JP2016141092A - Production method of joint structure, and joint structure - Google Patents

Production method of joint structure, and joint structure Download PDF

Info

Publication number
JP2016141092A
JP2016141092A JP2015020152A JP2015020152A JP2016141092A JP 2016141092 A JP2016141092 A JP 2016141092A JP 2015020152 A JP2015020152 A JP 2015020152A JP 2015020152 A JP2015020152 A JP 2015020152A JP 2016141092 A JP2016141092 A JP 2016141092A
Authority
JP
Japan
Prior art keywords
intermediate member
resin
resin member
laser
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015020152A
Other languages
Japanese (ja)
Inventor
佐藤 大輔
Daisuke Sato
大輔 佐藤
和義 西川
Kazuyoshi Nishikawa
和義 西川
聡 廣野
Satoshi Hirono
聡 廣野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2015020152A priority Critical patent/JP2016141092A/en
Priority to PCT/JP2016/051728 priority patent/WO2016125594A1/en
Publication of JP2016141092A publication Critical patent/JP2016141092A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/324Bonding taking account of the properties of the material involved involving non-metallic parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/60Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • B29C65/1661Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined scanning repeatedly, e.g. quasi-simultaneous laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/481Non-reactive adhesives, e.g. physically hardening adhesives
    • B29C65/4815Hot melt adhesives, e.g. thermoplastic adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/50Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like
    • B29C65/5057Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding using adhesive tape, e.g. thermoplastic tape; using threads or the like positioned between the surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/024Thermal pre-treatments
    • B29C66/0246Cutting or perforating, e.g. burning away by using a laser or using hot air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30325Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined making use of cavities belonging to at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • B29C66/712General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined the composition of one of the parts to be joined being different from the composition of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0079Liquid crystals

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a joint structure capable of improving heat resistance, oil resistance and chemical resistance, when bonding each different member through an intermediate member.SOLUTION: A production method of a joint structure 100 includes steps for: bonding an intermediate member 3 to a resin member 1 by melting the intermediate member 3 so as to be deposited on the resin member 1; and bonding the intermediate member 3 to a resin member 2 by melting the intermediate member 3 so as to be deposited on the resin member 2.SELECTED DRAWING: Figure 1

Description

本発明は、接合構造体の製造方法および接合構造体に関する。   The present invention relates to a method for manufacturing a bonded structure and a bonded structure.

従来、異種材料同士を接合する接合方法が知られている(たとえば、特許文献1参照)。   Conventionally, a joining method for joining different kinds of materials is known (for example, see Patent Document 1).

特許文献1には、レーザに対して透過性を有する第1部材と、第1部材とは異なる材料からなる第2部材との間に、エラストマからなる接着用シートを挟み込み、第1部材側からレーザを照射することにより、接着用シートを溶融させて第1部材と第2部材とを接合する接合方法が記載されている。この接合方法では、第1部材および第2部材の間にエラストマからなる接着用シートを介在させることにより、第1部材および第2部材間に生じる応力を緩和させることができるので、線膨張係数の異なる異種材料同士や親和性の低い材料同士を接合させることが可能である。なお、第1部材が樹脂からなり、第2部材が金属または無機フィラー含有樹脂組成物からなることが好ましいとされている。   In Patent Document 1, an adhesive sheet made of an elastomer is sandwiched between a first member having transparency to a laser and a second member made of a material different from the first member, and from the first member side. A joining method is described in which the first member and the second member are joined by irradiating a laser to melt the adhesive sheet. In this joining method, the stress generated between the first member and the second member can be relieved by interposing an adhesive sheet made of an elastomer between the first member and the second member. Different dissimilar materials or materials with low affinity can be joined. The first member is preferably made of a resin, and the second member is preferably made of a metal or an inorganic filler-containing resin composition.

特開2008−7584号公報JP 2008-7584 A

しかしながら、特許文献1に記載された接合方法では、第1部材および第2部材がエラストマからなる接着用シートを介して接合されているので、耐熱性、耐油性および耐薬品性が十分ではないという問題点がある。   However, in the joining method described in Patent Document 1, since the first member and the second member are joined via an adhesive sheet made of an elastomer, heat resistance, oil resistance, and chemical resistance are not sufficient. There is a problem.

本発明は、上記の課題を解決するためになされたものであり、本発明の目的は、中間部材を介して異なる部材が接合される場合に、耐熱性、耐油性および耐薬品性の向上を図ることが可能な接合構造体の製造方法および接合構造体を提供することである。   The present invention has been made to solve the above-described problems. The object of the present invention is to improve heat resistance, oil resistance, and chemical resistance when different members are joined via an intermediate member. It is an object of the present invention to provide a method for manufacturing a bonded structure and a bonded structure that can be achieved.

本発明による接合構造体の製造方法は、第1樹脂部材および第2樹脂部材が樹脂製の中間部材を介して接合された接合構造体の製造方法であり、中間部材を溶融させて第1樹脂部材に溶着することにより、中間部材と第1樹脂部材とを接合する工程、または、第1樹脂部材の表面に凹状部を形成し、中間部材を溶融させて凹状部に充填することにより、中間部材と第1樹脂部材とをアンカー効果により接合する工程と、中間部材を溶融させて第2樹脂部材に溶着することにより、中間部材と第2樹脂部材とを接合する工程とを備える。   The method for manufacturing a bonded structure according to the present invention is a method for manufacturing a bonded structure in which a first resin member and a second resin member are bonded via a resin intermediate member, and the first resin is melted by melting the intermediate member. The step of joining the intermediate member and the first resin member by welding to the member, or forming the concave portion on the surface of the first resin member, melting the intermediate member and filling the concave portion, A step of joining the member and the first resin member by an anchor effect, and a step of joining the intermediate member and the second resin member by melting the intermediate member and welding it to the second resin member.

上記接合構造体の製造方法において、中間部材は、熱可塑性樹脂であり、20℃における貯蔵弾性率が500MPaを超えていてもよい。   In the manufacturing method of the joined structure, the intermediate member may be a thermoplastic resin, and the storage elastic modulus at 20 ° C. may exceed 500 MPa.

上記接合構造体の製造方法において、第2樹脂部材がレーザに対して透過性を有し、中間部材がレーザに対して吸収性を有し、第2樹脂部材側から中間部材に向けてレーザが照射されることにより、中間部材が溶融されて第2樹脂部材に溶着されるようにしてもよい。   In the manufacturing method of the bonded structure, the second resin member is transmissive to the laser, the intermediate member is absorbable to the laser, and the laser is directed from the second resin member side toward the intermediate member. By irradiating, the intermediate member may be melted and welded to the second resin member.

本発明による接合構造体の製造方法は、金属部材および樹脂部材が樹脂製の中間部材を介して接合された接合構造体の製造方法であり、金属部材の表面に凹状部を形成し、中間部材を溶融させて凹状部に充填することにより、中間部材と金属部材とをアンカー効果により接合する工程と、中間部材を溶融させて樹脂部材に溶着することにより、中間部材と樹脂部材とを接合する工程とを備える。   The method for manufacturing a bonded structure according to the present invention is a method for manufacturing a bonded structure in which a metal member and a resin member are bonded via a resin-made intermediate member, and a concave portion is formed on the surface of the metal member. The intermediate member and the metal member are joined together by a step of joining the intermediate member and the metal member by the anchor effect by melting and filling the concave portion, and the intermediate member is melted and welded to the resin member. A process.

本発明による接合構造体は、上記したいずれか1つの接合構造体の製造方法によって製造されている。   The joint structure according to the present invention is manufactured by any one of the manufacturing methods of the joint structure described above.

本発明の接合構造体の製造方法および接合構造体によれば、中間部材を介して異なる部材が接合される場合に、耐熱性、耐油性および耐薬品性の向上を図ることができる。   According to the method for manufacturing a joint structure and the joint structure of the present invention, when different members are joined via an intermediate member, it is possible to improve heat resistance, oil resistance, and chemical resistance.

本発明の第1実施形態による接合構造体を模式的に示した断面図である。It is sectional drawing which showed typically the joining structure body by 1st Embodiment of this invention. 接合構造体の製造方法を説明するための図であって、樹脂部材に中間部材を溶着する工程を示した図である。It is a figure for demonstrating the manufacturing method of a joining structure, Comprising: It is the figure which showed the process of welding an intermediate member to a resin member. 接合構造体の製造方法を説明するための図であって、樹脂部材に接合された中間部材と他の樹脂部材とを溶着する工程を示した図である。It is a figure for demonstrating the manufacturing method of a joining structure, Comprising: It is the figure which showed the process of welding the intermediate member joined to the resin member, and another resin member. 本発明の第2実施形態による接合構造体を模式的に示した断面図である。It is sectional drawing which showed typically the joining structure body by 2nd Embodiment of this invention. 接合構造体の製造方法を説明するための図であって、樹脂部材に穿孔部を形成する工程を示した図である。It is a figure for demonstrating the manufacturing method of a joining structure, Comprising: It is the figure which showed the process of forming a perforated part in the resin member. 接合構造体の製造方法を説明するための図であって、樹脂部材に中間部材を溶着する工程を示した図である。It is a figure for demonstrating the manufacturing method of a joining structure, Comprising: It is the figure which showed the process of welding an intermediate member to a resin member. 接合構造体の製造方法を説明するための図であって、樹脂部材に接合された中間部材と他の樹脂部材とを溶着する工程を示した図である。It is a figure for demonstrating the manufacturing method of a joining structure, Comprising: It is the figure which showed the process of welding the intermediate member joined to the resin member, and another resin member. 本発明の第3実施形態による接合構造体を模式的に示した断面図である。It is sectional drawing which showed typically the joining structure body by 3rd Embodiment of this invention. 実施例1による接合構造体を示した斜視図である。FIG. 3 is a perspective view showing a joint structure according to Example 1. 実施例2による接合構造体を示した斜視図である。FIG. 6 is a perspective view showing a joint structure according to a second embodiment. 実施例2による接合構造体の樹脂部材に対して穿孔部が形成される加工領域を説明するための斜視図である。It is a perspective view for demonstrating the process area | region where a perforation part is formed with respect to the resin member of the joining structure body by Example 2. FIG. 実施例3による接合構造体を示した斜視図である。FIG. 10 is a perspective view showing a joint structure according to a third embodiment.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1実施形態)
まず、図1を参照して、本発明の第1実施形態による接合構造体100について説明する。
(First embodiment)
First, with reference to FIG. 1, the joining structure 100 by 1st Embodiment of this invention is demonstrated.

接合構造体100は、図1に示すように、樹脂部材1および2と、樹脂部材1および2の間に配置される中間部材3とを備えている。なお、図1では、見やすさを考慮して樹脂部材1および2のハッチングを省略した。また、樹脂部材1および2は、それぞれ、本発明の「第1樹脂部材」および「第2樹脂部材」の一例である。   As shown in FIG. 1, the bonded structure 100 includes resin members 1 and 2 and an intermediate member 3 disposed between the resin members 1 and 2. In FIG. 1, the hatching of the resin members 1 and 2 is omitted for easy viewing. The resin members 1 and 2 are examples of the “first resin member” and the “second resin member” in the present invention, respectively.

樹脂部材1および2は、異なる材料により形成されており、たとえば親和性が低いもの同士である。このため、樹脂部材1および2は、中間部材3を介して接合されている。樹脂部材1および2の材料は、熱可塑性樹脂である。樹脂部材2は、たとえば後述する接合用のレーザL1(図3参照)に対して透過性を有する。   Resin members 1 and 2 are made of different materials, and have low affinity, for example. For this reason, the resin members 1 and 2 are joined via the intermediate member 3. The material of the resin members 1 and 2 is a thermoplastic resin. The resin member 2 is transmissive to, for example, a joining laser L1 (see FIG. 3) described later.

樹脂部材1および2の材料としての熱可塑性樹脂の一例としては、PVC(ポリ塩化ビニル)、PS(ポリスチレン)、AS(アクリロニトリル・スチレン)、ABS(アクリロニトリル・ブタジエン・スチレン)、PMMA(ポリメチルメタクリレート)、PE(ポリエチレン)、PP(ポリプロピレン)、PC(ポリカーボネート)、m−PPE(変性ポリフェニレンエーテル)、PA6(ポリアミド6)、PA66(ポリアミド66)、POM(ポリアセタール)、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、PSF(ポリサルホン)、PAR(ポリアリレート)、PEI(ポリエーテルイミド)、PPS(ポリフェニレンサルファイド)、PES(ポリエーテルサルホン)、PEEK(ポリエーテルエーテルケトン)、PAI(ポリアミドイミド)、LCP(液晶ポリマー)、PVDC(ポリ塩化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、PCTFE(ポリクロロトリフルオロエチレン)、および、PVDF(ポリフッ化ビニリデン)が挙げられる。また、TPE(熱可塑性エラストマ)であってもよく、TPEの一例としては、TPO(オレフィン系)、TPS(スチレン系)、TPEE(エステル系)、TPU(ウレタン系)、TPA(ナイロン系)、および、TPVC(塩化ビニル系)が挙げられる。   Examples of the thermoplastic resin as the material of the resin members 1 and 2 include PVC (polyvinyl chloride), PS (polystyrene), AS (acrylonitrile styrene), ABS (acrylonitrile butadiene styrene), PMMA (polymethyl methacrylate). ), PE (polyethylene), PP (polypropylene), PC (polycarbonate), m-PPE (modified polyphenylene ether), PA6 (polyamide 6), PA66 (polyamide 66), POM (polyacetal), PET (polyethylene terephthalate), PBT (Polybutylene terephthalate), PSF (polysulfone), PAR (polyarylate), PEI (polyetherimide), PPS (polyphenylene sulfide), PES (polyethersulfone), PEEK (polyether) Teretherketone), PAI (polyamideimide), LCP (liquid crystal polymer), PVDC (polyvinylidene chloride), PTFE (polytetrafluoroethylene), PCTFE (polychlorotrifluoroethylene), and PVDF (polyvinylidene fluoride) Can be mentioned. TPE (thermoplastic elastomer) may also be used, and examples of TPE include TPO (olefin-based), TPS (styrene-based), TPEE (ester-based), TPU (urethane-based), TPA (nylon-based), And TPVC (vinyl chloride type) is mentioned.

なお、樹脂部材1および2には、充填剤が添加されていてもよい。充填剤の一例としては、無機系充填剤(ガラス繊維、無機塩類など)、金属系充填剤、有機系充填剤、および、炭素繊維などが挙げられる。   Note that a filler may be added to the resin members 1 and 2. Examples of the filler include inorganic fillers (glass fibers, inorganic salts, etc.), metal fillers, organic fillers, and carbon fibers.

中間部材3は、熱可塑性樹脂であり、20℃における貯蔵弾性率が500MPaを超えている。この中間部材3は、親和性の低い樹脂部材1および2を接合させるために設けられており、樹脂部材1および2の間に介在されている。なお、中間部材3は、樹脂部材1と樹脂部材2との間に全面にわたって設けられていてもよいし、部分的に設けられていてもよい。また、貯蔵弾性率は、温度を20℃に設定するとともに、周波数を10Hzに設定して動的粘弾性測定装置(DMA)を用いて測定した値である。   The intermediate member 3 is a thermoplastic resin, and the storage elastic modulus at 20 ° C. exceeds 500 MPa. The intermediate member 3 is provided to join the resin members 1 and 2 having low affinity, and is interposed between the resin members 1 and 2. The intermediate member 3 may be provided over the entire surface between the resin member 1 and the resin member 2 or may be provided partially. The storage elastic modulus is a value measured using a dynamic viscoelasticity measuring device (DMA) with the temperature set to 20 ° C. and the frequency set to 10 Hz.

中間部材3は、樹脂部材1の表面11に溶着されている。すなわち、中間部材3は、樹脂部材1に溶着可能な程度に、樹脂部材1と親和性が高いものである。また、中間部材3は、樹脂部材2の表面21に溶着されている。すなわち、中間部材3は、樹脂部材2に溶着可能な程度に、樹脂部材2と親和性が高いものである。また、中間部材3は、たとえば後述する接合用のレーザL1に対して吸収性を有する。また、中間部材3は、線膨張係数が樹脂部材1および2の間であることが好ましい。   The intermediate member 3 is welded to the surface 11 of the resin member 1. That is, the intermediate member 3 has a high affinity with the resin member 1 to the extent that it can be welded to the resin member 1. The intermediate member 3 is welded to the surface 21 of the resin member 2. That is, the intermediate member 3 has a high affinity with the resin member 2 to the extent that it can be welded to the resin member 2. Moreover, the intermediate member 3 has absorptivity with respect to the laser L1 for joining mentioned later, for example. The intermediate member 3 preferably has a linear expansion coefficient between the resin members 1 and 2.

中間部材3の材料としての熱可塑性樹脂の一例としては、PVC(ポリ塩化ビニル)、PS(ポリスチレン)、AS(アクリロニトリル・スチレン)、ABS(アクリロニトリル・ブタジエン・スチレン)、PMMA(ポリメチルメタクリレート)、PE(ポリエチレン)、PP(ポリプロピレン)、PC(ポリカーボネート)、m−PPE(変性ポリフェニレンエーテル)、PA6(ポリアミド6)、PA66(ポリアミド66)、POM(ポリアセタール)、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、PSF(ポリサルホン)、PAR(ポリアリレート)、PEI(ポリエーテルイミド)、PPS(ポリフェニレンサルファイド)、PES(ポリエーテルサルホン)、PEEK(ポリエーテルエーテルケトン)、PAI(ポリアミドイミド)、LCP(液晶ポリマー)、PVDC(ポリ塩化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、PCTFE(ポリクロロトリフルオロエチレン)、および、PVDF(ポリフッ化ビニリデン)が挙げられる。   As an example of the thermoplastic resin as the material of the intermediate member 3, PVC (polyvinyl chloride), PS (polystyrene), AS (acrylonitrile styrene), ABS (acrylonitrile butadiene styrene), PMMA (polymethyl methacrylate), PE (polyethylene), PP (polypropylene), PC (polycarbonate), m-PPE (modified polyphenylene ether), PA6 (polyamide 6), PA66 (polyamide 66), POM (polyacetal), PET (polyethylene terephthalate), PBT (poly) Butylene terephthalate), PSF (polysulfone), PAR (polyarylate), PEI (polyetherimide), PPS (polyphenylene sulfide), PES (polyethersulfone), PEEK (polyetherether) Terketone), PAI (polyamideimide), LCP (liquid crystal polymer), PVDC (polyvinylidene chloride), PTFE (polytetrafluoroethylene), PCTFE (polychlorotrifluoroethylene), and PVDF (polyvinylidene fluoride). .

なお、中間部材3には、充填剤が添加されていてもよい。充填剤の一例としては、無機系充填剤(ガラス繊維、無機塩類など)、金属系充填剤、有機系充填剤、および、炭素繊維などが挙げられる。   Note that a filler may be added to the intermediate member 3. Examples of the filler include inorganic fillers (glass fibers, inorganic salts, etc.), metal fillers, organic fillers, and carbon fibers.

−接合構造体の製造方法−
次に、図1〜図3を参照して、第1実施形態による接合構造体100の製造方法について説明する。
-Manufacturing method of bonded structure-
Next, with reference to FIGS. 1-3, the manufacturing method of the junction structure 100 by 1st Embodiment is demonstrated.

まず、図2に示すように、樹脂部材1の表面11に中間部材3が形成される。具体例としては、3Dプリンタを用いた熱溶解積層法により、溶融された中間部材3が樹脂部材1の表面11に積層され、その溶融された中間部材3が固化されることにより、中間部材3が樹脂部材1の表面11に溶着する。   First, as shown in FIG. 2, the intermediate member 3 is formed on the surface 11 of the resin member 1. As a specific example, the melted intermediate member 3 is laminated on the surface 11 of the resin member 1 by a hot melt laminating method using a 3D printer, and the melted intermediate member 3 is solidified, whereby the intermediate member 3 is solidified. Is welded to the surface 11 of the resin member 1.

次に、図3に示すように、中間部材3と樹脂部材2とが隣接配置される。このため、樹脂部材2が中間部材3に対して樹脂部材1とは反対側に配置される。そして、樹脂部材2側から中間部材3に向けて接合用のレーザL1が照射される。なお、樹脂部材2はレーザL1に対して透過性を有するとともに、中間部材3はレーザL1に対して吸収性を有する。   Next, as shown in FIG. 3, the intermediate member 3 and the resin member 2 are disposed adjacent to each other. For this reason, the resin member 2 is disposed on the side opposite to the resin member 1 with respect to the intermediate member 3. And the laser L1 for joining is irradiated toward the intermediate member 3 from the resin member 2 side. The resin member 2 is transmissive to the laser L1, and the intermediate member 3 is absorbent to the laser L1.

これにより、レーザL1が中間部材3で吸収され、中間部材3が加熱される。このため、中間部材3が溶融され、その後固化されることにより、中間部材3が樹脂部材2の表面21に溶着する。なお、レーザL1は、たとえば半導体レーザである。   Thereby, the laser L1 is absorbed by the intermediate member 3, and the intermediate member 3 is heated. For this reason, the intermediate member 3 is melted and then solidified, so that the intermediate member 3 is welded to the surface 21 of the resin member 2. Laser L1 is, for example, a semiconductor laser.

このようにして、図1に示す接合構造体100が製造される。すなわち、接合構造体100では、樹脂部材1と中間部材3とが溶着によって接合され、樹脂部材2と中間部材3とが溶着によって接合されている。   In this way, the bonded structure 100 shown in FIG. 1 is manufactured. That is, in the joined structure 100, the resin member 1 and the intermediate member 3 are joined by welding, and the resin member 2 and the intermediate member 3 are joined by welding.

−効果−
第1実施形態では、上記のように、中間部材3を溶融させて樹脂部材1に溶着することにより、中間部材3と樹脂部材1とを接合する工程と、中間部材3を溶融させて樹脂部材2に溶着することにより、中間部材3と樹脂部材2とを接合する工程とが設けられている。このように構成することによって、親和性が低いことにより溶着しにくい樹脂部材1および2を、中間部材3を介して接合することができる。これにより、異種材料同士の接合における材料の組合せ自由度を向上させることができる。また、20℃における貯蔵弾性率が500MPaを超える中間部材3を用いることによって、中間部材として軟らかいエラストマなどを用いる場合に比べて、耐熱性、耐油性および耐薬品性の向上を図ることができる。
-Effect-
In the first embodiment, as described above, the intermediate member 3 is melted and welded to the resin member 1, thereby joining the intermediate member 3 and the resin member 1, and the intermediate member 3 is melted to obtain the resin member. 2, a step of joining the intermediate member 3 and the resin member 2 is provided. By comprising in this way, the resin members 1 and 2 which are hard to weld by low affinity can be joined via the intermediate member 3. FIG. Thereby, the freedom degree of the combination of the material in joining of dissimilar materials can be improved. Further, by using the intermediate member 3 having a storage elastic modulus at 20 ° C. exceeding 500 MPa, it is possible to improve heat resistance, oil resistance and chemical resistance as compared with the case where a soft elastomer or the like is used as the intermediate member.

また、第1実施形態では、中間部材3の線膨張係数が樹脂部材1および2の間であることによって、樹脂部材1および2の線膨張係数差に起因する応力を中間部材3により緩和することができる。   Moreover, in 1st Embodiment, the stress resulting from the linear expansion coefficient difference of the resin members 1 and 2 is relieve | moderated by the intermediate member 3 because the linear expansion coefficient of the intermediate member 3 is between the resin members 1 and 2. Can do.

(第2実施形態)
次に、図4を参照して、本発明の第2実施形態による接合構造体100aについて説明する。
(Second Embodiment)
Next, a bonded structure 100a according to a second embodiment of the present invention will be described with reference to FIG.

接合構造体100aは、図4に示すように、樹脂部材1aおよび2と、樹脂部材1aおよび2の間に配置される中間部材3とを備えている。なお、図4では、見やすさを考慮して樹脂部材1aおよび2のハッチングを省略した。また、樹脂部材1aおよび2は、それぞれ、本発明の「第1樹脂部材」および「第2樹脂部材」の一例である。   As shown in FIG. 4, the bonded structure 100 a includes resin members 1 a and 2 and an intermediate member 3 disposed between the resin members 1 a and 2. In FIG. 4, the hatching of the resin members 1 a and 2 is omitted for easy viewing. The resin members 1a and 2 are examples of the “first resin member” and the “second resin member” in the present invention, respectively.

樹脂部材1aおよび2は、異なる材料により形成されており、たとえば親和性が低いもの同士である。このため、樹脂部材1aおよび2は、中間部材3を介して接合されている。樹脂部材1aの材料は、熱可塑性樹脂または熱硬化性樹脂である。また、樹脂部材1aは、中間部材3と溶着可能な程度に中間部材3と親和性が高くてもよいし、中間部材3と溶着しにくく親和性が低いものであってもよい。   The resin members 1a and 2 are made of different materials, and have low affinity, for example. For this reason, the resin members 1 a and 2 are joined via the intermediate member 3. The material of the resin member 1a is a thermoplastic resin or a thermosetting resin. Further, the resin member 1a may have a high affinity with the intermediate member 3 to the extent that it can be welded to the intermediate member 3, or may be difficult to weld with the intermediate member 3 and have a low affinity.

樹脂部材1aの材料としての熱可塑性樹脂の一例は、上記した樹脂部材1と同様である。また、樹脂部材1aの材料としての熱硬化性樹脂の一例としては、EP(エポキシ)、PUR(ポリウレタン)、UF(ユリアホルムアルデヒド)、MF(メラミンホルムアルデヒド)、PF(フェノールホルムアルデヒド)、UP(不飽和ポリエステル)、および、SI(シリコーン)が挙げられる。また、FRP(繊維強化プラスチック)であってもよい。   An example of the thermoplastic resin as the material of the resin member 1a is the same as that of the resin member 1 described above. Moreover, as an example of the thermosetting resin as the material of the resin member 1a, EP (epoxy), PUR (polyurethane), UF (urea formaldehyde), MF (melamine formaldehyde), PF (phenol formaldehyde), UP (unsaturated) Polyester) and SI (silicone). Further, it may be FRP (fiber reinforced plastic).

ここで、樹脂部材1aの表面11aには、穿孔部12aが形成され、その穿孔部12aには、中間部材3が充填されて固化されている。このため、樹脂部材1aおよび中間部材3は、アンカー効果によって機械的に接合されている。なお、穿孔部12aは1つ以上設けられていればよい。また、穿孔部12aは、本発明の「凹状部」の一例である。   Here, a perforated portion 12a is formed on the surface 11a of the resin member 1a, and the intermediate member 3 is filled and solidified in the perforated portion 12a. For this reason, the resin member 1a and the intermediate member 3 are mechanically joined by the anchor effect. One or more perforations 12a may be provided. The perforated part 12a is an example of the “concave part” in the present invention.

穿孔部12aは、平面的に見てほぼ円形の非貫通孔であり、樹脂部材1aの表面11aに所定の間隔を隔てて複数配置されている。穿孔部12aの内周面には、内側に突出する突出部13aが形成されている。突出部13aは、周方向における全長にわたって形成されており、環状に形成されている。また、穿孔部12aの深さは、接合強度を確保するために0.03mm以上が好ましい。穿孔部12aの直径は、アンカー効果を得られる範囲内において任意に設定可能である。   The perforated part 12a is a substantially circular non-through hole when seen in a plan view, and a plurality of the perforated parts 12a are arranged on the surface 11a of the resin member 1a at a predetermined interval. A projecting portion 13a projecting inward is formed on the inner peripheral surface of the perforated portion 12a. The protrusion 13a is formed over the entire length in the circumferential direction, and is formed in an annular shape. Further, the depth of the perforated part 12a is preferably 0.03 mm or more in order to ensure the bonding strength. The diameter of the perforated part 12a can be arbitrarily set within a range where an anchor effect can be obtained.

この穿孔部12aは、たとえば加工用のレーザL2(図5参照)によって形成されている。なお、レーザL2の種類としては、パルス発振が可能なものが好ましく、ファイバレーザ、YAGレーザ、YVO4レーザ、半導体レーザ、炭酸ガスレーザ、エキシマレーザ、紫外線レーザ、ピコ秒レーザ、フェムト秒レーザを挙げることができる。 The perforated portion 12a is formed by, for example, a processing laser L2 (see FIG. 5). The type of laser L2 is preferably a laser capable of pulse oscillation, and includes fiber laser, YAG laser, YVO 4 laser, semiconductor laser, carbon dioxide laser, excimer laser, ultraviolet laser, picosecond laser, and femtosecond laser. Can do.

このような穿孔部12aは、1パルスが複数のサブパルスで構成されるレーザL2によって形成される。このレーザL2では、エネルギを深さ方向に集中させやすいので、穿孔部12aを形成するのに好適である。このようなレーザL2の照射装置の一例としては、オムロン製のファイバレーザマーカMX−Z2000またはMX−Z2050を挙げることができる。   Such a perforated part 12a is formed by a laser L2 in which one pulse is composed of a plurality of sub-pulses. This laser L2 is suitable for forming the perforated portion 12a because energy can be easily concentrated in the depth direction. As an example of such a laser L2 irradiation apparatus, fiber laser marker MX-Z2000 or MX-Z2050 made by OMRON can be mentioned.

上記ファイバレーザマーカによる加工条件としては、サブパルスの1周期が15ns以下であることが好ましい。これは、サブパルスの1周期が15nsを超えると、熱伝導によりエネルギが拡散しやすくなり、穿孔部12aを形成しにくくなるためである。なお、サブパルスの1周期は、サブパルスの1回分の照射時間と、そのサブパルスの照射が終了されてから次回のサブパルスの照射が開始されるまでの間隔との合計時間である。   As processing conditions by the fiber laser marker, it is preferable that one period of the sub-pulse is 15 ns or less. This is because when one period of the sub-pulse exceeds 15 ns, energy is easily diffused due to heat conduction, and it becomes difficult to form the perforated portion 12a. Note that one cycle of the subpulse is a total time of the irradiation time for one subpulse and the interval from the end of the irradiation of the subpulse to the start of the irradiation of the next subpulse.

また、1パルスのサブパルス数は、2以上50以下であることが好ましい。これは、サブパルス数が50を超えると、サブパルスの単位あたりの出力が小さくなり、穿孔部12aを形成しにくくなるためである。   Further, the number of subpulses of one pulse is preferably 2 or more and 50 or less. This is because when the number of sub-pulses exceeds 50, the output per unit of sub-pulses becomes small and it becomes difficult to form the perforated part 12a.

なお、接合構造体100aのその他の構成は、上記した接合構造体100と同様である。   The other structure of the bonded structure 100a is the same as that of the bonded structure 100 described above.

−接合構造体の製造方法−
次に、図4〜図7を参照して、第2実施形態による接合構造体100aの製造方法について説明する。
-Manufacturing method of bonded structure-
Next, with reference to FIGS. 4-7, the manufacturing method of the junction structure 100a by 2nd Embodiment is demonstrated.

まず、図5に示すように、樹脂部材1aの表面11aに加工用のレーザL2が照射されることにより、樹脂部材1aの表面11aに穿孔部12aが形成される。加工用のレーザL2は、たとえばファイバレーザであり、1パルスが複数のサブパルスで構成されたものである。   First, as shown in FIG. 5, the surface 11a of the resin member 1a is irradiated with a processing laser L2, whereby a perforated portion 12a is formed on the surface 11a of the resin member 1a. The processing laser L2 is, for example, a fiber laser, and one pulse is composed of a plurality of subpulses.

次に、図6に示すように、樹脂部材1aの表面11aに中間部材3が形成される。具体例としては、3Dプリンタを用いた熱溶解積層法により、溶融された中間部材3が、樹脂部材1aの穿孔部12aに充填されるとともに、樹脂部材1aの表面11aに積層され、その溶融された中間部材3が固化される。これにより、中間部材3が穿孔部12aに埋め込まれるため、樹脂部材1aと中間部材3とがアンカー効果によって機械的に接合される。   Next, as shown in FIG. 6, the intermediate member 3 is formed on the surface 11a of the resin member 1a. As a specific example, the melted intermediate member 3 is filled in the perforated portion 12a of the resin member 1a by the hot melt lamination method using a 3D printer, and is laminated on the surface 11a of the resin member 1a and melted. The intermediate member 3 is solidified. Thereby, since the intermediate member 3 is embedded in the perforated part 12a, the resin member 1a and the intermediate member 3 are mechanically joined by the anchor effect.

次に、図7に示すように、中間部材3と樹脂部材2とが隣接配置される。このため、樹脂部材2が中間部材3に対して樹脂部材1aとは反対側に配置される。そして、樹脂部材2側から中間部材3に向けて接合用のレーザL1が照射される。なお、樹脂部材2はレーザL1に対して透過性を有するとともに、中間部材3はレーザL1に対して吸収性を有する。   Next, as shown in FIG. 7, the intermediate member 3 and the resin member 2 are disposed adjacent to each other. For this reason, the resin member 2 is arrange | positioned with respect to the intermediate member 3 on the opposite side to the resin member 1a. And the laser L1 for joining is irradiated toward the intermediate member 3 from the resin member 2 side. The resin member 2 is transmissive to the laser L1, and the intermediate member 3 is absorbent to the laser L1.

これにより、レーザL1が中間部材3で吸収され、中間部材3が加熱される。このため、中間部材3が溶融され、その後固化されることにより、中間部材3が樹脂部材2の表面21に溶着する。なお、レーザL1は、たとえば半導体レーザである。   Thereby, the laser L1 is absorbed by the intermediate member 3, and the intermediate member 3 is heated. For this reason, the intermediate member 3 is melted and then solidified, so that the intermediate member 3 is welded to the surface 21 of the resin member 2. Laser L1 is, for example, a semiconductor laser.

このようにして、図4に示す接合構造体100aが製造される。すなわち、接合構造体100aでは、樹脂部材1aと中間部材3とがアンカー効果によって接合され、樹脂部材2と中間部材3とが溶着によって接合されている。なお、樹脂部材1aと中間部材3とがアンカー効果に加えて溶着によって接合されていてもよい。   In this way, the bonded structure 100a shown in FIG. 4 is manufactured. That is, in the bonded structure 100a, the resin member 1a and the intermediate member 3 are bonded by the anchor effect, and the resin member 2 and the intermediate member 3 are bonded by welding. The resin member 1a and the intermediate member 3 may be joined by welding in addition to the anchor effect.

−効果−
第2実施形態では、上記のように、樹脂部材1aの表面11aに穿孔部12aを形成し、中間部材3を溶融させて穿孔部12aに充填することにより、中間部材3と樹脂部材1aとをアンカー効果により接合する工程と、中間部材3を溶融させて樹脂部材2に溶着することにより、中間部材3と樹脂部材2とを接合する工程とが設けられている。このように構成することによって、親和性が低いことにより溶着しにくい樹脂部材1および2を、中間部材3を介して接合することができる。これにより、異種材料同士の接合における材料の組合せ自由度を向上させることができる。また、中間部材3と樹脂部材1aとが溶着しにくい材料同士の組合せであっても、中間部材3と樹脂部材1aとを接合することができる。さらに、穿孔部12aに突出部13aを形成することによって、アンカー効果の向上を図ることができる。なお、樹脂部材1aと中間部材3とが溶着されていてもよく、この場合には、樹脂部材1aと中間部材3との接合強度の向上を図ることができる。また、20℃における貯蔵弾性率が500MPaを超える中間部材3を用いることによって、中間部材として軟らかいエラストマなどを用いる場合に比べて、耐熱性、耐油性および耐薬品性の向上を図ることができる。
-Effect-
In the second embodiment, as described above, the perforated portion 12a is formed on the surface 11a of the resin member 1a, the intermediate member 3 is melted and filled into the perforated portion 12a. There are provided a step of joining by the anchor effect and a step of joining the intermediate member 3 and the resin member 2 by melting the intermediate member 3 and welding it to the resin member 2. By comprising in this way, the resin members 1 and 2 which are hard to weld by low affinity can be joined via the intermediate member 3. FIG. Thereby, the freedom degree of the combination of the material in joining of dissimilar materials can be improved. Even if the intermediate member 3 and the resin member 1a are a combination of materials that are difficult to weld, the intermediate member 3 and the resin member 1a can be joined. Furthermore, the anchor effect can be improved by forming the protruding portion 13a in the perforated portion 12a. The resin member 1a and the intermediate member 3 may be welded. In this case, the bonding strength between the resin member 1a and the intermediate member 3 can be improved. Further, by using the intermediate member 3 having a storage elastic modulus at 20 ° C. exceeding 500 MPa, it is possible to improve heat resistance, oil resistance and chemical resistance as compared with the case where a soft elastomer or the like is used as the intermediate member.

また、第2実施形態では、中間部材3の線膨張係数が樹脂部材1aおよび2の間であることによって、樹脂部材1aおよび2の線膨張係数差に起因する応力を中間部材3により緩和することができる。   Moreover, in 2nd Embodiment, the stress resulting from the linear expansion coefficient difference of the resin members 1a and 2 is relieved by the intermediate member 3 because the linear expansion coefficient of the intermediate member 3 is between the resin members 1a and 2. Can do.

(第3実施形態)
次に、図8を参照して、本発明の第3実施形態による接合構造体100bについて説明する。
(Third embodiment)
Next, with reference to FIG. 8, a bonded structure 100b according to a third embodiment of the present invention will be described.

接合構造体100bは、図8に示すように、金属部材1bおよび樹脂部材2と、金属部材1bおよび樹脂部材2の間に配置される中間部材3とを備えている。なお、図8では、見やすさを考慮して金属部材1bおよび樹脂部材2のハッチングを省略した。   As shown in FIG. 8, the bonded structure 100 b includes a metal member 1 b and a resin member 2, and an intermediate member 3 disposed between the metal member 1 b and the resin member 2. In FIG. 8, the metal member 1b and the resin member 2 are not hatched in consideration of easy viewing.

金属部材1bおよび樹脂部材2は、中間部材3を介して接合されている。金属部材1bの材料の一例としては、鉄系金属、ステンレス系金属、銅系金属、アルミ系金属、マグネシウム系金属、および、それらの合金が挙げられる。また、金属成型体であってもよく、亜鉛ダイカスト、アルミダイカスト、粉末冶金などであってもよい。   The metal member 1 b and the resin member 2 are joined via the intermediate member 3. Examples of the material of the metal member 1b include iron-based metal, stainless-based metal, copper-based metal, aluminum-based metal, magnesium-based metal, and alloys thereof. Moreover, a metal molding may be sufficient and zinc die-casting, aluminum die-casting, powder metallurgy, etc. may be sufficient.

金属部材1bの表面11bには、穿孔部12bが形成され、その穿孔部12bには、中間部材3が充填されて固化されている。このため、樹脂部材1bおよび中間部材3は、アンカー効果によって機械的に接合されている。なお、穿孔部12bは、上記した穿孔部12aと同様に構成されている。また、穿孔部12bは、本発明の「凹状部」の一例である。   A perforated portion 12b is formed on the surface 11b of the metal member 1b, and the intermediate member 3 is filled and solidified in the perforated portion 12b. For this reason, the resin member 1b and the intermediate member 3 are mechanically joined by the anchor effect. The perforated part 12b is configured in the same manner as the perforated part 12a described above. The perforated part 12b is an example of the “concave part” in the present invention.

なお、接合構造体100bのその他の構成は、上記した接合構造体100aと同様である。   In addition, the other structure of the joining structure 100b is the same as that of the above-described joining structure 100a.

また、接合構造体100bの製造方法は、第2実施形態と同様である。   Moreover, the manufacturing method of the joining structure 100b is the same as that of 2nd Embodiment.

−効果−
第3実施形態では、上記のように、金属部材1bの表面11bに穿孔部12bを形成し、中間部材3を溶融させて穿孔部12bに充填することにより、中間部材3と金属部材1bとをアンカー効果により接合する工程と、中間部材3を溶融させて樹脂部材2に溶着することにより、中間部材3と樹脂部材2とを接合する工程とが設けられている。このように構成することによって、金属部材1bおよび樹脂部材2を、中間部材3を介して接合することができる。これにより、異種材料同士の接合における材料の組合せ自由度を向上させることができる。さらに、穿孔部12bに突出部13bを形成することによって、アンカー効果の向上を図ることができる。また、20℃における貯蔵弾性率が500MPaを超える中間部材3を用いることによって、中間部材として軟らかいエラストマなどを用いる場合に比べて、耐熱性、耐油性および耐薬品性の向上を図ることができる。
-Effect-
In the third embodiment, as described above, the perforated portion 12b is formed on the surface 11b of the metal member 1b, the intermediate member 3 is melted and filled in the perforated portion 12b. There are provided a step of joining by the anchor effect and a step of joining the intermediate member 3 and the resin member 2 by melting the intermediate member 3 and welding it to the resin member 2. By comprising in this way, the metal member 1b and the resin member 2 can be joined via the intermediate member 3. FIG. Thereby, the freedom degree of the combination of the material in joining of dissimilar materials can be improved. Furthermore, the anchor effect can be improved by forming the protruding portion 13b in the perforated portion 12b. Further, by using the intermediate member 3 having a storage elastic modulus at 20 ° C. exceeding 500 MPa, it is possible to improve heat resistance, oil resistance and chemical resistance as compared with the case where a soft elastomer or the like is used as the intermediate member.

また、第3実施形態では、樹脂部材2の材料が金属イオンにより腐食されやすいものである場合には、中間部材3の材料として腐食耐性を有するものを用いることによって、樹脂部材2の劣化を抑制することができる。   In the third embodiment, when the material of the resin member 2 is easily corroded by metal ions, the deterioration of the resin member 2 is suppressed by using a material having corrosion resistance as the material of the intermediate member 3. can do.

また、第3実施形態では、中間部材3の線膨張係数が金属部材1bおよび樹脂部材2の間であることによって、金属部材1bおよび樹脂部材2の線膨張係数差に起因する応力を中間部材3により緩和することができる。   In the third embodiment, since the linear expansion coefficient of the intermediate member 3 is between the metal member 1 b and the resin member 2, the stress caused by the difference in linear expansion coefficient between the metal member 1 b and the resin member 2 is applied to the intermediate member 3. Can be relaxed.

(実験例)
次に、図9〜図12を参照して、第1実施形態に対応する実施例1による接合構造体200(図9参照)と、第2実施形態に対応する実施例2による接合構造体200a(図10参照)と、第3実施形態に対応する実施例3による接合構造体200b(図12参照)とを作製し、その接合構造体200、200aおよび200bに対して行った接合評価について説明する。
(Experimental example)
Next, with reference to FIG. 9 to FIG. 12, the joint structure 200 (see FIG. 9) according to Example 1 corresponding to the first embodiment and the joint structure 200 a according to Example 2 corresponding to the second embodiment. (See FIG. 10) and the joining structure 200b (see FIG. 12) according to Example 3 corresponding to the third embodiment is manufactured, and the joining evaluation performed on the joining structures 200, 200a, and 200b is described. To do.

まず、実施例1の接合構造体200の作製方法について説明する。   First, a method for manufacturing the bonded structure 200 of Example 1 will be described.

接合構造体200では、図9に示すように、樹脂部材201としてPBT(ポリブチレンテレフタレート)を用いた。樹脂部材201は、板状に形成されており、長さが100mmであり、幅が17.5mmであり、厚みが2〜3mmである。なお、樹脂部材201には、後述する実施例2と異なり、穿孔部が形成されていない。   In the bonded structure 200, as shown in FIG. 9, PBT (polybutylene terephthalate) was used as the resin member 201. The resin member 201 is formed in a plate shape, has a length of 100 mm, a width of 17.5 mm, and a thickness of 2 to 3 mm. The resin member 201 is not formed with a perforated portion unlike Example 2 described later.

そして、樹脂部材201の表面に中間部材203を形成した。この中間部材203は、ABS(アクリロニトリル・ブタジエン・スチレン)であり、3Dプリンタを用いて形成した。このため、樹脂部材201の表面に中間部材203が溶着されている。なお、中間部材203は、長さが5mmであり、幅が15mmであり、厚みが0.5mmである。   Then, an intermediate member 203 was formed on the surface of the resin member 201. This intermediate member 203 is ABS (acrylonitrile butadiene styrene), and was formed using a 3D printer. For this reason, the intermediate member 203 is welded to the surface of the resin member 201. The intermediate member 203 has a length of 5 mm, a width of 15 mm, and a thickness of 0.5 mm.

その後、中間部材203と樹脂部材202とを隣接配置した。樹脂部材202としてはPMMA(ポリメチルメタクリレート)を用いた。樹脂部材202は、板状に形成されており、長さが100mmであり、幅が17.5mmであり、厚みが1mmである。   Thereafter, the intermediate member 203 and the resin member 202 were disposed adjacent to each other. As the resin member 202, PMMA (polymethyl methacrylate) was used. The resin member 202 is formed in a plate shape, has a length of 100 mm, a width of 17.5 mm, and a thickness of 1 mm.

そして、中間部材203と樹脂部材202との接合領域R1に接合用のレーザを照射することにより、中間部材203および樹脂部材202を溶着した。なお、接合領域R1は、長さが10mmで幅が1mmの線状領域であり、中間部材203の幅方向に延びるように設けられている。ここで、樹脂部材202が接合用のレーザに対して透過性を有するとともに、中間部材203が接合用のレーザに対して吸収性を有しており、その接合用のレーザは、樹脂部材202側から中間部材203に向けて照射される。また、接合用のレーザの照射条件は、以下のとおりである。   The intermediate member 203 and the resin member 202 were welded by irradiating the bonding region R1 between the intermediate member 203 and the resin member 202 with a laser for bonding. The joining region R1 is a linear region having a length of 10 mm and a width of 1 mm, and is provided so as to extend in the width direction of the intermediate member 203. Here, the resin member 202 is transparent to the bonding laser, and the intermediate member 203 is absorbable to the bonding laser. The bonding laser is on the resin member 202 side. To the intermediate member 203. Moreover, the irradiation conditions of the laser for joining are as follows.

<接合用のレーザ照射条件>
レーザ:半導体レーザ(波長808nm)
発振モード:連続発振
出力:10W
焦点径:1mm
走査速度:10mm/sec
密着圧力:0.2MPa
走査回数:2回
このようにして、実施例1の接合構造体200を作製した。なお、接合構造体200では、樹脂部材201と中間部材203とが中間部材203の全面で溶着され、樹脂部材202と中間部材203とが接合領域R1で溶着されている。
<Laser irradiation conditions for bonding>
Laser: Semiconductor laser (wavelength 808 nm)
Oscillation mode: Continuous oscillation Output: 10W
Focal diameter: 1mm
Scanning speed: 10mm / sec
Contact pressure: 0.2 MPa
Number of scans: 2 times In this way, the bonded structure 200 of Example 1 was produced. In the bonded structure 200, the resin member 201 and the intermediate member 203 are welded over the entire surface of the intermediate member 203, and the resin member 202 and the intermediate member 203 are welded in the bonding region R1.

なお、比較のために、中間部材203を介在させることなく、樹脂部材201および202を積層して半導体レーザを照射したが、接合しなかった。これは、PBTとPMMAとでは親和性が低いためであると考えられる。   For comparison, the resin members 201 and 202 were laminated and irradiated with the semiconductor laser without the intermediate member 203 interposed, but they were not joined. This is probably because PBT and PMMA have low affinity.

次に、実施例2の接合構造体200aの作製方法について説明する。   Next, a method for manufacturing the bonded structure 200a of Example 2 will be described.

接合構造体200aでは、図10に示すように、樹脂部材201aとしてPBTを用いた。樹脂部材201aの形状は、実施例1の樹脂部材201と同様である。   In the joint structure 200a, as shown in FIG. 10, PBT was used as the resin member 201a. The shape of the resin member 201a is the same as that of the resin member 201 of the first embodiment.

そして、図11に示すように、樹脂部材201aの表面の加工領域R2に加工用のレーザを照射することにより、その加工領域R2に複数の穿孔部(図示省略)を形成した。なお、加工領域R2は、接合用のレーザが照射される領域とほぼ対応する領域である。   And as shown in FIG. 11, the process area | region R2 of the surface of the resin member 201a was irradiated with the laser for a process, and the some perforation part (illustration omitted) was formed in the process area | region R2. Note that the processing region R2 is a region substantially corresponding to the region irradiated with the bonding laser.

その後、実施例1の場合と同様にして、樹脂部材201aの表面に中間部材203を溶着し、その中間部材203に樹脂部材202を溶着した。なお、樹脂部材202はPMMAであり、中間部材はABSである。   Thereafter, in the same manner as in Example 1, the intermediate member 203 was welded to the surface of the resin member 201a, and the resin member 202 was welded to the intermediate member 203. The resin member 202 is PMMA, and the intermediate member is ABS.

このようにして、実施例2の接合構造体200aを作製した。つまり、実施例2では、樹脂部材201aに穿孔部が形成されていることが実施例1と異なっている。なお、接合構造体200aでは、樹脂部材201aと中間部材203とが中間部材203の全面で溶着され、樹脂部材202と中間部材203とが接合領域R1で溶着されている。さらに、加工領域R2に設けられた穿孔部に中間部材203が充填されることにより、樹脂部材201aと中間部材203とがアンカー効果によって機械的に接合されている。   In this manner, the bonded structure 200a of Example 2 was produced. That is, the second embodiment is different from the first embodiment in that a perforated portion is formed in the resin member 201a. In the bonded structure 200a, the resin member 201a and the intermediate member 203 are welded over the entire surface of the intermediate member 203, and the resin member 202 and the intermediate member 203 are welded in the bonding region R1. Furthermore, the resin member 201a and the intermediate member 203 are mechanically joined to each other by the anchor effect by filling the perforated portion provided in the processing region R2 with the intermediate member 203.

次に、実施例3の接合構造体200bの作製方法について説明する。   Next, a method for producing the bonded structure 200b of Example 3 will be described.

接合構造体200bでは、図12に示すように、金属部材201bとしてSUSを用いた。金属部材201bの形状は、実施例1の樹脂部材201と同様である。   In the junction structure 200b, as shown in FIG. 12, SUS was used as the metal member 201b. The shape of the metal member 201b is the same as that of the resin member 201 of the first embodiment.

そして、実施例2の場合と同様にして、加工領域に複数の穿孔部(図示省略)を形成した。なお、加工領域は、接合用のレーザが照射される領域とほぼ対応する領域である。その後、金属部材201bの表面に中間部材203を形成し、その中間部材203に樹脂部材202を溶着した。なお、樹脂部材202はPMMAであり、中間部材203はABSである。   Then, in the same manner as in Example 2, a plurality of perforated portions (not shown) were formed in the processing area. Note that the processing region is a region substantially corresponding to the region irradiated with the bonding laser. Thereafter, an intermediate member 203 was formed on the surface of the metal member 201b, and a resin member 202 was welded to the intermediate member 203. The resin member 202 is PMMA, and the intermediate member 203 is ABS.

このようにして、実施例3の接合構造体200bを作製した。つまり、実施例3では、接合対象の一方を金属部材201bにしたことが実施例2と異なっている。なお、接合構造体200bでは、加工領域に設けられた穿孔部に中間部材203が充填されることにより、金属部材201bと中間部材203とがアンカー効果によって機械的に接合され、樹脂部材202と中間部材203とが接合領域R1で溶着されている。   In this manner, the bonded structure 200b of Example 3 was produced. That is, the third embodiment is different from the second embodiment in that one of the objects to be joined is the metal member 201b. In the bonded structure 200b, the metal member 201b and the intermediate member 203 are mechanically bonded to each other by the anchor effect by filling the perforated portion provided in the processing region with the intermediate member 203, and the resin member 202 and the intermediate structure 203b. The member 203 is welded at the joining region R1.

なお、比較のために、中間部材203を介在させることなく、穿孔部を形成していない金属部材201bおよび樹脂部材202を積層して半導体レーザを照射したが、接合しなかった。   For comparison, the metal member 201b and the resin member 202, which are not formed with a perforated portion, were laminated and irradiated with the semiconductor laser without interposing the intermediate member 203, but they were not joined.

そして、接合構造体200、200aおよび200bについて接合強度を測定した。具体的には、イマダ製のデジタルフォースゲージを用いて、せん断方向に引張速度5mm/minで試験を行い、接合界面の剥離で試験を終了した。そして、その試験での最大強度を接合強度として採用した。なお、せん断方向とは、接合界面に沿ってずれる方向(図9などにおける左右方向)である。   And joining strength was measured about joined structure 200, 200a, and 200b. Specifically, using a digital force gauge manufactured by Imada, a test was performed at a tensile speed of 5 mm / min in the shear direction, and the test was terminated by peeling off the bonding interface. And the maximum intensity | strength in the test was employ | adopted as joining strength. Note that the shear direction is a direction deviating along the bonding interface (the left-right direction in FIG. 9 and the like).

その結果、実施例1の接合構造体200は、接合強度が5.6MPaであった。すなわち、実施例1による接合構造体200では、中間部材203を介在させることにより、溶着しにくい樹脂部材201および202を接合するとともに、十分な接合強度を確保することができた。   As a result, the bonding structure 200 of Example 1 had a bonding strength of 5.6 MPa. In other words, in the bonded structure 200 according to the first embodiment, the intermediate member 203 is interposed, so that the resin members 201 and 202 that are difficult to weld can be bonded and sufficient bonding strength can be secured.

また、実施例2の接合構造体200aは、接合強度が7.4MPaであった。すなわち、実施例2による接合構造体200aでは、樹脂部材201aに穿孔部を形成することにより、その穿孔部に中間部材203を充填してアンカー効果によっても中間部材203と樹脂部材201aとを接合することができるので、接合強度の向上を図ることができた。   Moreover, the joining structure 200a of Example 2 had a joining strength of 7.4 MPa. That is, in the joint structure 200a according to the second embodiment, by forming a perforated portion in the resin member 201a, the intermediate member 203 is filled into the perforated portion and the intermediate member 203 and the resin member 201a are joined also by the anchor effect. Therefore, it was possible to improve the bonding strength.

また、実施例3の接合構造体200bは、接合強度が6.9MPaであった。すなわち、実施例3による接合構造体200bでは、中間部材203を介在させることにより、金属部材201bおよび樹脂部材202を接合するとともに、十分な接合強度を確保することができた。   In addition, the bonding structure 200b of Example 3 had a bonding strength of 6.9 MPa. That is, in the joint structure 200b according to Example 3, by interposing the intermediate member 203, the metal member 201b and the resin member 202 were joined, and sufficient joint strength could be secured.

(他の実施形態)
なお、今回開示した実施形態は、すべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、本発明の技術的範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
(Other embodiments)
In addition, embodiment disclosed this time is an illustration in all the points, Comprising: It does not become a basis of limited interpretation. Therefore, the technical scope of the present invention is not interpreted only by the above-described embodiments, but is defined based on the description of the scope of claims. Further, the technical scope of the present invention includes all modifications within the meaning and scope equivalent to the scope of the claims.

たとえば、第1実施形態では、3Dプリンタを用いて樹脂部材1の表面11に中間部材3を溶着する例を示したが、これに限らず、射出成形または熱プレス成形により、樹脂部材1の表面11に中間部材3を溶着するようにしてもよい。なお、第2および第3実施形態についても同様である。   For example, in the first embodiment, an example in which the intermediate member 3 is welded to the surface 11 of the resin member 1 using a 3D printer is shown. However, the present invention is not limited thereto, and the surface of the resin member 1 is formed by injection molding or hot press molding. 11 may be welded with the intermediate member 3. The same applies to the second and third embodiments.

また、第1実施形態では、レーザL1を照射することにより、樹脂部材2の表面21に中間部材3を溶着する例を示したが、これに限らず、熱プレス成形により、樹脂部材2の表面21に中間部材3を溶着するようにしてもよい。この場合には、樹脂部材2がレーザL1に対して透過性を有していなくてもよいし、中間部材3がレーザL1に対して吸収性を有していなくてもよい。なお、第2および第3実施形態についても同様である。   Moreover, in 1st Embodiment, although the example which welds the intermediate member 3 to the surface 21 of the resin member 2 by irradiating the laser L1 was shown, it is not restricted to this, The surface of the resin member 2 is formed by hot press molding. The intermediate member 3 may be welded to 21. In this case, the resin member 2 does not have to be transmissive to the laser L1, and the intermediate member 3 does not have to be absorbent to the laser L1. The same applies to the second and third embodiments.

また、第1実施形態では、樹脂部材1と中間部材3とを溶着した後に、樹脂部材2と中間部材3とを溶着する例を示したが、これに限らず、樹脂部材2と中間部材3とを溶着した後に、樹脂部材1と中間部材3とを溶着するようにしてもよい。この場合に、樹脂部材2と中間部材3とを溶着する方法としては、3Dプリンティング、射出成形および熱プレス成形が挙げられる。また、樹脂部材2が接合された中間部材3と樹脂部材1とを溶着する方法としては、レーザL1の照射および熱プレス成形が挙げられる。なお、第2および第3実施形態についても同様である。   Moreover, in 1st Embodiment, after welding the resin member 1 and the intermediate member 3, the example which welds the resin member 2 and the intermediate member 3 was shown, but it is not restricted to this, The resin member 2 and the intermediate member 3 are shown. Alternatively, the resin member 1 and the intermediate member 3 may be welded. In this case, as a method of welding the resin member 2 and the intermediate member 3, 3D printing, injection molding, and hot press molding are mentioned. Moreover, as a method of welding the intermediate member 3 and the resin member 1 to which the resin member 2 is bonded, there are laser L1 irradiation and hot press molding. The same applies to the second and third embodiments.

また、樹脂部材1および2を中間部材3に対して同時に溶着するようにしてもよい。この場合の溶着方法としては、レーザL1の照射および熱プレス成形が挙げられる。なお、レーザ溶着する場合には、樹脂部材1および2の少なくともいずれか一方がレーザL1に対して透過性を有し、中間部材3がレーザL1に対して吸収性を有する。また、熱プレス成形による場合には、樹脂部材1、2および中間部材3のレーザ透過性はどのようなものであってもよい。なお、第2および第3実施形態についても同様である。   Further, the resin members 1 and 2 may be welded to the intermediate member 3 at the same time. Examples of the welding method in this case include laser L1 irradiation and hot press molding. In the case of laser welding, at least one of the resin members 1 and 2 is transmissive to the laser L1, and the intermediate member 3 is absorbent to the laser L1. In the case of hot press molding, the resin members 1 and 2 and the intermediate member 3 may have any laser transmittance. The same applies to the second and third embodiments.

また、第2実施形態では、樹脂部材1aの表面11aに穿孔部12aが形成される例を示したが、これに限らず、樹脂部材の表面に溝状の凹状部が形成されていてもよい。また、穿孔部12aに突出部13aが形成される例を示したが、これに限らず、穿孔部が円筒状またはすり鉢状に形成されていてもよい。また、加工用のレーザL2により穿孔部12aを形成する例を示したが、これに限らず、ブラスト加工などのその他の粗面化加工により凹状部を形成するようにしてもよい。なお、第3実施形態についても同様である。   Moreover, in 2nd Embodiment, although the example in which the perforated part 12a was formed in the surface 11a of the resin member 1a was shown, not only this but the groove-shaped recessed part may be formed in the surface of the resin member. . Moreover, although the example in which the protrusion part 13a is formed in the perforated part 12a was shown, not only this but the perforated part may be formed in the cylindrical shape or the mortar shape. Moreover, although the example which forms the perforated part 12a with the laser L2 for a process was shown, you may make it form a recessed part by other roughening processes, such as not only this but blasting. The same applies to the third embodiment.

本発明は、中間部材を介して異なる部材が接合された接合構造体の製造方法および接合構造体に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for a method for manufacturing a joined structure in which different members are joined via an intermediate member, and the joined structure.

1、1a 樹脂部材(第1樹脂部材)
1b 金属部材
2 樹脂部材(第2樹脂部材)
3 中間部材
11a、11b 表面
12a、12b 穿孔部(凹状部)
100、100a、100b 接合構造体
1, 1a Resin member (first resin member)
1b Metal member 2 Resin member (second resin member)
3 Intermediate member 11a, 11b Surface 12a, 12b Perforated part (concave part)
100, 100a, 100b bonded structure

Claims (5)

第1樹脂部材および第2樹脂部材が樹脂製の中間部材を介して接合された接合構造体の製造方法であって、
前記中間部材を溶融させて前記第1樹脂部材に溶着することにより、前記中間部材と前記第1樹脂部材とを接合する工程、または、前記第1樹脂部材の表面に凹状部を形成し、前記中間部材を溶融させて前記凹状部に充填することにより、前記中間部材と前記第1樹脂部材とをアンカー効果により接合する工程と、
前記中間部材を溶融させて前記第2樹脂部材に溶着することにより、前記中間部材と前記第2樹脂部材とを接合する工程とを備えることを特徴とする接合構造体の製造方法。
A method for producing a bonded structure in which a first resin member and a second resin member are bonded via a resin intermediate member,
A step of joining the intermediate member and the first resin member by melting the intermediate member and welding the intermediate member to the first resin member, or forming a concave portion on the surface of the first resin member; Joining the intermediate member and the first resin member by an anchor effect by melting the intermediate member and filling the concave portion;
A method of manufacturing a joined structure comprising: joining the intermediate member and the second resin member by melting the intermediate member and welding the intermediate member to the second resin member.
請求項1に記載の接合構造体の製造方法において、
前記中間部材は、熱可塑性樹脂であり、20℃における貯蔵弾性率が500MPaを超えていることを特徴とする接合構造体の製造方法。
In the manufacturing method of the joined structure according to claim 1,
The said intermediate member is a thermoplastic resin, The storage elastic modulus in 20 degreeC exceeds 500 Mpa, The manufacturing method of the junction structure characterized by the above-mentioned.
請求項1または2に記載の接合構造体の製造方法において、
前記第2樹脂部材がレーザに対して透過性を有し、前記中間部材がレーザに対して吸収性を有し、
前記第2樹脂部材側から前記中間部材に向けてレーザが照射されることにより、前記中間部材が溶融されて前記第2樹脂部材に溶着されることを特徴とする接合構造体の製造方法。
In the manufacturing method of the junction structure according to claim 1 or 2,
The second resin member is transmissive to the laser, the intermediate member is absorbent to the laser,
A method of manufacturing a joint structure, wherein the intermediate member is melted and welded to the second resin member by irradiating the intermediate member with a laser from the second resin member side.
金属部材および樹脂部材が樹脂製の中間部材を介して接合された接合構造体の製造方法であって、
前記金属部材の表面に凹状部を形成し、前記中間部材を溶融させて前記凹状部に充填することにより、前記中間部材と前記金属部材とをアンカー効果により接合する工程と、
前記中間部材を溶融させて前記樹脂部材に溶着することにより、前記中間部材と前記樹脂部材とを接合する工程とを備えることを特徴とする接合構造体の製造方法。
A method for manufacturing a bonded structure in which a metal member and a resin member are bonded via a resin intermediate member,
Forming a concave portion on the surface of the metal member, melting the intermediate member and filling the concave portion, thereby joining the intermediate member and the metal member by an anchor effect;
A method of manufacturing a joined structure comprising: joining the intermediate member and the resin member by melting the intermediate member and welding the intermediate member to the resin member.
請求項1〜4のいずれか1つに記載の接合構造体の製造方法によって製造されたことを特徴とする接合構造体。   A bonded structure manufactured by the method for manufacturing a bonded structure according to claim 1.
JP2015020152A 2015-02-04 2015-02-04 Production method of joint structure, and joint structure Pending JP2016141092A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015020152A JP2016141092A (en) 2015-02-04 2015-02-04 Production method of joint structure, and joint structure
PCT/JP2016/051728 WO2016125594A1 (en) 2015-02-04 2016-01-21 Manufacturing method for joined structural body and joined structural body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015020152A JP2016141092A (en) 2015-02-04 2015-02-04 Production method of joint structure, and joint structure

Publications (1)

Publication Number Publication Date
JP2016141092A true JP2016141092A (en) 2016-08-08

Family

ID=56563945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015020152A Pending JP2016141092A (en) 2015-02-04 2015-02-04 Production method of joint structure, and joint structure

Country Status (2)

Country Link
JP (1) JP2016141092A (en)
WO (1) WO2016125594A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190138021A (en) * 2018-06-04 2019-12-12 동국대학교 경주캠퍼스 산학협력단 Adhering member of hetero materials and method for preparing the same
CN112351879A (en) * 2018-09-28 2021-02-09 株式会社Lg化学 Method for producing bonded body of different materials and bonded body of different materials
US11441732B2 (en) 2020-01-17 2022-09-13 Toyota Jidosha Kabushiki Kaisha Manufacturing method for high-pressure tank and high-pressure tank

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6417786B2 (en) 2014-08-22 2018-11-07 オムロン株式会社 Manufacturing method of bonded structure
EP3466290B1 (en) * 2017-10-04 2023-11-29 adidas AG Composite sports article
DE102018202805B4 (en) 2017-10-04 2022-10-20 Adidas Ag composite sporting goods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007584A (en) * 2006-06-28 2008-01-17 Okayama Prefecture Joining method for different kinds of members and joined article of different kinds of members
JP2009173023A (en) * 2007-12-25 2009-08-06 Hayakawa Rubber Co Ltd Sheet for laser joining and joining method using it
JP2011143539A (en) * 2010-01-12 2011-07-28 Nippon Light Metal Co Ltd Method for laser-joining of aluminum alloy plate and resin member together

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007584A (en) * 2006-06-28 2008-01-17 Okayama Prefecture Joining method for different kinds of members and joined article of different kinds of members
JP2009173023A (en) * 2007-12-25 2009-08-06 Hayakawa Rubber Co Ltd Sheet for laser joining and joining method using it
JP2011143539A (en) * 2010-01-12 2011-07-28 Nippon Light Metal Co Ltd Method for laser-joining of aluminum alloy plate and resin member together

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190138021A (en) * 2018-06-04 2019-12-12 동국대학교 경주캠퍼스 산학협력단 Adhering member of hetero materials and method for preparing the same
KR102118938B1 (en) * 2018-06-04 2020-06-04 동국대학교 경주캠퍼스 산학협력단 Adhering member of hetero materials and method for preparing the same
CN112351879A (en) * 2018-09-28 2021-02-09 株式会社Lg化学 Method for producing bonded body of different materials and bonded body of different materials
EP3797985A4 (en) * 2018-09-28 2021-10-20 Lg Chem, Ltd. Method for manufacturing bonded body of different materials and bonded structure of different materials
CN112351879B (en) * 2018-09-28 2022-11-08 株式会社Lg化学 Method for producing bonded body of different materials and bonded body of different materials
US11904553B2 (en) 2018-09-28 2024-02-20 Lg Chem, Ltd. Method for producing joined body of different materials and joined body of different materials
US11441732B2 (en) 2020-01-17 2022-09-13 Toyota Jidosha Kabushiki Kaisha Manufacturing method for high-pressure tank and high-pressure tank

Also Published As

Publication number Publication date
WO2016125594A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
WO2016125594A1 (en) Manufacturing method for joined structural body and joined structural body
TWI659845B (en) Method for manufacturing joint structure and joint structure
WO2016027775A1 (en) Junction structure and method for manufacturing junction structure
JP6439455B2 (en) Manufacturing method of bonded structure
JP6459930B2 (en) Manufacturing method of bonded structure and bonded structure
JP6414477B2 (en) Manufacturing method of bonded structure
TWI704994B (en) Method for manufacturing joint structure and joint structure
JP6398778B2 (en) Manufacturing method of bonded structure and bonded structure
WO2016140097A1 (en) Joining method, joined-structure production method, and joined structure
JP6432364B2 (en) Manufacturing method of bonded structure
WO2016117501A1 (en) Laser welding method and bonded structure
JP2016132246A (en) Method for producing joint structure and joint structure
JP2016168598A (en) Processing method, manufacturing method of junction structure, and junction structure
JP2016132156A (en) Joined structure and method for producing joined structure
WO2016140096A1 (en) Joining structure
WO2016140052A1 (en) Method for laser processing metal member, and joined structure produced using said method
KR102603133B1 (en) Junction structure, and switches, photoelectric sensors, and proximity sensors having the junction structure
WO2022185739A1 (en) Method for producing junction and junction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190226