JP2016132156A - Joined structure and method for producing joined structure - Google Patents

Joined structure and method for producing joined structure Download PDF

Info

Publication number
JP2016132156A
JP2016132156A JP2015008044A JP2015008044A JP2016132156A JP 2016132156 A JP2016132156 A JP 2016132156A JP 2015008044 A JP2015008044 A JP 2015008044A JP 2015008044 A JP2015008044 A JP 2015008044A JP 2016132156 A JP2016132156 A JP 2016132156A
Authority
JP
Japan
Prior art keywords
metal member
region
joining
laser
resin member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015008044A
Other languages
Japanese (ja)
Inventor
和義 西川
Kazuyoshi Nishikawa
和義 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Priority to JP2015008044A priority Critical patent/JP2016132156A/en
Priority to PCT/JP2016/051276 priority patent/WO2016117502A1/en
Publication of JP2016132156A publication Critical patent/JP2016132156A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/324Bonding taking account of the properties of the material involved involving non-metallic parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/024Thermal pre-treatments
    • B29C66/0246Cutting or perforating, e.g. burning away by using a laser or using hot air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/118Single monotone curved joints
    • B29C66/1182Single monotone curved joints the joint being C-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1222Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1224Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/124Tongue and groove joints
    • B29C66/1246Tongue and groove joints characterised by the female part, i.e. the part comprising the groove
    • B29C66/12461Tongue and groove joints characterised by the female part, i.e. the part comprising the groove being rounded, i.e. U-shaped or C-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/124Tongue and groove joints
    • B29C66/1246Tongue and groove joints characterised by the female part, i.e. the part comprising the groove
    • B29C66/12463Tongue and groove joints characterised by the female part, i.e. the part comprising the groove being tapered
    • B29C66/12464Tongue and groove joints characterised by the female part, i.e. the part comprising the groove being tapered being V-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30325Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined making use of cavities belonging to at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/532Joining single elements to the wall of tubular articles, hollow articles or bars
    • B29C66/5326Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/727General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being porous, e.g. foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/61Joining from or joining on the inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74281Copper or alloys of copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74283Iron or alloys of iron, e.g. steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/92Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools
    • B29C66/929Measuring or controlling the joining process by measuring or controlling the pressure, the force, the mechanical power or the displacement of the joining tools characterized by specific pressure, force, mechanical power or displacement values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/93Measuring or controlling the joining process by measuring or controlling the speed
    • B29C66/939Measuring or controlling the joining process by measuring or controlling the speed characterised by specific speed values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0079Liquid crystals

Abstract

PROBLEM TO BE SOLVED: To provide a joined structure which suppresses thermal diffusion of a metal member and enhances thermal melting properties of a resin member, and has excellent joining properties between the metal member and the resin member, even if irradiated laser energy is small when the metal member and the resin member are joined to each other by laser, and to provide a method for producing the joined structure.SOLUTION: A joined structure 1 has a joined region BF in which a metal member 2 and a resin member 3 are joined to each other. A recess 21 having an opening is formed in the joined region BF on the surface of the metal member 2. The recess 21 of the metal member 2 is filled with the resin member 3. In the metal member 2, a thin thickness portion 23 in which the thickness of the metal member 2 is thinned is provided in a region including the joined region BF and an adjacent region NF adjacent to the joined region BF.SELECTED DRAWING: Figure 3

Description

本発明は、金属部材と樹脂部材とが接合された接合領域を有する接合構造体及び接合構造体の製造方法に関する。   The present invention relates to a joint structure having a joint region in which a metal member and a resin member are joined, and a method for manufacturing the joint structure.

従来から、樹脂同士が接合された接合領域を有する接合構造体の製造方法として特許文献1が知られている。   Conventionally, patent document 1 is known as a manufacturing method of the joining structure which has the joining area | region where resin was joined.

特許文献1には、レーザ光を透過する透過性熱可塑性樹脂から構成される第1の部材と、レーザ光を吸収する吸収性熱可塑性樹脂から構成される第2の部材とを接触させ、レーザ光で接触面を溶融して接合する熱可塑性樹脂部材のレーザ溶着方法であって、第1の部材と第2の部材とを減圧雰囲気下で接触させ、第1の部材側から前記2つの部材の接触面に前記レーザ光を照射する熱可塑性樹脂部材のレーザ溶着方法が開示されている。   In Patent Document 1, a first member made of a transmissive thermoplastic resin that transmits laser light and a second member made of an absorptive thermoplastic resin that absorbs laser light are brought into contact with each other, and laser A method of laser welding a thermoplastic resin member that melts and joins contact surfaces with light, wherein the first member and the second member are brought into contact in a reduced-pressure atmosphere, and the two members are joined from the first member side. A laser welding method of a thermoplastic resin member for irradiating the contact surface with the laser beam is disclosed.

特許文献1によれば、レーザ光を透過する透過性熱可塑性樹脂から構成される第1の部材と、レーザ光を吸収する吸収性熱可塑性樹脂から構成される第2の部材とを接触させ、レーザ光を透過する第1の部材側からレーザ光を照射すると、レーザ光はレーザ光を透過しない第2の部材の表面でエネルギーが蓄積されて発熱する。レーザ光をさらに照射すると発熱量は大きくなり、接触面を通して第1の部材との接触面も同時に加熱され、2つの部材の接触面が溶融し、2つの部材が溶着される。   According to Patent Document 1, a first member made of a transmissive thermoplastic resin that transmits laser light is brought into contact with a second member made of an absorptive thermoplastic resin that absorbs laser light, When the laser beam is irradiated from the side of the first member that transmits the laser beam, the laser beam generates heat by accumulating energy on the surface of the second member that does not transmit the laser beam. When the laser beam is further irradiated, the amount of heat generation increases, the contact surface with the first member is simultaneously heated through the contact surface, the contact surfaces of the two members are melted, and the two members are welded.

特開2007−111926号公報JP 2007-1111926 A

特許文献1の技術は、樹脂同士の接合に関する発明であるが、この発明を、樹脂部材と金属部材との接合に用いた場合は、以下に記載する課題が生じていた。   The technique of Patent Document 1 is an invention related to the joining of resins, but when this invention is used for joining a resin member and a metal member, problems described below have occurred.

樹脂部材と金属部材とを減圧雰囲気下でレーザを照射して接合させた場合、減圧により樹脂側への熱拡散が生じにくいことに加え、熱伝導度の違いから金属部材側への熱拡散が圧倒的に大きいので、樹脂部材の熱溶融が生じにくかった。そのため、樹脂部材の熱溶融を生じさせて、樹脂部材と金属部材とを接合させるためには、レーザの照射エネルギーを上げる必要があった。このように、レーザの照射エネルギーを上げることは、省エネルギー化の観点から好ましくない。   When a resin member and a metal member are bonded by irradiating a laser in a reduced pressure atmosphere, thermal diffusion to the resin side is less likely to occur due to reduced pressure, and thermal diffusion to the metal member side is caused by a difference in thermal conductivity. Since it was overwhelmingly large, it was difficult for the resin member to melt by heat. Therefore, it is necessary to increase the laser irradiation energy in order to cause the resin member to melt and bond the resin member and the metal member. Thus, increasing the laser irradiation energy is not preferable from the viewpoint of energy saving.

本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、金属部材と樹脂部材とのレーザ接合時に照射されたレーザエネルギーが小さい場合でも、金属部材の熱拡散を抑制して樹脂部材の熱溶融性を高め、金属部材と樹脂部材との接合性が良好な接合構造体及びこの接合構造体の製造方法の提供を目的とする。   The present invention has been made in view of such a point, and the object of the present invention is to suppress thermal diffusion of the metal member even when the laser energy irradiated at the time of laser joining between the metal member and the resin member is small. It is an object of the present invention to provide a bonded structure and a method for manufacturing the bonded structure, in which the heat melting property of the resin member is improved and the bondability between the metal member and the resin member is good.

上記目的を達するために、本発明は次のとおりの構成としている。   In order to achieve the above object, the present invention is configured as follows.

本発明に係る接合構造体は、金属部材と樹脂部材とが接合された接合領域を有する接合構造体であって、前記金属部材の前記接合領域には、当該金属部材の表面に開口を有する凹状部が形成されるとともに、前記金属部材の凹状部には、前記樹脂部材が充填されており、前記金属部材には、前記接合領域と、該接合領域と隣接する隣接領域と、を包含する領域内に、前記金属部材の厚みが薄くされた薄厚部が設けられていることを特徴とする。   The joint structure according to the present invention is a joint structure having a joint region in which a metal member and a resin member are joined, and the joint region of the metal member has a concave shape having an opening on the surface of the metal member. And a concave portion of the metal member is filled with the resin member, and the metal member includes the joining region and an adjacent region adjacent to the joining region. A thin portion in which the thickness of the metal member is reduced is provided therein.

また、上記接合構造体であって、前記薄厚部は、前記接合領域内に形成されていてもよい。   Moreover, it is the said junction structure, Comprising: The said thin part may be formed in the said junction area | region.

また、上記接合構造体であって、前記薄厚部は、少なくとも前記隣接領域を含む領域内に形成されていてもよい。   Moreover, it is the said junction structure, Comprising: The said thin part may be formed in the area | region including the said adjacent area | region at least.

また、上記接合構造体であって、前記薄厚部には、断熱材が備えられていてもよい。   Moreover, it is the said junction structure, Comprising: The heat insulating material may be provided in the said thin part.

また、上記接合構造体であって、前記薄厚部には、前記金属部材を補強する補強部が備えられていてもよい。   Moreover, it is the said joining structure, Comprising: The thin part may be equipped with the reinforcement part which reinforces the said metal member.

また、上記接合構造体であって、前記凹状部の内周面には、内側に突出する突出部が形成されていてもよい。   Moreover, it is the said joining structure, Comprising: The protrusion part which protrudes inside may be formed in the internal peripheral surface of the said recessed part.

また、本発明に係る接合構造体の製造方法は、金属部材と樹脂部材とが接合された接合領域を有する接合構造体の製造方法であって、前記金属部材において、前記接合領域と、該接合領域と隣接する隣接領域と、を包含する領域内に、前記金属部材の厚みが薄くされた薄厚部を形成する薄厚部形成工程と、前記金属部材の表面の前記接合領域に、開口を有する凹状部を形成する凹状部形成工程と、前記金属部材の表面と前記樹脂部材とを隣接配置する配置工程と、前記樹脂部材側から前記金属部材の接合領域にレーザを照射することにより、前記金属部材の前記凹状部に前記樹脂部材を充填して接合させる接合工程と、を備えることを特徴とする。   Moreover, the manufacturing method of the joining structure which concerns on this invention is a manufacturing method of the joining structure which has a joining area | region where the metal member and the resin member were joined, Comprising: In the said metal member, the said joining area | region and this joining A thin portion forming step of forming a thin portion where the thickness of the metal member is reduced in a region including the adjacent region adjacent to the region, and a concave shape having an opening in the bonding region on the surface of the metal member A concave portion forming step of forming a portion, an arrangement step of arranging the surface of the metal member and the resin member adjacent to each other, and irradiating a laser to a joining region of the metal member from the resin member side, thereby the metal member And a bonding step of filling and bonding the resin member to the concave portion.

また、上記接合構造体の製造方法であって、前記接合工程では、前記金属部材の接合領域にレーザを照射する際に、前記接合領域内においてレーザを走査させるとともに、前記走査を同一軌跡で複数回行うこととしてもよい。   Further, in the method for manufacturing the bonded structure, in the bonding step, when the laser is irradiated on the bonding region of the metal member, the laser is scanned in the bonding region, and a plurality of the scans are performed with the same locus. It may be performed once.

また、上記接合構造体の製造方法であって、前記凹状部形成工程では、1パルスが複数のサブパルスで構成されるレーザを照射することにより、前記凹状部を形成してもよい。   Moreover, it is a manufacturing method of the said junction structure, Comprising: In the said recessed part formation process, you may form the said recessed part by irradiating the laser with which 1 pulse consists of several subpulses.

本発明によれば、金属部材と樹脂部材とのレーザ接合時に照射されたレーザエネルギーが小さい場合でも、金属部材の熱拡散を抑制して樹脂部材の熱溶融性を高め、金属部材と樹脂部材との接合性が良好な接合構造体及びこの接合構造体の製造方法を提供できる。   According to the present invention, even when the laser energy irradiated at the time of laser joining between the metal member and the resin member is small, the thermal diffusion of the metal member is suppressed and the heat melting property of the resin member is improved. It is possible to provide a bonded structure having good bondability and a method for manufacturing the bonded structure.

図1は、本発明に係る接合構造体の製造方法において、配置工程を説明する説明図である。FIG. 1 is an explanatory view for explaining an arrangement step in the method for manufacturing a bonded structure according to the present invention. 図2は、本発明に係る接合構造体の製造方法において、接合工程を説明する説明図である。FIG. 2 is an explanatory view for explaining a joining step in the method for manufacturing a joined structure according to the present invention. 図3は、本発明に係る接合構造体の第1実施形態の断面図である。FIG. 3 is a cross-sectional view of the first embodiment of the bonded structure according to the present invention. 図4Aは、本発明に係る接合構造体の第1実施形態の変形例を示す図である。FIG. 4A is a diagram showing a modification of the first embodiment of the joint structure according to the present invention. 図4Bは、本発明に係る接合構造体の第1実施形態の他の変形例を示す図である。FIG. 4B is a view showing another modification of the first embodiment of the joint structure according to the present invention. 図4Cは、本発明に係る接合構造体の第1実施形態のさらに他の変形例を示す図である。FIG. 4C is a diagram showing still another modification of the first embodiment of the joint structure according to the present invention. 図5は、本発明に係る接合構造体の第1実施形態のさらに他の変形例の断面図である。FIG. 5 is a cross-sectional view of still another modification of the first embodiment of the bonded structure according to the present invention. 図6は、本発明に係る接合構造体の第1実施形態のさらに他の変形例の斜視図である。FIG. 6 is a perspective view of still another modified example of the first embodiment of the bonded structure according to the present invention. 図7は、本発明に係る接合構造体の第1実施形態のさらに他の変形例の斜視図である。FIG. 7 is a perspective view of still another modified example of the first embodiment of the bonded structure according to the present invention. 図8は、本発明に係る接合構造体の第2実施形態の断面図である。FIG. 8 is a cross-sectional view of a second embodiment of the bonded structure according to the present invention. 図9Aは、本発明に係る接合構造体の第2実施形態の変形例を示す図である。FIG. 9A is a diagram showing a modification of the second embodiment of the joint structure according to the present invention. 図9Bは、本発明に係る接合構造体の第2実施形態の他の変形例を示す図である。FIG. 9B is a diagram showing another modified example of the second embodiment of the joint structure according to the present invention. 図9Cは、本発明に係る接合構造体の第2実施形態のさらに他の変形例を示す図である。FIG. 9C is a diagram showing still another modification of the second embodiment of the joint structure according to the present invention. 図10は、本発明に係る接合構造体の第3実施形態の断面図である。FIG. 10 is a cross-sectional view of a third embodiment of the joint structure according to the present invention. 図11は、本発明に係る接合構造体の第3実施形態の変形例の断面図である。FIG. 11 is a cross-sectional view of a modified example of the third embodiment of the bonded structure according to the present invention. 図12は、本発明に係る接合構造体の第3実施形態の他の変形例の斜視図である。FIG. 12 is a perspective view of another modification of the third embodiment of the joint structure according to the present invention. 図13は、第1実施形態の接合構造体の実施例を模式的に説明した説明図である。FIG. 13 is an explanatory diagram schematically illustrating an example of the bonded structure according to the first embodiment. 図14は、第3実施形態の接合構造体の実施例を模式的に説明した説明図である。FIG. 14 is an explanatory diagram schematically illustrating an example of the bonded structure according to the third embodiment.

(第1実施形態)
以下、本発明の第1実施形態の接合構造体1及びこの接合構造体1の製造方法について図1〜7を参照しながら説明する。
(First embodiment)
Hereinafter, the joint structure 1 according to the first embodiment of the present invention and the method for manufacturing the joint structure 1 will be described with reference to FIGS.

図1は、接合構造体の製造方法において、配置工程を説明する説明図、図2は、接合構造体の製造方法において、固化工程を説明する説明図、図3は、接合構造体の第1実施形態の断面図、図4A〜4Cは、それぞれ、接合構造体の第1実施形態の変形例を示す断面図、図5は、接合構造体の第1実施形態の他の変形例の断面図、図6は、接合構造体の第1実施形態のさらに他の変形例の斜視図、図7は、接合構造体の第1実施形態のさらに他の変形例の斜視図である。   FIG. 1 is an explanatory diagram for explaining an arrangement step in a method for manufacturing a joined structure, FIG. 2 is an explanatory diagram for explaining a solidifying step in the method for producing a joined structure, and FIG. 3 is a first diagram of the joined structure. 4A to 4C are cross-sectional views showing a modification of the first embodiment of the joint structure, and FIG. 5 is a cross-sectional view of another modification of the first embodiment of the joint structure. FIG. 6 is a perspective view of still another modified example of the first embodiment of the joined structure, and FIG. 7 is a perspective view of still another modified example of the first embodiment of the joined structure.

−接合構造体の構成−
まず、本発明の第1実施形態の接合構造体1について説明する。
−Composition structure−
First, the bonded structure 1 according to the first embodiment of the present invention will be described.

本実施形態の接合構造体1は、金属部材2と樹脂部材3とがレーザによって接合された接合構造体1であって、金属部材2と樹脂部材3とが接合された接合領域BFを有している。   The bonding structure 1 of the present embodiment is a bonding structure 1 in which a metal member 2 and a resin member 3 are bonded by a laser, and has a bonding region BF in which the metal member 2 and the resin member 3 are bonded. ing.

金属部材2は、鉄系金属、ステンレス系金属、銅系金属、アルミ系金属、マグネシウム系金属、および、それらの合金が挙げられる。また、金属成型体であってもよく、亜鉛ダイカスト、アルミダイカスト、粉末冶金などであってもよい。   Examples of the metal member 2 include iron metal, stainless steel metal, copper metal, aluminum metal, magnesium metal, and alloys thereof. Moreover, a metal molding may be sufficient and zinc die-casting, aluminum die-casting, powder metallurgy, etc. may be sufficient.

金属部材2の接合領域BFには、金属部材2の表面に開口を有する凹状部21が形成される。凹状部21は、平面的に見てほぼ円形の非貫通孔であり、金属部材2の表面に複数形成されている。なお、凹状部の形状は、非貫通孔に限定されず、断面が凹形状であれば、例えば、溝状であってもよい。   A concave portion 21 having an opening on the surface of the metal member 2 is formed in the bonding region BF of the metal member 2. The concave portion 21 is a substantially circular non-through hole when seen in a plan view, and a plurality of the concave portions 21 are formed on the surface of the metal member 2. In addition, the shape of a recessed part is not limited to a non-through-hole, For example, a groove shape may be sufficient if a cross section is a concave shape.

凹状部21の開口径は、30μm以上、100μm以下が好ましい。これは、開口径が30μmを下回ると、後述する接合工程において照射された接合用のレーザが凹状部21内に十分に閉じ込められず、接合用のレーザのエネルギーを熱に変換する変換効率が低下する場合があるためである。一方、開口径が100μmを上回ると、単位面積あたりの凹状部21の数が減少して、接合用のレーザのエネルギーを熱に変換する変換効率が低下する場合があるためである。また、凹状部21の深さは、10μm以上であることが好ましい。これは、深さが10μmを下回ると、接合用のレーザのエネルギーを熱に変換する変換効率が低下する場合があるためである。   The opening diameter of the concave portion 21 is preferably 30 μm or more and 100 μm or less. This is because, when the aperture diameter is less than 30 μm, the bonding laser irradiated in the bonding process described later is not sufficiently confined in the concave portion 21, and the conversion efficiency for converting the energy of the bonding laser into heat decreases. It is because there is a case to do. On the other hand, when the opening diameter exceeds 100 μm, the number of the concave portions 21 per unit area decreases, and the conversion efficiency for converting the energy of the laser for bonding into heat may decrease. Moreover, it is preferable that the depth of the recessed part 21 is 10 micrometers or more. This is because if the depth is less than 10 μm, the conversion efficiency for converting the energy of the laser for bonding into heat may decrease.

また、凹状部21の間隔(所定の凹状部21の中心と、所定の凹状部21と隣接する凹状部21の中心との距離)は、200μm以下であることが好ましい。これは、凹状部21の間隔が200μmを上回ると、単位面積あたりの凹状部21の数が減少して、接合用のレーザのエネルギーを熱に変換する変換効率が低下する場合があるためである。なお、凹状部21の間隔の下限の一例としては、凹状部21が重畳して潰れない距離である。また、凹状部21の間隔は等間隔であることが好ましい。これは、凹状部21が等間隔であると、接合用のレーザが照射される際の熱の分布が等方的になるためである。   The interval between the concave portions 21 (the distance between the center of the predetermined concave portion 21 and the center of the concave portion 21 adjacent to the predetermined concave portion 21) is preferably 200 μm or less. This is because if the interval between the concave portions 21 exceeds 200 μm, the number of the concave portions 21 per unit area decreases, and the conversion efficiency for converting the energy of the laser for bonding into heat may decrease. . An example of the lower limit of the interval between the concave portions 21 is a distance at which the concave portions 21 are not overlapped and crushed. Moreover, it is preferable that the space | interval of the recessed part 21 is equal intervals. This is because when the concave portions 21 are equidistant, the heat distribution when the bonding laser is irradiated is isotropic.

凹状部21には、後述する樹脂部材3が充填されることにより、金属部材2と樹脂部材3とが接合される。ここで、本実施形態の凹状部21には、内側に突出する突出部22が形成されている。このように凹状部21の内周面に、内側に突出する突出部22が形成されている場合は、凹状部21に樹脂部材3が充填されると、突出部22によるアンカー効果によって金属部材2と樹脂部材3との接合強度を高めることができる。なお、凹状部21に突出部22が形成されていなくてもよい。   The metal member 2 and the resin member 3 are joined to each other by filling the concave portion 21 with a resin member 3 described later. Here, the concave portion 21 of the present embodiment is formed with a protruding portion 22 that protrudes inward. Thus, when the protrusion part 22 which protrudes inside is formed in the internal peripheral surface of the concave part 21, if the resin member 3 is filled into the concave part 21, the metal member 2 will be obtained by the anchor effect by the protrusion part 22. And the resin member 3 can be increased in bonding strength. Note that the protrusion 22 may not be formed in the concave portion 21.

金属部材2のうちの、接合領域BFと、接合領域BFと隣接する隣接領域NFと、を包含する領域内には、金属部材2の厚みが薄くされた薄厚部23が設けられている(図3参照)。図示例では、金属部材2の裏面に孔が形成されて薄厚部23とされている。なお、金属部材2の裏面加工の形状は、孔形状に限られず、例えば、溝形状でもよい。すなわち、金属部材2が薄厚とされていればどのような形状でもよい。   In the metal member 2, a thin portion 23 in which the thickness of the metal member 2 is reduced is provided in a region including the bonding region BF and the adjacent region NF adjacent to the bonding region BF (see FIG. 3). In the illustrated example, a hole is formed on the back surface of the metal member 2 to form a thin portion 23. In addition, the shape of the back surface processing of the metal member 2 is not limited to the hole shape, and may be a groove shape, for example. That is, any shape may be used as long as the metal member 2 is thin.

また、図示例では、薄厚部23は、接合領域BF内に形成されているが、凹状部21が接合領域BFと隣接する隣接領域NFに亘って形成されていてもよい。ここで、隣接領域NFは、後述する接合工程において、レーザを金属部材2の接合領域BFに照射しても、レーザの照射方向(金属部材2の厚み方向)への熱拡散を少なくすることができる程度の領域とする。   In the illustrated example, the thin portion 23 is formed in the bonding region BF, but the concave portion 21 may be formed over the adjacent region NF adjacent to the bonding region BF. Here, the adjacent region NF may reduce thermal diffusion in the laser irradiation direction (thickness direction of the metal member 2) even when the laser is applied to the bonding region BF of the metal member 2 in the bonding process described later. The area should be as large as possible.

なお、薄厚部23の形状は、図3の形状に限定されるものではなく、図4Aのように、接合領域BFの中央から接合領域BFの領域端に向けて徐々に薄厚にした形状や、図4Bのように、金属部材2の裏面の接合領域BFを断面視で台形状に刳り貫いて加工して薄厚にした形状や、図4Cのように金属部材2の裏面の接合領域BFを断面視で円弧状に刳り貫いて加工して薄厚にした形状であってもよい。   The shape of the thin portion 23 is not limited to the shape of FIG. 3, and as shown in FIG. 4A, the shape gradually thinned from the center of the bonding region BF toward the region end of the bonding region BF, As shown in FIG. 4B, the joining region BF on the back surface of the metal member 2 is processed into a trapezoidal shape in a cross-sectional view and thinned, or the joining region BF on the back surface of the metal member 2 is cross-sectionally shown in FIG. The shape may be thinned by processing by penetrating in a circular arc shape.

また、薄厚部23には、断熱材25が備えられていてもよい(図5参照)。断熱材25の一例としては、発泡樹脂からなる断熱材が挙げられる。このように、薄厚部23に断熱材25が備えられている場合は、後述する接合構造体1の製造方法における接合工程において、接合領域BFにレーザを照射させて金属部材2と樹脂部材3とを接合させた場合、接合領域BF内に熱を閉じ込める効果を高めることができる。   Further, the thin portion 23 may be provided with a heat insulating material 25 (see FIG. 5). An example of the heat insulating material 25 is a heat insulating material made of foamed resin. As described above, when the thin-walled portion 23 is provided with the heat insulating material 25, in the bonding step in the manufacturing method of the bonded structure 1 to be described later, the bonding region BF is irradiated with a laser, and the metal member 2 and the resin member 3 When bonding is performed, the effect of confining heat in the bonding region BF can be enhanced.

また、薄厚部23には、金属部材2を補強する補強部24を備えていてもよい(図6及び図7参照)。補強部24は、図6に示すように、金属部材2の裏面に形成された溝内に互いに対角を結ぶように配置されていてもよいし、図7に示すように、溝内の間隙を結ぶように平行に複数配置されていてもよい。このように、薄厚部23に金属部材2を補強する補強部24が備えられている場合は、金属部材2の強度を高めることができる。   Further, the thin portion 23 may include a reinforcing portion 24 that reinforces the metal member 2 (see FIGS. 6 and 7). As shown in FIG. 6, the reinforcing portion 24 may be disposed so as to be diagonally connected to each other in the groove formed on the back surface of the metal member 2, or as shown in FIG. A plurality of them may be arranged in parallel so as to connect each other. Thus, when the thin part 23 is provided with the reinforcing part 24 that reinforces the metal member 2, the strength of the metal member 2 can be increased.

樹脂部材3は、熱可塑性樹脂、または、熱硬化性樹脂であり、熱可塑性樹脂の一例としては、PVC(ポリ塩化ビニル)、PS(ポリスチレン)、AS(アクリロニトリル・スチレン)、ABS(アクリロニトリル・ブタジエン・スチレン)、PMMA(ポリメチルメタクリレート)、PE(ポリエチレン)、PP(ポリプロピレン)、PC(ポリカーボネート)、m−PPE(変性ポリフェニレンエーテル)、PA6(ポリアミド6)、PA66(ポリアミド66)、POM(ポリアセタール)、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、PSF(ポリサルホン)、PAR(ポリアリレート)、PEI(ポリエーテルイミド)、PPS(ポリフェニレンサルファイド)、PES(ポリエーテルサルホン)、PEEK(ポリエーテルエーテルケトン)、PAI(ポリアミドイミド)、LCP(液晶ポリマー)、PVDC(ポリ塩化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、PCTFE(ポリクロロトリフルオロエチレン)、および、PVDF(ポリフッ化ビニリデン)が挙げられる。また、TPE(熱可塑性エラストマ)であってもよく、TPEの一例としては、TPO(オレフィン系)、TPS(スチレン系)、TPEE(エステル系)、TPU(ウレタン系)、TPA(ナイロン系)、および、TPVC(塩化ビニル系)が挙げられる。   The resin member 3 is a thermoplastic resin or a thermosetting resin. Examples of the thermoplastic resin include PVC (polyvinyl chloride), PS (polystyrene), AS (acrylonitrile / styrene), ABS (acrylonitrile / butadiene). -Styrene), PMMA (polymethyl methacrylate), PE (polyethylene), PP (polypropylene), PC (polycarbonate), m-PPE (modified polyphenylene ether), PA6 (polyamide 6), PA66 (polyamide 66), POM (polyacetal) ), PET (polyethylene terephthalate), PBT (polybutylene terephthalate), PSF (polysulfone), PAR (polyarylate), PEI (polyetherimide), PPS (polyphenylene sulfide), PES (polyethersulfur) ), PEEK (polyetheretherketone), PAI (polyamideimide), LCP (liquid crystal polymer), PVDC (polyvinylidene chloride), PTFE (polytetrafluoroethylene), PCTFE (polychlorotrifluoroethylene), and PVDF (Polyvinylidene fluoride). TPE (thermoplastic elastomer) may also be used, and examples of TPE include TPO (olefin-based), TPS (styrene-based), TPEE (ester-based), TPU (urethane-based), TPA (nylon-based), And TPVC (vinyl chloride type) is mentioned.

熱硬化性樹脂の一例としては、EP(エポキシ)、PUR(ポリウレタン)、UF(ユリアホルムアルデヒド)、MF(メラミンホルムアルデヒド)、PF(フェノールホルムアルデヒド)、UP(不飽和ポリエステル)、および、SI(シリコーン)が挙げられる。また、FRP(繊維強化プラスチック)であってもよい。   Examples of thermosetting resins include EP (epoxy), PUR (polyurethane), UF (urea formaldehyde), MF (melamine formaldehyde), PF (phenol formaldehyde), UP (unsaturated polyester), and SI (silicone) Is mentioned. Further, it may be FRP (fiber reinforced plastic).

なお、熱可塑性樹脂および熱硬化性樹脂には、充填剤が添加されていてもよい。充填剤の一例としては、無機系充填剤(ガラス繊維、無機塩類など)、金属系充填剤、有機系充填剤、および、炭素繊維などが挙げられる。   Note that a filler may be added to the thermoplastic resin and the thermosetting resin. Examples of the filler include inorganic fillers (glass fibers, inorganic salts, etc.), metal fillers, organic fillers, and carbon fibers.

−接合構造体の製造方法−
次に、本実施形態に係る接合構造体1の製造方法について説明する。
-Manufacturing method of bonded structure-
Next, a method for manufacturing the bonded structure 1 according to the present embodiment will be described.

本実施形態に係る接合構造体1の製造方法は、薄厚部形成工程と、凹状部形成工程と、配置工程と、接合工程と、を備える。以下、各工程について説明するが、本実施形態に係る接合構造体の製造方法の工程の順番は、説明する順番に限定されるものではない。   The manufacturing method of the junction structure 1 according to the present embodiment includes a thin portion forming step, a concave portion forming step, an arranging step, and a joining step. Hereinafter, although each process is demonstrated, the order of the process of the manufacturing method of the junction structure concerning this embodiment is not limited to the order to explain.

・薄厚部形成工程
薄厚部形成工程は、金属部材2において、接合領域BFと、接合領域BFと隣接する隣接領域NFと、を包含する領域内に、金属部材2の厚みが薄くされた薄厚部23を形成する工程である。
Thin part forming process The thin part forming process is a thin part in which the thickness of the metal member 2 is reduced in the metal member 2 in a region including the bonding region BF and the adjacent region NF adjacent to the bonding region BF. 23 is a step of forming 23.

薄厚部23の形成には、金属部材2をレーザ加工する方法や、予め、薄厚部23を形成するための金型を用いて、当該金型によって薄厚部23を有する金属部材2を形成する方法等が挙げられるが、これらの方法に限定されるものではない。   For forming the thin portion 23, a method of laser processing the metal member 2 or a method of forming a metal member 2 having the thin portion 23 by using a mold for forming the thin portion 23 in advance. However, it is not limited to these methods.

なお、薄厚部23の形状は、図3の形状に限定されるものではなく、図4A〜図4Cに示した形状であってもよい。また、薄厚部23には、断熱材25を形成してもよい(図5参照)。また、薄厚部23には、金属部材2を補強する補強部24を形成してもよい(図6及び図7)。   In addition, the shape of the thin part 23 is not limited to the shape of FIG. 3, The shape shown to FIG. 4A-FIG. 4C may be sufficient. Moreover, you may form the heat insulating material 25 in the thin part 23 (refer FIG. 5). Moreover, you may form the reinforcement part 24 which reinforces the metal member 2 in the thin part 23 (FIG.6 and FIG.7).

・凹状部形成工程
凹状部形成工程は、金属部材2の表面の接合領域BFに、開口を有する凹状部21を形成する工程である。
-Concave part formation process The concave part formation process is a process of forming the concave part 21 having an opening in the bonding region BF on the surface of the metal member 2.

凹状部21は、レーザ加工処理、ブラスト処理、サンドペーパ処理、陽極酸化処理、放電加工処理、エッチング処理、およびプレス加工処理等の公知の方法で形成される。本実施形態では、レーザ加工処理によって凹状部21を形成する方法について詳述する。   The concave portion 21 is formed by a known method such as laser processing, blast processing, sandpaper processing, anodizing processing, electric discharge processing, etching processing, or press processing. In the present embodiment, a method for forming the concave portion 21 by laser processing will be described in detail.

凹状部21を形成する加工用レーザの種類としては、パルス発振が可能なものが好ましく、ファイバレーザ、YAGレーザ、YVO4レーザ、半導体レーザ、炭酸ガスレーザ、エキシマレーザが選択でき、レーザの波長を考慮すると、ファイバレーザ、YAGレーザ、YAGレーザの第2高調波、YVO4レーザ、半導体レーザが好ましい。凹状部21は、平面的に見てほぼ円形の非貫通孔であり、金属部材2の表面に複数形成される。 The type of processing laser that forms the concave portion 21 is preferably a laser capable of pulse oscillation, and can be selected from a fiber laser, a YAG laser, a YVO 4 laser, a semiconductor laser, a carbon dioxide gas laser, and an excimer laser, and considers the wavelength of the laser. Then, a fiber laser, a YAG laser, a second harmonic of a YAG laser, a YVO 4 laser, and a semiconductor laser are preferable. The concave portion 21 is a substantially circular non-through hole as viewed in plan, and a plurality of the concave portions 21 are formed on the surface of the metal member 2.

凹状部21を形成する装置の一例としては、オムロン製のファイバレーザマーカMXZ2000またはMX−Z2050を挙げることができる。このファイバレーザマーカでは、1パルスが複数のサブパルスで構成されるレーザを照射することが可能である。このため、レーザのエネルギーを深さ方向に集中させやすいので、凹状部21を形成するのに好適である。   As an example of an apparatus for forming the concave portion 21, there can be mentioned a fiber laser marker MXZ2000 or MX-Z2050 manufactured by OMRON. With this fiber laser marker, it is possible to irradiate a laser where one pulse is composed of a plurality of subpulses. For this reason, the energy of the laser is easily concentrated in the depth direction, which is suitable for forming the concave portion 21.

具体的には、金属部材2にレーザが照射されると、金属部材2が局部的に溶融されることにより凹状部21の形成が進行する。このとき、レーザが複数のサブパルスで構成されているため、溶融された金属部材2が飛散されにくく、凹状部21の近傍に堆積されやすい。そして、凹状部21の形成が進行すると、溶融された金属部材2が凹状部21の内部に堆積されることにより、凹状部21の内周面に、内側に突出する突出部22が形成される。   Specifically, when the metal member 2 is irradiated with a laser, the metal member 2 is locally melted, so that the formation of the concave portion 21 proceeds. At this time, since the laser is composed of a plurality of sub-pulses, the molten metal member 2 is not easily scattered and is easily deposited in the vicinity of the concave portion 21. When the formation of the concave portion 21 proceeds, the molten metal member 2 is deposited inside the concave portion 21, thereby forming a protruding portion 22 that protrudes inward on the inner peripheral surface of the concave portion 21. .

なお、上記ファイバレーザマーカによる加工条件としては、サブパルスの1周期が15ns以下であることが好ましい。これは、サブパルスの1周期が15nsを超えると、熱伝導によりエネルギーが拡散しやすくなり、突出部22を有する凹状部21を形成しにくくなるためである。なお、サブパルスの1周期は、サブパルスの1回分の照射時間と、そのサブパルスの照射が終了されてから次回のサブパルスの照射が開始されるまでの間隔との合計時間である。   As a processing condition by the fiber laser marker, it is preferable that one period of the sub-pulse is 15 ns or less. This is because when one period of the sub-pulse exceeds 15 ns, energy is easily diffused by heat conduction, and it becomes difficult to form the concave portion 21 having the protruding portion 22. Note that one cycle of the subpulse is a total time of the irradiation time for one subpulse and the interval from the end of the irradiation of the subpulse to the start of the irradiation of the next subpulse.

また、上記ファイバレーザマーカによる加工条件としては、1パルスのサブパルス数は、2以上50以下であることが好ましい。これは、サブパルス数が50を超えると、サブパルスの単位あたりの出力が小さくなり、突出部22を有する凹状部21を形成しにくくなるためである。   Further, as a processing condition by the fiber laser marker, the number of subpulses of one pulse is preferably 2 or more and 50 or less. This is because if the number of subpulses exceeds 50, the output per unit of subpulses becomes small, and it becomes difficult to form the concave portion 21 having the protruding portions 22.

なお、凹状部形成工程は、コストの観点から薄厚部形成工程後に行うことが好ましいが、凹状部形成工程後に上述した薄厚部形成工程を行ってもよい。   In addition, although it is preferable to perform a recessed part formation process after a thin part formation process from a viewpoint of cost, you may perform the thin part formation process mentioned above after a recessed part formation process.

・配置工程
配置工程は、金属部材2の表面と樹脂部材3とを隣接配置する工程である(図1参照)。隣接配置する際に、金属部材2及び樹脂部材3を加圧することにより、後述する固化工程によって接合しやすくすることができる。
-Arrangement | positioning process An arrangement | positioning process is a process of arrange | positioning the surface of the metal member 2 and the resin member 3 adjacently (refer FIG. 1). When the metal member 2 and the resin member 3 are pressurized when adjacently disposed, the metal member 2 and the resin member 3 can be easily joined by a solidification process described later.

なお、金属部材2および樹脂部材3が隣接配置されたときに、金属部材2の表面または樹脂部材3の表面にレーザ吸収層(図示省略)が設けられていてもよい。このレーザ吸収層としては、接合用のレーザの波長に対して吸収性を有する顔料系または染料系のレーザ吸収材などを適宜選択して用いることができる。このように構成すれば、接合用のレーザのエネルギーを熱に変換する変換効率の向上を図ることができる。なお、レーザ吸収層の厚みは、金属部材2の凹状部21への充填性を確保するために10μm以下が好ましい。また、樹脂部材3が要求されるレーザの透過性を満たす範囲内において、樹脂部材3にレーザ吸収材が配合されていてもよい。   When the metal member 2 and the resin member 3 are disposed adjacent to each other, a laser absorption layer (not shown) may be provided on the surface of the metal member 2 or the surface of the resin member 3. As the laser absorbing layer, a pigment-based or dye-based laser absorbing material having an absorptivity with respect to the wavelength of the laser for bonding can be appropriately selected and used. If comprised in this way, the improvement of the conversion efficiency which converts the energy of the laser for joining into heat can be aimed at. In addition, the thickness of the laser absorption layer is preferably 10 μm or less in order to ensure the filling property of the concave portion 21 of the metal member 2. Further, a laser absorbing material may be blended in the resin member 3 as long as the resin member 3 satisfies the required laser transmittance.

・接合工程
接合工程は、樹脂部材3側から金属部材2の接合領域BFにレーザを照射することにより、金属部材2の凹状部21に樹脂部材3を充填して接合させる工程である。
Bonding process The bonding process is a process in which the resin member 3 is filled and bonded to the concave portion 21 of the metal member 2 by irradiating the bonding region BF of the metal member 2 with a laser from the resin member 3 side.

具体的には、配置工程において、金属部材2と樹脂部材3とを加圧して接触させた後、接合用のレーザを金属部材2の表面に向けて照射する。   Specifically, in the arranging step, the metal member 2 and the resin member 3 are pressed and brought into contact with each other, and then a bonding laser is irradiated toward the surface of the metal member 2.

ここで、レーザ照射は、樹脂部材3がレーザ透過性を有する場合は、樹脂部材3側からレーザを照射してもよいし、金属部材2側からレーザを照射してもよい。一方で、樹脂部材3がレーザ透過性を有しない場合は、金属部材2側からレーザを照射する。なお、接合用のレーザの種類としては、ファイバレーザ、YAGレーザ、YVO4レーザ、半導体レーザ、炭酸ガスレーザ、エキシマレーザが選択できる。 Here, when the resin member 3 has laser transparency, the laser irradiation may be performed from the resin member 3 side or from the metal member 2 side. On the other hand, when the resin member 3 does not have laser transparency, the laser is irradiated from the metal member 2 side. As the type of laser for bonding, fiber laser, YAG laser, YVO 4 laser, a semiconductor laser, carbon dioxide laser, an excimer laser can be selected.

レーザを金属部材2の接合領域BFに照射することにより、レーザのエネルギーが金属部材2の内部で熱に変換され、金属部材2の表面の温度が高くなる。これにより、金属部材2の表面近傍の樹脂部材3が溶融され、その樹脂部材3が凹状部21に充填される。本実施形態では、薄厚部23が接合領域BF内に形成されているので、レーザを金属部材2の接合領域BFに照射しても、レーザの照射方向(金属部材2の厚み方向)への熱拡散を抑制することができる。   By irradiating the bonding region BF of the metal member 2 with the laser, the energy of the laser is converted into heat inside the metal member 2, and the surface temperature of the metal member 2 is increased. Thereby, the resin member 3 in the vicinity of the surface of the metal member 2 is melted, and the concave portion 21 is filled with the resin member 3. In the present embodiment, since the thin portion 23 is formed in the bonding region BF, even if the laser is irradiated to the bonding region BF of the metal member 2, heat in the laser irradiation direction (thickness direction of the metal member 2) is generated. Diffusion can be suppressed.

その後、樹脂部材3が固化されることにより、樹脂部材3が金属部材2に接合された接合構造体1を製造できる(図3参照)。   Thereafter, the resin member 3 is solidified, whereby the bonded structure 1 in which the resin member 3 is bonded to the metal member 2 can be manufactured (see FIG. 3).

ここで、金属部材2の接合領域BFにレーザを照射する際に、接合領域BF内においてレーザを走査させるとともに、前記走査を同一軌跡で複数回行ってもよい。この場合は、レーザの走査を同一軌跡で複数回行われるため、金属部材2の温度が上昇し、より効果的に樹脂部材3と金属部材2とを接合することができる。   Here, when irradiating the bonding region BF of the metal member 2 with a laser, the laser may be scanned in the bonding region BF, and the scanning may be performed a plurality of times along the same locus. In this case, since the laser scanning is performed a plurality of times along the same locus, the temperature of the metal member 2 rises, and the resin member 3 and the metal member 2 can be bonded more effectively.

以上、説明したとおり、本実施形態の接合構造体1の製造方法によれば、金属部材2の厚みが薄くされた薄厚部23を形成する薄厚部形成工程を備えるため、その後の接合工程において金属部材2と樹脂部材3とを接合させる際に、熱拡散を抑制して少ないレーザエネルギーで金属部材2と樹脂部材3とを接合させることができる。   As described above, according to the method for manufacturing the bonded structure 1 of the present embodiment, since the thin member forming step for forming the thin member 23 in which the thickness of the metal member 2 is reduced is provided, the metal is formed in the subsequent bonding step. When the member 2 and the resin member 3 are joined, the metal member 2 and the resin member 3 can be joined with less laser energy while suppressing thermal diffusion.

−接合構造体の実験例−
次に、上記した第1実施形態の効果を確認するために行った実験例について図13を参照しながら説明する。図13は、接合構造体の実施例を模式的に説明した説明図である。
-Experimental example of joint structure-
Next, an experimental example performed to confirm the effect of the first embodiment described above will be described with reference to FIG. FIG. 13 is an explanatory view schematically illustrating an example of a bonded structure.

この実験例では、第1実施形態に対応する接合構造体の実施例1−1〜1−5並びに比較例1−1及び1−2による接合構造体を作製した。   In this experimental example, bonded structures according to Examples 1-1 to 1-5 of the bonded structure corresponding to the first embodiment and Comparative Examples 1-1 and 1-2 were manufactured.

なお、各実施例及び各比較例に用いた金属部材は、材質がSUS304であり、長さ100mm、幅29mm、厚み3mmである。また、樹脂部材は、PMMA樹脂であり、長さ100mm、幅25mm、厚み3mmである。また、金属部材2と樹脂部材3との接合領域BFは、幅20mm、長さ20mmと設定した(図13参照)。   The metal member used in each example and each comparative example is made of SUS304, and has a length of 100 mm, a width of 29 mm, and a thickness of 3 mm. The resin member is a PMMA resin, and has a length of 100 mm, a width of 25 mm, and a thickness of 3 mm. Moreover, the joining area | region BF of the metal member 2 and the resin member 3 was set as width 20mm and length 20mm (refer FIG. 13).

さらに、接合工程における金属部材2と樹脂部材3との接合に用いたレーザは、半導体レーザであり、波長が808nm、発振モードは連続発振、焦点径は4mm、走査速度は2mm/sec、金属部材2と樹脂部材3との密着圧力は0.6MPaと設定した。   Further, the laser used for joining the metal member 2 and the resin member 3 in the joining process is a semiconductor laser, the wavelength is 808 nm, the oscillation mode is continuous oscillation, the focal diameter is 4 mm, the scanning speed is 2 mm / sec, the metal member The contact pressure between 2 and the resin member 3 was set to 0.6 MPa.

接合強度の評価は、インストロン製の電気機械式万能試験機5900を用いて行った。具体的には、せん断方向に引張速度5mm/minで試験を行い、接合強度を評価した。評価結果を表1に示す。   The evaluation of the bonding strength was performed using an electromechanical universal testing machine 5900 manufactured by Instron. Specifically, the test was performed at a tensile speed of 5 mm / min in the shear direction to evaluate the bonding strength. The evaluation results are shown in Table 1.

Figure 2016132156
Figure 2016132156

[比較例1−1]
比較例1−1の接合構造体は、金属部材に薄厚部を設けずに、接合工程において、上述した半導体レーザの出力を15Wと設定して、金属部材と樹脂部材とを接合領域で接合させた。
[Comparative Example 1-1]
In the joining structure of Comparative Example 1-1, the metal member and the resin member are joined in the joining region by setting the output of the semiconductor laser described above to 15 W in the joining step without providing the thin portion on the metal member. It was.

この接合構造体の接合強度は5.6MPaであった。
[比較例1−2]
比較例1−2の接合構造体は、金属部材に薄厚部を設けずに、接合工程において、上述した半導体レーザの出力を20Wと設定して、金属部材と樹脂部材とを接合領域で接合させた。
The bonding strength of this bonded structure was 5.6 MPa.
[Comparative Example 1-2]
In the joining structure of Comparative Example 1-2, the metal member and the resin member are joined in the joining region by setting the output of the semiconductor laser described above to 20 W in the joining process without providing the thin portion on the metal member. It was.

この接合構造体の接合強度は7.2MPaであった。   The bonding strength of this bonded structure was 7.2 MPa.

[実施例1−1]
実施例1−1の接合構造体100は、金属部材200の裏面の接合領域BF´に、長さ20mm、幅20mm、厚み2.5mmの孔(すなわち、接合領域BF´と略等しい面積を有する孔)を形成して薄厚部とし、接合工程において、上述した半導体レーザの出力を15Wと設定して、金属部材200と樹脂部材300とを接合領域BF´で接合させた。
[Example 1-1]
In the bonding structure 100 of Example 1-1, the bonding region BF ′ on the back surface of the metal member 200 has a hole having a length of 20 mm, a width of 20 mm, and a thickness of 2.5 mm (that is, an area substantially equal to the bonding region BF ′). In the joining process, the output of the semiconductor laser described above was set to 15 W, and the metal member 200 and the resin member 300 were joined in the joining region BF ′.

この接合構造体100の接合強度は11.8MPaであった。   The bonding strength of this bonded structure 100 was 11.8 MPa.

[実施例1−2]
実施例1−2の接合構造体100は、金属部材200の裏面の接合領域BF´に、長さ20mm、幅20mm、厚み2.5mmの孔(すなわち、接合領域BF´と略等しい面積を有する孔)を形成して薄厚部とし、接合工程において、上述した半導体レーザの出力を20Wと設定して、金属部材200と樹脂部材300とを接合領域BF´で接合させた。
[Example 1-2]
In the bonding structure 100 of Example 1-2, the bonding region BF ′ on the back surface of the metal member 200 has a hole having a length of 20 mm, a width of 20 mm, and a thickness of 2.5 mm (that is, an area substantially equal to the bonding region BF ′). In the joining process, the output of the semiconductor laser described above was set to 20 W, and the metal member 200 and the resin member 300 were joined in the joining region BF ′.

この接合構造体100の接合強度は12.3MPaであった。   The bonding strength of this bonded structure 100 was 12.3 MPa.

[実施例1−3]
実施例1−3の接合構造体100は、金属部材200の裏面の接合領域BF´に、長さ20mm、幅20mm、厚み2.5mmの孔(すなわち、接合領域BF´と略等しい面積を有する孔)を形成して薄厚部とするとともに、孔内に断熱材を設け、接合工程において、上述した半導体レーザの出力を15Wと設定して、金属部材200と樹脂部材300とを接合領域BF´で接合させた。
[Example 1-3]
In the bonding structure 100 of Example 1-3, the bonding region BF ′ on the back surface of the metal member 200 has a hole having a length of 20 mm, a width of 20 mm, and a thickness of 2.5 mm (that is, an area substantially equal to the bonding region BF ′). Hole) to form a thin portion, a heat insulating material is provided in the hole, and in the bonding step, the output of the semiconductor laser described above is set to 15 W, and the metal member 200 and the resin member 300 are bonded to the bonding region BF ′. And joined.

この接合構造体100の接合強度は12.4MPaであった。   The bonding strength of this bonded structure 100 was 12.4 MPa.

[実施例1−4]
実施例1−4の接合構造体100は、金属部材200の裏面の接合領域BF´に、長さ20mm、幅20mm、厚み2.5mmの孔(すなわち、接合領域BF´と略等しい面積を有する孔)を形成して薄厚部とするとともに、孔内に互いに対角線を結ぶように形成された補強部24が備えられており、接合工程において、上述した半導体レーザの出力を15Wと設定して、金属部材200と樹脂部材300とを接合領域BF´で接合させた。
[Example 1-4]
In the bonding structure 100 of Example 1-4, the bonding region BF ′ on the back surface of the metal member 200 has a hole having a length of 20 mm, a width of 20 mm, and a thickness of 2.5 mm (that is, an area substantially equal to the bonding region BF ′). Hole) is formed into a thin portion, and a reinforcing portion 24 is formed so as to connect diagonal lines to each other in the hole. In the joining process, the output of the semiconductor laser described above is set to 15 W, The metal member 200 and the resin member 300 were joined at the joining region BF ′.

この接合構造体1の接合強度は11.5MPaであった。   The bonding strength of the bonded structure 1 was 11.5 MPa.

[実施例1−5]
実施例1−5の接合構造体100は、金属部材200の裏面の接合領域BF´に、長さ20mm、幅20mm、厚み2.5mmの孔(すなわち、接合領域BF´と略等しい面積を有する孔)を形成して薄厚部とするとともに、孔内に互いに対角線を結ぶように形成された補強部24が備えられており、接合工程において、上述した半導体レーザの出力を20Wと設定して、金属部材200と樹脂部材300とを接合領域BF´で接合させた。
[Example 1-5]
In the bonding structure 100 of Example 1-5, a hole having a length of 20 mm, a width of 20 mm, and a thickness of 2.5 mm is formed in the bonding region BF ′ on the back surface of the metal member 200 (that is, approximately the same area as the bonding region BF ′). Hole) is formed into a thin portion, and a reinforcing portion 24 formed so as to connect diagonal lines to each other is provided in the hole. In the joining process, the output of the semiconductor laser described above is set to 20 W, The metal member 200 and the resin member 300 were joined at the joining region BF ′.

この接合構造体1の接合強度は11.3MPaであった。   The bonding strength of the bonded structure 1 was 11.3 MPa.

以上の接合強度の評価結果から、薄厚部が備えられていない比較例1−1及び1−2の接合構造体の接合強度は、薄厚部が備えられた実施例1−1〜1−5の接合構造体100の接合強度よりも低い結果が得られた。   From the above evaluation results of the bonding strength, the bonding strengths of the bonded structures of Comparative Examples 1-1 and 1-2 in which the thin portion is not provided are those of Examples 1-1 to 1-5 in which the thin portion is provided. A result lower than the bonding strength of the bonded structure 100 was obtained.

これにより、本実施形態の接合構造体によれば、接合領域BF´にレーザを照射させて金属部材200と樹脂部材300とを接合させると、薄厚部が接合領域BF´内に形成されているので、レーザの照射方向への熱拡散を抑制することができる。従って、レーザ出力を抑制しながら金属部材200と樹脂部材300との接合強度を向上させることができる。   As a result, according to the bonded structure of the present embodiment, when the metal member 200 and the resin member 300 are bonded to each other by irradiating the bonding region BF ′ with a laser, a thin portion is formed in the bonding region BF ′. Therefore, thermal diffusion in the laser irradiation direction can be suppressed. Accordingly, the bonding strength between the metal member 200 and the resin member 300 can be improved while suppressing the laser output.

(第2実施形態)
以下、本発明の第2実施形態の接合構造体1及びこの接合構造体1の製造方法にについて図8及び9を参照しながら説明する。図8は、接合構造体の第2実施形態の断面図、図9A〜9Cは、それぞれ、接合構造体の第2実施形態の変形例を示す図である。
(Second Embodiment)
Hereinafter, the bonded structure 1 and the method for manufacturing the bonded structure 1 according to the second embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a cross-sectional view of the second embodiment of the bonded structure, and FIGS. 9A to 9C are diagrams showing modifications of the second embodiment of the bonded structure.

なお、本実施形態は、接合構造体1の薄厚部23に樹脂部材3が収容されて接合されている点が異なるだけであるので、以下、その相違点についてのみ説明し、同一の構成要素については、同一符号を付してその説明を省略する。   In addition, since this embodiment is different only in that the resin member 3 is accommodated in the thin portion 23 of the bonded structure 1 and bonded thereto, only the difference will be described below and the same components will be described. Are given the same reference numerals and their description is omitted.

−接合構造体の構成−
まず、本発明の第2実施形態の接合構造体1について説明する。
−Composition structure−
First, the joint structure 1 according to the second embodiment of the present invention will be described.

本実施形態の接合構造体1は、金属部材2の表面側を加工して薄厚部23が設けられている(図8参照)。図示例では、薄厚部23は、接合領域BF内に形成されている。   In the bonded structure 1 of the present embodiment, a thin portion 23 is provided by processing the surface side of the metal member 2 (see FIG. 8). In the illustrated example, the thin portion 23 is formed in the bonding region BF.

薄厚部23には、凹状部21が形成されており、この凹状部21に樹脂部材が充填されることにより、金属部材2と樹脂部材3とが接合される。なお、凹状部21には、内側に突出する突出部22が形成されているが、突出部22が形成されていなくてもよい。   A concave portion 21 is formed in the thin portion 23, and the metal member 2 and the resin member 3 are joined by filling the concave portion 21 with a resin member. In addition, although the protrusion part 22 which protrudes inside is formed in the concave-shaped part 21, the protrusion part 22 does not need to be formed.

なお、薄厚部23の形状は、図8の形状に限定されるものではなく、図9Aのように、接合領域BFの表面において、中央部が接合領域BFの表面と面一とならない程度に隆起させて断面視凸形状として薄厚にした形状や、図9Bのように、金属部材2の表面の接合領域BFを断面視で台形状に刳り貫いて加工して薄厚にした形状や、図9Cのように、金属部材2の表面の接合領域BFを断面視で円弧状に刳り貫いて加工して薄厚にした形状であってもよい。   Note that the shape of the thin portion 23 is not limited to the shape of FIG. 8, and as shown in FIG. 9A, the surface of the bonding region BF is raised so that the central portion is not flush with the surface of the bonding region BF. 9B, a shape that is thinned as a convex shape in cross-sectional view, a shape that is thinned by processing the joint region BF on the surface of the metal member 2 through a trapezoidal shape in cross-sectional view, as shown in FIG. As described above, the bonding region BF on the surface of the metal member 2 may be formed in a thin shape by penetrating into a circular arc shape in a cross-sectional view.

樹脂部材3は、図8及び9A〜9Cに示すとおり、接合領域BFの大きさと略同一の大きさ(つまり、薄厚部23に相当する溝内に収容される程度の大きさ)とされているが、この例に限られない。すなわち、樹脂部材3を金属部材2と同程度の大きさとし、樹脂部材3の表面が、薄厚部23に相当する溝内に収容される程度に膨出されていてもよい。   As shown in FIGS. 8 and 9A to 9C, the resin member 3 has a size that is substantially the same as the size of the bonding region BF (that is, a size that can be accommodated in the groove corresponding to the thin portion 23). However, it is not limited to this example. That is, the resin member 3 may have the same size as the metal member 2, and the surface of the resin member 3 may be bulged to the extent that it is accommodated in the groove corresponding to the thin portion 23.

−接合構造体の製造方法−
次に、本実施形態に係る接合構造体1の製造方法について説明する。
-Manufacturing method of bonded structure-
Next, a method for manufacturing the bonded structure 1 according to the present embodiment will be described.

・薄厚部形成工程
薄厚部形成工程により、金属部材2の表面を加工して薄厚部23とする。なお、薄厚部23の形状は、図8の形状に限定されるものではなく、図9A〜9Cに示した形状であってもよい。
-Thin part formation process The surface of the metal member 2 is processed into the thin part 23 by the thin part formation process. In addition, the shape of the thin part 23 is not limited to the shape of FIG. 8, The shape shown to FIG.

・凹状部形成工程
凹状部形成工により、金属部材2の薄厚部23に凹状部21を形成する。このとき、レーザが複数のサブパルスで構成されている場合は、凹状部21の内周面に、内側に突出する突出部22を形成できる。
-Recessed part formation process The recessed part 21 is formed in the thin part 23 of the metal member 2 by a recessed part formation process. At this time, when the laser is composed of a plurality of sub-pulses, the protruding portion 22 protruding inward can be formed on the inner peripheral surface of the concave portion 21.

・配置工程及び接合工程
配置工程により、金属部材2の表面と樹脂部材3とを隣接配置する。そして、金属部材2と樹脂部材3とを加圧して接触させた後、接合用のレーザを金属部材2の表面に向けて照射する。これにより、金属部材2の表面近傍の樹脂部材3が溶融され、その樹脂部材3が凹状部21に充填される。
-Arrangement process and joining process The surface of the metal member 2 and the resin member 3 are adjacently arranged by an arrangement process. Then, after the metal member 2 and the resin member 3 are pressed and brought into contact with each other, a laser for joining is irradiated toward the surface of the metal member 2. Thereby, the resin member 3 in the vicinity of the surface of the metal member 2 is melted, and the concave portion 21 is filled with the resin member 3.

その後、樹脂部材3が固化されることにより、樹脂部材3が金属部材2に接合された接合構造体1を製造できる。   Thereafter, the resin member 3 is solidified, whereby the bonded structure 1 in which the resin member 3 is bonded to the metal member 2 can be manufactured.

以上、説明したとおり、本実施形態の接合構造体1の製造方法によっても、金属部材2の厚みが薄くされた薄厚部23が形成されるため、金属部材2と樹脂部材3とを接合させる際に、少ないレーザエネルギーで金属部材2と樹脂部材3とを接合させることができる。   As described above, since the thin portion 23 in which the thickness of the metal member 2 is reduced is formed also by the method for manufacturing the bonded structure 1 of the present embodiment, when the metal member 2 and the resin member 3 are bonded together. In addition, the metal member 2 and the resin member 3 can be joined with a small amount of laser energy.

(第3実施形態)
以下、本発明の第3実施形態の接合構造体及びこの接合構造体の製造方法にについて図10〜12を参照しながら説明する。
(Third embodiment)
Hereinafter, the joint structure of the third embodiment of the present invention and the method for manufacturing the joint structure will be described with reference to FIGS.

図10は、接合構造体の第3実施形態の断面図、図11は、接合構造体の第3実施形態の変形例の断面図、図12は、接合構造体の第3実施形態の他の変形例の斜視図である。   FIG. 10 is a cross-sectional view of the third embodiment of the joint structure, FIG. 11 is a cross-sectional view of a modification of the third embodiment of the joint structure, and FIG. 12 is another view of the third embodiment of the joint structure. It is a perspective view of a modification.

なお、本実施形態は、接合構造体1の薄厚部23の構造が異なるだけであるので、以下、その相違点についてのみ説明し、同一の構成要素については、同一符号を付してその説明を省略する。   In the present embodiment, since only the structure of the thin portion 23 of the bonded structure 1 is different, only the difference will be described below, and the same components will be denoted by the same reference numerals and the description thereof will be given. Omitted.

−接合構造体の構成−
まず、本発明の第3実施形態の接合構造体1について説明する。
−Composition structure−
First, the joint structure 1 according to the third embodiment of the present invention will be described.

本実施形態の接合構造体1は、金属部材2の裏面にスリットを形成して薄厚部23が形成されている(図10参照)。   In the bonding structure 1 of the present embodiment, a thin portion 23 is formed by forming a slit on the back surface of the metal member 2 (see FIG. 10).

薄厚部23は、図示例では、少なくとも隣接領域NFを含む領域内に2つ形成されている。なお、薄厚部23の数は、1つでもよいし、3つ以上であってもよい。また、薄厚部23は、隣接領域NFを含む領域に亘って接合領域BF内に形成されていてもよい。   In the illustrated example, two thin portions 23 are formed in a region including at least the adjacent region NF. Note that the number of thin portions 23 may be one, or may be three or more. Further, the thin portion 23 may be formed in the bonding region BF over a region including the adjacent region NF.

凹状部21は、金属部材2の表面における接合領域BFに形成されている。この凹状部21に樹脂部材3が充填されることにより、金属部材2と樹脂部材3とが接合される。なお、凹状部21には、内側に突出する突出部22が形成されているが、突出部22が形成されていなくてもよい。   The concave portion 21 is formed in the bonding region BF on the surface of the metal member 2. By filling the concave portion 21 with the resin member 3, the metal member 2 and the resin member 3 are joined. In addition, although the protrusion part 22 which protrudes inside is formed in the concave-shaped part 21, the protrusion part 22 does not need to be formed.

なお、薄厚部23には、断熱材25が備えられていてもよいし(図11参照)、金属部材2を補強する補強部24が備えられていてもよい(図12参照)。また、補強部24は、スリットの間隙を結ぶように平行に配置されていてもよいし、スリット内に対角状に配置されていてもよい。   The thin portion 23 may be provided with a heat insulating material 25 (see FIG. 11) or a reinforcing portion 24 that reinforces the metal member 2 (see FIG. 12). Moreover, the reinforcement part 24 may be arrange | positioned in parallel so that the gap | interval of a slit may be tied, and may be arrange | positioned diagonally in the slit.

−接合構造体の製造方法−
次に、本実施形態に係る接合構造体1の製造方法について説明する。
-Manufacturing method of bonded structure-
Next, a method for manufacturing the bonded structure 1 according to the present embodiment will be described.

・薄厚部形成工程
薄厚部形成工程により、金属部材2の裏面にスリットを形成して薄厚部23とする。なお、薄厚部23には、断熱材25を形成してもよいし(図11参照)、金属部材2を補強する補強部24を形成してもよい。
-Thin part formation process A slit is formed in the back surface of the metal member 2 by the thin part formation process, and it is set as the thin part 23. FIG. Note that a heat insulating material 25 may be formed on the thin portion 23 (see FIG. 11), or a reinforcing portion 24 that reinforces the metal member 2 may be formed.

・凹状部形成工程
凹状部形成工程により、金属部材2の表面における接合領域BFに、凹状部21を形成する。このとき、レーザが複数のサブパルスで構成されている場合は、凹状部21の内周面に、内側に突出する突出部22を形成できる。
-Concave part formation process The concave part 21 is formed in the joining area | region BF in the surface of the metal member 2 by a concave part formation process. At this time, when the laser is composed of a plurality of sub-pulses, the protruding portion 22 protruding inward can be formed on the inner peripheral surface of the concave portion 21.

・配置工程及び接合工程
配置工程により、金属部材2の表面と樹脂部材3とを隣接配置する。そして、金属部材2と樹脂部材3とを加圧して接触させた後、接合工程により、接合用のレーザを金属部材2の表面に向けて照射する。
-Arrangement process and joining process The surface of the metal member 2 and the resin member 3 are adjacently arranged by an arrangement process. Then, after the metal member 2 and the resin member 3 are pressed and brought into contact with each other, a joining laser is irradiated toward the surface of the metal member 2 in a joining process.

レーザを金属部材2の接合領域BFに照射することにより、金属部材2の表面近傍の樹脂部材3が溶融され、その樹脂部材3が凹状部21に充填される。   By irradiating the bonding region BF of the metal member 2 with the laser, the resin member 3 in the vicinity of the surface of the metal member 2 is melted, and the resin member 3 is filled in the concave portion 21.

本実施形態では、薄厚部23は、少なくとも隣接領域NFを含む領域内に形成されているので、接合領域BFにレーザを照射しても、薄厚部23を介して接合領域BFから外部に熱拡散することを抑制できる。すなわち、薄厚部23が形成されていることにより、接合領域BF内にレーザエネルギーを留めることができる。   In the present embodiment, since the thin portion 23 is formed in a region including at least the adjacent region NF, thermal diffusion from the junction region BF to the outside via the thin portion 23 even if the junction region BF is irradiated with laser. Can be suppressed. That is, by forming the thin portion 23, the laser energy can be retained in the bonding region BF.

その後、樹脂部材3が固化されることにより、樹脂部材3が金属部材2に接合された接合構造体1を製造できる。   Thereafter, the resin member 3 is solidified, whereby the bonded structure 1 in which the resin member 3 is bonded to the metal member 2 can be manufactured.

以上、説明したとおり、本実施形態の接合構造体1の製造方法によっても、金属部材2の厚みが薄くされた薄厚部23が形成されるため、金属部材2と樹脂部材3とを接合させる際に、少ないレーザエネルギーで金属部材2と樹脂部材3とを接合させることができる。   As described above, since the thin portion 23 in which the thickness of the metal member 2 is reduced is formed also by the method for manufacturing the bonded structure 1 of the present embodiment, when the metal member 2 and the resin member 3 are bonded together. In addition, the metal member 2 and the resin member 3 can be joined with a small amount of laser energy.

−接合構造体の実験例−
次に、上記した第3実施形態の効果を確認するために行った実験例について図14を参照しながら説明する。図14は、第3実施形態の接合構造体の実施例を模式的に説明した説明図である。
-Experimental example of joint structure-
Next, an experimental example performed for confirming the effect of the above-described third embodiment will be described with reference to FIG. FIG. 14 is an explanatory diagram schematically illustrating an example of the bonded structure according to the third embodiment.

この実験例では、第3実施形態に対応する接合構造体の実施例2−1〜2−5並びに比較例2−1及び2−2による接合構造体を作製した。   In this experimental example, bonded structures according to Examples 2-1 to 2-5 of the bonded structure corresponding to the third embodiment and Comparative Examples 2-1 and 2-2 were manufactured.

なお、各実施例及び各比較例に用いた金属部材2は、材質がSUS304であり、長さ100mm、幅29mm、厚み3mmである。また、樹脂部材3は、PMMA樹脂であり、長さ100mm、幅25mm、厚み3mmである。また、金属部材2と樹脂部材3との接合領域BFは、幅20mm、長さ20mmと設定した。   The metal member 2 used in each example and each comparative example is made of SUS304, and has a length of 100 mm, a width of 29 mm, and a thickness of 3 mm. The resin member 3 is a PMMA resin and has a length of 100 mm, a width of 25 mm, and a thickness of 3 mm. Moreover, the joining area | region BF of the metal member 2 and the resin member 3 was set as width 20mm and length 20mm.

さらに、接合工程における金属部材2と樹脂部材3との接合に用いたレーザは半導体レーザであり、波長が808nm、発振モードは連続発振、焦点径は4mm、走査速度は2mm/sec、金属部材と樹脂部材との密着圧力は0.6MPaと設定した。   Further, the laser used for joining the metal member 2 and the resin member 3 in the joining process is a semiconductor laser, the wavelength is 808 nm, the oscillation mode is continuous oscillation, the focal diameter is 4 mm, the scanning speed is 2 mm / sec, The contact pressure with the resin member was set to 0.6 MPa.

接合強度の評価は、インストロン製の電気機械式万能試験機5900を用いて行った。具体的には、せん断方向に引張速度5mm/minで試験を行い、接合強度を評価した。評価結果を表2に示す。   The evaluation of the bonding strength was performed using an electromechanical universal testing machine 5900 manufactured by Instron. Specifically, the test was performed at a tensile speed of 5 mm / min in the shear direction to evaluate the bonding strength. The evaluation results are shown in Table 2.

Figure 2016132156
Figure 2016132156

[比較例2−1]
比較例2−1の接合構造体は、金属部材に薄厚部を設けずに、接合工程において、上述した半導体レーザの出力を15Wと設定して、金属部材と樹脂部材とを接合領域で接合させた。
[Comparative Example 2-1]
In the joining structure of Comparative Example 2-1, the metal member and the resin member are joined in the joining region by setting the output of the above-described semiconductor laser to 15 W in the joining step without providing a thin portion in the metal member. It was.

この接合構造体の接合強度は5.6MPaであった。   The bonding strength of this bonded structure was 5.6 MPa.

[比較例2−2]
比較例2−2の接合構造体は、金属部材に薄厚部を設けずに、接合工程において、上述した半導体レーザの出力を20Wと設定して、金属部材と樹脂部材とを接合領域で接合させた。
[Comparative Example 2-2]
In the joining structure of Comparative Example 2-2, the metal member and the resin member are joined at the joining region in the joining step without setting the thin portion on the metal member, and setting the output of the semiconductor laser described above to 20 W. It was.

この接合構造体の接合強度は7.2MPaであった。   The bonding strength of this bonded structure was 7.2 MPa.

[実施例2−1]
実施例2−1の接合構造体100は、金属部材200の裏面の接合領域BF´を取り囲む領域(隣接領域NF´)に、幅0.2mm、深さ2.5mmのスリットを形成して薄厚部とし、接合工程において、上述した半導体レーザの出力を15Wと設定して、金属部材200と樹脂部材300とを接合領域BF´で接合させた。
[Example 2-1]
The bonding structure 100 of Example 2-1 is thin by forming a slit having a width of 0.2 mm and a depth of 2.5 mm in a region (adjacent region NF ′) surrounding the bonding region BF ′ on the back surface of the metal member 200. In the joining process, the output of the semiconductor laser described above was set to 15 W, and the metal member 200 and the resin member 300 were joined in the joining region BF ′.

この接合構造体1の接合強度は10.5MPaであった。   The bonding strength of the bonded structure 1 was 10.5 MPa.

[実施例2−2]
実施例2−2の接合構造体100は、金属部材200の裏面の接合領域BF´を取り囲む領域(隣接領域NF´)に、幅0.2mm、深さ2.5mmのスリットを形成して薄厚部とし、接合工程において、上述した半導体レーザの出力を20Wと設定して、金属部材200と樹脂部材300とを接合領域BF´で接合させた。
[Example 2-2]
The bonding structure 100 of Example 2-2 is thin by forming a slit having a width of 0.2 mm and a depth of 2.5 mm in a region (adjacent region NF ′) surrounding the bonding region BF ′ on the back surface of the metal member 200. In the joining step, the output of the semiconductor laser described above was set to 20 W, and the metal member 200 and the resin member 300 were joined in the joining region BF ′.

この接合構造体1の接合強度は11.2MPaであった。   The bonding strength of the bonded structure 1 was 11.2 MPa.

[実施例2−3]
実施例2−3の接合構造体100は、金属部材200の裏面の接合領域BF´を取り囲む領域(隣接領域NF´)に、幅0.2mm、深さ2.5mmのスリットを形成して薄厚部とするとともに、各スリット内に断熱材を設け、接合工程において、上述した半導体レーザの出力を15Wと設定して、金属部材200と樹脂部材300とを接合領域BF´で接合させた。
[Example 2-3]
The bonding structure 100 of Example 2-3 is thin by forming a slit having a width of 0.2 mm and a depth of 2.5 mm in a region (adjacent region NF ′) surrounding the bonding region BF ′ on the back surface of the metal member 200. In addition, in the joining process, the output of the semiconductor laser described above was set to 15 W, and the metal member 200 and the resin member 300 were joined in the joining region BF ′.

この接合構造体1の接合強度は11.4MPaであった。   The bonding strength of the bonded structure 1 was 11.4 MPa.

[実施例2−4]
実施例2−4の接合構造体100は、金属部材200の裏面の接合領域BF´を取り囲む領域(隣接領域NF´)に、幅0.2mm、深さ2.5mmのスリットを形成して薄厚部とするとともに、各スリット内の間隙を結ぶように補強部を設け、接合工程において、上述した半導体レーザの出力を15Wと設定して、金属部材200と樹脂部材300とを接合領域BF´で接合させた。
[Example 2-4]
The bonding structure 100 of Example 2-4 is thin by forming a slit having a width of 0.2 mm and a depth of 2.5 mm in a region (adjacent region NF ′) surrounding the bonding region BF ′ on the back surface of the metal member 200. In addition, in the joining process, the output of the semiconductor laser described above is set to 15 W, and the metal member 200 and the resin member 300 are joined at the joining region BF ′. It was made to join.

この接合構造体1の接合強度は10.4MPaであった。   The bonding strength of the bonded structure 1 was 10.4 MPa.

[実施例2−5]
実施例2−5の接合構造体100は、金属部材200の裏面の接合領域BF´を取り囲む領域(隣接領域NF´)に、幅0.2mm、深さ2.5mmのスリットを形成して薄厚部とするとともに、各スリット内の間隙を結ぶように補強部を設け、接合工程において、上述した半導体レーザの出力を20Wと設定して、金属部材200と樹脂部材300とを接合領域BF´で接合させた。
[Example 2-5]
The bonding structure 100 of Example 2-5 is thin by forming a slit having a width of 0.2 mm and a depth of 2.5 mm in a region (adjacent region NF ′) surrounding the bonding region BF ′ on the back surface of the metal member 200. In addition, in the joining process, the output of the semiconductor laser described above is set to 20 W, and the metal member 200 and the resin member 300 are joined in the joining region BF ′. It was made to join.

この接合構造体1の接合強度は10.7MPaであった。   The bonding strength of the bonded structure 1 was 10.7 MPa.

以上の評価結果から、薄厚部が備えられていない比較例2−1及び2−2の接合構造体の接合強度は、薄厚部23が備えられた実施例2−1〜2−5の接合構造体1の接合強度よりも低い結果が得られた。   From the above evaluation results, the bonding strengths of the bonded structures of Comparative Examples 2-1 and 2-2 that are not provided with the thin portion are the bonded structures of Examples 2-1 to 2-5 that are provided with the thin portion 23. A result lower than the bonding strength of the body 1 was obtained.

これにより、本実施形態の接合構造体1によれば、薄厚部23が、少なくとも隣接領域NFを含む領域内に形成されているので、接合領域BFにレーザを照射して金属部材2と樹脂部材3とを接合させると、接合領域BFから薄厚部23を介して外部に熱拡散することを抑制することができる。これにより、少ないレーザエネルギーで接合領域BF内にレーザのエネルギーを閉じ込めて、金属部材2と樹脂部材3とを接合させることができる。   Thereby, according to the joining structure 1 of this embodiment, since the thin part 23 is formed in the area | region including the adjacent area | region NF at least, the joining area | region BF is irradiated with a laser, and the metal member 2 and the resin member When 3 is bonded, it is possible to suppress thermal diffusion from the bonding region BF to the outside through the thin portion 23. Thereby, the energy of the laser can be confined in the bonding region BF with a small amount of laser energy, and the metal member 2 and the resin member 3 can be bonded.

なお、上記に示した本発明の実施形態及び実施例はいずれも本発明を具体化した例であって、本発明の技術的範囲を限定する性格のものではない。   The above-described embodiments and examples of the present invention are all examples of the present invention, and are not of a nature that limits the technical scope of the present invention.

1、100 接合構造体
2、200 金属部材
21 凹状部
22 突出部
23 薄厚部
24 補強部
25 断熱材
3、300 樹脂部材
BF、BF´ 接合領域
NF、NF´ 隣接領域
DESCRIPTION OF SYMBOLS 1,100 Joining structure 2,200 Metal member 21 Recessed part 22 Protruding part 23 Thin part 24 Reinforcement part 25 Heat insulating material 3,300 Resin member BF, BF 'Joining area | region NF, NF' Adjacent area | region

Claims (9)

金属部材と樹脂部材とが接合された接合領域を有する接合構造体であって、
前記金属部材の前記接合領域には、当該金属部材の表面に開口を有する凹状部が形成されるとともに、前記金属部材の凹状部には、前記樹脂部材が充填されており、
前記金属部材には、前記接合領域と、該接合領域と隣接する隣接領域と、を包含する領域内に、前記金属部材の厚みが薄くされた薄厚部が設けられていることを特徴とする接合構造体。
A joining structure having a joining region in which a metal member and a resin member are joined,
In the joining region of the metal member, a concave portion having an opening on the surface of the metal member is formed, and the concave portion of the metal member is filled with the resin member,
The metal member is provided with a thin portion where the thickness of the metal member is reduced in a region including the bonding region and an adjacent region adjacent to the bonding region. Structure.
請求項1に記載された接合構造体であって、
前記薄厚部は、前記接合領域内に形成されていることを特徴とする接合構造体。
A joining structure according to claim 1, wherein
The thin structure is formed in the bonding region.
請求項1に記載された接合構造体であって、
前記薄厚部は、少なくとも前記隣接領域を含む領域内に形成されていることを特徴とする接合構造体。
A joining structure according to claim 1, wherein
The thin structure is formed in a region including at least the adjacent region.
請求項1〜3のいずれか1項に記載された接合構造体であって、
前記薄厚部には、断熱材が備えられていることを特徴とする接合構造体。
It is a junction structure given in any 1 paragraph of Claims 1-3,
The thin structure is provided with a heat insulating material.
請求項1〜4のいずれか1項に記載された接合構造体であって、
前記薄厚部には、前記金属部材を補強する補強部が備えられていることを特徴とする接合構造体。
It is the joining structure object given in any 1 paragraph of Claims 1-4,
The thin structure is provided with a reinforcing portion for reinforcing the metal member.
請求項1〜5のいずれか1項に記載された接合構造体であって、
前記凹状部の内周面には、内側に突出する突出部が形成されていることを特徴とする接合構造体。
It is the joining structure object given in any 1 paragraph of Claims 1-5,
A joint structure having a projecting portion projecting inward is formed on an inner peripheral surface of the concave portion.
金属部材と樹脂部材とが接合された接合領域を有する接合構造体の製造方法であって、
前記金属部材において、前記接合領域と、該接合領域と隣接する隣接領域と、を包含する領域内に、前記金属部材の厚みが薄くされた薄厚部を形成する薄厚部形成工程と、
前記金属部材の表面の前記接合領域に、開口を有する凹状部を形成する凹状部形成工程と、
前記金属部材の表面と前記樹脂部材とを隣接配置する配置工程と、
前記樹脂部材側から前記金属部材の接合領域にレーザを照射することにより、前記金属部材の前記凹状部に前記樹脂部材を充填して接合させる接合工程と、
を備えることを特徴とする接合構造体の製造方法。
A method for manufacturing a bonded structure having a bonding region in which a metal member and a resin member are bonded,
In the metal member, a thin part forming step of forming a thin part in which the thickness of the metal member is reduced in a region including the joining region and an adjacent region adjacent to the joining region;
A recessed portion forming step of forming a recessed portion having an opening in the joining region of the surface of the metal member;
An arranging step of arranging the surface of the metal member and the resin member adjacent to each other;
A joining step of filling and joining the resin member to the concave portion of the metal member by irradiating the joining region of the metal member with a laser from the resin member side;
The manufacturing method of the joining structure characterized by comprising.
請求項7に記載された接合構造体の製造方法であって、
前記接合工程では、前記金属部材の接合領域にレーザを照射する際に、前記接合領域内においてレーザを走査させるとともに、前記走査を同一軌跡で複数回行うことを特徴とする接合構造体の製造方法。
It is a manufacturing method of the joined structure according to claim 7,
In the joining step, when irradiating the joining region of the metal member with a laser, the laser is scanned in the joining region, and the scanning is performed a plurality of times on the same locus. .
請求項7又は8に記載された接合構造体の製造方法であって、
前記凹状部形成工程では、1パルスが複数のサブパルスで構成されるレーザを照射することにより、前記凹状部を形成することを特徴とする接合構造体の製造方法。
A method for manufacturing a joined structure according to claim 7 or 8,
In the concave portion forming step, the concave portion is formed by irradiating a laser in which one pulse includes a plurality of subpulses.
JP2015008044A 2015-01-19 2015-01-19 Joined structure and method for producing joined structure Pending JP2016132156A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015008044A JP2016132156A (en) 2015-01-19 2015-01-19 Joined structure and method for producing joined structure
PCT/JP2016/051276 WO2016117502A1 (en) 2015-01-19 2016-01-18 Bonded structure and production method for bonded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015008044A JP2016132156A (en) 2015-01-19 2015-01-19 Joined structure and method for producing joined structure

Publications (1)

Publication Number Publication Date
JP2016132156A true JP2016132156A (en) 2016-07-25

Family

ID=56417047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015008044A Pending JP2016132156A (en) 2015-01-19 2015-01-19 Joined structure and method for producing joined structure

Country Status (2)

Country Link
JP (1) JP2016132156A (en)
WO (1) WO2016117502A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106541209A (en) * 2017-01-17 2017-03-29 镭蒙(苏州)微光学科技有限公司 A kind of method and system for laser welding
JP2019113219A (en) * 2017-12-21 2019-07-11 株式会社デンソー Connection structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001455A (en) * 2001-06-15 2003-01-08 Matsushita Electric Ind Co Ltd Method and apparatus for joining metal and resin and method for producing damping steel sheet
JP2009226643A (en) * 2008-03-19 2009-10-08 Aisin Seiki Co Ltd Bonding method and bonded body
JP2009302209A (en) * 2008-06-11 2009-12-24 Nec Electronics Corp Lead frame, semiconductor device, manufacturing method of lead frame, and manufacturing method of semiconductor device
JP2010274279A (en) * 2009-05-27 2010-12-09 Nagoya Industrial Science Research Inst Method for joining member using laser
JP2013058739A (en) * 2011-08-17 2013-03-28 Dainippon Printing Co Ltd Optical semiconductor device lead frame, optical semiconductor device lead frame with resin, optical semiconductor device, and optical semiconductor device lead frame manufacturing method
JP2014018995A (en) * 2012-07-13 2014-02-03 Daicel Polymer Ltd Composite molding and method for producing the same
JP2014091263A (en) * 2012-11-05 2014-05-19 Jtekt Corp Composite molding
JP2014166693A (en) * 2013-02-28 2014-09-11 Daicel Polymer Ltd Composite molding and manufacturing method thereof
JP2014177051A (en) * 2013-03-15 2014-09-25 Denso Corp Method for laser welding weld material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001455A (en) * 2001-06-15 2003-01-08 Matsushita Electric Ind Co Ltd Method and apparatus for joining metal and resin and method for producing damping steel sheet
JP2009226643A (en) * 2008-03-19 2009-10-08 Aisin Seiki Co Ltd Bonding method and bonded body
JP2009302209A (en) * 2008-06-11 2009-12-24 Nec Electronics Corp Lead frame, semiconductor device, manufacturing method of lead frame, and manufacturing method of semiconductor device
JP2010274279A (en) * 2009-05-27 2010-12-09 Nagoya Industrial Science Research Inst Method for joining member using laser
JP2013058739A (en) * 2011-08-17 2013-03-28 Dainippon Printing Co Ltd Optical semiconductor device lead frame, optical semiconductor device lead frame with resin, optical semiconductor device, and optical semiconductor device lead frame manufacturing method
JP2014018995A (en) * 2012-07-13 2014-02-03 Daicel Polymer Ltd Composite molding and method for producing the same
JP2014091263A (en) * 2012-11-05 2014-05-19 Jtekt Corp Composite molding
JP2014166693A (en) * 2013-02-28 2014-09-11 Daicel Polymer Ltd Composite molding and manufacturing method thereof
JP2014177051A (en) * 2013-03-15 2014-09-25 Denso Corp Method for laser welding weld material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106541209A (en) * 2017-01-17 2017-03-29 镭蒙(苏州)微光学科技有限公司 A kind of method and system for laser welding
JP2019113219A (en) * 2017-12-21 2019-07-11 株式会社デンソー Connection structure

Also Published As

Publication number Publication date
WO2016117502A1 (en) 2016-07-28

Similar Documents

Publication Publication Date Title
JP6414477B2 (en) Manufacturing method of bonded structure
WO2016027775A1 (en) Junction structure and method for manufacturing junction structure
JP6451370B2 (en) Manufacturing method of bonded structure
JP6417786B2 (en) Manufacturing method of bonded structure
KR101893073B1 (en) Production method for bonded structure, and bonded structure
JP6459930B2 (en) Manufacturing method of bonded structure and bonded structure
WO2016125594A1 (en) Manufacturing method for joined structural body and joined structural body
JP2016129942A (en) Method for producing joint structure and joint structure
JP2016147404A (en) Method for producing joint structure, and joint structure
JP6398778B2 (en) Manufacturing method of bonded structure and bonded structure
WO2016117502A1 (en) Bonded structure and production method for bonded structure
WO2016140097A1 (en) Joining method, joined-structure production method, and joined structure
JP6432364B2 (en) Manufacturing method of bonded structure
JP2016165746A (en) Manufacturing method of joint structure, joint structure, and laser device
JP6424665B2 (en) Method of manufacturing joined structure
WO2016143585A1 (en) Machining method, joined structure production method, and joined structure
WO2016117501A1 (en) Laser welding method and bonded structure
WO2022185739A1 (en) Method for producing junction and junction
KR101917768B1 (en) Heterojunction body
JP2016159354A (en) Laser processing method for metallic component and junction structure manufactured by use of same method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190305