JP2017039274A - Joining structure - Google Patents

Joining structure Download PDF

Info

Publication number
JP2017039274A
JP2017039274A JP2015162914A JP2015162914A JP2017039274A JP 2017039274 A JP2017039274 A JP 2017039274A JP 2015162914 A JP2015162914 A JP 2015162914A JP 2015162914 A JP2015162914 A JP 2015162914A JP 2017039274 A JP2017039274 A JP 2017039274A
Authority
JP
Japan
Prior art keywords
opening
undercut
metal member
joint
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015162914A
Other languages
Japanese (ja)
Inventor
太浩 石黒
Takahiro Ishiguro
太浩 石黒
優樹 冨高
Yuki Tomitaka
優樹 冨高
寛史 井下
Hiroshi Ishita
寛史 井下
晃徳 富岡
Akinori Tomioka
晃徳 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015162914A priority Critical patent/JP2017039274A/en
Publication of JP2017039274A publication Critical patent/JP2017039274A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a joining structure having a stable and good joining strength.SOLUTION: A metal member (1) has a recessed portion (1b) formed on a joined surface (1a) which is joined with a resin member (2), and the recessed portion (1b) has an opening (1c) opened on the joined surface (1a), and an inner wall surface (1d) which is recessed toward inside of the metal member (1). The opening (1c) has a return portion (1c) extending in a direction narrowing the opening (1c) than an inner wall surface (1d). A hole depth H of the recessed portion (1d) is 60 μm or more and 120 μm or less. A surface area increase ratio Rs of the joined surface (1a) after the recessed portion (1b) has been formed to the joined surface (1a) before the recessed portion (1b) is formed is 3 times or more. An undercut length A from a middle point (1e) of a bottom (1g) of the recessed portions (1b) which are adjacent to each other to the opening (1c) is 10 μm or more and 20 μm or less.SELECTED DRAWING: Figure 2

Description

本発明は、接合構造に関する。   The present invention relates to a joining structure.

金属部材と樹脂部材とを接合した接合構造がある。例えば、特許文献1では、金属部材表面に窪み部を形成した後で、樹脂材料でインサート成形することによって、樹脂部材をその表面上に形成する。この窪み部は、底から開口へ向かうにつれて開口を狭くする方向に延びる返し部を有する。そのため、アンカー効果を実現して、金属部材と樹脂部材との接合強度を向上する。   There is a joint structure in which a metal member and a resin member are joined. For example, in patent document 1, after forming a hollow part in the metal member surface, the resin member is formed on the surface by insert-molding with a resin material. This hollow part has a return part extending in the direction of narrowing the opening from the bottom toward the opening. Therefore, the anchor effect is realized and the bonding strength between the metal member and the resin member is improved.

特開2015−094375号公報Japanese Patent Laying-Open No. 2015-094375

さらに安定して良好な接合強度を確保する接合構造が要求されている。特許文献1に開示される接合構造は、安定して良好な接合強度を確保できないことがあった。   Further, there is a demand for a joint structure that ensures stable and good joint strength. The joint structure disclosed in Patent Document 1 sometimes fails to ensure a stable and good joint strength.

本発明は、安定して良好な接合強度を有する接合構造を提供する。   The present invention provides a joint structure having stable and good joint strength.

本出願の発明者等は、金属部材における樹脂部材との接合面の穴深さ等のいくつかの因子が接合強度に大きな影響を与えることに気付いた。そこで、各因子について様々な調査をして、鋭意研究を行い、本出願の発明を想到した。   The inventors of the present application have noticed that several factors such as the hole depth of the joint surface between the metal member and the resin member greatly affect the joint strength. Therefore, various investigations were conducted for each factor, and intensive research was performed to arrive at the invention of the present application.

本発明にかかる接合構造は、
金属部材と樹脂部材とを接合する接合構造であって、
前記金属部材は、前記樹脂部材と接合する接合面上に形成された窪み部を有し、
前記窪み部が、前記接合面上に開口する開口部と、前記金属部材の内側に向かって凹む形状を有する窪む内壁面と、を有し、
前記開口部は、前記内壁面よりも前記開口部を狭くする方向に延びる返し部を有し、
前記窪み部の穴深さHが、60μm以上120μm以下であり、
前記窪み部を形成する前の前記接合面に対して、前記窪み部を形成した後の前記接合面の表面積増加率Rsが、3倍以上であり、
互いに隣接する窪み部同士の底の中間点から前記開口部までのアンダーカット長さAが10μm以上20μm以下である。
The joint structure according to the present invention is:
A joining structure for joining a metal member and a resin member,
The metal member has a recess formed on a bonding surface to be bonded to the resin member,
The hollow portion has an opening that opens on the joint surface, and a hollow inner wall surface having a shape that is recessed toward the inside of the metal member,
The opening has a return portion extending in a direction of narrowing the opening than the inner wall surface,
The hole depth H of the recess is 60 μm or more and 120 μm or less,
The surface area increase rate Rs of the joint surface after forming the recess is 3 times or more with respect to the joint surface before forming the recess,
The undercut length A from the middle point between the bottoms of the adjacent recesses to the opening is 10 μm or more and 20 μm or less.

本発明にかかる接合構造は、安定して良好な接合強度を有する。   The joint structure according to the present invention has a stable and good joint strength.

実施の形態1に係る接合構造を示す模式断面図である。1 is a schematic cross-sectional view showing a joint structure according to Embodiment 1. FIG. 実施の形態1に係る接合構造の要部を示す模式断面図である。3 is a schematic cross-sectional view showing a main part of the joint structure according to Embodiment 1. FIG. 実施の形態1に係る接合構造の製造方法の一工程を示す図である。6 is a diagram illustrating a step of the method for manufacturing the joint structure according to Embodiment 1. FIG. 実施の形態1に係る接合構造の製造方法の一工程を示す図である。6 is a diagram illustrating a step of the method for manufacturing the joint structure according to Embodiment 1. FIG. 実施の形態1に係る接合構造の製造方法の一工程を示す図である。6 is a diagram illustrating a step of the method for manufacturing the joint structure according to Embodiment 1. FIG. 実施の形態1に係る接合構造の製造方法の一工程を示す図である。6 is a diagram illustrating a step of the method for manufacturing the joint structure according to Embodiment 1. FIG. 実施の形態1に係る接合構造の製造方法の一工程を示す図である。6 is a diagram illustrating a step of the method for manufacturing the joint structure according to Embodiment 1. FIG. 実施例の穴深さHに対する接合強度を示すグラフである。It is a graph which shows the joint strength with respect to the hole depth H of an Example. 実施例の表面積増加率Rsに対する接合強度を示すグラフである。It is a graph which shows the joining strength with respect to the surface area increase rate Rs of an Example. 実施例のアンダーカット長さAに対する接合強度を示すグラフである。It is a graph which shows the joining strength with respect to the undercut length A of an Example.

実施の形態1
図1及び図2を参照して、実施の形態1に係る接合構造について説明する。図1は、実施の形態1に係る接合構造を示す模式断面図である。図2は、実施の形態1に係る接合構造の要部を示す模式断面図である。図2では、見易さのため、ハッチングを省略している。
Embodiment 1
With reference to FIG.1 and FIG.2, the junction structure which concerns on Embodiment 1 is demonstrated. FIG. 1 is a schematic cross-sectional view showing a joint structure according to the first embodiment. FIG. 2 is a schematic cross-sectional view showing a main part of the joint structure according to the first embodiment. In FIG. 2, hatching is omitted for easy viewing.

図1に示すように、接合構造100は、金属部材1と、樹脂部材2とを接合した構造を有する。具体的には、金属部材1と樹脂部材2とは、金属部材1の接合面1aと樹脂部材2の接合面2aとを突き合わせた状態で、接合している。   As shown in FIG. 1, the joining structure 100 has a structure in which a metal member 1 and a resin member 2 are joined. Specifically, the metal member 1 and the resin member 2 are bonded in a state where the bonding surface 1a of the metal member 1 and the bonding surface 2a of the resin member 2 are abutted.

金属部材1は、金属材料からなり、例えば、鉄鋼材料、アルミニウム、又は、これらの合金からなる。鉄鋼材料として、例えば、金型用の工具鋼などが挙げられる。金属部材1の接合面1aは、複数のアンダーカット部1bを有し、複数のアンダーカット部1b同士は、所定のピッチで接合面1aに配置されている。   The metal member 1 is made of a metal material, for example, a steel material, aluminum, or an alloy thereof. Examples of the steel material include tool steel for molds. The joining surface 1a of the metal member 1 has a plurality of undercut portions 1b, and the plurality of undercut portions 1b are arranged on the joining surface 1a at a predetermined pitch.

図2に示すように、アンダーカット部1bは、窪み部であり、例えば、穴や溝である。また、アンダーカット部1bは、接合面1aにおいて開口する開口部1cと、金属部材1の内側に向かって凹む形状を有する内壁面1dと、前記内壁面よりも前記開口部を狭くする方向に延びる返し部1fとを有する。返し部1fは、言い換えると、開口部1cから離れた位置から視たときに、内壁面1dから開口部1cの中心側に延びる部分である。アンダーカット部1bは、具体的には、開口部1cよりも大きく広がる空間を内側に有する穴である。アンダーカット部1bは、より具体的には、金属部材1の接合面1aから離れた位置から視たときに、内壁面1dの少なくとも一部が開口部1cの外側に位置する穴である。アンダーカット部1bの開口部1cの幅は、アンダーカット部1bの内壁面1dに包囲される空間の少なくとも一部の幅よりも短いと好ましい。   As shown in FIG. 2, the undercut part 1b is a hollow part, for example, a hole and a groove | channel. Moreover, the undercut part 1b is extended in the direction which narrows the said opening part rather than the inner wall surface 1d which has the opening part 1c opened in the joint surface 1a, the inner wall surface 1d dented toward the inner side of the metal member 1, and the said inner wall surface. And a return portion 1f. In other words, the return portion 1f is a portion extending from the inner wall surface 1d toward the center of the opening 1c when viewed from a position away from the opening 1c. Specifically, the undercut portion 1b is a hole having a space that extends larger than the opening portion 1c. More specifically, the undercut portion 1b is a hole in which at least a part of the inner wall surface 1d is located outside the opening 1c when viewed from a position away from the joint surface 1a of the metal member 1. The width of the opening 1c of the undercut portion 1b is preferably shorter than the width of at least a part of the space surrounded by the inner wall surface 1d of the undercut portion 1b.

アンダーカット部1bは、所定の穴深さHを有し、隣り合うアンダーカット部1b同士は、穴ピッチPで配置されている。穴深さHは、60μm以上120μm以下であると好ましく、穴ピッチPは60μmより長いと好ましい。互いに隣接するアンダーカット部1b同士の底1gの中間点1eから開口部1cまでの長さをアンダーカット長さAとする。底1gは開口部1cの中心近傍にあってもよい。アンダーカット長さAは、10μm以上20μm以下であると好ましい。   The undercut portion 1b has a predetermined hole depth H, and the adjacent undercut portions 1b are arranged at a hole pitch P. The hole depth H is preferably 60 μm or more and 120 μm or less, and the hole pitch P is preferably longer than 60 μm. The length from the middle point 1e of the bottom 1g between the undercut portions 1b adjacent to each other to the opening 1c is defined as an undercut length A. The bottom 1g may be near the center of the opening 1c. The undercut length A is preferably 10 μm or more and 20 μm or less.

樹脂部材2は、金属部材1と比較して低い機械的強度を有する樹脂からなるとよく、例えば、熱硬化性エポキシ樹脂からなる。樹脂部材2は、金属部材1の接合面1aと接合する接合面2aと、接合面2aから突き出る複数の侵入部2cとを有する。侵入部2cは、アンダーカット部1bに侵入している。侵入部2cと接合面1aとが返し部1fを挟み込むと好ましく、さらに好ましくは、侵入部2cは、アンダーカット部1bの内側空間を完全に充填する形状を有する。   The resin member 2 is preferably made of a resin having a lower mechanical strength than the metal member 1, and is made of, for example, a thermosetting epoxy resin. The resin member 2 has a joint surface 2a that joins the joint surface 1a of the metal member 1, and a plurality of intrusion portions 2c that protrude from the joint surface 2a. The intrusion portion 2c enters the undercut portion 1b. It is preferable that the intrusion portion 2c and the joint surface 1a sandwich the return portion 1f. More preferably, the intrusion portion 2c has a shape that completely fills the inner space of the undercut portion 1b.

(製造方法)
次に、図3〜図7を参照して、実施の形態1にかかる接合構造100の製造方法について説明する。図3〜図7は、実施の形態1に係る接合構造の製造方法の一工程を示す図である。
(Production method)
Next, with reference to FIGS. 3-7, the manufacturing method of the junction structure 100 concerning Embodiment 1 is demonstrated. 3-7 is a figure which shows 1 process of the manufacturing method of the junction structure which concerns on Embodiment 1. FIG.

図3及び図4に示すように、金型8を用いて金属母材11を圧縮し、さらに金型8を金属母材11の被成形面11bに沿う方向に超音波振動させることで、突起部12aを有する突起表面金属母材12を形成する(突起部形成工程S1)。金型8は、成形面8bと、成形面8bから突起する突起部8aとを有する。金型8は、例えば、工具鋼を放電加工又は切削加工を用いて成形される。金型8は、金属母材11と比較して高い機械的強度を有すると好ましい。金属母材11は、金属部材1(図1参照)と同じ種類の材料からなり、被成形面11bを有する。突起表面金属母材12は、隣接する突起部12a同士の間に底部12bを有する。   As shown in FIGS. 3 and 4, the metal base material 11 is compressed using the mold 8, and the mold 8 is ultrasonically vibrated in the direction along the molding surface 11 b of the metal base material 11, thereby The protrusion surface metal base material 12 having the portion 12a is formed (projection portion forming step S1). The mold 8 has a molding surface 8b and a projection 8a that projects from the molding surface 8b. The mold 8 is formed by using, for example, electric discharge machining or cutting of tool steel. The mold 8 preferably has higher mechanical strength than the metal base material 11. The metal base material 11 is made of the same type of material as the metal member 1 (see FIG. 1) and has a molding surface 11b. The protrusion surface metal base material 12 has a bottom 12b between adjacent protrusions 12a.

具体的には、成形面8bと被成形面11bとを対向させて、金型8を金属母材11に突き合わせることによって、被成形面11bを圧縮する。すると、金属母材11の被成形面11bの少なくとも一部が金型8、特に隣接する突起部8a同士の間に流動する。さらに、金型8を金属母材11に突き合わせたまま、金型8を被成形面11bに沿う方向に超音波振動させることによって、隣り合う突起部8a同士の間への金属母材11の流動を促進する。なお、金型8を成形面8bに沿う方向に超音波振動させてもよい。   Specifically, the molding surface 11b is compressed by causing the molding surface 8b and the molding surface 11b to face each other and the metal mold 8 abut against the metal base material 11. Then, at least a part of the molding surface 11b of the metal base material 11 flows between the molds 8, particularly between the adjacent protrusions 8a. Further, the metal base material 11 flows between the adjacent protrusions 8a by ultrasonically vibrating the mold 8 in the direction along the molding surface 11b while the metal mold 8 is abutted against the metal base material 11. Promote. The mold 8 may be ultrasonically vibrated in the direction along the molding surface 8b.

ここで、図5に示すように、隣接する突起部8a同士の先端部8cの距離を凹凸ピッチp[mm]とし、成形面8bから突起部8aまでの高さを突起部高さh[μm]とし、先端部8cの角度を突起部先端角度θ[°]とする。また、金属母材11の被成形面11bから底部12bまでの距離を加工量d1[mm](図4参照。)とする。凹凸ピッチp、突起部高さh、及び、突起部先端角度θ、加工量d1は、下記の数式2〜5を満たすと好ましい。
0.1≦p≦1.5 …(数式2)
h≧2p …(数式3)
20≦θ≦45 …(数式4)
0.1≦d1≦1.5 …(数式5)
Here, as shown in FIG. 5, the distance between the tips 8c of the adjacent protrusions 8a is the uneven pitch p [mm], and the height from the molding surface 8b to the protrusion 8a is the protrusion height h [μm. ], And the angle of the tip 8c is the protrusion tip angle θ [°]. Further, the distance from the molding surface 11b of the metal base material 11 to the bottom 12b is defined as a processing amount d1 [mm] (see FIG. 4). It is preferable that the uneven pitch p, the protrusion height h, the protrusion tip angle θ, and the processing amount d1 satisfy the following expressions 2 to 5.
0.1 ≦ p ≦ 1.5 (Formula 2)
h ≧ 2p (Formula 3)
20 ≦ θ ≦ 45 (Formula 4)
0.1 ≦ d1 ≦ 1.5 (Formula 5)

また、金型8に付加する超音波の振動周波数f[kHz]は、15〜28であると好ましく、振動振幅A[μm]は10〜150であると好ましい。言い換えると、振動振幅Aは、凹凸ピッチpの10%であると好ましい。金型8の圧縮速度Vp[mm/sec]は、0.1〜10の範囲内に収まるように、設定することができる。また、被成形面11bは、図3〜図5に示す平面ではなく、三次元的な形状、例えば、長方形状板の端面であってもよい。   The vibration frequency f [kHz] of the ultrasonic wave added to the mold 8 is preferably 15 to 28, and the vibration amplitude A [μm] is preferably 10 to 150. In other words, the vibration amplitude A is preferably 10% of the uneven pitch p. The compression speed Vp [mm / sec] of the mold 8 can be set so as to be within the range of 0.1 to 10. Further, the molding surface 11b may be a three-dimensional shape, for example, an end face of a rectangular plate, instead of the plane shown in FIGS.

続いて、図6及び図7に示すように、金属板9を用いて、突起表面金属母材12を圧縮し、アンダーカット部1bを有する金属部材1を形成する(アンダーカット部形成工程S2)。金属板9は、平滑な表面9aを有する。圧縮回数は、複数回であってもよい。例えば、1回目の圧縮によって、突起部12aの先端が角度を有する、具体的には、0(ゼロ)°を上回り180°を下回るように、突起部12aの先端を変形させる。さらに、2回目の圧縮によって、突起部12aの先端を変形させる。これらの計2回の圧縮によって、返し部1fを形成することができる。
なお、突起部12aの壁面と底部12bとが、アンダーカット部1bに対応する。突起表面金属母材12の突起部12aから金属部材1の接合面1aまでの距離を圧縮量d2[mm]とする。圧縮量d2を大きくすると、オーバーラップ量xが増加し、アンダーカット部1bが狭くなる。ここで、オーバーラップ量xは、返し部1fの長さである。圧縮量d2は、下記の数式6を満たすと、返し部1fの過剰な変形によるアンダーカット部1bの開口部1cの閉塞が生じにくいから、好ましい。
d2≦1/2h …(数式6)
Subsequently, as shown in FIGS. 6 and 7, the metal surface 9 is compressed using the metal plate 9 to form the metal member 1 having the undercut portion 1b (undercut portion forming step S2). . The metal plate 9 has a smooth surface 9a. The number of compressions may be multiple. For example, by the first compression, the tip of the projection 12a is deformed so that the tip of the projection 12a has an angle, specifically, more than 0 (zero) ° and less than 180 °. Furthermore, the tip of the protrusion 12a is deformed by the second compression. The return portion 1f can be formed by these two compressions.
In addition, the wall surface and bottom part 12b of the projection part 12a respond | correspond to the undercut part 1b. The distance from the protrusion 12a of the protrusion surface metal base material 12 to the joint surface 1a of the metal member 1 is defined as a compression amount d2 [mm]. When the compression amount d2 is increased, the overlap amount x is increased and the undercut portion 1b is narrowed. Here, the overlap amount x is the length of the return portion 1f. It is preferable that the compression amount d2 satisfy Expression 6 below because the opening 1c of the undercut portion 1b is less likely to be blocked due to excessive deformation of the return portion 1f.
d2 ≦ 1 / 2h (Formula 6)

続いて、樹脂部材2を構成する樹脂材料を金属部材1のアンダーカット部1bに充填させた後で、固めることによって、樹脂部材2と金属部材1とを接合する(接合工程S3)。ここで、アンダーカット部1bの内側に充填され、固まることによって形成された樹脂部材2の接合面2aの一部を侵入部2cと呼ぶ。   Subsequently, after the resin material constituting the resin member 2 is filled in the undercut portion 1b of the metal member 1, the resin member 2 and the metal member 1 are joined by solidifying (joining step S3). Here, a part of the joint surface 2a of the resin member 2 formed by filling the inside of the undercut portion 1b and solidifying is referred to as an intrusion portion 2c.

以上、工程を経ると、樹脂部材2と金属部材1とを接合した接合構造100が形成される。   As described above, through the steps, the joint structure 100 in which the resin member 2 and the metal member 1 are joined is formed.

ところで、接合構造100では、金属部材1が所定のサイズを有するアンダーカット部1bを有し、樹脂部材2の侵入部2cがアンダーカット部1bに侵入している。そのため、金属部材1の接合面1aと樹脂部材2の接合面2aとは、大きな表面積で接合しており、侵入部2cが開口部1cよりも大きい。また、侵入部2cと接合面2aが返し部1fを挟み込んでいる。ここで、樹脂部材2と金属部材1とを離すように、引っ張ると、侵入部2cと返し部1fとが噛み合うため、アンカー効果を奏する。また、穴深さH、穴ピッチP、及び、アンダーカット長さAが所定の範囲内にあるため、接合構造100は、安定して良好な接合強度を有する。   By the way, in the joining structure 100, the metal member 1 has the undercut part 1b which has a predetermined size, and the penetration | invasion part 2c of the resin member 2 has penetrate | invaded the undercut part 1b. Therefore, the joining surface 1a of the metal member 1 and the joining surface 2a of the resin member 2 are joined with a large surface area, and the intrusion portion 2c is larger than the opening portion 1c. Further, the intrusion portion 2c and the joint surface 2a sandwich the return portion 1f. Here, when the resin member 2 and the metal member 1 are pulled apart from each other, the intrusion portion 2c and the return portion 1f are engaged with each other, thereby providing an anchor effect. Further, since the hole depth H, the hole pitch P, and the undercut length A are within the predetermined ranges, the joint structure 100 has a stable and good joint strength.

以上より、実施の形態1にかかる接合構造によれば、安定して良好な接合強度を有する。   As described above, according to the joint structure according to the first embodiment, the joint structure has a stable and good joint strength.

ところで、接合構造100は、樹脂封止型部品であれば適用することができ、例えば、インバータの冷却器に利用されると好適である。接合構造100は、良好な接合強度を有するため、インバータの冷却器の構成要素として必要な耐水圧性や機械的強度を満たし得る。   By the way, the joining structure 100 can be applied as long as it is a resin-sealed part, and is preferably used for a cooler of an inverter, for example. Since the joint structure 100 has a good joint strength, the joint structure 100 can satisfy the water pressure resistance and the mechanical strength necessary as components of the inverter cooler.

次に、実施の形態1にかかる接合構造の実施例について説明する。各条件を設定し、接合強度との関係を調査した。実施例の金属部材1としては、アルミニウム合金からなるブロック体を用いた。また、実施例の樹脂部材2としては、熱硬化性エポキシ樹脂からなるブロック体を用いた。   Next, examples of the joint structure according to the first embodiment will be described. Each condition was set and the relationship with the bonding strength was investigated. As the metal member 1 of the example, a block body made of an aluminum alloy was used. Moreover, as the resin member 2 of an Example, the block body which consists of a thermosetting epoxy resin was used.

具体的には、穴深さHの実施条件は、30〜100μmの範囲内から複数の水準を選択した。穴ピッチPの実施条件は、30〜80μmの範囲内から複数の水準を選択した。穴ピッチP約30〜80μmは、表面積増加率Rs約1〜4倍に相当する。表面積増加率Rsは、アンダーカット部1b(図2参照)を形成する前の接合面1a(図2参照)の面積に対して、アンダーカット部1bを形成した後の接合面1aの面積の増加率である。接合面1aの面積は、例えば、画像測定によって算出することができる。また、表面積増加率Rsは、例えば、以下の関係式1を用いて概算することができる。
Rs=5×H/P …(関係式1)
穴ピッチPが小さくなると、表面積増加率Rsが大きくなる傾向にある。アンダーカット長さAの実施条件が、約5〜30μmの範囲内からの複数の水準を選択した。
Specifically, the implementation condition for the hole depth H was selected from a plurality of levels within the range of 30 to 100 μm. As the execution condition of the hole pitch P, a plurality of levels were selected from the range of 30 to 80 μm. The hole pitch P of about 30 to 80 μm corresponds to a surface area increase rate Rs of about 1 to 4 times. The surface area increase rate Rs is an increase in the area of the joint surface 1a after forming the undercut portion 1b with respect to the area of the joint surface 1a (see FIG. 2) before forming the undercut portion 1b (see FIG. 2). Rate. The area of the joint surface 1a can be calculated by image measurement, for example. Further, the surface area increase rate Rs can be estimated using, for example, the following relational expression 1.
Rs = 5 × H / P 2 (Relational formula 1)
When the hole pitch P decreases, the surface area increase rate Rs tends to increase. The implementation conditions for the undercut length A were selected from a plurality of levels within the range of about 5 to 30 μm.

実施例にかかる接合構造を接合面に対して略垂直な方向に引っ張った場合の引張強度を計測し、この計測した引張強度を接合強度とした。所定の条件における穴深さH、表面積増加率Rs、又は、アンダーカット長さAに対する接合強度を図8〜図10に示した。   The tensile strength when the joining structure according to the example was pulled in a direction substantially perpendicular to the joining surface was measured, and the measured tensile strength was defined as the joining strength. The bonding strength with respect to the hole depth H, the surface area increase rate Rs, or the undercut length A under predetermined conditions is shown in FIGS.

図8に示すように、穴ピッチP60μm、アンダーカット長さA10μmでは、穴深さHが深くなると、接合強度が高くなる傾向にある。穴深さHが約30μmであるとき、接合強度約25MPaであり、穴深さHが約90μmであるとき、接合強度が約32MPaであった。穴深さHが約60μm以上であれば、接合強度が30MPa以上であると推測される。なお、接合強度30MPaは、熱硬化性エポキシ樹脂からなるブロック体の引張強度に相当する。そのため、接合強度30MPaを有する接合構造は、引っ張っても破断させても、接合面で破断しにくいため、接合強度30MPaは、良好な値とした。   As shown in FIG. 8, with a hole pitch P of 60 μm and an undercut length A of 10 μm, the bonding strength tends to increase as the hole depth H increases. When the hole depth H was about 30 μm, the bonding strength was about 25 MPa, and when the hole depth H was about 90 μm, the bonding strength was about 32 MPa. If the hole depth H is about 60 μm or more, the bonding strength is estimated to be 30 MPa or more. The bonding strength of 30 MPa corresponds to the tensile strength of a block body made of a thermosetting epoxy resin. For this reason, since the joining structure having a joining strength of 30 MPa is not easily broken at the joining surface even if it is pulled or broken, the joining strength of 30 MPa is set to a good value.

図9に示すように、穴深さH100μm、アンダーカット長さA10μmでは、表面積増加率Rsが増加すると、接合強度が高くなる傾向にある。表面積増加率Rsが約1.5倍であるとき、接合強度約23MPaであり、表面積増加率Rsが約3.5倍であるとき、接合強度が約32MPaであった。表面積増加率Rsが約3倍以上であれば、接合強度が30MPa以上であると推測される。ここで、表面積増加率Rs3倍は、穴ピッチP60μmに相当する。   As shown in FIG. 9, when the hole depth H is 100 μm and the undercut length A is 10 μm, the bonding strength tends to increase as the surface area increase rate Rs increases. When the surface area increase rate Rs is about 1.5 times, the bonding strength is about 23 MPa, and when the surface area increase rate Rs is about 3.5 times, the bonding strength is about 32 MPa. If the surface area increase rate Rs is about 3 times or more, it is estimated that the bonding strength is 30 MPa or more. Here, the surface area increase rate Rs3 times corresponds to the hole pitch P60 μm.

図10に示すように、穴深さがH100μm、穴ピッチPが60μm、アンダーカット長さAが約5〜18μmの範囲内にあるとき、アンダーカット長さAが増加すると、接合強度が高くなる傾向にある。一方、穴深さがH100μm、穴ピッチPが60μm、アンダーカット長さAが約22μm以上であるとき、アンダーカット長さAの値に関わらず、接合強度が略0(ゼロ)であった。この一因として、樹脂材料のアンダーカット部への浸入が抑制されることが考えられる。アンダーカット長さAが約10μmであるとき、接合強度は約32MPaであり、アンダーカット長さAが約18μmであるとき、接合強度が度約40MPaであった。アンダーカット長さAが約10〜約20μmの範囲内であれば、接合強度が30MPa以上であると推測される。   As shown in FIG. 10, when the hole depth is H100 μm, the hole pitch P is 60 μm, and the undercut length A is in the range of about 5 to 18 μm, the joint strength increases as the undercut length A increases. There is a tendency. On the other hand, when the hole depth was H100 μm, the hole pitch P was 60 μm, and the undercut length A was about 22 μm or more, the bonding strength was substantially 0 (zero) regardless of the value of the undercut length A. One possible reason is that the penetration of the resin material into the undercut portion is suppressed. When the undercut length A was about 10 μm, the joint strength was about 32 MPa, and when the undercut length A was about 18 μm, the joint strength was about 40 MPa. If the undercut length A is in the range of about 10 to about 20 μm, the bonding strength is estimated to be 30 MPa or more.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

100 接合構造
1 金属部材
1a 接合面 1b アンダーカット部
1c 開口部 1d 内壁面
1e 中間点 1f 返し部
1g 底
2 樹脂部材
P 穴ピッチ Rs 表面積増加率
H 穴深さ
DESCRIPTION OF SYMBOLS 100 Joining structure 1 Metal member 1a Joining surface 1b Undercut part 1c Opening part 1d Inner wall surface 1e Middle point 1f Return part 1g Bottom 2 Resin member P Hole pitch Rs Surface area increase rate H Hole depth

Claims (1)

金属部材と樹脂部材とを接合する接合構造であって、
前記金属部材は、前記樹脂部材と接合する接合面上に形成された窪み部を有し、
前記窪み部が、前記接合面上に開口する開口部と、前記金属部材の内側に向かって凹む形状を有する窪む内壁面と、を有し、
前記開口部は、前記内壁面よりも前記開口部を狭くする方向に延びる返し部を有し、
前記窪み部の穴深さHが、60μm以上120μm以下であり、
前記窪み部を形成する前の前記接合面に対して、前記窪み部を形成した後の前記接合面の表面積増加率Rsが、3倍以上であり、
互いに隣接する窪み部同士の底の中間点から前記開口部までのアンダーカット長さAが10μm以上20μm以下である接合構造。
A joining structure for joining a metal member and a resin member,
The metal member has a recess formed on a bonding surface to be bonded to the resin member,
The hollow portion has an opening that opens on the joint surface, and a hollow inner wall surface having a shape that is recessed toward the inside of the metal member,
The opening has a return portion extending in a direction of narrowing the opening than the inner wall surface,
The hole depth H of the recess is 60 μm or more and 120 μm or less,
The surface area increase rate Rs of the joint surface after forming the recess is 3 times or more with respect to the joint surface before forming the recess,
A junction structure in which an undercut length A from the middle point of the bottom of adjacent recesses to the opening is 10 μm or more and 20 μm or less.
JP2015162914A 2015-08-20 2015-08-20 Joining structure Pending JP2017039274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015162914A JP2017039274A (en) 2015-08-20 2015-08-20 Joining structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015162914A JP2017039274A (en) 2015-08-20 2015-08-20 Joining structure

Publications (1)

Publication Number Publication Date
JP2017039274A true JP2017039274A (en) 2017-02-23

Family

ID=58205921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015162914A Pending JP2017039274A (en) 2015-08-20 2015-08-20 Joining structure

Country Status (1)

Country Link
JP (1) JP2017039274A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147784A (en) * 2019-03-13 2020-09-17 株式会社豊田中央研究所 Metal-resin bonded member, and method of producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248337A (en) * 1984-05-24 1985-12-09 Matsushita Electric Works Ltd Method of integrally molding object with synthetic resin
JP2011143539A (en) * 2010-01-12 2011-07-28 Nippon Light Metal Co Ltd Method for laser-joining of aluminum alloy plate and resin member together
JP2013107273A (en) * 2011-11-21 2013-06-06 Daicel Corp Method of manufacturing composite molded body
JP2013173170A (en) * 2012-02-27 2013-09-05 Aisin Seiki Co Ltd Method for machining joining face

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248337A (en) * 1984-05-24 1985-12-09 Matsushita Electric Works Ltd Method of integrally molding object with synthetic resin
JP2011143539A (en) * 2010-01-12 2011-07-28 Nippon Light Metal Co Ltd Method for laser-joining of aluminum alloy plate and resin member together
JP2013107273A (en) * 2011-11-21 2013-06-06 Daicel Corp Method of manufacturing composite molded body
JP2013173170A (en) * 2012-02-27 2013-09-05 Aisin Seiki Co Ltd Method for machining joining face

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020147784A (en) * 2019-03-13 2020-09-17 株式会社豊田中央研究所 Metal-resin bonded member, and method of producing the same
JP7010255B2 (en) 2019-03-13 2022-01-26 株式会社豊田中央研究所 Metal resin joint member and its manufacturing method

Similar Documents

Publication Publication Date Title
US10375846B2 (en) Housing having housing parts bondable together and method of manufacturing the same
TW201524757A (en) Composite of metal and resin and method of manufacturing thereof
JP6459930B2 (en) Manufacturing method of bonded structure and bonded structure
JP2016111028A (en) Semiconductor device and manufacturing method of the same
US20170100767A1 (en) Method for Joining Sections of at Least Two Components
JP2017039274A (en) Joining structure
JP2000280303A (en) Injection-molded case
JP2017001317A (en) Method for manufacturing composite
JP2016210154A (en) Joint method of metal component and resin and integrated mold article of metal component and resin
JP5713509B2 (en) Method of internal splitting of end cross section of metal plate or metal rod, method of manufacturing metal container and metal tube by the internal splitting method, and method of joining metal parts
CN109396633A (en) Ultrasonic bonding fixture, ultrasonic connection method and connected structure
JP6424665B2 (en) Method of manufacturing joined structure
JP2009260282A (en) Lead frame for package
JP6463925B2 (en) Rear impact extrusion apparatus for manufacturing a secondary battery case and method for manufacturing a secondary battery case using the same
JP2014222645A (en) Joint structure and joint method of electric wire and terminal
CN109382580A (en) Ultrasonic bonding fixture, ultrasonic connection method and connected structure
JP5973323B2 (en) Insert mold joint structure
US10629578B2 (en) Arrangement having a carrier and an optoelectronic component
CN208112946U (en) Magnetic circuit system and acoustical generator
KR101467431B1 (en) Case for an electronic device and manufacturing method thereof
JP2012183705A (en) Composite molded product and method of manufacturing composite molded product
US9566733B2 (en) Injection molding machine
KR101708140B1 (en) Member joining method
JP6615478B2 (en) Manufacturing method of resin molded product using metal insert parts
JP6277910B2 (en) Vehicle assembly structure and vehicle assembly part manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190514