリエチレン)、PP(ポリプロピレン)、PC(ポリカーボネート)、m−PPE(変性ポリフェニレンエーテル)、PA6(ポリアミド6)、PA66(ポリアミド66)、POM(ポリアセタール)、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、PSF(ポリサルホン)、PAR(ポリアリレート)、PEI(ポリエーテルイミド)、PPS(ポリフェニレンサルファイド)、PES(ポリエーテルサルホン)、PEEK(ポリエーテルエーテルケトン)、PAI(ポリアミドイミド)、LCP(液晶ポリマー)、PVDC(ポリ塩化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、PCTFE(ポリクロロトリフルオロエチレン)、および、PVDF(ポリフッ化ビニリデン)が挙げられる。また、TPE(熱可塑性エラストマ)であってもよく、TPEの一例としては、TPO(オレフィン系)、TPS(スチレン系)、TPEE(エステル系)、TPU(ウレタン系)、TPA(ナイロン系)、および、TPVC(塩化ビニル系)が挙げられる。   The resin member 2 is, for example, a thermoplastic resin that is transparent to the bonding laser L3, and examples thereof include PVC (polyvinyl chloride), PS (polystyrene), AS (acrylonitrile / styrene), ABS. (Acrylonitrile butadiene styrene), PMMA (polymethyl methacrylate), PE (polyethylene), PP (polypropylene), PC (polycarbonate), m-PPE (modified polyphenylene ether), PA6 (polyamide 6), PA66 (polyamide 66) , POM (polyacetal), PET (polyethylene terephthalate), PBT (polybutylene terephthalate), PSF (polysulfone), PAR (polyarylate), PEI (polyetherimide), PPS (polyphenylene sulfide), PES Polyethersulfone), PEEK (polyetheretherketone), PAI (polyamideimide), LCP (liquid crystal polymer), PVDC (polyvinylidene chloride), PTFE (polytetrafluoroethylene), PCTFE (polychlorotrifluoroethylene), And PVDF (polyvinylidene fluoride). TPE (thermoplastic elastomer) may also be used, and examples of TPE include TPO (olefin-based), TPS (styrene-based), TPEE (ester-based), TPU (urethane-based), TPA (nylon-based), And TPVC (vinyl chloride type) is mentioned.

なお、樹脂部材2には、充填剤が添加されていてもよい。充填剤の一例としては、無機系充填剤(ガラス繊維、無機塩類など)、金属系充填剤、有機系充填剤、および、炭素繊維などが挙げられる。   Note that a filler may be added to the resin member 2. Examples of the filler include inorganic fillers (glass fibers, inorganic salts, etc.), metal fillers, organic fillers, and carbon fibers.

−接合構造体の製造方法−
次に、図1〜図5を参照して、本実施形態による接合構造体100の製造方法について説明する。
-Manufacturing method of bonded structure-
Next, with reference to FIGS. 1-5, the manufacturing method of the junction structure 100 by this embodiment is demonstrated.

まず、図3に示すように、金属部材1の表面1aに加工用のレーザL1を照射することにより、穿孔部11を形成するとともに、その内周面に突出部11aを形成する。すなわち、物理的な加工で穿孔部11を形成する。このレーザL1は、たとえばファイバレーザであり、1パルスが複数のサブパルスで構成されている。なお、この穿孔部11は、金属部材1と樹脂部材2とをアンカー効果により機械的に接合するために形成される。   First, as shown in FIG. 3, the surface 1 a of the metal member 1 is irradiated with a processing laser L <b> 1 to form the perforated portion 11 and the protruding portion 11 a on the inner peripheral surface thereof. That is, the perforated part 11 is formed by physical processing. The laser L1 is, for example, a fiber laser, and one pulse is composed of a plurality of subpulses. The perforated part 11 is formed to mechanically join the metal member 1 and the resin member 2 by the anchor effect.

その後、図4に示すように、金属部材1の表面1aに加工用のレーザL2を照射することにより、穿孔部11に比べて浅い凹部12を形成する。すなわち、物理的な加工で凹部12を形成する。このレーザL2は、たとえばファイバレーザであり、1パルスが単パルスで構成されている。なお、この凹部12は、後述する接合用のレーザL3の吸収率を向上させるために形成される。凹部12は、図2に示すように、ドット状に配置されている。また、レーザL1およびL2は同じ加工装置で照射可能であり、穿孔部11および凹部12は同じ加工装置を用いて形成される。   Thereafter, as shown in FIG. 4, the surface 1 a of the metal member 1 is irradiated with a processing laser L <b> 2, thereby forming a recess 12 that is shallower than the perforated portion 11. That is, the recess 12 is formed by physical processing. The laser L2 is, for example, a fiber laser, and one pulse is composed of a single pulse. The recess 12 is formed in order to improve the absorptance of a laser L3 for bonding described later. As shown in FIG. 2, the recesses 12 are arranged in a dot shape. Further, the lasers L1 and L2 can be irradiated by the same processing apparatus, and the perforated portion 11 and the recess 12 are formed using the same processing apparatus.

次に、図5に示すように、金属部材1の表面1aに樹脂部材2が積層され、樹脂部材2側から金属部材1の表面1aに向けて接合用のレーザL3を照射することにより、金属部材1が高温になり、その熱により樹脂部材2が溶融される。そして、その溶融された樹脂部材2が穿孔部11および凹部12に充填され、その後樹脂部材2が固化される。これにより、金属部材1と樹脂部材2とがアンカー効果によって機械的に接合される。このレーザL3は、たとえば半導体レーザである。   Next, as shown in FIG. 5, the resin member 2 is laminated on the surface 1a of the metal member 1, and the metal L1 is irradiated with a laser L3 for bonding from the resin member 2 side toward the surface 1a of the metal member 1. The member 1 becomes high temperature, and the resin member 2 is melted by the heat. Then, the melted resin member 2 is filled in the perforated portion 11 and the recess 12, and then the resin member 2 is solidified. Thereby, the metal member 1 and the resin member 2 are mechanically joined by the anchor effect. This laser L3 is, for example, a semiconductor laser.

このようにして、図1に示す接合構造体100が製造される。   In this way, the bonded structure 100 shown in FIG. 1 is manufactured.

−効果−
本実施形態では、上記のように、金属部材1の表面1aに穿孔部11を形成する工程と、穿孔部11を形成した後に、金属部材1の表面1aに、穿孔部11に比べて浅い凹部12を形成する工程と、接合用のレーザL3を照射することにより金属部材1と樹脂部材2とを接合する工程とが設けられている。このように構成することによって、金属部材1の表面1aに凹部12を形成することにより、レーザL3の吸収率を向上させることができるので、レーザL3を効率的に熱に変換するとともに、金属部材1の加熱状態にばらつきが発生するのを抑制することができる。これにより、熱により溶融される樹脂部材2の溶融状態を均等化することができるので、金属部材1と樹脂部材2との接合状態にばらつきが発生するのを抑制することができる。したがって、接合品質の向上を図ることができる。また、レーザL3の吸収率を向上させるための凹部12は、物理的な加工により形成することができるので、陽極酸化処理またはめっき処理を施す場合に比べて、製造工程を短くすることができる。その結果、接合品質の向上を図りながら、生産性の悪化を抑制することができる。
-Effect-
In the present embodiment, as described above, the step of forming the perforated portion 11 on the surface 1 a of the metal member 1 and the concave portion shallower than the perforated portion 11 on the surface 1 a of the metal member 1 after the perforated portion 11 is formed. 12 and a step of bonding the metal member 1 and the resin member 2 by irradiating the bonding laser L3. By configuring in this way, the absorption ratio of the laser L3 can be improved by forming the recess 12 in the surface 1a of the metal member 1, so that the laser L3 can be efficiently converted into heat, and the metal member The occurrence of variations in the heating state of 1 can be suppressed. Thereby, since the molten state of the resin member 2 melted by heat can be equalized, it is possible to suppress the occurrence of variation in the bonding state between the metal member 1 and the resin member 2. Therefore, it is possible to improve the bonding quality. Moreover, since the recessed part 12 for improving the absorption rate of the laser L3 can be formed by physical processing, the manufacturing process can be shortened compared with the case where an anodizing process or a plating process is performed. As a result, it is possible to suppress the deterioration of productivity while improving the bonding quality.

また、本実施形態では、穿孔部11の内部に突出部11aを形成することによって、アンカー効果の向上を図ることができる。   Moreover, in this embodiment, the anchor effect can be improved by forming the protruding portion 11 a inside the perforated portion 11.

また、本実施形態では、加工用のレーザL2により凹部12を形成することによって、金属部材1の表面1aに形成される凹部12の位置を制御することができるので、凹部12を穿孔部11とは重ならない位置に形成しやすくすることができる。   Moreover, in this embodiment, since the position of the recessed part 12 formed in the surface 1a of the metal member 1 can be controlled by forming the recessed part 12 with the laser L2 for processing, the recessed part 12 and the perforated part 11 can be controlled. Can be easily formed at positions where they do not overlap.

また、本実施形態では、凹部12の深さを、表面1aから突出部11aの頂点までの距離よりも短くすることによって、凹部12が穿孔部11と重なる位置に形成されたとしても、突出部11aが潰れないので、接合強度が低下するのを抑制することができる。   Further, in this embodiment, even if the recess 12 is formed at a position overlapping the perforated portion 11 by making the depth of the recess 12 shorter than the distance from the surface 1a to the apex of the protrusion 11a, the protrusion Since 11a is not crushed, it can suppress that joint strength falls.

また、本実施形態では、加工用のレーザL1により穿孔部11を形成するとともに、加工用のレーザL2により凹部12を形成することによって、同じ加工装置を用いて穿孔部11および凹部12を連続的に形成することができるので、製造工程をより短くすることができる。   In the present embodiment, the punching portion 11 is formed by the processing laser L1, and the recess 12 is formed by the processing laser L2, so that the punching portion 11 and the recess 12 are continuously formed using the same processing apparatus. Therefore, the manufacturing process can be further shortened.

−凹部の変形例−
次に、図6〜図8を参照して、金属部材1の表面1aに形成される凹部12の変形例について説明する。
-Deformation of recess
Next, with reference to FIGS. 6-8, the modification of the recessed part 12 formed in the surface 1a of the metal member 1 is demonstrated.

図6は、本実施形態の第1変形例による凹部12aを平面的に見た模式図である。図6に示す凹部12aは、溝状に形成されるとともに、直線状に延びるように形成されている。直線状の凹部12aは、複数設けられており、所定の間隔を隔ててほぼ平行に配置されている。   FIG. 6 is a schematic view of the recess 12a according to the first modified example of the present embodiment when viewed in plan. The recess 12a shown in FIG. 6 is formed in a groove shape and extends linearly. A plurality of linear recesses 12a are provided, and are arranged substantially in parallel with a predetermined interval.

図7は、本実施形態の第2変形例による凹部12bを平面的に見た模式図である。図7に示す凹部12bは、溝状に形成されるとともに、円弧状に形成されている。円弧状の凹部12bは、複数設けられており、一方方向(図7における左右方向)に連なるように配置されている。また、一方方向に連なる凹部12bは、他方方向(図7における上下方向)において間隔を隔てて配置されている。   FIG. 7 is a schematic view of the recess 12b according to the second modification of the present embodiment as seen in a plan view. The recess 12b shown in FIG. 7 is formed in a groove shape and in an arc shape. A plurality of arc-shaped recesses 12b are provided, and are arranged so as to be continuous in one direction (left-right direction in FIG. 7). In addition, the recesses 12b that are continuous in one direction are arranged at an interval in the other direction (vertical direction in FIG. 7).

図8は、本実施形態の第3変形例による凹部12cを平面的に見た模式図である。図8に示す凹部12cは、溝状に形成されるとともに、格子状に形成されている。   FIG. 8 is a schematic view of the recess 12c according to the third modification of the present embodiment when viewed in plan. The recess 12c shown in FIG. 8 is formed in a groove shape and in a lattice shape.

−実験例−
次に、図9を参照して、上記した本実施形態の効果を確認するために行った実験例について説明する。
-Experimental example-
Next, with reference to FIG. 9, an experimental example performed to confirm the effect of the above-described embodiment will be described.

この実験例では、実施例1〜4による試料と比較例による試料とを作製し、それぞれについての接合評価を行った。その結果を表1に示す。なお、実施例1〜4および比較例の試料は20個ずつ作製した。また、実施例1は、本実施形態に対応するものであり、円形の凹部がドット状(マトリクス状)に形成されている。実施例2は、第1変形例に対応するものであり、溝状の凹部が直線状に形成されている。実施例3は、第2変形例に対応するものであり、溝状の凹部が円弧状に形成されている。実施例4は、第3変形例に対応するものであり、溝状の凹部が格子状に形成されている。これに対して、比較例では、接合用のレーザの吸収率を向上させるための凹部が形成されていない。   In this experimental example, the samples according to Examples 1 to 4 and the sample according to the comparative example were produced, and the bonding evaluation was performed for each. The results are shown in Table 1. In addition, the samples of Examples 1-4 and the comparative example were produced 20 pieces each. Example 1 corresponds to the present embodiment, and circular concave portions are formed in a dot shape (matrix shape). Example 2 corresponds to the first modified example, and a groove-like recess is formed linearly. Example 3 corresponds to the second modified example, and a groove-like recess is formed in an arc shape. Example 4 corresponds to the third modified example, and groove-shaped concave portions are formed in a lattice shape. On the other hand, in the comparative example, no recess is formed for improving the absorption rate of the bonding laser.

Figure 0006414477
Figure 0006414477

まず、実施例1による接合構造体500の作製方法について説明する。   First, a method for manufacturing the bonded structure 500 according to the first embodiment will be described.

実施例1の接合構造体500では、金属部材501の材料としてSUS304を用いた。この金属部材501は、図9に示すように、板状に形成されており、長さが100mmであり、幅が29mmであり、厚みが3mmである。   In the bonded structure 500 of Example 1, SUS304 was used as the material of the metal member 501. As shown in FIG. 9, the metal member 501 is formed in a plate shape, has a length of 100 mm, a width of 29 mm, and a thickness of 3 mm.

そして、金属部材501の表面の所定領域Rに加工用のレーザを照射して穿孔部を形成した。この穿孔部は、金属部材501と樹脂部材502とをアンカー効果により機械的に接合するためのものである。なお、所定領域Rは、接合構造体500が接合される面積であり、20mm×20mmとした。このレーザの照射は、オムロン製のファイバレーザマーカMX−Z2000を用いて行った。レーザの照射条件は、以下のとおりである。   Then, a predetermined region R on the surface of the metal member 501 was irradiated with a processing laser to form a perforated portion. This perforated part is for mechanically joining the metal member 501 and the resin member 502 by the anchor effect. The predetermined region R is an area where the bonded structure 500 is bonded, and is 20 mm × 20 mm. This laser irradiation was performed using an Omron fiber laser marker MX-Z2000. The laser irradiation conditions are as follows.

<穿孔部形成用のレーザ照射条件>
レーザ:ファイバレーザ(波長1062nm)
周波数:10kHz
出力:3.8W
走査速度:650mm/sec
走査回数:20回
照射間隔:65μm
サブパルス数:20
なお、周波数は、複数(この例では20)のサブパルスによって構成されるパルスの周波数である。つまり、この照射条件では、1秒間に650mm移動しながら65μmの間隔で1万回レーザ(パルス)を照射し、そのパルスが20のサブパルスによって構成されている。なお、走査回数は、レーザが同じ箇所に繰り返し照射される回数である。
<Laser irradiation conditions for forming perforations>
Laser: Fiber laser (wavelength 1062nm)
Frequency: 10kHz
Output: 3.8W
Scanning speed: 650mm / sec
Number of scans: 20 times Irradiation interval: 65 μm
Number of subpulses: 20
The frequency is a frequency of a pulse constituted by a plurality (20 in this example) of sub-pulses. That is, under this irradiation condition, laser (pulse) is irradiated 10,000 times at intervals of 65 μm while moving 650 mm per second, and the pulse is composed of 20 sub-pulses. Note that the number of scans is the number of times the laser is repeatedly irradiated to the same location.

このように、1パルスが複数のサブパルスで構成されるレーザを照射することにより、金属部材501の表面の所定領域Rには穿孔部が形成されるとともに、その穿孔部の内周面に突出部が形成される。   In this way, by irradiating a laser in which one pulse is composed of a plurality of sub-pulses, a perforated portion is formed in the predetermined region R on the surface of the metal member 501, and a protruding portion is formed on the inner peripheral surface of the perforated portion. Is formed.

次に、金属部材501の表面の所定領域Rに加工用のレーザを照射してドット状の凹部を形成した。なお、凹部は、穿孔部に比べて浅くなるように形成され、後述する接合用のレーザの吸収率を向上させるためのものである。このレーザの照射は、オムロン製のファイバレーザマーカMX−Z2000を用いて行った。すなわち、穿孔部および凹部は、同じ加工装置を用いて形成した。レーザの照射条件は、以下のとおりである。   Next, a predetermined region R on the surface of the metal member 501 was irradiated with a processing laser to form a dot-shaped recess. The concave portion is formed so as to be shallower than the perforated portion, and is for improving the absorptance of a laser for bonding described later. This laser irradiation was performed using an Omron fiber laser marker MX-Z2000. That is, the perforated part and the recessed part were formed using the same processing apparatus. The laser irradiation conditions are as follows.

<凹部形成用のレーザ照射条件>
レーザ:ファイバレーザ(波長1062nm)
周波数:10kHz
出力:2.1W
走査速度:700mm/sec
走査回数:5回
照射間隔:70μm
なお、このレーザは、単パルスであり、複数のサブパルスによって構成されるものではない。
<Laser irradiation conditions for forming recesses>
Laser: Fiber laser (wavelength 1062nm)
Frequency: 10kHz
Output: 2.1W
Scanning speed: 700mm / sec
Number of scans: 5 times Irradiation interval: 70 μm
This laser is a single pulse and is not composed of a plurality of sub-pulses.

その後、金属部材501の所定領域Rに樹脂部材502が積層される。この樹脂部材502としてはPMMA(ポリメチルメタクリレート)を用いた。樹脂部材502は、板状に形成されており、長さが100mmであり、幅が25mmであり、厚みが3mmである。   Thereafter, the resin member 502 is laminated on the predetermined region R of the metal member 501. As this resin member 502, PMMA (polymethyl methacrylate) was used. The resin member 502 is formed in a plate shape, has a length of 100 mm, a width of 25 mm, and a thickness of 3 mm.

そして、樹脂部材502側から金属部材501の所定領域Rに向けて接合用のレーザを照射することにより、金属部材501と樹脂部材502とを接合した。具体的には、レーザの照射により金属部材501を加熱し、その熱により樹脂部材502を溶融する。そして、溶融された樹脂部材502が穿孔部および凹部に充填された後に、樹脂部材502が固化される。また、接合用のレーザの照射条件は、以下のとおりである。   Then, the metal member 501 and the resin member 502 were joined by irradiating a laser for joining toward the predetermined region R of the metal member 501 from the resin member 502 side. Specifically, the metal member 501 is heated by laser irradiation, and the resin member 502 is melted by the heat. Then, after the melted resin member 502 is filled in the perforated portion and the recess, the resin member 502 is solidified. Moreover, the irradiation conditions of the laser for joining are as follows.

<接合用のレーザ照射条件>
レーザ:半導体レーザ(波長808nm)
発振モード:連続発振
出力:30W
焦点径:4mm
走査速度:1mm/sec
密着圧力:0.6MPa
このようにして、実施例1の接合構造体500を作製した。
<Laser irradiation conditions for bonding>
Laser: Semiconductor laser (wavelength 808 nm)
Oscillation mode: Continuous oscillation Output: 30W
Focal diameter: 4mm
Scanning speed: 1mm / sec
Contact pressure: 0.6 MPa
In this way, the bonded structure 500 of Example 1 was produced.

次に、実施例2〜4の接合構造体の作製方法について説明する。実施例2の接合構造体では、溝状の凹部を直線状に形成した。実施例3の接合構造体では、溝状の凹部を円弧状に形成した。実施例4の接合構造体では、溝状の凹部を格子状に形成した。なお、実施例2〜4のその他の点については実施例1と同様である。実施例2〜4での凹部形成用のレーザの照射条件は、以下のとおりである。   Next, the manufacturing method of the junction structure of Examples 2-4 is demonstrated. In the joint structure of Example 2, the groove-shaped recess was formed in a straight line. In the joint structure of Example 3, the groove-shaped recess was formed in an arc shape. In the joint structure of Example 4, the groove-shaped concave portions were formed in a lattice shape. The other points of Examples 2 to 4 are the same as those of Example 1. The irradiation conditions of the laser for forming recesses in Examples 2 to 4 are as follows.

<凹部形成用のレーザ照射条件>
レーザ:ファイバレーザ(波長1062nm)
周波数:10kHz
出力:2.1W
走査速度:400mm/sec
走査回数:5回
照射間隔:40μm
なお、実施例2〜4では、複数の点状の凹部を繋いで線状にすることにより、溝状の凹部を形成した。
<Laser irradiation conditions for forming recesses>
Laser: Fiber laser (wavelength 1062nm)
Frequency: 10kHz
Output: 2.1W
Scanning speed: 400mm / sec
Number of scans: 5 times Irradiation interval: 40 μm
In Examples 2 to 4, a groove-like recess was formed by connecting a plurality of dot-like recesses into a linear shape.

次に、比較例の接合構造体の作製方法について説明する。比較例の接合構造体では、接合用のレーザの吸収率を向上させるための凹部を形成しなかった。なお、比較例のその他の点については実施例1と同様である。   Next, a method for manufacturing a bonded structure according to a comparative example will be described. In the bonded structure of the comparative example, no recess was formed to improve the absorption rate of the bonding laser. The remaining points of the comparative example are the same as those of the first embodiment.

そして、実施例1〜4および比較例の試料についての接合評価を行った。   And the joining evaluation about the sample of Examples 1-4 and a comparative example was performed.

具体的には、インストロン製の電気機械式万能試験機5900を用いて、せん断方向に引張速度5mm/minで試験を行い、樹脂部材の破壊または接合界面の破壊で試験を終了した。なお、せん断方向とは、接合界面に沿ってずれる方向(図9における左右方向)である。また、樹脂部材が破壊した場合には、それまでに接合界面が破壊されないことから、接合部の接合強度が十分にあるといえる。   Specifically, using an electromechanical universal testing machine 5900 manufactured by Instron, the test was performed in the shearing direction at a tensile speed of 5 mm / min, and the test was terminated when the resin member was broken or the bonding interface was broken. Note that the shear direction is a direction deviating along the bonding interface (the left-right direction in FIG. 9). Further, when the resin member is broken, it can be said that the bonding strength of the bonded portion is sufficient because the bonding interface is not broken by then.

上記した表1に示すように、比較例では、界面破壊した試料が5個であり、材料破壊した試料が15個であった。これに対して、実施例1〜4では、界面破壊した試料が0個であり、材料破壊した試料が20個であった。すなわち、比較例では、接合強度にばらつきがあるのに対し、実施例1〜4では、接合強度がばらつくのを抑制することができた。したがって、実施例1〜4では、比較例に比べて、接合品質の向上を図ることができた。   As shown in Table 1 above, in the comparative example, there were 5 samples with interface breakdown and 15 samples with material breakdown. On the other hand, in Examples 1 to 4, there were 0 samples with interface destruction and 20 samples with material destruction. That is, in the comparative examples, the bonding strength varies, but in Examples 1 to 4, the bonding strength can be suppressed from varying. Therefore, in Examples 1 to 4, it was possible to improve the bonding quality as compared with the comparative example.

これは、実施例1〜4では、接合用のレーザの吸収率を向上させるための凹部を形成することによって、レーザの吸収率を向上させ、レーザを効率的に熱に変換し、金属部材の加熱状態のばらつきを抑制することにより、熱により溶融される樹脂部材の溶融状態を均等化することができたので、金属部材と樹脂部材との接合状態にばらつきが発生するのを抑制することができたためであると考えられる。   In Examples 1 to 4, by forming a recess for improving the absorption rate of the laser for bonding, the absorption rate of the laser is improved, and the laser is efficiently converted into heat. By suppressing the variation in the heating state, it was possible to equalize the molten state of the resin member that is melted by heat. Therefore, it is possible to suppress the occurrence of variation in the bonding state between the metal member and the resin member. It is thought that it was because it was made.

−他の実施形態−
なお、今回開示した実施形態は、すべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、本発明の技術的範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
-Other embodiments-
In addition, embodiment disclosed this time is an illustration in all the points, Comprising: It does not become a basis of limited interpretation. Therefore, the technical scope of the present invention is not interpreted only by the above-described embodiments, but is defined based on the description of the scope of claims. Further, the technical scope of the present invention includes all modifications within the meaning and scope equivalent to the scope of the claims.

たとえば、本実施形態では、金属部材1の表面1aに穿孔部11が形成される例を示したが、これに限らず、金属部材の表面に溝状の第1凹状部が形成されていてもよい。また、穿孔部11に突出部11aが形成される例を示したが、これに限らず、穿孔部が円筒状またはすり鉢状に形成されていてもよい。また、レーザL1によって穿孔部11を形成する例を示したが、これに限らず、プラズマ処理、コロナ放電、ブラスト処理、プレス加工およびサンドペーパ処理などの物理的な加工により、金属部材の表面に第1凹状部を形成するようにしてもよい。   For example, in this embodiment, although the example in which the perforated part 11 is formed in the surface 1a of the metal member 1 was shown, it is not restricted to this, Even if the groove-shaped 1st recessed part is formed in the surface of a metal member Good. Moreover, although the example in which the protrusion part 11a was formed in the perforated part 11 was shown, not only this but the perforated part may be formed in the cylindrical shape or the mortar shape. Moreover, although the example which forms the perforation part 11 with the laser L1 was shown, it is not restricted to this, The physical process of a plasma process, a corona discharge, a blast process, a press process, a sandpaper process, etc. is performed on the surface of a metal member. One concave portion may be formed.

また、本実施形態では、レーザL2によって凹部12を形成する例を示したが、これに限らず、プラズマ処理、コロナ放電、ブラスト処理、プレス加工およびサンドペーパ処理などの物理的な加工により、金属部材の表面に第2凹状部を形成するようにしてもよい。   In the present embodiment, the example in which the concave portion 12 is formed by the laser L2 is shown. However, the present invention is not limited to this, and the metal member is formed by physical processing such as plasma processing, corona discharge, blast processing, press processing, and sandpaper processing. You may make it form a 2nd recessed part in the surface of this.

また、本実施形態では、穿孔部11および凹部12が同じ加工装置により形成される例を示したが、これに限らず、穿孔部および凹部が異なる加工装置により形成されていてもよい。   Further, in the present embodiment, the example in which the perforated part 11 and the recessed part 12 are formed by the same processing apparatus has been described, but the present invention is not limited thereto, and the perforated part and the recessed part may be formed by different processing apparatuses.

また、本実施形態では、樹脂部材2が熱可塑性樹脂である例を示したが、これに限らず、樹脂部材が熱硬化性樹脂であってもよい。熱硬化性樹脂の一例としては、EP(エポキシ)、PUR(ポリウレタン)、UF(ユリアホルムアルデヒド)、MF(メラミンホルムアルデヒド)、PF(フェノールホルムアルデヒド)、UP(不飽和ポリエステル)、および、SI(シリコーン)が挙げられる。また、FRP(繊維強化プラスチック)であってもよい。   In the present embodiment, an example in which the resin member 2 is a thermoplastic resin has been described. However, the present invention is not limited thereto, and the resin member may be a thermosetting resin. Examples of thermosetting resins include EP (epoxy), PUR (polyurethane), UF (urea formaldehyde), MF (melamine formaldehyde), PF (phenol formaldehyde), UP (unsaturated polyester), and SI (silicone) Is mentioned. Further, it may be FRP (fiber reinforced plastic).

本発明は、金属部材と樹脂部材とが接合された接合構造体の製造方法に利用可能である。 The present invention is applicable to production how the joint structure and the metal member and the resin member are bonded.

1 金属部材
1a 表面
2 樹脂部材
11 穿孔部(第1凹状部)
11a 突出部
12、12a、12b、12c 凹部(第2凹状部)
100 接合構造体
DESCRIPTION OF SYMBOLS 1 Metal member 1a Surface 2 Resin member 11 Perforated part (1st recessed part)
11a Protruding part 12, 12a, 12b, 12c Concave part (second concave part)
100 joint structure

Claims (3)

金属部材と、接合用のレーザに対して透過性を有する樹脂部材とが接合された接合構造体の製造方法であって、
前記金属部材の表面に第1凹状部を形成する工程と、
前記第1凹状部を形成した後に、前記金属部材の表面に、前記第1凹状部に比べて浅い第2凹状部を形成する工程と、
前記金属部材の表面に前記樹脂部材を配置し、前記樹脂部材側から前記金属部材の表面に向けて接合用のレーザを照射することにより、前記樹脂部材を前記第1凹状部に充填して固化させることによって、前記金属部材と前記樹脂部材とを接合する工程とを備え
前記第1凹状部は、平面的に見て円形の穿孔部を含み、
前記穿孔部の内周面には、内側に突出する突出部が形成され、
前記第2凹状部の深さは、前記金属部材の表面から前記突出部の下端までの距離よりも短くなるように形成されていることを特徴とする接合構造体の製造方法。
A method for manufacturing a bonded structure in which a metal member and a resin member having transparency to a bonding laser are bonded,
Forming a first concave portion on the surface of the metal member;
Forming a second concave portion shallower than the first concave portion on the surface of the metal member after forming the first concave portion; and
By placing the resin member on the surface of the metal member and irradiating a laser for bonding from the resin member side toward the surface of the metal member, the resin member is filled in the first concave portion and solidified. A step of joining the metal member and the resin member ,
The first concave portion includes a circular perforated portion when seen in a plan view,
On the inner peripheral surface of the perforated part, a protruding part protruding inward is formed,
The depth of the said 2nd recessed part is formed so that it may become shorter than the distance from the surface of the said metal member to the lower end of the said protrusion part, The manufacturing method of the junction structure characterized by the above-mentioned.
請求項1に記載の接合構造体の製造方法において、
前記第1凹状部は、前記金属部材と前記樹脂部材とを機械的に接合するために設けられ、
前記第2凹状部は、接合用のレーザの吸収率を向上させるために設けられていることを特徴とする接合構造体の製造方法。
In the manufacturing method of the joined structure according to claim 1,
The first concave portion is provided for mechanically joining the metal member and the resin member,
The method for manufacturing a joint structure, wherein the second concave portion is provided in order to improve the absorption rate of a laser for joining.
請求項1または2に記載の接合構造体の製造方法において、
前記第1凹状部および前記第2凹状部は、加工用のレーザにより形成されることを特徴とする接合構造体の製造方法。
In the manufacturing method of the junction structure according to claim 1 or 2 ,
The method for manufacturing a joint structure, wherein the first concave portion and the second concave portion are formed by a processing laser.
JP2015018814A 2015-02-02 2015-02-02 Manufacturing method of bonded structure Active JP6414477B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015018814A JP6414477B2 (en) 2015-02-02 2015-02-02 Manufacturing method of bonded structure
PCT/JP2016/051729 WO2016125595A1 (en) 2015-02-02 2016-01-21 Production method for bonded structure and bonded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015018814A JP6414477B2 (en) 2015-02-02 2015-02-02 Manufacturing method of bonded structure

Publications (2)

Publication Number Publication Date
JP2016141052A JP2016141052A (en) 2016-08-08
JP6414477B2 true JP6414477B2 (en) 2018-10-31

Family

ID=56563946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015018814A Active JP6414477B2 (en) 2015-02-02 2015-02-02 Manufacturing method of bonded structure

Country Status (2)

Country Link
JP (1) JP6414477B2 (en)
WO (1) WO2016125595A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6417786B2 (en) 2014-08-22 2018-11-07 オムロン株式会社 Manufacturing method of bonded structure
JP6441295B2 (en) * 2016-12-26 2018-12-19 本田技研工業株式会社 Junction structure and manufacturing method thereof
DE102017209657A1 (en) * 2017-06-08 2018-12-13 Robert Bosch Gmbh Housing for an electrical appliance with a tightly molded housing part
JP6909649B2 (en) * 2017-06-23 2021-07-28 日立Astemo株式会社 Electronic control device
KR20190041306A (en) * 2017-10-12 2019-04-22 주식회사 엘지화학 Manufacturing method of different material joint body
CN108297443A (en) * 2018-01-24 2018-07-20 北京大学深圳研究院 A method of promoting thermoplastic composite and metal connection intensity
JP2019170072A (en) * 2018-03-23 2019-10-03 日本電産株式会社 Motor, electrically-driven power steering device, and method of manufacturing the motor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5690051B2 (en) * 2009-05-27 2015-03-25 公益財団法人名古屋産業科学研究所 Method of joining members using laser
JP5577707B2 (en) * 2010-01-12 2014-08-27 日本軽金属株式会社 Laser joining method of aluminum alloy plate and resin member
JP6317064B2 (en) * 2013-02-28 2018-04-25 ダイセルポリマー株式会社 Composite molded body and manufacturing method thereof

Also Published As

Publication number Publication date
WO2016125595A1 (en) 2016-08-11
JP2016141052A (en) 2016-08-08

Similar Documents

Publication Publication Date Title
JP6414477B2 (en) Manufacturing method of bonded structure
WO2016027775A1 (en) Junction structure and method for manufacturing junction structure
JP6455021B2 (en) Manufacturing method of bonded structure
TWI704994B (en) Method for manufacturing joint structure and joint structure
WO2016129392A1 (en) Production method for bonded structure, and bonded structure
JP6439455B2 (en) Manufacturing method of bonded structure
WO2016129391A1 (en) Production method for bonded structure, and bonded structure
WO2016125594A1 (en) Manufacturing method for joined structural body and joined structural body
JP6398778B2 (en) Manufacturing method of bonded structure and bonded structure
WO2016140097A1 (en) Joining method, joined-structure production method, and joined structure
WO2016143586A1 (en) Joined structure production method, joined structure, and laser device
WO2016143585A1 (en) Machining method, joined structure production method, and joined structure
JP6432364B2 (en) Manufacturing method of bonded structure
JP6424665B2 (en) Method of manufacturing joined structure
WO2016117502A1 (en) Bonded structure and production method for bonded structure
WO2016117501A1 (en) Laser welding method and bonded structure
WO2016140052A1 (en) Method for laser processing metal member, and joined structure produced using said method
WO2016140096A1 (en) Joining structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180918

R150 Certificate of patent or registration of utility model

Ref document number: 6414477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150