KR20110104319A - 능동형 전기변색소자 및 그 제조 방법 - Google Patents

능동형 전기변색소자 및 그 제조 방법 Download PDF

Info

Publication number
KR20110104319A
KR20110104319A KR1020100023400A KR20100023400A KR20110104319A KR 20110104319 A KR20110104319 A KR 20110104319A KR 1020100023400 A KR1020100023400 A KR 1020100023400A KR 20100023400 A KR20100023400 A KR 20100023400A KR 20110104319 A KR20110104319 A KR 20110104319A
Authority
KR
South Korea
Prior art keywords
electrode
substrate
electrochromic
solution
thin film
Prior art date
Application number
KR1020100023400A
Other languages
English (en)
Other versions
KR101720586B1 (ko
Inventor
정득석
진용완
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020100023400A priority Critical patent/KR101720586B1/ko
Priority to US12/939,247 priority patent/US8654431B2/en
Publication of KR20110104319A publication Critical patent/KR20110104319A/ko
Application granted granted Critical
Publication of KR101720586B1 publication Critical patent/KR101720586B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1506Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/1533Constructional details structural features not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/161Gaskets; Spacers; Sealing of cells; Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/163Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor
    • G02F2001/1635Operation of electrochromic cells, e.g. electrodeposition cells; Circuit arrangements therefor the pixel comprises active switching elements, e.g. TFT
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

능동형 전기변색소자 제조 방법이 개시되어 있다. 능동형 전기변색소자 제조 방법에 따르면, 게이트 전극, 소스 전극 및 드레인 전극을 가지는 박막트랜지스터 및 이 박막트랜지스터의 드레인 전극에 전기적으로 접속된 픽셀 전극을 형성한 제1기판을 준비한다. 전기 영동 공정을 위해, 제1기판과 메쉬를 전기변색 반도체층 형성용 용액에 서로 이격되게 담근다. 제1기판을 픽셀 전극이 잠기도록 용액에 담근 상태에서, 게이트 전극에 전압이 인가되도록 하여 박막트랜지스터의 채널을 오픈시키고, 소스 전극에 전기적으로 연결된 단자와 메쉬 사이에 전압원을 연결하여 픽셀 전극과 메쉬 사이에 전위차가 발생하도록 하여, 용액내 물질을 픽셀 전극상에 증착시켜 전기변색 반도체층을 형성한다.

Description

능동형 전기변색소자 및 그 제조 방법{Active matrix electrochromic device and method of manufacturing the same}
전기변색소자 및 그 제조방법에 관한 것으로, 보다 상세하게는 픽셀 전극 위에 전기변색 반도체층을 선택적으로 형성하여, 능동형 디스플레이소자로 적용가능한 능동형 전기변색소자 및 그 제조방법에 관한 것이다.
전기변색소자(electrochromic device)는 전기와 같은 외부 자극에 의하여 변색 물질이 자극되어 화학적 또는 물리적으로 분자구조에 변화가 일어나고, 가시적으로 변색 효과가 발생하는 소자이다. 이는 투명전극( 능동형 소자의 경우는 투명 픽셀 전극) 및 대향전극 사이에 전해질을 넣고 외부의 전기 자극에 의해 양 전극간에 전위차가 발생하면, 전해질에 포함되어 있는 이온이나 전자가 전기변색 물질충 내부로 이동하여 산화·환원반응을 함으로써 가시적으로 색깔이 변하거나 색의 농담이 변하게 되는 원리를 이용한 것이다. 이러한 전기변색 소자는 광학 특성의 제어가 가능하여 정보 기록, 표시, 정보 출력 등의 정보 처리 용도로 이용되고 있다.
이러한 전기변색 소자로서, 국제특허공개 WO 97/035227호는 나노결정의 반도체물질 표면에 비올로겐(viologen)과 같은 전기적 활성 물질을 흡착시킨 나노 전기변색 디스플레이를 개시하고 있으며, 국제특허공개 WO98/035267호 및 미국특허 제6,870,657호는 산화 환원 발색단이 흡착된 반도체성 금속 산화물을 포함하는 전기변색 소자를 개시하고 있다.
전기 영동 공정을 통해 픽셀 전극 상에 전기변색 반도체층을 선택적으로 형성할 수 있어, 픽셀 전극이 각 픽셀별로 분리되어 있는 능동형 디스플레이소자에 적용 가능한 능동형 전기변색소자 및 그 제조 방법을 제공한다.
본 발명의 실시예에 따른 능동형 전기변색소자 제조 방법은, 게이트 전극, 소스 전극 및 드레인 전극을 가지는 박막트랜지스터 및 이 박막트랜지스터의 드레인 전극에 전기적으로 접속된 픽셀 전극을 형성한 제1기판을 준비하는 단계와; 전기 영동 공정을 위해, 상기 제1기판과 메쉬를 전기변색 반도체층 형성용 용액에 서로 이격되게 담그는 단계와; 상기 제1기판을 상기 픽셀 전극이 잠기도록 상기 용액에 담근 상태에서, 상기 게이트 전극에 전압이 인가되도록 하여 상기 박막트랜지스터의 채널을 오픈시키고, 상기 소스 전극에 전기적으로 연결된 단자와 상기 메쉬 사이에 전압원을 연결하여 상기 픽셀 전극과 메쉬 사이에 전위차가 발생하도록 하여, 용액내 물질을 픽셀 전극상에 증착시켜 전기변색 반도체층을 형성하는 단계;를 포함할 수 있다.
상기 게이트 전극에 외부 전압원을 연결하여 박막트랜지스터의 채널을 오픈시킬 수 있다.
이때, 상기 외부 전압원이 연결되는 상기 게이트 전극으로부터 연장된 단자는 상기 용액 내에 잠기지 않도록 할 수 있다.
상기 전압원이 연결되는 상기 소스 전극에 전기적으로 연결된 단자는 상기 용액 내에 잠기지 않도록 할 수 있다.
상기 제1기판에는 상기 박막트랜지스터의 게이트 전극과 전기적으로 연결되는 게이트 단자가 노출되어 있으며, 상기 제1기판은 상기 용액내에 상기 게이트 단자가 잠기도록 담그어지며, 상기 소스 전극에 전기적으로 연결된 단자와 상기 메쉬 사이에 걸린 전압에 의해 상기 용액내에 전압을 발생시키며, 이 용액 내에 발생되는 전압이 상기 게이트 단에 자동으로 유기되어 상기 박막트랜지스터의 채널을 오픈시킬 수 있다.
상기 용액은 금속 산화물을 포함할 수 있다.
본 발명의 실시예에 따른 능동형 전기변색 소자는, 픽셀 또는 서브 픽셀 단위 별로 게이트 전극, 소스 전극 및 드레인 전극을 가지는 박막트랜지스터, 이 박막트랜지스터의 드레인 전극에 전기적으로 접속된 픽셀 전극, 상기 픽셀 전극 상에 전기변색 반도체층이 형성된 제1기판과; 도전성 물질로 된 대향 전극 및 그 위에 반사층이 형성되고, 상기 반사층이 상기 전기변색 반도체층을 향하도록 상기 제1기판과 결합되는 제2기판과; 상기 제1 및 제2기판 사이에, 이 제1 및 제2기판 사이의 간격을 유지시키며 상기 전기변색 반도체층에 대응하는 위치에 전해질을 담지하기 위한 공간이 형성된 뱅크 구조물과; 상기 뱅크 구조물의 공간에 전해질이 채워져 이루어진 전해질층;을 포함할 수 있다.
능동형 전기변색소자는 능동형 디스플레이로 사용될 수 있다.
개시된 능동형 전기변색소자 및 그 제조 방법에 따르면, 전기변색 반도체층을 능동 소자 또는 픽셀 전극의 파괴 없이 선택적으로 픽셀 전극 상에 증착이 가능하며, 유기물을 거의 혼합하지 않고도 증착 공정이 가능하므로, 고온에서 소성을 하지 않고도 전기변색 특성을 얻을 수 있다. 또한, 능동형 전기변색소자 예컨대, 능동형 전기변색 디스플레이의 크로스토크를 방지하기 위한 픽셀 분리기내에도 선택적 증착이 가능하여, 능동형의 고해상도를 가지는 전기변색소자 예컨대, 전기변색 디스플레이를 실현할 수 있다.
도 1은 본 발명의 실시예에 따른 전기변색소자 제조 방법을 적용하여 형성될 수 있는 능동형 전기변색 소자의 일 예를 개략적으로 보인 단면도이다.
도 2는 본 발명의 실시예에 따른 외부 전압원을 이용한 능동형 전기변색소자 형성을 위한 전기 영동 공정 방법을 개략적으로 보여준다.
도 3은 도 2의 등가 회로를 개략적으로 보여준다.
도 4는 도 2의 기판의 패드 패턴을 개략적으로 보여준다.
도 5는 본 발명의 다른 실시예에 따른 자기 유도 전압을 이용한 능동형 전기변색소자 형성을 위한 전기 영동 공정 방법을 보여준다.
도 6은 도 5의 등가 회로를 개략적으로 보여준다.
각 픽셀에 박막트랜지스터를 구비하여 능동적으로 구동할 수 있도록 된 능동형 전기변색소자를 제조하기 위해서는 액상형 전해질 담지를 위한 절연막 패턴을 픽셀 주변에 형성하고 그 안에 픽셀 전극 상의 적어도 일부에 위치하도록 전기변색 반도체층을 전기 영동법에 의하여 선택적으로 형성하는 것이 필요하다.
일반적인 전극 또는 수동형 소자에 전기 영동법을 이용하여 전기변색 반도체층을 패터닝하여 형성하는 방법은 전압을 인가하는 메쉬 전극과 수동형 소자의 전극사이에 전압을 인가하여 패턴을 하게 되는데 능동형 소자의 경우 전기변색 반도체층이 올라가야 할 픽셀 전극이 각각의 셀로 분리되어 있어, 직접적인 전압인가가 어렵고 전기 영동 공정을 위하여 공통전극을 뽑아서 진행할 수도 없는 형태로 되어 있다.
본 발명의 실시예에 따른 전기변색소자 제조 방법에 따르면, 각각의 픽셀 전극과 박막트랜지스터를 거쳐서 연결이 되어 있는 데이터 전극과 박막트랜지스터 전류의 흐름을 제어하는 게이트 전극에 각각 특정한 전압을 인가하여 전기 영동법으로 픽셀 전극에 전기변색 반도체층을 선택적으로 형성하거나 게이트 전극에 외부 파워를 이용하지 않고 용액 내로부터 발생되는 자기 유도 전압을 이용하여 박막트랜지스터에 흐르는 과전류를 방지하고 안정적으로 전기변색 반도체층이 증착 되게 할 수 있다.
도 1은 본 발명의 실시예에 따른 능동형 전기변색소자 제조 방법을 적용하여 형성될 수 있는 능동형 전기변색 소자의 일 예를 개략적으로 보인 단면도이다.
도 1을 참조하면, 능동형 전기변색 소자는, 간격을 가지고 서로 결합되는 제1 및 제2기판(10)(90)을 구비하며, 이 제1 및 제2기판(10)(90) 사이에는 전해질층(60)이 형성된다.
제1기판(10)에는 픽셀 단위별로 반도체층(액티브층:22), 게이트 전극(21), 소스 및 드레인 전극(23)(24)을 포함하는 박막트랜지스터(20)가 형성되고, 이 박막트랜지스터(20)를 포함한 제1기판(10)의 전면에는 보호막(25)이 형성된다. 보호막(25)에는 박막트랜지스터(20)의 드레인 전극(24)을 노출시키는 콘택홀이 형성되고, 이 콘택홀을 통해서 픽셀 전극(30)이 드레인 전극(24)에 전기적으로 접속된다. 픽셀 전극(30)은 단위 픽셀별로 보호막(25) 상에 아일랜드 타입으로 형성된다. 그리고, 이 픽셀 전극(30) 상에 이 픽셀 전극(30)에 전기적으로 연결되도록 전기변색 반도체층(50)이 형성된다.
상기 보호막(25) 및 픽셀 전극(30) 상에는 전기변색 반도체층(50)에 대응하는 위치에 전해질을 담지하기 위한 공간을 형성함과 동시에, 제1 및 제2기판(10)(90) 사이의 간격을 유지시키는 뱅크 구조물(65)이 형성된다. 뱅크 구조물(65)의 공간에 전해질이 채워져 전해질층(60)을 형성한다. 뱅크 구조물(65)은 보호막(25) 및 픽셀 전극(30)을 형성한 상태에서 형성되거나, 전기변색 반도체층(50)까지 형성한 상태에서 형성될 수 있다.
제2기판(90)에는 도전성 물질로 된 대향 전극(80)이 형성되어 있으며, 이 대향 전극(80) 상에는 반사층(70)이 형성된다.
상기 픽셀 전극(30)은 투명 전극으로 형성될 수 있다. 상기 대향 전극(80)은 예를 들어, 제2기판(90) 상의 ITO(Indium Tin Oxide) 전극층(85)과 그 위의 ATO(Antimony doped Tin Oxide) 전극층(81)으로 이루어질 수 있으며, 반사층(70)은 이 ATO전극층(81) 상에 형성될 수 있다.
전술한 바와 같이, 제1기판(10)과 제2기판(90)은 뱅크 구조물(65)에 의해 간격이 유지된 채로 결합되고, 이 제1 및 제2기판(10)(90) 사이의 뱅크 구조물(65)에 의해 형성되는 공간에는 전해질을 채워 전해질층(60)을 형성한다.
상기 제1기판(10)은 투명 기판으로 이루어질 수 있다. 예를 들어, 상기 제1기판(10)은 폴리에틸렌테레프탈레이트 (PET; polyethylene terephthalate), 폴리에틸렌나프탈레이트(PEN; polyethylene naphathalate), 폴리카보네이트, 폴리스티렌계, 폴리아크릴계, 폴리에테르 설폰(PES; Polyether sulfone) 등의 고분자 재료를 이용한 플렉서블한 투명 플라스틱 기판을 사용할 수 있다. 상기 제2기판(90)은 제1기판(10)과 동일 재질 또는 다른 재질로 형성될 수 있다. 예를 들어, 제2기판(90)은 불투명 재질로 형성될 수도 있다. 또한, 상기 제1 및 제2기판(10)(90) 중 적어도 하나는 투명 유리 기판으로 형성될 수 있다.
상기 픽셀 전극(30)은 투명 전도성 물질 예를 들어, 인듐 틴 옥사이드(ITO; Indium Tin Oxide), 플로린 도핑된 틴 옥사이드(FTO), ZnO-Ga2O3, ZnO-Al2O3, SnO2-Sb2O3 , 폴리티오펜계 와 같은 투명 전도성 고분자 물질 등으로 형성될 수 있다.
전기변색 반도체층(50)은 전기 영동 공정에 의해 픽셀 전극(30) 상에 증착된다. 상기 전기변색 반도체층(50) 증착에 사용되는 금속 산화물로는 티타늄계 산화물, 지르코늄계 산화물, 스트론듐계 산화물, 니오븀계 산화물, 하프늄계 산화물, 인듐계 산화물, 주석계 산화물 및 아연계 산화물로 이루어진 군으로부터 선택되는 하나 이상을 사용할 수 있으며, 이들을 단독 또는 두 가지 이상 혼합하여 사용할 수 있다. 예를 들어, 티타늄계 산화물(TiO2)을 사용할 수 있다. 이때 상기 전기변색 반도체층(50)은 금속 산화물 입자의 크기가 작고, 기공도가 높을수록 소자의 효율은 향상되는데, 상기 금속 산화물 입자 크기는 약 5 내지 30 nm일 수 있다.
전기변색 물질(55)은 전기변색 반도체층(50)에 흡착된다. 전기변색 물질(55) 예컨대, n-형 전기변색 물질은 전기변색 반도체층(50) 표면에 흡착되어 전기변색 반도체 층으로부터 이동하는 전자를 받아 분자 구조의 변화를 일으킴으로써 변색효과를 나타내게 된다. 이와 같은 전기변색 물질(55)로는 전기변색소자 분야에 일반적으로 사용되는 것이라면 아무 제한 없이 사용할 수 있으며, 비오로겐 화합물이 많이 사용된다. 이와 같은 화합물은 국제특허공개 WO98/035267 및 미국특허 제6,870,657호에 기공지된 화합물이 이용될 수 있다.
대향 전극(80)은 픽셀 전극(30)과 마주 보도록 배치된다. 상기 대향 전극(80)으로는 도전성 물질이면 어느 것이나 사용가능하며, 일함수(work function)를 향상시키기 위하여 전도성 물질을 더 포함할 수 있다. 예를 들어, 상기 대향 전극(80)은 전술한 바와 같이, 제2기판(90) 상의 ITO 전극층(85)과 그 위의 ATO(Antimony doped Tin Oxide) 전극층(81)으로 이루어질 수 있다. 또한, 절연성 물질이라도 투명 전극에 마주보고 있는 측에 전도성 물질이 포함되어 있으면 이것도 대향 전극(80)으로 사용 가능하다. 또한 전기 화학적으로 안정한 재료를 대향 전극(80)으로 사용할 수 있으며, 구체적으로는 백금, 금 또는 카본 등을 사용할 수 있다.
대향 전극(80) 상에는 픽셀 전극(30) 상의 n-형 전기변색 물질이 환원될 때, 반대로 산화되어 전기적인 중성 상태를 유지하기 위한 산화-환원 물질, 혹은 p-형 전기변색 물질이 흡착되어질 수 있다. 이와 같은 p-형 전기변색 물질은 전해질에 함유될 수도 있으며 전해질과 대향 전극(80) 상에 동시에 존재할 수도 있다. 대향전극(80) 상에 p-형 전기변색 물질 혹은 산화-환원 물질이 보다 잘 흡착되기 위해 픽셀 전극(30)과 마주보고 있는 측은 미세구조로 표면적을 증대시킬 필요가 있는데, 나노 결정의 티타늄 산화물, 지르코늄 산화물, 스트론듐 산화물, 니오븀 산화물, 하프늄 산화물, 인듐 산화물, 주석 산화물 및 아연 산화물로 이루어진 군으로부터 선택되는 하나 이상을 사용할 수 있으며, 이들을 단독 또는 두 가지 이상 혼합하여 사용할 수 있다. 이들 산화물에는 비소(As), 불소(F) 등이 도핑되어 사용될 수 있다. 예를 들어, 나노 결정의 티타늄 산화물(TiO2), 비소(As) 도핑된 SnO2 등이 사용할 수 있다. 이때 미세구조 즉, 금속 산화물 입자의 크기가 작고, 기공도가 높을수록 소자의 효율은 향상되는데, 상기 금속 산화물 입자 크기는 약 5 내지 30 nm일 수 있다.
대향 전극(80)에 사용되는 p-형 전기 변색 물질, 산화-환원 물질로는 프러시안 블루, 페로센 화합물 유도체, 페노티아진 화합물 유도체 등이 사용될 수 있으며, 국제공개특허 WO98/035267 및 미국특허 제6,870,657호에 기공지된 화합물이 이용될 수 있다.
한편, 상기 대향 전극(80) 상에 반사층(70)을 더 형성하는 경우, 픽셀 전극(30)을 투과하여 통과한 광을 산란시켜 전기변색 반도체층(50)의 콘트라스트를 향상시킬 수 있다. 이와 같은 반사층(70)으로는 티타늄 산화물, 지르코늄 산화물, 스트론듐 산화물, 니오븀 산화물, 하프늄 산화물, 인듐 산화물, 주석 산화물 및 아연 산화물로 이루어진 군으로부터 선택된 하나 이상의 금속 산화물을 사용할 수 있으나, 반드시 이들로 한정되는 것은 아니며, 이들을 단독 또는 두 가지 이상 혼합하여 사용할 수 있다. 또한, 이와 같은 반사층(70)의 금속 산화물 입자크기는 예를 들어, 약 100 내지 500 nm 일 수 있다. 예를 들어, 상기 반사층(70)은 전기변색 반도체층(50)과 동일한 재질의 금속 산화물로 입자 크기만 크게 하여 형성될 수 있다.
한편, 전해질층(60)을 이루는 전해질은 액체형, 용융염 형, 고체형이 이용될 수 있으며, 전기화학적으로 비활성 염을 하나 이상 포함하는 전해질로 이루어질 수 있다. 구체적으로 예를 들면 프로필렌 카보네이트, 에틸렌 카보네이트, 디에틸 카보네이트, 에틸 메틸 카보네이트, 메틸 프로필 카보네이트, 부틸렌 카보네이트, 벤조니트릴, 아세토니트릴, 테트라히드로퓨란, 2-메틸테트라히드로퓨란, γ-부티로락톤, 디옥소란, 4-메틸디옥소란, N,N-디메틸포름아미드, 디메틸아세트아미드, 디메틸설폭사이드, 디옥산, 1,2-디메톡시에탄, 설포란, 디클로로에탄, 클로로벤젠, 니트로벤젠, 디메틸카보네이트, 메틸에틸카보네이트, 디에틸카보네이트, 메틸프로필카보네이트, 메틸이소프로필카보네이트, 에틸프로필카보네이트, 디프로필카보네이트, 디부틸카보네이트, 디에틸렌글리콜 또는 디메틸에테르 등의 용매, 트리알킬이미다졸륨과 같은 이미다졸륨계 용융염 또는 이들의 혼합 물질에 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, Li(CF3SO2)2N, LiC4F9SO3, LiSbF6, LiAlO4, LiAlCl4, LiN(CxF2x+1SO2)(CyF2y+1SO2)(단, x, y는 자연수), LiCl, LiI 등의 리튬 염으로 이루어진 전해질 중의 1종 또는 이들을 2종 이상 혼합한 것을 용해하여 사용할 수 있다. 상기 리튬 염과 같은 비활성 염은 바람직하게는 0.01 내지 1.0 M, 더욱 바람직하게는 0.05 내지 0.2M의 농도로 전해질에 존재할 수 있다. 또한 산화-환원 물질로서 페로센계 화합물, 페노치아진계 화합물이 0.01 내지 0.2M의 농도로 전해질에 존재할 수 있다.
상기와 같은 능동형 전기변색 소자를 제조하는 과정은 다음과 같다.
먼저, 제1기판(10)에 박막트랜지스터(20)를 형성한다.
즉, 제1기판(10)의 전면에 금속층을 형성하고 포토 및 식각공정을 통해 선택적으로 패터닝하여 게이트 전극(21)을 형성한다. 이후, 게이트 전극(21)을 포함한 제1기판(10)의 전면에 산화 실리콘(SiOx) 혹은 질화 실리콘(SiNx)과 같은 절연물질 등을 사용하여 게이트 절연막(26)을 형성한다. 다음으로, 상기 게이트 절연막(26) 상에 진성 아몰퍼스 실리콘과 같은 반도체 물질을 증착하고 포토 및 식각공정을 통해 선택적으로 패터닝하고, 도핑 공정을 진행하여, 상기 게이트 전극(21)의 상측의 게이트 절연막 (26)상에 반도체층(액티브층:22) 및 소스 및 드레인 전극(23)(24)을 형성한다. 이때, 반도체층(22)의 채널 영역은 노출될 수 있다.
이어서, 소스 및 드레인 전극(23)(24)을 포함한 제1기판(10)의 전면에 유기절연물질 예를 들면, 벤조사이클로부텐(BCB) 또는 포토아크릴(photo acryl) 중 하나를 두껍게 도포하여, 보호막(25)을 형성한다.
다음, 상기 보호막(25)의 전면에 포토레지스트를 도포하여 포토레지스트층(PR)을 형성하고, 이 제1기판(10) 상에 위치한 마스크를 통해 제1기판(10) 상의 포토레지스트층(PR)을 노광하고, 이 포토레지스트층(PR)을 현상하여, 드레인 전극(24)의 일부를 노출시킨다. 이렇게 하여, 상기 보호막(25)에는 드레인 전극(24)을 노출시키는 콘택홀이 형성된다.
이어서, 상기 제1기판(10)의 전면에 투명 전도막을 형성하고 포토 및 식각 공정을 통해 패터닝하여 박막트랜지스터(20)의 일측에서 드레인 전극(24)에 연결되고 픽셀별로 아일랜드 타입으로 픽셀 전극(30)을 형성한다. 도 1의 단면도를 기준으로, 한 픽셀 또는 서브 픽셀은 박막트랜지스터(20)가 형성된 영역과, 이 박막트랜지트터(20)의 드레인 전극(24)에 연결되게 형성된 픽셀 전극(30)이 형성된 영역으로 이루어질 수 있다.
능동형 디스플레이소자로 적용가능한 본 발명의 실시예에 따른 전기변색소자는 박막트랜지스터(20) 및 픽셀 전극(30) 그룹의 2차원 어레이를 구비하며, 2차원 픽셀을 능동적으로 구동하도록 데이터 전극(미도시) 및 게이트 전극(21) 등이 형성될 수 있다. 능동형 디스플레이 소자에서의 박막트랜지스터(20), 픽셀 전극(30), 데이터 전극 및 게이트 전극(21) 등의 배치는 잘 알려져 있다.
상기와 같이 픽셀 전극(30)을 형성한 후, 픽셀 전극(30) 상에 전기 영동 법에 의해 전기변색 반도체층(50)을 형성한다. 전기변색 반도체층(50)을 형성하는 과정은 후술한다. 전기변색 반도체층(50)은 제1기판(10)에 뱅크 구조물(65)을 형성한 상태에서 형성될 수 있다. 뱅크 구조물(65)은 전기변색 반도체층(50) 형성 후에 형성되거나 제2기판(90)에 마련될 수도 있다. 뱅크 구조물(65)은 픽셀 전극(30)의 적어도 일부 영역 상에 공간이 존재하도록 박막트랜지스터(20)를 포함하는 영역 상에 형성될 수 있다.
한편, 일면에 대향 전극(80) 및 반사층(70)이 마련된 제2기판(90)을 준비한다.
이후, 제1기판(10)과 제2기판(90)을 결합시키고, 이 제1 및 제2기판(10)(90) 사이에 전해질을 주입하면, 뱅크 구조물(65)이 이루는 공간에 전해질이 채워져 전해질층(60)을 형성함으로써 본 발명의 실시예에 따른 전기변색소자가 완성된다.
이하에서는 픽셀 전극(30) 위에 전기변색 반도체층(50)을 형성하는 과정에 대해 자세히 설명한다.
도 2는 본 발명의 실시예에 따른 외부 전압원을 이용한 능동형 전기변색소자 형성을 위한 전기 영동 공정 방법을 개략적으로 보여주며, 도 3은 도 2의 등가 회로를 개략적으로 보여준다. 도 4는 도 2의 기판(300)의 패드 패턴을 개략적으로 보여준다. 도 5는 본 발명의 다른 실시예에 따른 자기 유도 전압을 이용한 능동형 전기변색소자 형성을 위한 전기 영동 공정 방법을 보여주며, 도 6은 도 5의 등가 회로를 개략적으로 보여준다.
전술한 바와 같은 박막트랜지스터(20)가 구비된 능동형 전기변색소자의 픽셀 전극(30) 위에 전기 영동법에 의해 전기변색 반도체층(50) 형성 공정에 사용되는 용액(200)은, 비극성 용매와 증착하고자 하는 물질의 파우더, 차저(charger), 안정제(stabilizer), 전도체(conductor) 등으로 이루어질 수 있다.
예를 들어, 산화물 나노 파우더를 비극성 용매에 초음파 등을 이용하여 분산시키고 여기에 적당한 양의 전하 성분을 가지는 금속계 질화물, 용액의 안정성을 주기 위해 글리세린 그리고 전류의 흐름을 개선하기 위하여 산성 용액을 소량 섞어서 용액(200)을 제조한다. 제조된 용액(200)을 도 2 및 도 5에서와 같은 전기 영동 공정을 위한 치구(100)에 넣고, 이 용액(200)에 서로 이격되도록 담근 상태의 금속 메쉬(250)와 증착하고자 하는 기판(300) 사이에 일정 전압을 인가하게 되면 포텐셜에 따라 기판(300)에 분산된 입자가 전극 위에 증착이 된다.
이때, 상기 기판(300)은 적어도 박막트랜지스터(20) 및 픽셀 전극(30)이 형성된 상태의 제1기판(10) 일 수 있다. 이러한 제1기판(10)을 적용할 때, 용액(200)에 노출되어, 포텐셜에 따라 용액에 분산된 입자가 증착되는 전극은 픽셀 전극(30)이 된다.
도 4를 참조하면, 상기 기판(300)에는 도 1을 참조로 설명한 박막트랜지스터(20) 및 픽셀 전극(30)이 형성된 픽셀 또는 서브 픽셀들이 2차원 어레이로 형성된 픽셀 어레이 영역(400)이 존재하며, 픽셀 어레이 영역(400) 외측에, 데이터 전극들이 모아져 집약된 영역인 데이터 패드 영역(410)(430) 및 게이트 전극들(21)이 모아져 집약된 영역인 게이트 패드 영역(450)이 존재한다. 데이터 패드 영역(410)(430)은 데이터 전극단자(440)에 전기적으로 연결될 수 있으며, 게이트 패드 영역(450)은 게이트 전극단자(460)에 전기적으로 연결될 수 있다. 그리고, 기판(300)에는 픽셀 어레이 영역(400) 외측에 박막트랜지스터(20) 체크를 위해 만들어진 단자인 게이트 단자(470)가 노출되도록 형성될 수 있다. 게이트 단자(470)는 게이트 전극(21) 또는 게이트 패드 영역(450)으로부터 연장되어 상기한 용액(200) 내에 오픈(open)되도록 마련될 수 있다.
상기 기판(300)은 도 1에 도시한 박막트랜지스터(20) 및 픽셀 전극(30)이 형성되고, 픽셀 전극(30)이 노출된 상태에서 픽셀 전극(30) 상에 전기변색 반도체층(50)을 증착하기 위해, 전기변색 반도체층 형성용 용액(200)에 담근다.
일반적인 라인 패턴 형태의 수동형 소자의 경우는 전극의 끝단에 전압원을 연결하게 되면 금속 메쉬와 수동형 소자 사이에 전압이 걸려서 전류의 흐름이 발생되어 전기 영동 공정에 의해 기판에 증착이 이루어지지만, 본 발명의 실시예에 따른 능동형 전기변색소자와 같은 능동형 소자의 경우는 예를 들어, 증착하고자 하는 픽셀 전극(30)이 개별적으로 아일랜드 타입으로 되어 있어서 픽셀 전극(30)에 직접적인 전압인가가 불가능하며, 이 픽셀 전극(30)이 데이터 전극과 연결이 되어 있긴 하지만, 박막트랜지스터(20) 채널이 중간에 형성되어 있어 큰 저항처럼 작용하여 데이터 전극에 전압원을 단순히 연결하는 것만으론 픽셀 전극(30) 위에 전기변색 반도체층(50)의 증착이 이루어지지 않는다.
따라서, 전기 영동 공정에 의해 능동형 전기변색 소자의 픽셀 전극(30) 상에 전기변색 반도체층(50)을 형성하기 위해서는, 소스 전극(23)에 전기적으로 연결된 단자 예를 들어, 데이터 전극 또는 이 데이터 전극에 연결된 데이터 전극단자(440)에 전압원(270)을 연결하고, 동시에 픽셀 전극(30) 하부의 게이트 전극(21)에 일정 전압을 인가하여 채널을 오픈하여야만 데이터 전극과 연결된 소스(23)단 및 드레인(24)단이 연결되고 이를 통해 픽셀 전극(30)과 통전이 되어, 픽셀 전극(30) 상에 전기 변색 반도체층(50)이 증착되게 된다,
전기 영동 공정을 위해, 픽셀 전극들(30)이 잠기도록 기판(300)을 전기변색 반도체층 형성용 용액(200)에 담그는데, 이때 예를 들어, 외부 전압원(490)이 연결되는 게이트 전극(21)으로부터 연장된 단자나 전압원(270)이 연결되는 소스 전극(23)에 전기적으로 연결된 단자는 용액(200) 내에 잠기지 않도록 한다.
기판(300)의 패드 패턴이 도 4에서와 같이 마련된 경우, 외부 전압원(490)이 연결될 수 있는 게이트 전극(21)으로부터 연장된 단자는 게이트 전극단자(460)가 되며, 전압원(270이 연결되는 소스 전극(23)에 전기적으로 연결된 단자는 데이터 전극단자(440)가 된다. 이하에서는 편의상, 외부 전압원(490)이 연결될 수 있는 게이트 전극(21)으로부터 연장된 단자를 게이트 전극단자(460), 전압원(270이 연결되는 소스 전극(23)에 전기적으로 연결된 단자를 데이터 전극단자(440)인 것으로 나타내지만, 본원 발명의 실시예가 이에 한정되는 것은 아니며, 다양하게 변형될 수 있다.
기판(300)의 패드 패턴이 도 4에서와 같이 마련된 경우, 기판(300)을 용액(200)에 데이터 전극단자(440)와 게이트 전극단자(460)는 잠기지 않도록 담근다.
이와 같이 픽셀 전극(30)이 잠기도록 기판(300)을 용액(200)에 담근 상태에서, 픽셀 전극(30) 하부에 위치된 게이트 전극(21)에 일정 전압을 인가하여 박막트랜지스터(20)의 채널을 오픈시키고, 기판(300)의 데이터 전극단자(440)와 메쉬(250) 예컨대, 금속 메쉬 사이에 전압이 걸리도록 하면, 채널 오픈에 따라 데이터 전극과 연결된 소스 전극(S:23)과 드레인 전극(D:24)이 연결되고 이를 통하여 픽셀 전극(30)과 통전이 되게 되고, 이에 따라 픽셀 전극(30) 상에 전기변색 반도체층(50)이 증착되게 된다.
박막트랜지스터(20)의 채널 오픈을 위해 게이트 전극(21)에 일정 전압 인가는 도 2 및 도 3에서와 같이 예를 들어, 게이트 전극단자(460)를 통하여 게이트 전극(21)에 외부 전압원(490)을 연결하여 능동형 소자를 구동함으로써 행하거나, 도 5 및 도 6에서와 같이, 용액(200) 내에 발생되는 전압이 게이트 단자(470)에 자동으로 유기되도록 하여 즉, 유기 전압 유도를 통하여 능동형 소자를 구동함으로써 행할 수 있다.
도 2 및 도 3을 참조하면, 픽셀 전극(30) 상에 전기변색 반도체층(50)을 형성하기 위해, 예를 들어, 데이터 전극에 연결되어 있는 데이터 전극 단자((440)와 메쉬(250) 예컨대, 금속 메쉬 사이에 전압원(270)을 연결한다. 그리고, 게이트 전극(21)에 연결되어 있는 게이트 전극단자(460)에 외부 전압원(490)을 연결함으로써 박막트랜지스터(20)의 게이트 전극(21)에 일정 전압을 인가하여, 채널을 오픈(open)시킨다. 채널 오픈에 따라 데이터 전극에 연결된 소스 전극(23)과 드레인 전극(24)이 연결되고 이를 통하여 픽셀 전극(30)과 통전이 되게 된다.
따라서, 도 2 및 도 3과 같이 구동이 이루어질 경우, 픽셀 전극(30) 상에 전기변색 반도체층(50)이 증착이 된다. 이때, 도 2 및 도 3의 방법에 따르면, 기본적으로 두개의 외부 전압원 즉, 전압원(270) 및 전압원(490)이 필요하며, 각각의 전압원(270,490)의 전압 조절이 필요하다.
한편, 전술한 바와 같이, 박막트랜지스터(20)를 가지는 능동형 소자에는 박막트랜지스터(20)의 에러를 체크하기 위한 게이트 단자(470)가 노출된 상태로 마련될 수 있다. 게이트 단자(470)는 게이트 전극(21)과 전기적으로 연결되어 있다. 이 게이트 단자(470)는 용액(200) 내에 오픈(open)시킬 수 있도록 마련될 수 있다.
따라서, 도 5 및 도 6을 참조하면, 기판(300)을 전기 영동 공정에 의해 전기변색 반도체층(50)을 형성하기 위한 용액(200) 내에 게이트 단자(470)까지도 잠기도록 담그면, 용액(200) 내에 발생되는 전압이 게이트 단자(470)에 자동으로 유기될 수 있어, 따로 외부 전압원을 사용할 필요없이 전기변색 반도체층(50)의 증착이 가능하게 된다.한다.
즉, 게이트 단자(470)까지도 잠기도록 기판(300)을 용액(200) 내에 담근 상태에서, 도 5 및 도 6에서와 같이, 데이터 전극에 연결되어 있는 데이터 전극단자(440)와 메쉬(250) 예컨대, 금속 메쉬 사이에 전압원(270)을 연결하는 경우, 기판(300) 및 메쉬(250) 사이에 전압이 걸리게 되며, 이에 따라 용액(200) 내에 발생되는 전압이 게이트 단자(470)에 자동으로 유기될 수 있다. 즉, fluid induced bias를 발생시킬 수 있다. 이와 같이 게이트 단자(470)에 전압이 유기됨에 따라, 이 게이트 단자(470)와 연결된 박막트랜지스터(20)의 게이트 전극(21)에 일정 전압이 인가되어, 채널이 오픈되어, 데이터 전극에 연결된 소스 전극(23)과 드레인 전극(24)이 연결되고 이를 통하여 픽셀 전극(30)과 통전이 되게 된다.
따라서, 게이트 전극(21)에 따로 외부 전압원을 연결하지 않고도, 용액(200) 내에 발생되는 전압이 게이트 단자(470)에 유기되어 얻어지는 자기 유도 전압을 이용하여 전기변색 반도체층(50)의 증착이 가능하게 된다.
자기 유도 전압을 이용하면, 노출된 게이트 단자(470)로 흐르는 전류량에 따라서 픽셀 전극(30)에 인가되는 전류량도 자동으로 조절이 되며, 또한 픽셀 전극(30)에 일시적인 과도한 전류가 흐르지 않아 박막 트랜지스터(20)와 픽셀 전극(30)에 일정량 이하의 전류만이 흐르게 되어 전극이 타거나 박막트랜지스터(20)가 파괴되는 현상이 나타날 가능성을 배제시킬 수 있다.
한편, 전기 영동 공정 진행시, 게이트 단자(470)에도 전기변색 물질이 적층될 수 있는데, 이 전기변색 물질의 적층량이 많아질수록 유도 전압이 줄게 되고, 결국에는 전기변색 물질의 적층이 더 이상 이루어지지 않는 상태가 올 수 있다. 따라서, 본 발명의 실시예에 따른 전기 영동 공정 방법에 있어서, 전기변색 반도체층(50) 적층은 유도 전압의 감소에 의해 자동으로 멈춰질 때가지 진행할 수 있다. 또한, 유도 전압이 전기변색 물질 적층이 가능한 적정값 이하로 감소하기 이전 단계에서, 전기변색 반도체층(50) 적층을 중단하는 방식으로 공정을 진행할 수도 있다.
상기와 같이, 외부 전압원(490)을 이용하거나 용액(200) 내의 전압에 의해 용액(200) 내에 노출된 게이트 전극으로부터 연장된 단자 예컨대, 게이트 단자(470)에 유기되는 전압을 이용하여 게이트 전극(21)에 일정 전압을 인가하여 채널을 오픈시키면, 박막트랜지스터(20)의 저항이 현저히 감소한다. 이에 따라 데이터 전극들이 연결된 데이터 패드 영역(410,430)에 예컨대, 음극 전극을 잡아주면 결과적으로 용액(200) 내의 예컨대, 양극 전극과 패터닝된 픽셀 전극(30) 사이에 전위차가 발생하여 이 픽셀 전극(30) 상에 금속 산화물 즉, 전기변색 물질의 증착이 가능해진다.
상기한 바와 같은 능동형 전기변색소자 제조 방법에 따르면, 전기변색 반도체층(50)을 능동 소자 또는 픽셀 전극(30)의 파괴 없이 선택적으로 픽셀 전극(30) 상에 증착이 가능하며, 유기물을 거의 혼합하지 않고도 증착 공정이 가능하다. 즉, 전기 영동 공정시 유기물은 제거하고 무기물만 저온에서 패터닝하여 능동형 전기변색소자의 전기변색 반도체층(50)을 증착할 수 있다. 또한, 전기 영동 공정에 의해 픽셀 전극(30) 상에 선택적으로 증착이 가능하므로, 고해상도(high resolution)를 가지는 능동형 전기변색소자 예컨대, 능동형 전기변색 디스플레이를 제조할 수 있다.
예를 들어 450℃ 이상의 고온에서 소성을 하지 않고도 전기변색 특성을 얻을 수 있다. 또한, 전기변색소자 예컨대, 전기변색 디스플레이의 크로스토크를 방지하기 위한 픽셀 분리기내에도 선택적 증착이 가능하므로, 고해상도(high resolution)를 가지는 능동형 전기변색소자 예컨대, 능동형 전기변색 디스플레이를 제조할 수 있다.
이상에서 설명한 전기변색소자 및 그 제조 방법은 예시적으로 설명한 것으로, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변형 및 균등한 타 실시예가 가능하다는 것은 본 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.

Claims (9)

  1. 게이트 전극, 소스 전극 및 드레인 전극을 가지는 박막트랜지스터 및 이 박막트랜지스터의 드레인 전극에 전기적으로 접속된 픽셀 전극을 형성한 제1기판을 준비하는 단계와;
    전기 영동 공정을 위해, 상기 제1기판과 메쉬를 전기변색 반도체층 형성용 용액에 서로 이격되게 담그는 단계와;
    상기 제1기판을 상기 픽셀 전극이 잠기도록 상기 용액에 담근 상태에서, 상기 게이트 전극에 전압이 인가되도록 하여 상기 박막트랜지스터의 채널을 오픈시키고, 상기 소스 전극에 전기적으로 연결된 단자와 상기 메쉬 사이에 전압원을 연결하여 상기 픽셀 전극과 메쉬 사이에 전위차가 발생하도록 하여, 용액내 물질을 픽셀 전극상에 증착시켜 전기변색 반도체층을 형성하는 단계;를 포함하는 능동형 전기변색소자 제조방법.
  2. 제1항에 있어서, 상기 게이트 전극에 외부 전압원을 연결하여 박막트랜지스터의 채널을 오픈시키는 능동형 전기변색소자 제조방법.
  3. 제2항에 있어서, 상기 외부 전압원이 연결되는 상기 게이트 전극으로부터 연장된 단자는 상기 용액 내에 잠기지 않도록 하는 능동형 전기변색소자 제조방법.
  4. 제3항에 있어서, 상기 전압원이 연결되는 상기 소스 전극에 전기적으로 연결된 단자는 상기 용액 내에 잠기지 않도록 하는 능동형 전기변색소자 제조방법.
  5. 제1항에 있어서, 상기 제1기판에는 상기 박막트랜지스터의 게이트 전극과 전기적으로 연결되는 게이트 단자가 노출되어 있으며, 상기 제1기판은 상기 용액내에 상기 게이트 단자가 잠기도록 담그어지며,
    상기 소스 전극에 전기적으로 연결된 단자와 상기 메쉬 사이에 걸린 전압에 의해 상기 용액내에 전압을 발생시키며, 이 용액 내에 발생되는 전압이 상기 게이트 단에 자동으로 유기되어 상기 박막트랜지스터의 채널을 오픈시키는 능동형 전기변색소자 제조방법.
  6. 제5항에 있어서, 상기 전압원이 연결되는 상기 소스 전극에 전기적으로 연결된 단자는 상기 용액 내에 잠기지 않도록 하는 능동형 전기변색소자 제조방법.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 용액은 금속 산화물을 포함하는 능동형 전기변색소자 제조 방법.
  8. 픽셀 또는 서브 픽셀 단위 별로 게이트 전극, 소스 전극 및 드레인 전극을 가지는 박막트랜지스터, 이 박막트랜지스터의 드레인 전극에 전기적으로 접속된 픽셀 전극, 상기 픽셀 전극 상에 전기변색 반도체층이 형성된 제1기판과;
    도전성 물질로 된 대향 전극 및 그 위에 반사층이 형성되고, 상기 반사층이 상기 전기변색 반도체층을 향하도록 상기 제1기판과 결합되는 제2기판과;
    상기 제1 및 제2기판 사이에, 이 제1 및 제2기판 사이의 간격을 유지시키며 상기 전기변색 반도체층에 대응하는 위치에 전해질을 담지하기 위한 공간이 형성된 뱅크 구조물과;
    상기 뱅크 구조물의 공간에 전해질이 채워져 이루어진 전해질층;을 포함하는 능동형 전기변색소자.
  9. 제8항에 있어서, 능동형 디스플레이로 사용되는 능동형 전기변색소자.
KR1020100023400A 2010-03-16 2010-03-16 능동형 전기변색소자 및 그 제조 방법 KR101720586B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020100023400A KR101720586B1 (ko) 2010-03-16 2010-03-16 능동형 전기변색소자 및 그 제조 방법
US12/939,247 US8654431B2 (en) 2010-03-16 2010-11-04 Active matrix electrochromic device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100023400A KR101720586B1 (ko) 2010-03-16 2010-03-16 능동형 전기변색소자 및 그 제조 방법

Publications (2)

Publication Number Publication Date
KR20110104319A true KR20110104319A (ko) 2011-09-22
KR101720586B1 KR101720586B1 (ko) 2017-03-30

Family

ID=44647053

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100023400A KR101720586B1 (ko) 2010-03-16 2010-03-16 능동형 전기변색소자 및 그 제조 방법

Country Status (2)

Country Link
US (1) US8654431B2 (ko)
KR (1) KR101720586B1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103323997A (zh) * 2012-03-23 2013-09-25 亚树科技股份有限公司 穿透式主动数组电致变色显示设备
CN102967979B (zh) * 2012-11-29 2015-05-27 昆山工研院新型平板显示技术中心有限公司 一种主动矩阵显示器件
CN103969905B (zh) * 2014-03-21 2016-08-17 京东方科技集团股份有限公司 一种电致变色显示器件及其制备方法
KR102526534B1 (ko) 2015-12-31 2023-04-26 엘지디스플레이 주식회사 투명 표시 장치
WO2019062187A1 (zh) * 2017-09-30 2019-04-04 云谷(固安)科技有限公司 显示屏以及电子设备
CN115335765A (zh) 2020-03-19 2022-11-11 弗尔甚普股份公司 电致变色器件及其制造方法
CN115394186A (zh) * 2022-05-31 2022-11-25 四川京龙光电科技有限公司 一种高密度超薄柔性显示器件、显示装置及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020077512A (ko) * 2000-12-27 2002-10-11 소니 가부시끼 가이샤 일렉트로크로믹 표시 소자 및 일렉트로디포지션형 표시 소자
KR100710995B1 (ko) * 2005-11-22 2007-04-24 엘지전자 주식회사 금속 메쉬 전극을 이용한 전자종이 디스플레이 장치의제조방법
KR20070047597A (ko) * 2005-11-02 2007-05-07 주식회사 엘지화학 전기변색소자의 전극구조
JP2009063707A (ja) * 2007-09-05 2009-03-26 Konica Minolta Holdings Inc 表示素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4416517A (en) * 1980-12-22 1983-11-22 Corning Glass Works Electrochromic devices including a mica layer electrolyte
ATE209366T1 (de) 1996-03-15 2001-12-15 Ecole Polytech Elektrochrome oder photoelektrochrome vorrichtung
US6301038B1 (en) 1997-02-06 2001-10-09 University College Dublin Electrochromic system
WO2001027690A2 (en) * 1999-10-11 2001-04-19 University College Dublin Electrochromic device
WO2005012993A1 (ja) * 2003-07-31 2005-02-10 Sanyo Electric Co., Ltd. エレクトロクロミック表示装置
JP4391472B2 (ja) 2005-12-06 2009-12-24 財団法人ソウル大学校産学協力財団 固体無機電解質の保護膜を用いたエレクトロクロミック素子及びその製造方法
KR101109253B1 (ko) * 2005-12-29 2012-01-30 삼성전자주식회사 플렉서블 전기변색 소자 및 그 제조방법
KR100936121B1 (ko) 2006-09-06 2010-01-11 주식회사 엘지화학 전기변색층 패턴 형성 방법, 이 방법을 이용한 전기변색소자 제조방법 및 전기변색층 패턴을 구비하는 전기변색소자
KR101377770B1 (ko) 2007-06-20 2014-03-26 삼성전자주식회사 전기변색 소자용 전극의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020077512A (ko) * 2000-12-27 2002-10-11 소니 가부시끼 가이샤 일렉트로크로믹 표시 소자 및 일렉트로디포지션형 표시 소자
KR20070047597A (ko) * 2005-11-02 2007-05-07 주식회사 엘지화학 전기변색소자의 전극구조
KR100710995B1 (ko) * 2005-11-22 2007-04-24 엘지전자 주식회사 금속 메쉬 전극을 이용한 전자종이 디스플레이 장치의제조방법
JP2009063707A (ja) * 2007-09-05 2009-03-26 Konica Minolta Holdings Inc 表示素子

Also Published As

Publication number Publication date
KR101720586B1 (ko) 2017-03-30
US8654431B2 (en) 2014-02-18
US20110228376A1 (en) 2011-09-22

Similar Documents

Publication Publication Date Title
KR101720586B1 (ko) 능동형 전기변색소자 및 그 제조 방법
US7256925B2 (en) Flexible electrochromic device and method of manufacturing the same
KR101708373B1 (ko) 능동형 전기변색소자 어레이 및 이의 제조방법
US8503059B2 (en) Electrochromic thin film transistors with lateral or vertical structure using functionalized or non-functionalized substrates and method of manufacturing same
JP4589915B2 (ja) エレクトロクロミックディスプレイ・デバイス
JP6610023B2 (ja) エレクトロクロミック表示装置
CN108164508B (zh) 紫精化合物以及包含该紫精化合物的电解质、透光率可变面板和显示装置
US7369295B2 (en) Electrochromic display
JP5332510B2 (ja) 透明導電性基板、及び電気化学表示素子
US20110222139A1 (en) Electrochromic display apparatus and method of manufacturing the same
JP2017009995A (ja) エレクトロクロミック素子、表示装置及びその駆動方法
KR20110086783A (ko) 기능성 디바이스 및 그 제조 방법
JP6064761B2 (ja) エレクトロクロミック装置及びその製造方法
Jiao et al. A fast-switching light-writable and electric-erasable negative photoelectrochromic cell based on Prussian blue films
US7830582B2 (en) Electrochromic display
JP2017026750A (ja) エレクトロクロミック素子、調光眼鏡及びエレクトロクロミック素子の製造方法
KR20120064315A (ko) 전기 변색 소자 및 그 제조 방법
WO2005012993A1 (ja) エレクトロクロミック表示装置
US20130213475A1 (en) Dye-sensitized photovoltaic device and fabrication method for the same
KR102459043B1 (ko) 투명표시장치
KR100957686B1 (ko) 리튬니켈산화물 층을 포함하는 전극, 그 제조방법 및 이를포함하는 전기변색소자
JP2016133537A (ja) エレクトロクロミック装置
JP2005084216A (ja) 表示装置
KR20230099657A (ko) 전기변색소자
JP2005049771A (ja) エレクトロクロミック表示装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200225

Year of fee payment: 4