KR20110009215A - 프로브를 전진시키기 위한 방법 및 장치 - Google Patents

프로브를 전진시키기 위한 방법 및 장치 Download PDF

Info

Publication number
KR20110009215A
KR20110009215A KR1020107027214A KR20107027214A KR20110009215A KR 20110009215 A KR20110009215 A KR 20110009215A KR 1020107027214 A KR1020107027214 A KR 1020107027214A KR 20107027214 A KR20107027214 A KR 20107027214A KR 20110009215 A KR20110009215 A KR 20110009215A
Authority
KR
South Korea
Prior art keywords
tube
liquid column
distal end
probe
movement
Prior art date
Application number
KR1020107027214A
Other languages
English (en)
Other versions
KR101605577B1 (ko
Inventor
미카일 소우토리네
Original Assignee
엔도진 피티와이 엘티디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2008902195A external-priority patent/AU2008902195A0/en
Application filed by 엔도진 피티와이 엘티디 filed Critical 엔도진 피티와이 엘티디
Publication of KR20110009215A publication Critical patent/KR20110009215A/ko
Application granted granted Critical
Publication of KR101605577B1 publication Critical patent/KR101605577B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00156Holding or positioning arrangements using self propulsion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0023Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
    • A61M25/0026Multi-lumen catheters with stationary elements
    • A61M25/003Multi-lumen catheters with stationary elements characterized by features relating to least one lumen located at the distal part of the catheter, e.g. filters, plugs or valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0023Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
    • A61M25/0026Multi-lumen catheters with stationary elements
    • A61M25/0032Multi-lumen catheters with stationary elements characterized by at least one unconventionally shaped lumen, e.g. polygons, ellipsoids, wedges or shapes comprising concave and convex parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/005Catheters; Hollow probes characterised by structural features with embedded materials for reinforcement, e.g. wires, coils, braids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0122Steering means as part of the catheter or advancing means; Markers for positioning with fluid drive by external fluid in an open fluid circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0023Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
    • A61M25/0026Multi-lumen catheters with stationary elements
    • A61M2025/0034Multi-lumen catheters with stationary elements characterized by elements which are assembled, connected or fused, e.g. splittable tubes, outer sheaths creating lumina or separate cores
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0023Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
    • A61M25/0026Multi-lumen catheters with stationary elements
    • A61M2025/0036Multi-lumen catheters with stationary elements with more than four lumina
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M2025/006Catheters; Hollow probes characterised by structural features having a special surface topography or special surface properties, e.g. roughened or knurled surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/0045Catheters; Hollow probes characterised by structural features multi-layered, e.g. coated

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Pulmonology (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Geometry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Endoscopes (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

일부 구현예는 근부 말단(proximal end) 및 원부 말단(distal end)을 갖고 관(tract) 내에 수용되는 크기를 갖는 세장형 플렉시블 튜브; 상기 튜브의 근부 말단에 연결된 구동 메커니즘; 및 상기 근부 말단으로부터 상기 원부 말단까지 연장하는 액체 컬럼을 포함하는 장치에 관한 것으로; 여기서 상기 구동 메커니즘은 상기 튜브 내에서 상기 액체 컬럼의 이동을 일으키는 것으로 구성되어 상기 튜브에 전방 모멘텀을 부여하고, 그에 의해 적어도 상기 원부 말단이 상기 관의 일부 내에 수용될 때 관 내에서 적어도 상기 튜브의 원부 말단의 전진(advancement)을 촉진한다.

Description

프로브를 전진시키기 위한 방법 및 장치{METHOD AND APPARATUS FOR ADVANCING A PROBE}
기재된 구현예는 프로프를 전진시키는데 사용하기 위한 방법 및 장치에 관한 것이다. 특히, 구현예는 생체 관과 같은 관(tract) 내 또는 표면을 가로질러 프로프를 전진시키기 위해 사용될 수 있다.
사람이 손쉽게 접근할 수 없는 관(tract), 조밀한 공간 또는 영역을 탐사하는 것은 어려울 수 있다. 이는 프로브의 전진의 적절한 제어가 문제가 될 수 있는 곳에서 특히 그러하다. 예를 들어, 장관은 종종 상대적으로 길고 구불구불한 경로를 형성하는데, 이는 프로브로 하여금 프로브의 전진을 돕는 일부 형태의 디바이스의 도움 없이 횡단하는 것을 어렵게 한다.
장관 및 혈관과 같은 관은 의료적 용도를 위한 프로브를 사용하여 유익하게 탐사될 수 있다.
프로브를 전진시키기 위한 현존하는 방법 및/또는 장치와 관련된 하나 이상의 결점 또는 단점을 처리 또는 감소하는 것, 또는 적어도 그에 대한 유용한 대안을 제공하는 것이 요구된다.
일부 구현예는
관(tract) 내에 수용되는 크기를 갖고 근부 말단(proximal end) 및 원부 말단(distal end)을 갖는 세장형 플렉시블 튜브(elongate flexible tube);
상기 튜브의 근부 말단에 연결된 구동 메커니즘; 및
상기 근부 말단으로부터 상기 원부 말단까지 연장하는 액체 컬럼을 포함하는 장치에 관한 것으로,
여기서 상기 구동 메커니즘은 상기 튜브 내에서 상기 액체 컬럼의 이동을 일으키는 것으로 구성되어 상기 튜브에 전방 모멘텀(forward momentum)을 부여하고, 그에 의해 적어도 상기 원부 말단이 상기 관의 일부 내에 수용될 때 관 내에서 적어도 상기 튜브의 원부 말단의 전진(advancement)을 촉진한다.
액체 컬럼은 구동 메커니즘 및 튜브에 둘러싸인 액체 체적의 일부일 수 있다. 튜브는 원부 말단의 적어도 일부를 따라 튜브의 외부 표면에 형성된 주기 섭동(periodic perturbation)을 가질 수 있다. 주기 섭동은 튜브 둘레에서 원주방향으로 연장할 수 있고 튜브 벽의 방사상 두께와 동일한 크기 정도(order of magnitude)의 방사상 변동을 가질 수 있다.
튜브의 외부 표면은 역 방향(reverse direction)으로 튜브의 이동에 대한 저항을 향상시키도록 윤곽형성될(contoured) 수 있다. 튜브의 내부 표면은 전방 방향(forward direction)으로 튜브를 통한 컬럼의 이동에 대한 저항을 향상시키도록 윤곽형성될 수 있다. 튜브의 외부 및 내부 표면(즉, 주기 섭동)은 근부로 쓸린 전나무 패턴으로(proximally swept fir tree pattern) 형성될 수 있다. 내부 주기 섭동은 근부 말단의 원부인 튜브의 적어도 한 섹션을 따라 형성될 수 있다.
액체 컬럼의 액체는 물의 밀도와 거의 동일하거나 더 큰 밀도를 가질 수 있어서, 액체 컬럼이 구동 메커니즘에 의해 작용될 때 액체가 최소로 압축한다.
구동 메커니즘은 액체 컬럼의 근부 말단에 특정의 속도 프로파일을 부여하도록 구성되어 관 내에서 튜브의 전방 이동(forward movement)을 향상시킬 수 있다. 속도 프로파일은 하기 중 하나 이상을 포함할 수 있다 :
액체 컬럼의 전방 이동의 제1 부분에서의 점진적 가속부(gradual acceleration portion);
상기 전방 이동의 제1 부분에 이어 액체 컬럼의 전방 이동의 제2 부분에서의 샤프한 감속부(sharp deceleration portion);
상기 액체 컬럼의 후방 이동(rearward movement)의 제1 부분에서의 샤프한 가속부; 및
상기 후방 이동의 제1 부분에 이어 액체 컬럼의 후방 이동의 제2 부분에서의 점진적 감속부.
구동 메커니즘은, 튜브 내에서 액체 컬럼의 반복된 전진 및 후퇴를 일으키도록 구성된 샤프트와 같은 구동 부재 및 피스톤을 포함할 수 있다. 피스톤을, 피스톤의 각 스트로크의 끝을 향해 샤프하게 감속 및/또는 피스톤의 각 스트로크의 말단에서부터 멀어지게 샤프하게 가속하게 하도록 구동 메커니즘이 구성될 수 있다.
이 장치는 유체 컬럼의 원부 말단을 둘러싸기 위해 원부 말단에 튜브 내의 플렉시블 막을 추가로 포함할 수 있다. 튜브의 원부 말단은 튜브, 플렉시블 막 및 플렉시블 막의 원부에 위치된 또다른 막과 경계를 이룬 압축성 유체 체적(예를 들면, 공기 또는 또다른 저밀도 불활성 가스)을 하우징할 수 있다. 다른 막도 또한 플렉시블할 수 있고, 두 막은 액체 컬럼의 전진에 따라 탄성적으로 변형가능하다.
튜브의 내부 직경은 원부 방향으로 좁아질 수 있다. 이러한 좁아짐은 단계적 및/또는 점진적일 수 있다. 이러한 좁아짐은 구동 메커니즘이 액체 컬럼을 이동시키는 동안 원부 말단에 대한 액체 컬럼의 압력 손실을 최소화하는 것을 도울 수 있다. 튜브 벽은 일부 형태의 강화 수단에 의해 강화되어 구동 메커니즘의 작용에 의해 생성된 압력 차이에 대응하여 튜브가 팽창 또는 붕괴하는 것을 막는 것을 도울 수 있다.
프로브는 튜브의 원부 말단에 위치될 수 있다. 프로브는 프로브의 전면에 있는 영역의 이미지를 캡쳐하기 위한 이미징 디바이스를 하우징할 수 있다. 예를 들어 프로브에 및/또는 프로브로부터 신호를 송신 및/또는 수신하기 위하여, 복수의 도관이 튜브를 따라 연장할 수 있고 프로브에 연결될 수 있다. 도관은 튜브의 적어도 일부를 따라 튜브 내에 배치될 수 있다. 도관의 적어도 하나는 튜브의 적어도 일부를 따라 나선형으로 연장할 수 있다. 일부 구현예에서, 2차 루멘은 튜브에 의해 정의된 1차 루멘 내에서 연장할 수 있고, 하나 이상의 도관은 튜브의 적어도 일부를 따라 2차 루멘 내에서 연장할 수 있다. 일부 구현예에서, 튜브 길이의 적어도 일부를 따라 튜브 벽 내에 하나 이상의 도관이 임베드될 수 있다.
그 안에서 튜브가 연장되는 크기를 갖는 관은, 예를 들어 소화관 또는 혈관일 수 있다. 대안적으로, 관은 비-생물 구조 또는 영역, 예컨대 파이프, 도관, 컨테이너 또는 사람이 접근 및/또는 조사하기 어렵거나 위험할 수 있는 기타 구조일 수 있다.
추가의 구현예는 프로브를 전진시키는 방법에 관한 것으로, 상기 방법은 하기를 포함한다 :
세장형 플렉시블 튜브의 원부 말단을 적어도 부분적으로 관의 하부 말단에 위치시키는 단계로서, 상기 튜브는 상기 관 내에 수용되는 크기를 갖고 튜브의 근부 말단으로부터 원부 말단까지 연장하는 액체 컬럼을 갖고, 여기서 상기 프로브는 상기 튜브의 원부 말단에 위치되는 것인 단계; 및
구동 메커니즘을 가동하여 상기 튜브 내에서 상기 액체 컬럼의 전진을 일으켜서 상기 튜브에 전방 모멘텀을 부여하고, 그에 의해 상기 관 내에서 적어도 상기 튜브의 원부 말단의 전진을 촉진하는 단계.
가동은 액체 컬럼의 근부 말단에 특정의 속도 프로파일을 부여하여 관 내에서 튜브의 전방 이동을 향상시키는 것을 포함할 수 있다. 속도 프로파일은 하기 중 하나 이상을 포함할 수 있다 :
액체 컬럼의 전방 이동의 제1 부분의 점진적 가속부;
상기 전방 이동의 제1 부분에 이어 액체 컬럼의 전방 이동의 제2 부분의 샤프한 감속부;
상기 액체 컬럼의 후방 이동의 제1 부분의 샤프한 가속부; 및
상기 후방 이동의 제1 부분에 이어 액체 컬럼의 후방 이동의 제2 부분의 점진적 감속부.
가동은, 튜브 내에서 액체 컬럼의 반복된 전진 및 후퇴를 일으키도록 구동 샤프트 및 피스톤을 가동하는 것을 포함할 수 있다. 가동은 피스톤을, 피스톤의 각 스트로크의 말단을 향해 샤프하게 감속하도록 할 수 있다(즉, 최대 스트로크 포인트의 바로 앞). 가동은 피스톤을, 피스톤의 각 스트로크의 말단에서부터 멀어지게 샤프하게 가속하도록 할 수 있다(즉, 최대 스트로크 포인트의 바로 뒤).
본 방법은 관내에서 역 방향으로 튜브의 이동을 막기 위해 튜브의 외부를 따라 윤곽(contour)을 제공하는 것을 추가로 포함할 수 있고, 원부 방향으로 튜브를 통한 액체 컬럼의 이동을 막기 위해 튜브의 내부를 따라 윤곽을 제공하는 것을 포함할 수 있다.
프로브는 이미징 디바이스를 포함할 수 있고, 본 방법은 이미징 디바이스를 사용하여 관 내에서 이미지를 캡쳐하는 것을 추가로 포함할 수 있다. 본 방법은 캡쳐된 이미지에 상응하는 이미지 데이터를, 이미지를 처리 및 디스플레이하도록 구성된 시스템에 전송하는 것을 추가로 포함할 수 있다. 하나 이상의 전기 도관을 포함하여, 도관은 튜브를 따라 연장하여 프로브에 및 프로브로부터 신호의 송신 및 수신 중 하나 이상을 수행할 수 있고, 전송은 하나 이상의 전기 도관을 사용하여 수행될 수 있다.
일부 구현예는 세장형 부재(elongate member)의 길이를 따라 부재의 전방 이동을 부여하기 위하여 부재의 한쪽 말단으로부터 그 부재의 반대쪽 말단으로 세장형 부재 내에서 연장하는 액체 컬럼의 왕복 이동을 유발하는 것을 포함하는 전진 방법에 관한 것이다.
일부 구현예는 세장형 부재의 한쪽 말단에 위치된 프로브 및 상기 세장형 부재의 반대쪽 말단의 구동 메커니즘을 포함하는 장치에 관한 것으로, 상기 세장형 부재는 한쪽 말단으로부터 반대쪽 말단까지 연장하는 액체 컬럼을 하우징하며, 여기서 구동 메커니즘은 세장형 부재 내에서 액체 컬럼의 왕복 이동을 일으켜서 프로브에 전방 이동을 부여한다.
일부 구현예는 세장형 플렉시블 튜브, 상기 튜브의 근부 말단에 배치된 액체 챔버 및 상기 튜브의 원부 말단에 배치된 프로브를 포함하는 대체가능한 자가-전진 튜브 어셈블리에 관한 것으로, 상기 튜브는 상기 액체 챔버 및 상기 원부 말단 사이에서 연장하는 액체 컬럼을 갖는다.
구현예는 예시로서, 첨부한 도면을 참조하여 하기에 보다 자세하게 설명될 것이다.
도 1은 관 내에서 프로브를 전진시키는데 사용하기 위한 시스템의 도식적인 블록 다이어그램이다.
도 2는 액체 컬럼에 부여될 도해적인 속도 프로파일의 그래프이다.
도 3은 프로브를 전진시키는데 사용되는 전진 장치(advancement apparatus)를 도식적으로 나타낸 것이다.
도 4A는 도 3의 전진 장치의 일부를 형성하는 튜브의 근부 부분의 도식적인 측면도이다.
도 4B는 도 3의 전진 장치의 일부를 형성하는 튜브의 원부 부분의 도식적인 측면도이다.
도 5A는 릴랙스된 위치에서 도시된 막으로, 전진 장치의 원부 말단을 향해 위치된 플렉시블 막을 도해하여 도식적으로 나타낸 것이다.
도 5B는 막을 변형된 위치에 나타낸, 도 5A의 막을 도해하는 도식적인 다이어그램이다.
도 6은 일부 구현예에 따라 프로브를 전진시키는 시스템의 도식적인 다이어그램이다.
도 7A는 일부 구현예에 따른 튜브의 부분 측면도이다.
도 7B는 라인 7-7을 따라서 취한, 도 7A의 튜브의 단면도이다.
도 8A는 일부 구현예에 따른 튜브의 측면도이다.
도 8B는 라인 8-8을 따라서 취한, 도 8A의 튜브의 단면도이다.
도 9A는 일부 구현예에 따른 튜브의 측면도이다.
도 9B는 라인 9-9를 따라서 취한, 도 9A의 튜브의 단면도이다.
도 1OA는 일부 구현예에 따른 튜브의 측면도이다.
도 10B는 라인 10-10을 따라서 취한, 도 10A의 튜브의 단면도이다.
도 11A는 일부 구현예에 따른 튜브의 측면도이다.
도 11B는 라인 11-11을 따라서 취한, 도 11A의 튜브의 단면도이다.
도 12A는 일부 구현예에 따른 튜브의 부분 측면도이다.
도 12B는 라인 12-12를 따라서 취한, 도 12A의 튜브의 단면도이다.
도 13A는 일부 구현예에 따른 튜브의 부분 측면도이다.
도 13B는 라인 13-13을 따라서 취한, 도 13A의 튜브의 단면도이다.
도 13C는 라인 13-13을 따라서 취한, 도 13A의 튜브의 대안적인 단면도이다.
도 14A는 일부 구현예에 따른 튜브의 부분 측면도이다.
도 14B는 라인 14-14를 따라서 취한, 도 14A의 튜브의 단면도이다.
도 15A는 일부 구현예에 따른 튜브의 부분 측면도이다.
도 15B는 라인 15-15를 따라서 취한, 도 15A의 튜브의 단면도이다.
도 16A 및 16B는 구동 메커니즘의 일부 구현예에 따라 챔버 내에서 움직이는 피스톤을 도식적으로 나타낸 것이다.
도 17A 및 17B는 구동 메커니즘의 일부 구현예에 따라 챔버 내에서 움직이는 피스톤을 도식적으로 나타낸 것이다.
도 18은 구동 메커니즘의 일부 구현예에 따라 유체 챔버의 플렉시블 막에 작용하는 피스톤을 도식적으로 나타낸 것이다.
도 19는 구동 메커니즘의 일부 구현예에 따라 유체 챔버의 막을 대체하기 위해 편심으로 회전가능한 원형 단면의 피스톤을 도식적으로 나타낸 것이다.
도 20은 구동 메커니즘의 일부 구현예에 따라, 전자기적 요소의 제어 하에서 챔버 내에서 이동가능한 피스톤을 가지는 유체 챔버를 도식적으로 나타낸 것이다.
도 21은 일부 구현예에 따른 원부 바이어스 챔버를 도식적으로 나타낸 것이다.
도 22는 일부 구현예에 따른 원부 바이어스 챔버를 도식적으로 나타낸 것이다.
도 23은 일부 구현예에 따른 원부 바이어스 챔버를 도식적으로 나타낸 것이다.
도 24는 일부 구현예에 따른 원부 바이어스 챔버를 도식적으로 나타낸 것이다.
도 25는 비압축 상태에서 나타낸, 일부 구현예에 따른 원부 바이어스 챔버를 도식적으로 나타낸 것이다.
도 26은 압축 상태에서 도 25의 원부 바이어스 챔버를 도식적으로 나타낸 것이다.
도 27은 비압축 상태에서 나타낸, 일부 구현예에 따른 원부 바이어스 챔버를 도식적으로 나타낸 것이다.
도 28은 압축 상태에서 도 27의 원부 바이어스 챔버를 도식적으로 나타낸 것이다.
도 29는 일부 구현예에 따른 원부 바이어스 챔버를 도식적으로 나타낸 것이다.
도 30은 일부 구현예에 따른 원부 바이어스 챔버를 도식적으로 나타낸 것이다.
도 31은 일부 구현예에 따른 원부 바이어스 챔버를 도식적으로 나타낸 것이다.
도 32는 비압축 상태에서 나타낸, 일부 구현예에 따른 원부 바이어스 챔버를 도식적으로 나타낸 것이다.
도 33은 압축 상태에서 도 32의 원부 바이어스 챔버를 도식적으로 나타낸 것이다.
도 34는 비압축 상태에서 나타낸, 일부 구현예에 따른 원부 바이어스 챔버를 도식적으로 나타낸 것이다.
도 35는 압축 상태에서 도 34의 원부 바이어스 챔버를 도식적으로 나타낸 것이다.
도 36은 일부 구현예에 따른 원부 바이어스 챔버를 도식적으로 나타낸 것이다.
도 37A는 튜브의 외부 표면을 따라서 주기 섭동을 나타내는, 일부 구현예에 따른 튜브의 일부의 부분 측면도이다.
도 37B는 튜브의 외부 표면을 따라서 주기 섭동을 나타내는, 일부 구현예에 따른 튜브의 일부의 부분 측면도이다.
도 38A는 튜브의 외부 표면을 따라서 주기 섭동을 나타내는, 일부 구현예에 따른 튜브의 일부의 부분 측면도이다.
도 38B는 튜브의 외부 표면을 따라서 주기 섭동을 나타내는, 일부 구현예에 따른 튜브의 일부의 부분 측면도이다.
도 39A는 튜브의 외부 표면을 따라서 주기 섭동을 나타내는, 일부 구현예에 따른 튜브의 일부의 부분 측면도이다.
도 39B는 튜브의 외부 표면을 따라서 주기 섭동을 나타내는, 일부 구현예에 따른 튜브의 일부의 부분 측면도이다.
도 40A는 튜브의 내부 표면을 따라서 주기 섭동을 나타내는, 일부 구현예에 따른 튜브의 부분 측면도이다.
도 40B는 튜브의 내부 표면을 따라서 주기 섭동을 나타내는, 일부 구현예에 따른 튜브의 부분 측면도이다.
도 41A는 튜브의 내부 표면을 따라서 주기 섭동을 나타내는, 일부 구현예에 따른 튜브의 부분 측면도이다.
도 41B는 튜브의 내부 표면을 따라서 주기 섭동을 나타내는, 일부 구현예에 따른 튜브의 부분 측면도이다.
도 42A는 튜브의 내부 표면을 따라서 주기 섭동을 나타내는, 일부 구현예에 따른 튜브의 부분 측면도이다.
도 42B는 튜브의 내부 표면을 따라서 주기 섭동을 나타내는, 일부 구현예에 따른 튜브의 부분 측면도이다.
도 43A는 튜브의 내부 및 외부 표면 양자를 따라서 주기 섭동을 나타내는, 일부 구현예에 따른 튜브의 일부의 부분 측면도이다.
도 43B는 튜브의 내부 및 외부 표면 양자를 따라서 주기 섭동을 나타내는, 일부 구현예에 따른 튜브의 일부의 부분 측면도이다.
도 44는 튜브를 따라서 이격된 섹션에서 튜브의 내부 및 외부 표면을 따라서 형성된 주기 섭동을 나타내는, 일부 구현예에 따른 튜브의 일부의 부분 측면도이다.
기재된 구현예는 전체적으로 프로브를 전진시키는데 사용하기 위한 방법 및 장치에 관한 것이다. 상이한 유형의 프로브가 기재된 구현예와 함께 사용될 수 있기 때문에, 본 상세한 설명은 관, 통로 또는 영역 내에서 프로브를 전진시키기 위한 장치 및 방법에 우선적으로 포커스를 맞출 것이다. 기재된 방법 및 장치는 근부 말단 및 원부 말단을 갖고, 관, 통로 또는 영역 내에 수용되는 크기를 갖고, 루멘을 정의하는 세장형 플렉시블 튜브를 채택하고 있다. 구동 메커니즘은 튜브의 근부 말단에 연결되고, 액체 컬럼은 튜브의 근부 말단으로부터 원부 말단까지 루멘 내에서 연장한다. 구동 메커니즘은 상기 튜브 내에서 상기 액체 컬럼의 이동을 일으키는 것으로 구성되어 상기 튜브에 전방 모멘텀을 부여하고, 이는 적어도 상기 원부 말단이 상기 관, 통로 또는 영역의 일부에 의해 지지될 때 관, 통로 또는 영역 내에서 적어도 상기 튜브의 원부 말단의 전진을 촉진한다.
일반적으로, 루멘 내에서 액체 컬럼의 이동은, 마찰 및/또는 난류에 의해 튜브의 길이의 대부분을 따라 튜브의 내벽에 모멘텀을 부여한다. 예를 들어, 길이 약 3미터의 튜브에 대해서, 튜브 내의 액체 컬럼의 이동은, 통로의 아래에 있는 표면에 의해 지지되지 않거나 또는 구동 메커니즘에 가까운 섹션을 제외하고는, 3미터 길이의 튜브의 대부분을 따라 아래에 있는 표면 또는 통로에 비해 튜브에 약간의 이동을 부여할 것이다.
여기에서 사용된 용어 "근부" 및 "원부"는 상대적인 위치의 의미를 갖는 것으로 의도된다. 전체적으로 용어 "원부"는 일반적으로 관 내에서 튜브의 나머지의 앞으로 나아가게 될 튜브의 말단을 향한 위치 또는 방향을 나타내는 것으로 의도된다. 용어 "근부"는 일반적으로 "원부"의 그것과 반대의 위치 또는 방향을 나타내는 것으로 의도되고, 구동 메커니즘이 연결되는 튜브의 말단을 향한 위치 또는 방향을 나타낼 수 있다. 기재된 구현예는 전체적으로 원부 방향에서 프로브의 전진에 관한 것이다.
특히 도 1과 관련하여, 프로브(160)를 전진시키기 위한 시스템(100)이 보다 상세하게 설명된다. 시스템(100)은 제어 모듈(115)에 대응하는 전진 장치(110)를 포함하여 프로브(160)가 관(180) 또는 기타 영역 내에 위치될 때 관(180) 또는 기타 영역 내에서 프로브(160)를 전진시킨다.
전진 장치(110)는 세장형 플렉시블 튜브(140)의 근부 말단(142)에 연결된 구동 메커니즘(130)을 포함한다. 튜브는 프로브(160)가 위치된 원부 말단(144)을 갖는다. 구동 메커니즘(130)은 제어 모듈(115)로부터 수신된 제어 신호에 대응하여, 피스톤을 구동하는 구동 샤프트와 같은 일부 형태의 구동 수단을 가동하여, 튜브(140) 내에서 액체 컬럼(156)의 왕복(전진 및 후진) 이동을 일으킨다.
플렉시블 튜브(140)는 액체 컬럼(156)이 그 안에서 연장하는 1차 내부 루멘(141)을 정의한다. 이러한 1차 루멘(141)은 인접한 구동 메커니즘(130)으로부터 원부 말단(144)으로 연장하고, 액체 컬럼(156)은 실질적으로 루멘(141)의 전체 길이를 연장한다. 일단 원부로 진행되면 원부 바이어스 수단(하기에서 설명)이 프로브(160)에서 근부 방향으로 바이어스 액체 컬럼(156)에 근부로 위치되도록 허용하기 위하여 액체 컬럼(156)은 프로브(160)에 대해 우측으로 연장할 수 없다. 액체 컬럼(156)은 구동 메커니즘(130)의 유체 챔버, 원부 바이어스 수단, 튜브(140)에 둘러싸인 액체 체적의 일부를 포함한다. 원부 바이어스 수단의 예는 도 21 내지 36과 관련하여 하기에서 도시 및 설명될 것이다.
세장형 플렉시블 튜브(140)는 특수한 탐사의 적용에 적합하게 선택된 직경 및 길이를 가질 수 있다. 튜브(140)의 재료는 특수한 적용에 적합하도록 유사하게 선택될 수 있다. 예를 들어, 전진 장치(110)가 채택되어 생물학적 관, 예컨대 위장관 내에서 프로브를 전진시키는 경우, 튜브는 약 5 mm 내지 약 15 mm (가능하게는 7 mm에 가깝게)의 최대 외부 직경을 가질 수 있고, 약 1 미터 내지 약 10 미터, 가능하게는 약 3 미터 내지 약 6 미터의 길이를 가질 수 있다. 항문을 통해 장관 내에(즉, 소장 내로) 프로브(160)를 전진시키기 위해서 약 3 미터 내지 4 미터의 튜브 길이가 적합할 수 있다.
장관을 탐사하기 위해(즉, 위장 내시경을 위해) 사용될 때 튜브의 재료는 적절한 플렉시블 및 의료적으로 불활성인 재료, 예컨대 적절한 폴리비닐클로라이드(PVC), 실리콘, 라텍스 또는 고무 재료로 형성될 수 있다. 튜브(140)의 재료는 튜브(140)를 구부림가능하게 하여, 튜브(140)의 내부 단면적을 감소시키기 위하여 튜브(140)의 벽을 킹킹(kinking) 또는 붕괴 또는 변형하지 않으면서 상대적으로 작은 최소한의 직경(적용에 따라서)의 루프로 형성될 수 있도록 한다. 이러한 목적을 위해, 튜브 벽은 증가된 구조적 강직성(structural integrity)을 위해 강화될 수 있다. 내시경 적용을 위해, 최소 루프 직경은 약 2 cm일 수 있고, 예를 들어, 약 1 cm 내지 약 5 cm의 범위일 수 있다.
혈관을 탐사하도록 설계된 의료적 또는 수의학적 적용을 위해(즉, 혈관내시경을 위해), 튜브 직경 및 길이는 적합하게 더 작고, 예를 들어 직경이 약 3 mm 내지 약 10 mm (가능하게는 5 mm에 더 가까움), 및 길이가 약 0.8 내지 약 3 m일 수 있고, 이 때 프로브(160)도 또한 적절하게 작은 직경을 갖도록 선택된다.
보다 산업적인 성질의 탐사 적용을 위하여, 예컨대 파이프, 덕트, 컨테이너, 통로, 관 또는 사람들이 접근하기에 불편하고, 안전하지 않거나 또는 어려운 기타 영역을 탐사하기 위하여, 튜브(140)는 적어도 그 외부 표면이, 보다 강인한 재료로 형성되어, 잠재적 연마 표면을 지나갈 때 튜브에 대한 손상을 회피 또는 감소할 수 있다. 일부 적용에서, 튜브(140)는 상대적으로 플렉시블할 필요가 있고, 튜브가 이동하도록 계획된 표면, 구조 또는 물체에 약간의 붙일 곳(purchase)을 획득할 수 있을 필요가 있다. 따라서, 도 37A 내지 44와 관련하여 하기에서 보다 상세하게 설명되는 바와 같이, 튜브(140)의 외부 표면을 따라 형성된 주기 섭동은 튜브가 이동하도록 계획된 표면 또는 구조를 마찰적으로 끌어당기는 것을 보조할 수 있다.
시스템(100)은 컴퓨터 시스템(120)을 포함하여 프로브(160)의 전진과 관련하여 제어, 신호 처리 및 사용자 인터페이스 기능을 제공할 수 있다. 그에 따라, 컴퓨터 시스템(120)은, 하드웨어, 소프트웨어 또는 이들 양자의 조합의 형태로 제공될 수 있는 제어 모듈(115)을 포함할 수 있다. 비록 도시되지는 않았지만, 컴퓨터 시스템(120)은 여기에 기재된 기능을 수행하도록 구성된 하나 이상의 프로세서 및 메모리를 포함한다.
컴퓨터 시스템(120)은 사용자 인터페이스 모듈(124)을 포함할 수 있다. 컴퓨터 시스템(120)은, 피드백 신호 또는 이미지 데이터 또는 상태에 상응하는 신호와 같은, 프로브(160)로부터의 신호를 수신 및 처리하기 위한 신호 처리 모듈(122)을 또한 포함할 수 있다. 신호 처리 모듈(122)은, 프로브(160)가 진행함에 따라 시스템(100)의 사용자가 시각적 피드백을 얻을 수 있도록 디스플레이(도시되지 않음) 상에 프로브(160)에 의해 캡쳐된 이미지를 제공하기 위하여, 사용자 인터페이스 모듈(124)과 접속될 수 있다.
사용자 인터페이스 모듈(124)은, 제어 모듈(115) 및 신호 처리 모듈(122)의 세팅 및/또는 기능이 특정의 환경, 적용 또는 상황에 적합하게 변형 또는 맞춰지는 것을 허용하도록 구성될 수 있다.
각각의 모듈(115, 122 및 124)은 하나 이상의 프로세서에 접근가능한 메모리에 저장된 프로그램 코드로서 실행가능할 수 있고, 입력-출력 요소, 가동 시스템 요소, 컴퓨터 주변 장치 등과 같이, 적절한 하드웨어 및/또는 소프트웨어 요소에 의해 보조될 수 있다.
구동 메커니즘(130)에 보조하여, 보조 장비(135)가 제어 모듈(115)의 제어 하에 제공되어 프로브(160)에 동력, 신호 및/또는 물질을 제공할 수 있다. 예를 들어, 보조 장비(135)는, 예를 들어 튜브(140)를 따라 연장하는 하나 이상의 전기 도관에 의해, 프로브(160)의 원부 면에 위치된 발광 다이오드(LED)와 같은 하나 이상의 광원에 전기 동력을 제공할 수 있다. 추가적으로 프로브(160)가 전하-결합 디바이스(CCD) 또는 기타 적절하게 작은 이미징 디바이스를 갖는 이미지-캡쳐 디바이스를 포함하는 곳에서, 하나 이상의 전기 도관은 그러한 이미지-캡쳐 디바이스에 동력을 공급하는데 사용될 수도 있다.
보조 장비(135)는, 튜브(140)를 따라 연장하는 하나 이상의 추가적인 도관을 따라 프로브(160)에 제공될 정제된 공기 및/또는 물의 소스를 추가로 포함할 수 있다. 이를 위해, 보조 장비(135)는 프로브(160)에 제공될 공기, 물 또는 기타 물질에 압력을 가하기 위한 적절한 콤프레서를 포함할 수 있다. 적용에 따라서, 프로브(160)는 혈관 또는 장관과 같은 관에 불어넣기 위해서 원부 끝에 위치된 에어 벤트를 사용할 수 있다. 프로브(160)는 또한, 예를 들어 이미징 디바이스의 전면에 있는 영역을 깨끗히 하기 위해서 그 원부 표면에 있는 개구로부터 물을 제공할 수 있다.
보조 장비(135)는 부분적으로 또는 완전히 제어 모듈(115)의 제어 하에 있고, 이는 이어서 사용자 인터페이스 모듈(124)을 통해 사용자에 의해 제어되거나, 또는 예를 들어 보조 장비의 적절한 요소의 수동 조작에 의해 독립적으로 제어되어, 프로브(160)와 필요한 상호작용을 제공할 수 있다. 적용에 따라서, 보조 장비(135)는, 예를 들어 재료를 생체검사하거나 또는 이후의 분석에 그것을 보내기 위해서, 프로브(160)에 인접한 재료의 캡쳐를 제어하기 위한 메커니즘을 또한 포함할 수 있다. 이를 위해, 보조 장비(135)는 튜브를 따라 연장하는 추가적인 석션 도관 및/또는 제어 케이블 도관을 통해 프로브(160)와 기계적, 공기적 및/또는 전기적으로 커뮤니케이션할 수 있다.
도 1에 나타낸 바와 같이 시스템(100)은 프로브(160)에 이미징 디바이스에 의해 캡쳐된 이미지 데이터의 무선 데이터 수집을 채택할 수 있고, 이때 그러한 데이터는 컴퓨터 시스템(120)과 연계된 적절한 안테나에 의해 수신되어, 처리를 위해 상기 이미지 데이터를 데이터 처리 모듈(124)에 직접 제공한다. 대안적으로 또는 추가적으로, 제어 신호는 적절한 짧은 범위의 낮은 동력 라디오 트랜스시버를 사용하여 보조 장비(135) 및/또는 제어 모듈(115)에 대응하여 프로브(160)로부터 무선으로 수신 또는 송신될 수 있다.
프로브(160)를 전진시키기 위하여, 구동 메커니즘(130)은 반복적인 방식으로 루멘(141) 내에서 액체 컬럼(156)에 특정의 속도 프로파일을 부여한다. 그러한 속도 프로파일의 예는 도 2에 도시된 속도 대 시간의 그래프에 표현되어 있다. 구동 메커니즘(130)에 의해 부여된 액체 컬럼(156)의 이동은 전방 이동 섹션(30) 및 리버스 이동 섹션(34)으로 나눠질 수 있고, 이 때 각각의 그러한 섹션(31, 34)은 두 개의 부분 또는 상으로 나눠진다. 전방 이동 섹션(30)은, 구동 메커니즘(130)이 액체 컬럼의 근부 말단에서의 점진적 가속을 부여하는 제1 상(31)으로 나눠진다. 제1 상을 즉시 뒤따르는 제2 상(32)은 액체 컬럼(156)이 잠시 휴식 위치(33)에서 휴식하는 동안 샤프한 감속을 부여하는 구동 메커니즘(130)과 관련이 있고, 이는 튜브(140) 내에서 (최대 스트로크의 지점에 해당하는) 최-원부 위치로 이동된 액체(156)에 해당한다. 리버스 이동 섹션(34)은 이어서 근부 방향에서 샤프한 가속의 제1 상(35), 그 바로 뒤에 근부 방향에서 점진적 감속의 제2 상(36)을 포함할 수 있고, 이는 참조 번호 37로 나타낸 바와 같이, 액체 컬럼(156)이 그 최원부 위치에서 다시 잠시 휴식할 때까지 계속된다.
전방 및 후방 이동 섹션(30, 34)의 제1 및 제2 상(31, 32, 35 및 36)이 각각의 상에서 속도에 있어서 일정한 변화(즉, 일정한 가속)를 갖는 것으로 도 2에 도시되었지만, 속도에 있어서 그러한 변화는 선형일 필요는 없다. 그보다는, 샤프한 반전과 관련된 속도 프로파일(즉, 작지만 포지티브한 가속으로부터 크고 네거티브한 가속까지 또는 그 반대)은, 전방(즉, 원부) 방향에서 액체 컬럼(156)으로부터 튜브(140)로의 모멘텀의 이동을 부여하기에 효과적인 것으로 생각된다.
만일 프로브(160)를 회수하는 것이 필요하다면, 속도 프로파일은 참조 번호 37에 의해 나타낸 최근부 휴식 위치의 약쪽 측면에서 샤프한 가속 및 감속을 갖도록 반전될 수 있다. 예를 들어, 전방 이동 섹션에서 샤프한 가속 상에 이어 점진적 감속 상이 뒤따를 것이고, 후방 이동 섹션에서 점진적 가속 상에 이어 즉시 샤프한 감속 상이 뒤따를 것이다.
일부 구현예에서, 샤프한 속도 반전은 전방 이동 섹션(30)에서만 또는 리버스 이동 섹션(34)에서만 채택될 수 있고, 이때 기타 이동 섹션은 속도에 있어서 상대적으로 점진적인 변화를 갖는다.
비록 구동 메커니즘이 가동되어 액체 컬럼(156)의 근부 말단에 원하는 속도 프로파일을 부여할 수 있다 할지라도, 액체 컬럼(156)의 이동은, 구동 메커니즘에 의해 생성되고 근부 말단(142)에 대해 원부 말단(144)으로 액체 컬럼(156)과 커뮤니케이션하는 압력 차이에 의존하기 때문에, 액체 컬럼(156)의 길이에 걸쳐서 일부 압력 손실이 있을 수 있다. 따라서 근부 말단(142)에서 구동 메커니즘(130)에 의해 액체 컬럼(156)에 대해 부여된 속도 프로파일은 원부 말단(144)에서 액체 컬럼(156)에 의해 경험된 것과 동일한 속도 프로파일이 아닐 수 있다. 튜브(140)의 길이에 걸친 압력 손실을 최소화 또는 감소하기 위해서, 튜브(140)의 전체적으로 원통형 벽이 강화되어 액체 컬럼(156)을 따라 유도된 압력 차이에 의한 튜브 벽의 팽창 또는 붕괴에 저항할 수 있다. 추가적으로, 루멘(141)의 내부 직경은 근부 말단(142)의 제1 내부 직경으로부터 원부 말단(144)의 더 작은 제2 내부 직경까지 튜브(140)의 길이에 걸쳐서 점진적으로 감소될 수 있다. 직경에 있어서 이러한 감소는 스무스하게 또는 단계적 방식으로 달성될 수 있다. 예를 들어, 단계적 감소는 튜브(140)를 따라 매 15, 20, 25 또는 30 cm 에서 말하자면 0.05 mm 또는 0.1 mm 의 감소를 포함할 수 있다. 이러한 직경의 감소는 튜브(140)의 길이를 따라 선형 또는 비-선형일 수 있다. 본 문맥에서, 튜브(140)의 길이를 따른 내부 직경의 감소는, 도 37A 내지 44와 관련하여 하기에 기재된 바와 같이, 주기 섭동에 기인한 내부 루멘 직경의 어떠한 주기적 변동과도 무관하다.
튜브(140)를 따라서 압력 손실은 실온에서 및 내부 보디 온도에서, 그러한 온도에서 물의 밀도와 거의 동일 또는 더 높은 밀도를 갖는 액체를 사용함으로서 최소화될 수 있다. 그러한 밀도의 액체는 일반적으로 구동 메커니즘(130)에 의해 가해진 상대적으로 낮은 압력 하에서 뚜렷하게 압축하지 않는다. 따라서, 예를 들어 정제된 또는 탈염된 물과 같은 물이 액체 컬럼(156)의 액체로서 사용될 수 있다.
시스템(100)의 사용에서, 튜브(140) 길이의 대부분은 코일형, 컬형(curled) 또는 느슨하게 유지되어, 원부 말단(144) 및 프로브(160)가 관(180) 또는 기타 영역 내에서 전진 및 그 안에 위치됨에 따라 점진적으로 직선형으로 될 수 있다. 따라서, 구동 메커니즘(130)의 가동 하에서 프로브(160)가 전진함에 따라, 튜브(140)가 점점 더 많이 관(180) 내에 수용될 것이다. 튜브(140)의 슬랙의 모두가 취해지고, 관의 외부에 있는 튜브(140)의 일부가 더 이상 전진하지 않을 때, 프로브(160)는 관(180) 내에서 연장가능한 한도에 도달할 것이다.
내시경, 혈관내시경 또는 기타 형태의 탐사가 완료되면, 프로브(160)는 관(180)의 외부에 남아있는 튜브(140)의 일부를 부드럽게 수동으로 잡아당겨서 관(180)으로부터 회수될 수 있다. 이는 구동 메커니즘(130)을 가동하는 것에 의해 보조 및/또는 대체되어 일반적으로 근부 방향으로 튜브(140)를 회수하고, 리버스 모션을 부여하는 경향이 있는 액체 컬럼(156)에 반전 속도 프로파일을 제공할 수 있다.
전진 장치(110)는 도 3, 4A 및 4B와 관련하여 보다 자세하게 도시 및 설명된다. 도 3에 도시된 바와 같이, 전진 장치(110)는 튜브(140)의 근부 말단(142)에 연결된 구동 메커니즘(130)을 포함한다. 프로브(160)는 튜브(140)의 원부 말단(144)에 연결된다. 구동 메커니즘(130)은 챔버 벽(350)에 의해 정의된 챔버(351)와 관련하여 왕복 방식으로 이동가능한 구동 피스톤을 포함할 수 있다. 벽(350) 내에서 피스톤(352)의 이동은 챔버(351) 내에서, 물과 같은 액체에 압력을 가고, 또한 압력을 감하여, 개구(356)를 통해 챔버(351)로부터 액체를 배출하거나 또는 챔버(351) 내로 되돌린다. 구동 메커니즘(130)의 다양한 대안의 구현예가 도 16A 내지 20과 관련하여 아래에서 도시 및 설명된다.
구동 메커니즘(130)은, 피스톤(352)을 구동하는 구동 샤프트(354)에 연결된 구동 부재(324)와 접촉하여 이를 작동시키도록 마운트된 구동 휠(322)을 포함할 수 있다. 시계 방향 또는 반시계 방향으로 구동 휠(322)의 회전이 각각, 근부 또는 원부 방향으로 구동 부재(324)의 선형 이동을 일으키도록, 구동 휠(322) 및 구동 부재(324)가 배열된다. 구동 휠(322)은 마운팅 브라켓(310)에 형성된 슬롯(312)을 통해 수용된 하나 이상의 패스너에 의해 표면 및/또는 구조(도시되지 않음)에 마운팅하기 위한 마운팅 브라켓(310) 내에 안전하게 위치될 수 있다. 구동 부재(324)는 마운팅 브라켓(310)에 고정적으로 연결된 지지체(326) 위에 있다. 구동 부재(324)는 상대적으로 적은 마찰로 지지체(326)에 대해 슬라이딩가능하다.
일부 구현예에서, 구동 부재(324) 및/또는 구동 샤프트(354)는 피스톤(352)에 제거가능하게 부착되어 챔버(350) 및 그 원부의 모든 부품들(튜브(140) 및 프로브(160) 포함)이 성능 열화에 기인하여 또는 한번 이상의 사용 후 대체될 수 있도록 한다.
구동 휠(322)은 구동 메커니즘(130)에 포함된 스테퍼 모터(도시되지 않음)의 제어 하에서 회전 가능하다. 스테퍼 모터의 제어는 상업적으로 입수가능한 스테퍼 모터와 함께 통상적으로 이용가능한 것과 같은 적절한 드라이버 프로그램을 사용하여 제어 모듈(115)에 의해 수행될 수 있다. 제어 모듈(115)은, 스테퍼 모터가 구동 휠(322)을 회전시킬 수 있게 구성되어, 벽(350) 내에서 피스톤(352)의 전진 및 후퇴에 의해 액체 컬럼(156)의 근부 말단에 원하는 속도 프로파일을 부여할 수 있도록 한다.
도 3 및 4A에 도시된 바와 같이, 전진 메커니즘(110)은 튜브(140)의 한쪽 말단 및 구동 챔버(351)의 출구(356) 사이에 연결된 Y-타입 접합점(330)을 포함할 수 있다. Y-타입 접합점(330)은 하나 이상의 도관(340, 342)이 튜브(140)의 근부 부분과 통합되도록 또는 패스하도록 허용하는 수단으로 작용하여 그러한 도관이 루멘(141) 내에서 연장하고, 튜브(140)의 길이의 대부분을 따라 액체 컬럼(156)과 동시연장(coextensive)되도록 한다. Y-타입 접합점(330)은 개구(356)에 의해 구동 챔버(351)와 유체 커뮤니케이션하도록 연결된 근부 말단(332)을 갖는다. 근부 말단(332)은 Y-타입 접합점(330)의 제1 림(limb)을 형성하며, 한편 제2 림(334)은 도 3에 도시된 바와 같이 근부 말단(332)으로부터의 예각에서 연장한다. Y-타입 접합점(330)은 액체 컬럼(156) 및 유체 도관(340, 342)을 통과하는 원부 말단(336)을 갖는다.
도관(340)은, 보조 장비(135) 및 프로브(160) 간 신호 및/또는 물질을 커뮤니케이션하기 위하여 다른 도관이 통과하는 2차 루멘을 정의할 수 있다. 그러한 도관은, 예를 들어, 공기 및/또는 물 통로, 신호 전달을 위한 전기 도관, 제어 케이블, 생체검사 튜브 등을 포함할 수 있다. 도관(342)은, 예를 들어 프로브(160)의 원부 면(162)에 노출된 하나 이상의 광원에 전압을 공급하기 위한 전기 도관을 포함할 수 있다. 도관(342)은 도관(340)에 연결되어 두 도관(340, 342)이 튜브(140)의 루멘(141) 내에서 연장함에 따라 이를따라 나선형으로 연장하도록 할 수 있다. 액체 컬럼(156)은 도관(340, 342)에 의해 취해지지 않은 공간(376)에서 루멘(141) 내에서 연장한다.
도 4A 및 4B에 도시된 바와 같이, 중공 유체 커넥터(410, 412, 414 및 416)가 사용되어 전진 장치(110)의 상이한 섹션을 함께 연결할 수 있다. 예를 들어, 제1 커넥터(410)는 개구(356) 둘레의 벽(350)에 연결된 튜브(440)에 Y-타입 접합점(330)의 근부 말단(332)을 연결한다. 제2 커넥터(412)는 튜브(140)의 근부 말단(142)에 Y-타입 접합점(330)의 원부 말단(336)을 연결한다. 제3 커넥터는 제4 커넥터(416)에 의해 이어서 플렉시블 섹션(460)에 연결되는 원부 튜브 섹션(450)에 튜브(140)의 원부 말단을 연결한다. 플렉시블 섹션(460)은 프로브(160)에 직접적으로 연결될 수 있고, 또한 예를 들어 도관(340 및/또는 342) 내에서 연장하는 제어 케이블의 사용에 의해, 방향성있게 제어될 수 있다.
원부 말단 섹션(450)은 원부 튜브 섹션(452)의 내부 벽에 대한 실링 및 도관(340, 342)의 외부 벽에 대한 실링에 의해 액체 컬럼(156)의 원부 말단을 실링하는 막(454)을 포함한다. 액체 컬럼(156)으로부터의 유체가 플렉시블 섹션(460) 내로 진입하는 것을 방지하기 위하여 전체적으로 원통형인 실링 섹션(455)이 또한 제공될 수 있다.
플렉시블 섹션(460)은 도관(340, 342)이 통과하여 프로브(160)에 연결되는 내부 루멘 또는 플리넘(464)을 정의할 수 있다. 플렉시블 섹션(460)은 플리넘(464)을 정의하는 플렉시블 벽(462)을 갖는다. 플렉시블 벽(462)은 플렉시블 벽(462)의 근부 말단에서 제4 커넥터(416) 및 플렉시블 벽(462)의 원부 말단에서 프로브(160)에 연결된다.
도 4B에 도시된 바와 같이, 프로브(160)는, 원부로 빛을 비추고 광원(472)에 의해 비춰진 영역의 이미지를 캡쳐하기 위하여 원부 면(162)에 위치된 LED와 같은 하나 이상의 광원(472) 및 이미징 디바이스(474)를 하우징할 수 있다.
이제 도 5A 및 5B와 관련하여, 원부 말단 섹션(450)의 대안의 형태를 도시 및 설명한다. 대안의 원부 말단 섹션(550)은 도 5A 및 5B에 도식적으로 나타나 있고, 축적된 것은 아니다. 원부 말단 섹션(550)은 원통형 벽(552)의 내부 표면에 실링으로 연결되고 원부 방향으로 원뿔 형상으로 내부로 연장하여 도관(340) 둘레에서 원주방향으로 및 실링으로 연결되는 플렉시블 막(554)을 포함한다. 플렉시블 막(554)은 액체 컬럼(156)이 전체적으로 플렉시블 막(554)의 근부로 배치되도록 위치되며, 이 때 공기와 같은 제2 유체 체적(556)은 플렉시블 막(554)의 원부로 배치된다. 구동 메커니즘(130)의 작용에 기인하여 액체 컬럼(156)이 원부로 이동할 때, 도 5B에 도시된 바와 같이 플렉시블 막(554)이 변형하여 제2 유체 체적(556)을 다소 압축할 수 있도록, 제2 유체 체적(556)은 압축 가능한 유체 체적이 되어야 한다. 제2 유체 체적(566)의 이러한 압축 및 플렉시블 막(554)의 탄성 변형은 바이어스 기능을 제공하는데, 그 이유는 변형 및 압축이 액체(156)의 원부 이동에 이어 근부 방향에서 액체 컬럼(156)을 다시 밀어내는 경향이 있기 때문이다.
이제 도 6과 관련하여, 시스템(100)을 대안의 도식적으로 나타낸 것이 제공된다. 도 6에 도시된 시스템(100)은 도 1과 관련하여 전술한 것과 유사한 특징 및 기능을 갖는다. 또한, 컴퓨터 시스템(120)은 캡쳐된 이미지를 디스플레이하기 위한 디스플레이(612), 키보드와 같은 입력 장치(614), 및 제어 모듈(115)와 접속하기 위한, 조이 스틱과 같은 사용자 제어 디바이스(616)를 포함한다. 컴퓨터 시스템(120)과 일체화될 수 있는 보조 장비(135)가 사용되어 공기 및/또는 물, 및/또는 적절한 경우, 생체검사 튜브용 석션을 제공한다. 프로브(160)의 위치를 변화시키기 위하여, (도 4B, 5A, 5B 또는 21 내지 36과 관련하여 도시되고 설명되는 것과 같은) 원부 말단 섹션 및 중간 프로브(160)가 결합된 직접적으로 제어가능한 플렉시블 섹션(662)으로 제공될 제어 신호 내로 사용자 입력 제어 디바이스(616)로부터의 입력을 번역하도록 제어 모듈(115)이 구성될 수 있다.
도관(340, 342)은 튜브(140) 내에 제공되어 프로브(160) 및 플렉시블 섹션(662)에 대한 적절한 제어 및/또는 피드백 기능을 제공한다. 대안적으로 또는 추가로, 다른 도관 또는 제어 수단이 제어 프로브(160)에 추가적으로 제공될 수 있다. 도 6에 도시된 바와 같이, 원부 말단 섹션(450)(또는 550, 2150, 2250, 2350, 2450, 2550, 2750, 2950, 3050, 3150, 3250, 3450 또는 3650), 플렉시블 섹션(662) 및 프로브(160)는 튜브(140)의 원부 말단에 원부 부분(644)을 형성한다. 도 6에 도시된 버전의 시스템(100)은 예를 들어, 내시경 또는 혈관내시경에 적합할 수 있다.
도 7A 및 7B와 관련하여, 튜브(140)의 다소 특수한 구현예에 따른 튜브(740)가 도시되고 설명된다. 튜브(740)는, 액체 컬럼(156) 및 임의로 도관(340, 342)이 연장하는 루멘(741)을 정의하는 전체적으로 원통형 벽(750)을 갖는다. 길이방향 강화 부재(752)가 벽(750) 둘레에서 원주방향으로 이격되어, 벽(750) 내에 임베드 또는 배치될 수 있다. 대안적으로 또는 추가로, 강화 부재(752)는 프로브(160)에 결합하기 위한 도관을 포함하여 전술한 바와 같은 도관 기능을 제공할 수 있다.
도 8A 및 8B와 관련하여, 튜브(140)의 다소 특수한 구현예에 따른 튜브(840)가 도시되고 설명된다. 튜브(840)는 루멘(841)을 정의하는 실질적으로 원통형 벽(850)을 갖고, 벽(850)의 외부 둘레에서 원주방향으로 배치된 복수의 강화 부재(852)를 갖는다. 강화 부재(852)는 적당히 플렉시블한 방식으로 벽(850)의 외부 표면에 부착 또는 결합되어 벽(850)의 직경의 변화를 막고, 반면 관을 따라 통과할 때 튜브(840)가 필요에 따라 커브할 수 있도록 한다. 따라서 강화 부재(852)는 튜브(740)의 강화 부재(752)와 목적 및 기능에 있어서 유사하다.
압력 차이에 기인한 튜브 벽의 팽창 또는 붕괴를 막기 위하여 튜브 벽에 구조적 강직성을 제공하기 위해서, 도 9A, 9B, 1OA, 1OB, 11A 및 11B에 도시된 바와 같은 튜브(940, 1040 및 1140)는 또한 각각의 강화 부재(952, 1052 및 1152)를 사용하고, 반면 적절한 유연성을 허용하여 복잡한 관을 통한 플렉시블 통로를 가능하게 한다. 도 9A 및 9B는 중심 루멘(941)을 정의하는 벽(950)의 외부를 따라 및 둘레에서 나선형으로 형성된 강화 부재(952)를 나타낸다.
튜브(1040)가 길이방향 및 나선형 강화 부재(1052)를 결합하고, 그에 따라 튜브(840 및 940)의 특성을 결합한 점에서, 튜브(1040)는 튜브(840 및 940)와 유사하다. 강화 부재(1052)는 중심 루멘(1041)을 정의하는 벽(1050)의 외부 둘레에 배치된다.
튜브(1140)는, 강화 부재(1152)가 벽(1150) 둘레에 형성되면서 서로 크로스하는 별개의 나선형으로 형성된 점을 제외하고는 튜브(940)와 유사하다. 따라서 강화 부재(1152)는 그들의 나선형 형태와 관련하여 반대쪽으로 각을 이룬다. 그러한 나선형 형태는 튜브(1140)의 길이방향 축에 대해 상이한 각도를 가질 수 있고, 그에 따라 상이하게 이격된 코일을 가질 수 있다. 벽(1150)은 루멘(741, 841, 941 및 1041)과 같이, 그 안의 액체 컬럼(156)의 통로를 허용하는 중심 루멘(1141)을 정의한다.
일부 구현예에서, 강화 부재(752, 852, 952, 1052 및 1152)는 프로브(160)에 결합하기 위한 하나 이상의 도관을 포함하여 전술과 같은 도관 기능을 제공할 수 있다. 따라서, 그러한 강화 부재는 2중 기능을 제공할 수 있다. 튜브 벽의 외부 둘레에 배치된 강화 부재(852, 952, 1052 및 1152)에 대하여, 그러한 부재들은, 예를 들어 적절한 접착 또는 초음파 용접에 의해 또는 접착 층 또는 코팅의 오버레이에 의해, 벽의 외부에 결합될 수 있다. 의료적 적용을 위해서, 그러한 접착 또는 결합 재료는 적절하게 의료적으로 불활성이어야 한다. 일부 구현예에서, 강화 부재(952, 1052 및 1152)는, 구동 메커니즘(130)의 작용 하에서 관 내 또는 기타 영역 내에서 진행하기 위한 튜브의 능력을 향상시키기에 충분한 정도로 주변 영역과 튜브의 마찰 관계를 증가시키기 위하여 튜브 벽의 외부를 따라 주기 섭동으로서 작용할 수 있다.
도 12A, 12B, 13A, 13B, 13C, 14A, 14B, 15A 및 15B는 튜브(140)의 루멘(141) 내에서 연장하는 도관의 배열에 관하여 튜브(140)의 다양한 특수한 구현예를 도시한다. 도 12A 및 12B에 나타낸 바와 같이, 튜브(1240)는 튜브(1250)에 의해 정의된 루멘(1241) 내에서 연장하는 복수의 도관(1262)을 가질 수 있다. 도관(1262)은, (예를 들어, 추가의 도관을 하우징하기 위하여) 나선형으로 형성된 도관들(1262)보다 직경이 더 클 수 있는 중심 도관(1262) 둘레에서 나선형으로 형성된 복수의 도관들(1262)과 관련된 배열로 연장할 수 있다. 도관들(1262)은 액체 컬럼(156)이 나머지 공간(376) 내에서 이동할 수 있는 충분한 공간을 남겨두면서, 루멘(1241) 내에서 공간의 대부분을 차지할 수 있다.
도 13A, 13B 및 13C에 나타낸 바와 같이, 튜브(1340)는 하나 이상의 루멘(1341)을 정의하는 전체적으로 원통형 외부 벽(1350)을 갖는다. 하나 이상의 분리 부재(1364)가 루멘(1341) 내에서 연장하여 벽(1350)에 의해 정의된 내부 단면 영역을, 도 13B 및 13C에 도시된 바와 같이 둘 이상의 섹션으로 분리한다. 도 13B는 튜브(1340a)를 도시하는데, 여기서 분리 부재(1364)는 루멘(1341)을 도관(1362)이 통과하는 섹션 및 액체 컬럼(156)이 거리낌없이 통과하는 또다른 부분으로 분리한다. 도 13C는 도 13A의 대안의 단면을 도시하며, 여기서 튜브(1340b)는 두 개 이상의 분리 부재(1364)를 갖고, 이것은 루멘(1341)을 4개의 섹션으로 분리하여, 이들 중 두개는 도관(1362)을 하우징하는데 사용되고, 반면 루멘(1341)의 나머지 두 부분은 그를따라 액체 컬럼(156)의 자유로운 이동을 가능하게 한다.
도 14A 및 14B에 나타낸 바와 같이, 일부 구현예에 따른 튜브(1440)는, 2차 루멘을 정의하는 2차 도관(1464)을 통과하는 1차 루멘인 루멘(1441)을 정의하는 벽(1450)을 갖는다. 이러한 2차 도관(1464)은, 2차 루멘의 전체적으로 원통형 형태 안에 포함된 복수의 도관들(1462)을 하우징한다. 2차 도관(1464)은 벽(1450)의 내부 표면과 일체로 형성 또는 결합되거나 또는 부착될 수 있다.
이제 도 15A 및 15B와 관련하여, 루멘(1541)을 정의하는 벽(1550)을 갖는, 추가의 구현예에 따른 튜브(1540)가 도시된다. 루멘(1541)은, 1차 루멘(1541) 내에서 중심적으로 위치된 점을 제외하고는, 2차 도관(1464)과 유사한 2차 루멘을 정의하는 2차 도관(1564)을 연장하는 1차 루멘이다. 2차 도관(1564)은 전체적으로 원통형 튜브 내에 복수의 도관들(1562)을 하우징한다. 2차 도관(1564)은, 1차 루멘(1541) 내에서 액체 컬럼(156)의 이동을 뚜렷하게 방해하지 않는 방식으로 벽(1550)으로부터 내부로 연장하는, 로케이팅 리브(locating rib)와 같이 일련의 이격되어 위치하고 있는 요소에 의해 1차 루멘(1541) 내에 중심적으로 위치된 튜브를 포함할 수 있다.
도 16A, 16B, 17A, 17B, 18, 19 및 20과 관련하여, 구동 메커니즘(130)의 다양한 구현예가 도식적으로 도시된다. 도 16A 및 16B에 도시된 바와 같이, 구동 메커니즘(130)은 간단한 피스톤(1652), 및 벽(1650)에 의해 정의된 챔버(1651) 내에서 피스톤(1652)을 전후로 움직이도록 배열된 구동 샤프트(1654)를 포함할 수 있다. 피스톤(1652)이 벽(1650) 내에서 전후로 반복적으로 움직임에 따라, 챔버(1651) 내의 액체는 벽(1650) 내에 형성된 개구(1656)로부터 반복적으로 나오게 되고, 이어서 개구(1656)를 통해 챔버(1651) 내로 들어간다. 피스톤(1652)은 벽(1650)과 실링으로 맞물려 챔버(1651) 내의 액체가 피스톤(1652)의 근부로 통과하지 않도록 한다.
길이방향으로 압축가능/연장가능한 벨로우(bellow) 또는 실폰(1770)이 피스톤(1652)과 벽(1650)의 원부 부분 사이에서 연장하도록 배열되고, 그에 의해 원부 개구(1656)를 정의하는 벽(1650) 및 실폰(1770)의 아코디언형 벽, 한쪽 끝에서 피스톤(1652)에 의해 둘러싸인 유체 체적(1751)을 정의하는 것을 제외하고는, 도 17A 및 17B에 도시된 구동 메커니즘은 도 16A 및 16B에 도시된 것들과 거의 유사하다. 실폰(1770)은 예를 들어 맞물림이 바람직하지 않은 양의 마찰을 수반하거나 적절하게 시일하는 것이 어려울 수 있는 곳에서, 피스톤(1652)과 벽(1650)의 실링 맞물림에 대한 필요성을 배제한다. 일부 구현예에서, 실폰(1770)은, 유연하게 압축가능하지만 실폰(1770)에 비해 덜 구조화된 또다른 플렉시블 막에 의해 대체될 수 있다.
이제 도 18과 관련하여, 구동 메커니즘(130)의 추가적인 구현예가 설명되는데. 이는 액체 체적(1851)을 둘러싼 하우징의 한 벽을 형성하는 탄성적으로 변형가능한 플렉시블 막(1870)을 채택한다. 하우징 벽(1850)은 플렉시블 막(1870)과 협력하여 액체 체적(1851)을 둘러싼다. 편평한 또는 다소 커브된 피스톤(1852)에 연결된 구동 샤프트(1854)가 사용되어 플렉시블 막(1870)에 내부로 푸시하고 그에 의해 하우징의 벽(1850)에서 액체 체적(1851)으로부터의 액체를 개구(1856)로 방출한다. 구동 샤프트(1854)의 이완(즉, 후퇴) 시에, 플렉시블 막(1870)은 탄성적으로 방향전환가능한 피스톤으로 적어도 부분적으로 되돌아가도록 허용되고, 그에 의해, 석션을 생성하고 그에 의해 개구(1856)를 통해 액체를 빨아들여서 액체 체적(1851)에서 액체의 양을 증가시킨다. 구동 샤프트(1854)는 구동 메커니즘에 의해 작동되어 반복적으로 플렉시블 막(1870)의 방향을 바꾸어 루멘(141) 내에서 액체 컬럼(156)을 전후로 움직이도록 한다. 일부 구현예에서, 구동 샤프트(1854)는 플렉시블 막(1870)에 연결되어, 구동 샤프트(1854)의 후퇴가 플렉시블 막(1870)으로 하여금 그 릴랙스된 위치로(또는 적어도 덜 방향이 바뀌어진 위치에) 보다 강하게 리턴하도록 하고, 그에 의해 플렉시블 막(1870) 단독에 기인하여 달성될 수 있는 것보다 더 큰 석션을 생성할 수 있다.
도 19에 도식적으로 나타낸 구동 메커니즘은, 푸싱 로드 및 피스톤 대신, 원통형 피스톤이 구동 샤프트(1954) 근처에서 편심으로 회전되어 회복력 있는 플렉시블 막(1970)을 원통형으로 내부로 방향을 바꾸고, 그에 의해 플렉시블 막(1970) 및 벽(1950)에 의해 정의된 하우징 내에서 액체(1951)의 체적을 감소시키는 점을 제외하고는, 도 18에 도시된 구동 메커니즘과 유사한 원리로 작동한다. 피스톤(1952)이 구동 샤프트(1954) 둘레에서 회전함에 따라, 액체는 벽(1950)에 형성된 개구(1956)를 통해 외부로 푸시되고 내부로 빨아들여진다. 일부 구현예에서, 피스톤(1952)은 직사각형, 비원형(그러나 커브됨) 형상을 가져 액체 컬럼(156)에 특정의 속도 프로파일을 부여할 수 있다. 예를 들어, 피스톤(1952)은 보다 벌브 형상을 가지거나 또는 원형보다는, 상대적으로 편평한 면을 가질 수 있지만, 여전히 구동 샤프트(1954) 둘레에서 편심으로 회전한다.
이제 도 20과 관련하여, 챔버(2051)를 정의하는 벽(2050) 외부에 위치된 전자기적 요소들(2054)을 사용하는 추가의 대안적인 구동 메커니즘이 도시된다. 피스톤(2052)은 전자기적 요소들(2054)의 제어 하 이동가능하여 벽(2050)에 형성된 개구(2056)를 통해 챔버(2051)에서부터 액체를 푸시하고, 후속적으로 챔버(2051) 내로 다시 액체를 빨아들이도록 한다. 피스톤(2052)은 요소들(2054)을 사용하여 전자기적 제어를 가능하게 하는 적절한 재료로 형성되고, 도 16A, 16B, 17A 및 17B과 관련하여 전술한 구현예의 구동 메커니즘과 마찬가지로, 벽(2050)과 피스톤(2052)의 실링 맞물림 또는 그러한 실링 맞물림을 배제하는 실폰을 또한 사용한다.
도 16A 내지 20과 관련하여 전술한 구동 메커니즘 구현예는 튜브(140) 내에서 액체 컬럼(156)의 왕복 이동을 생성하기 위한 가능한 메커니즘의 단지 일부 실시예를 제공한다. 예를 들어 공압, 유압, 전기 또는 기계적 수단과 관련한 추가적인 구현예가 적용되어, 액체 컬럼(156)을 따라 및 그 안에서 반복된 양 및 음의 압력 차이를 생성하며, 액체 컬럼(156)에 원하는 속도 프로파일을 부여하기 위해 적절하게 제어된 방식으로 그 왕복 이동을 일으키는 경향이 있다.
이제 도 21 내지 36과 관련하여, 원부 바이어스 섹션의 다양한 구현예가 도시 및 설명된다. 원부 바이어스 섹션(550)과 유사하게, 이들 구현예는 일단 원부로 전진하면 근부 방향으로 다시 액체 컬럼(156)을 바이어스하기 위한 다양한 상이한 수단 또는 메커니즘을 사용한다. 이는 구동 메커니즘(130)에 의해 액체 컬럼이 음의 압력 하에서 근부로 빨아들여질 때 튜브 벽의 붕괴를 회피하는 것을 또한 도울 수 있다. 따라서, 도 21 내지 36에 나타낸 원부 바이어스 섹션은 모두 액체 컬럼(156)의 원부로, 그렇지만 프로브(160)의 근부로 위치되도록 의도되고, 이들은 튜브(140)와 근접한 또는 인접한 튜브 섹션 또는 튜브(140)에 의해 제공되어, 튜브 벽 내에 위치되도록 의도된다.
도 21에 나타낸 원부 바이어스 챔버(2150)는 챔버(2156) 내에서 이동가능한 피스톤과 같은, 이동가능 요소(2154)를 가진 원통형 벽(2152)으로 주로 구성된 가장 기본적인 구조를 갖는다. 그 근부 면에서, 요소(2154)는 액체 컬럼(156)의 원부 말단에 노출되고, 액체 컬럼(156)의 원부 이동에 대응하여 원부로 푸시된다. 챔버(2156)는 공기와 같은 압축 유체 체적을 포함하고, 벽(2152) 및 또다른 원부에 위치된 구조(도시되지 않음)에 의해 제공된 원부 말단에 둘러싸인다. 요소(2154)는 벽(2152)과 실링으로 맞물려서, 액체 컬럼(156)으로부터의 액체가 챔버(2156) 내로 통과하지 않도록 한다. 요소(2154)의 원부 이동의 결과로 인한 챔버(2156)에서의 압력 증가는 요소(2154)에 근부로 향한 힘을 제공하여, 구동 메커니즘(130)의 작용에 의해 액체 컬럼(156)이 근부로 빨아들여짐에 따라 근부 방향으로 그것을 되돌린다.
도 22의 원부 바이어스 챔버(2250)는, 벽(2252)이 근부 및 원부 말단에 보다 제한된 말단 통로를 정의하는 점을 제외하고는, 도 21의 그것과 동일한 방식으로 작동한다. 이동가능한 부재(2254)는 벽(2252) 내에서 이동하여 액체 컬럼(156)의 원부 이동에 대응하여 챔버(2256)를 압축한다.
도 23에 나타낸 원부 바이어스 챔버(2350)는, 벽(2352)에서 이동가능한 요소(2350)와 함께, 공기와 같은 압축가능한 유체를 포함하는 둘러싸여진 챔버(2356)를 정의하는 원부 말단 벽(2380)을 갖는다는 점을 제외하고는 도 21에 나타낸 것과 동일하게 작동한다.
도 24에 나타낸 원부 바이어스 챔버(2450)는, 플렉시블 막(2480)이 원부 말단 벽으로서 제공되는 점을 제외하고는 도 23의 원부 바이어스 챔버와 유사하다. 이동가능한 요소(2454) 및 벽(2452)과 함께, 플렉시블 막(2480)은 공기와 같은 압축가능한 유체를 포함하는 둘러싸여진 챔버(2456)를 정의한다. 플렉시블 막(2480)은 챔버(2456) 내 압력에 의존하여 팽창 및 수축하고, 근부 방향에서 이동가능 요소(2454)의 바이어스를 보조할 수 있다.
도 25 및 26에 나타된 원부 바이어스 챔버(2550)는, 이동가능한 요소(2554)가 벽(2552) 내에 하우징된 스프링(2580)에 의해 원부로 바이어스된 점을 제외하고는, 도 22에 나타낸 것과 유사하다. 이동가능한 요소(2554)가 원부로 진행할 때 스프링(2580)이 압축하고 그에 따라 근부 방향으로 이동가능한 요소(2554)를 바이어스하는 경향이 있다. 스프링(2580)은 이동가능한 요소(2554)의 원부로 정의된 챔버(2556) 내에 장착된다.
도 27 및 28에 나타낸 원부 바이어스 챔버(2750)는 스프링 대신, 탄성적으로 방향전환가능한 메시 또는 스폰지(2780)가 이동가능한 요소(2754)의 원부로 벽(2752)에 의해 정의된 챔버(2756) 내에 제공된 점을 제외하고는, 도 25 및 26에 나타낸 것과 동일하다.
도 29에 나타낸 원부 바이어스 챔버(2950)는 전술한 원부 바이어스 챔버와 유사하지만, 이동가능한 요소(2954)의 근부 측면에 연결된 실폰(2970)을 가져서 액체 컬럼(156)의 원부 이동에 대응하여 연장가능하지만 원부 유체 체적(2956)에서 증가된 압력 및/또는 실폰의 형상 메모리에 따라 회수하는 경향이 있는 근부 챔버(2958)를 정의하고, 그에 의해 근부 방향으로 이동가능한 요소(2954)를 바이어스한다. 실폰(2970)은 원부 바이어스 챔버(2950)의 근부 말단에서 벽(2952)에 연결된다. 압축성 원부 유체 체적(2956)에는 이동가능한 요소(2954)가 원부에 제공되어 이동가능한 요소(2954)를 근부 방향으로 더욱 바이어스한다.
도 30에 나타낸 원부 바이어스 챔버(3050)는 도 29에 나타낸 것과 유사한 방식의 제1 실폰(3070) 및 벽(3052)에 의해 정의된 원부 챔버(3056) 내에 배치된 제2 실폰(3071)을 채택한다. 제1 및 제2 실폰(3070 및 3071)의 반대쪽 형상 메모리는 이동가능한 요소(3054)를 근부 방향으로 바이어스하는 경향이 있다. 도 31에 나타낸 원부 바이어스 챔버(3150)는, 그 원부 말단 벽이 탄성적으로 방향전환가능한 플렉시블 막(3180)에 의해 치환된 점을 제외하고는, 도 30에 나타낸 것과 동일하다.
도 32 및 33에 도시된 원부 바이어스 챔버(3250)는 도 25, 26 및 29와 관련하여 도시되고 설명된 스프링 및 실폰 특징의 조합을 나타낸다. 도 34 및 35에 도시된 원부 바이어스 챔버(3450)는 도 27, 28 및 29와 관련하여 전술된 실폰 및 스폰지/메시 특징 및 기능의 조합을 나타낸다. 도 32 내지 35의 모두는, 벽(3252/3452) 내에서 이동가능한 요소(3254/3454)의 원부에 위치된 스프링(3280) 또는 스폰지 또는 메시(3480)와 같은 바이어스 요소와 함께, 이동가능한 요소(3254/3454)에 연결되고 근부 챔버(3258/3458)를 정의하는 근부에 배치된 실폰(3270/3470)을 채택한다.
도 36에 나타낸 원부 바이어스 챔버(3650)는 탄성적으로 방향전환가능한 근부 플렉시블 막(3654) 및 탄성적으로 방향전환가능한 원부 플렉시블 막(3680) 간의 내부 압축 유체 챔버(3656)를 정의하는 벽(3652)을 갖는다. 플렉시블 막(3654 및 3680) 양자는 액체 컬럼(156)의 원부 이동에 대응하여 원부로 방향을 바꿀 수 있고, 원부에 위치되지 않은 휴식 위치로 되돌아가는 경향이 있을 것이며, 그에 의해 근부 방향으로 액체 컬럼(156)을 바이어스하는 경향이 있다.
도 37A, 37B, 38A, 38B, 39A 및 39B와 관련하여, 튜브(140)의 다양한 구현예가 설명된다. 구현예의 각각은 튜브의 외부 표면을 따라 주기 섭동이 형성되는 것에 대해 공칭 벽 두께(X)를 갖는다. 주기 섭동은 최대 진폭(Y) 및 세퍼레이션(Z)을 갖는다. 이들 도면들에서 보는 바와 같이, 주기 섭동이 형성되어, 전체적으로 전나무 또는 톱날의 톱니를 닮은 패턴을 갖는다. 그러나, 일부 구현예에서 주기 섭동은 보다 라운드형상일 수 있고 및/또는 (전나무 패턴의 케이스에서와 같이) 근부로 쓸린 형상이 아닐 수 있다.
도 37A에 나타낸 바와 같이, 튜브(3740)의 벽의 최소 두께는 X 이며, 벽의 두께는 X 및 X + Y 간의 주기 섭동을 따라 변한다. 도 37B에 나타낸 튜브(3745)는 공칭 두께 X 및 X - Y 사이에서 변하는 벽 두께를 갖는다.
도 38A 및 38B는, 언더커트 없이, 도 37A 및 37B에 비해 약간 상이한 전나무 패턴을 나타내며, 다른 점에서는 실질적으로 동일하고, 튜브(3845)는 튜브(3840)보다 더 큰 공칭 두께 X를 갖는다.
도 39A에 나타낸 튜브(3940)는 주기 섭동 간에 더 큰 간격 Z를 가지고, 벽의 두께는 공칭 두께 X 및 X + Y 사이에서 변한다. 도 39B에 나타낸 튜브(3945)는 도 39A에서의 것과 동일하지만, 더 큰 공칭 두께 X를 갖고, 벽 두께가 X 및 X - Y 사이에서 변한다.
설명되고 도시된 구현예에서, 주기 섭동의 세퍼레이션은 약 2 mm 내지 약 50 mm 사이일 수 있다. 두께의 변화(즉, 진폭) Y는 튜브가 사용될 탐사 적용에 따라서, 0.5 mm 내지 약 5 mm의 크기일 수 있다. 공칭 벽 두께 X는, 다시 적용에 따라서 약 0.5 mm 내지 약 10 mm일 수 있다. 일부 구현예에서, 벽 두께의 변화는 진폭 Y (또는 M, 후술함)의 비율에 기반할 수 있으며, 예를 들어 두께는 X + 1/2Y 내지 X - 1/2Y 사이에서 또는 X + 1/3Y 내지 X - 2/3Y 사이에서 변할 수 있다.
이제 도 4OA, 4OB, 41A, 41B, 42A 및 42B와 관련하여, 주기 섭동이 튜브의 내부 벽에 제공된 튜브(140)의 다양한 구현예가 도시되고 설명된다. 튜브 벽의 공칭 두께 L은, 주기 섭동의 진폭 M 및 주기 N과 함께, 변동할 수 있다. 라운드형 및/또는 비-근부로 쓸린 섭동이 또한 채택될 수도 있지만, 도시된 다양한 구현예는 일반적으로 근부로 쓸린 전나무 패턴을 갖고, 이는 또한 톱니 패턴으로도 기재될 수 있다. 튜브(4040)는 도 4OA에 도시되며, 벽 두께가 공칭 두께 L 내지 L + M 사이에서 변한다. 도 4OB에서, 튜브(4045)는 L 내지 L - M 사이에서 변하는 공칭 벽 두께를 갖는다. 도 41A 및 41B에 도시된 튜브(4140 및 4145)는 후자의 도면에 도시된 전나무 패턴의 더 샤프한 언더컷을 제외하고는, 튜브(4040 및 4045)와 실질적으로 동일하다. 도 42A에 도시된 튜브(4240)는 L 내지 L + M 사이에서 변하는 공칭 벽 두께 L을 갖는다. 도 42B에 도시된 바와 같이, 튜브(4245)는 L 내지 L - M 사이에서 변하는 공칭 두께 L을 갖는다. 일부 구현예에서, 벽 두께의 변화는 전술한 바와 같이, 진폭 M의 비율에 기반할 수 있다.
도 43A 및 43B에 도시된 바와 같이, 튜브(140)의 구현예는 전술한 튜브 구현예 38A, 38B, 41A 및 41B의 조합을 나타내는 튜브(4340 및 4345)를 포함한다. 튜브(4340)는 공칭 두께 X를 갖고, 이 두께는 X 내지 X + Y + M 사이에서 변한다. 외부 주기 섭동의 간격(Z)은 내부 주시 섭동의 간격(N)과 상이할 수 있다. 추가적으로, 내부 및 외부 주기 섭동은 동일한 톱니 또는 전나무 형상을 가질 필요는 없다. 구체적으로, 내부 또는 외부 주기 섭동 중 하나는 톱니형상인 반면, 다른 하나는 라운드형 및 보다 이격될 수 있다. 도 43B에 도시된 튜브(4345)는, 두께가 X 내지 X - Y - M 사이에서 변하는, 보다 큰 공칭 두께 X를 갖는다는 점을 제외하고는, 튜브(4340)와 유사하다. 일부 구현예에서, 벽 두께의 변화는 전술한 바와 같이, 진폭 M 및/또는 Y의 비율에 기반할 수 있다.
도 44는 튜브의 제1 섹션(4441)이 내부 주기 섭동을 가질 수 있고, 반면 튜브의 제2 섹션(4440)이 외부 주기 섭동을 가질 수 있는, 일부 구현예에 따른 튜브(4440)를 도식적으로 나타낸 것이다. 튜브의 제1 및 제2 섹션은 어떠한 내부 또는 외부 주기 섭동도 포함하지 않는 섹션(4442)에 의해 분리될 수 있다.
기재된 구현예에 따르면, 튜브(140)의 일부 구현예는 튜브(140) 벽의 내부 또는 외부 표면의 상당한 부분 또는 일부를 따라 주기 섭동과 관련을 가질 수 있다. 튜브 벽의 내부 표면에서의 그러한 주기 섭동은, 일부 구현예에서 섭동의 근부로 쓸린 형상 때문에, 액체 컬럼(156)의 전진에 대한 더 큰 저항을 제공하는 것을 보조할 수 있고, 그에 의해 원부 방향에서 액체 컬럼(156)으로부터 튜브(140)로의 모멘텀 이동을 향상시킨다. 유사하게 튜브(140)의 외부 벽에 형성된 주기 섭동은 원부 방향에서보다 근부 방향에서 튜브(140)의 이동에 대한 더 큰 저항을 제공하는 것에 의해 튜브(140)를 전진시키는 것을 보조하여, 액체 컬럼(156)의 후퇴가 전방 방향에서 달성된 튜브 이동과 비교하여 후방 방향에서 적은 튜브 이동을 가져오도록 할 수 있다.
예를 들어 튜브 벽 내 또는 튜브 벽을 따라 외부로 연장하는 것과 같은 강화 부재와의 조합으로 주기 섭동을 제공하도록, 여기에 기재된 튜브(140)의 상이한 구현예가 조합될 수 있다. 특히, 루멘(141) 내에서, 도관(340, 342)과 같은 도관의 연장은 튜브 벽 내에서 내부 및/또는 외부 주기 섭동과 조합될 수 있고, 및/또는 외부 또는 임베드된 길이방향 또는 나선형 강화 부재와 조합될 수 있다.
튜브(140)의 기재된 구현예는, 예를 들어 전술한 바와 같은 적절한 재료를 사용하여, 몰딩 프로세스에 의해 형성될 수 있다.
여기에 기재되고 도면에 도시된 구현예는 한정 없이 예시로서 제공되는 것으로 의도된 것이다. 따라서, 기재된 구현예는 비-한정적인 것으로 의도되고, 그에따라 해석되어야 한다.

Claims (42)

  1. 관(tract) 내에 수용되는 크기를 갖고 근부 말단(proximal end) 및 원부 말단(distal end)을 갖는 세장형 플렉시블 튜브(elongate flexible tube);
    상기 튜브의 근부 말단에 연결된 구동 메커니즘; 및
    상기 근부 말단으로부터 상기 원부 말단까지 연장하는 액체 컬럼을 포함하는 장치로서,
    여기서 상기 구동 메커니즘은 상기 튜브 내에서 상기 액체 컬럼의 이동을 일으키도록 구성되어 상기 튜브에 전방 모멘텀(forward momentum)을 부여하고 그에 의해 적어도 상기 원부 말단이 상기 관의 일부 내에 수용될 때 관 내에서 적어도 상기 튜브의 원부 말단의 전진(advancement)을 촉진하는 장치.
  2. 청구항 1에 있어서, 상기 튜브가 상기 튜브의 적어도 일부를 따라 튜브의 외부 표면에 형성된 주기 섭동(periodic perturbation)을 갖는 것인 장치.
  3. 청구항 2에 있어서, 상기 주기 섭동이 상기 튜브 둘레에서 원주방향으로 연장하는 것인 장치.
  4. 청구항 2 또는 청구항 3에 있어서, 상기 주기 섭동이 근부로 쓸린 전나무 패턴(proximally swept fir tree pattern)으로 형성되는 것인 장치.
  5. 청구항 1 내지 청구항 4 중 어느 한 항에 있어서, 상기 튜브의 외부 표면이 원부 방향으로 튜브의 이동에 저항하도록 윤곽형성된(contoured) 것인 장치.
  6. 청구항 1 내지 청구항 5 중 어느 한 항에 있어서, 상기 튜브의 내부 표면이 전방 방향으로 튜브를 통한 액체 컬럼의 이동에 대한 저항을 향상시키도록 윤곽형성된 것인 장치.
  7. 청구항 6에 있어서, 상기 내부 표면이, 상기 근부 말단의 원부인 상기 튜브의 적어도 한 섹션을 따라 내부 주기 섭동을 포함하는 것인 장치.
  8. 청구항 6 또는 청구항 7에 있어서, 상기 내부 주기 섭동이 근부로 쓸린 전나무 패턴으로 형성되는 것인 장치.
  9. 청구항 1 내지 청구항 8 중 어느 한 항에 있어서, 상기 액체가 물의 밀도와 거의 동일하거나 더 큰 밀도를 갖는 것인 장치.
  10. 청구항 1 내지 청구항 9 중 어느 한 항에 있어서, 상기 구동 메커니즘이 상기 액체 컬럼의 근부 말단에 특정의 속도 프로파일을 부여하도록 구성되어 상기 관 내에서 상기 튜브의 전방 이동(forward movement)을 향상시키는 것인 장치.
  11. 청구항 10에 있어서, 상기 속도 프로파일이
    상기 액체 컬럼의 전방 이동의 제1 부분에서의 점진적 가속부(gradual acceleration portion);
    상기 전방 이동의 제1 부분에 이어 상기 액체 컬럼의 전방 이동의 제2 부분에서의 샤프한 감속부(sharp deceleration portion);
    상기 액체 컬럼의 후방 이동(rearward movement)의 제1 부분에서의 샤프한 가속부; 및
    상기 후방 이동의 제1 부분에 이어 상기 액체 컬럼의 후방 이동의 제2 부분에서의 점진적 감속부
    중 하나 이상을 포함하는 장치.
  12. 청구항 1 내지 청구항 11 중 어느 한 항에 있어서, 상기 구동 메커니즘이, 상기 튜브 내에서 상기 액체 컬럼의 반복된 전진 및 후퇴를 일으키도록 구성된 구동 부재 및 피스톤을 포함하는 것인 장치.
  13. 청구항 12에 있어서, 상기 구동 메커니즘이, 상기 피스톤을, 피스톤의 각 스트로크의 말단을 향해 샤프하게 감속하게 하도록 구성된 것인 장치.
  14. 청구항 12 또는 청구항 13에 있어서, 상기 구동 메커니즘이, 상기 피스톤을, 피스톤의 각 스트로크의 말단에서부터 멀어지게 샤프하게 가속하게 하도록 구성된 것인 장치.
  15. 청구항 1 내지 청구항 14 중 어느 한 항에 있어서, 상기 유체 컬럼의 원부 말단을 둘러싸기 위해 상기 원부 말단에 상기 튜브 내의 플렉시블 막을 추가로 포함하는 장치.
  16. 청구항 15에 있어서, 상기 튜브의 원부 말단은 상기 튜브, 상기 플렉시블 막 및 플렉시블 막의 원부에 위치된 또다른 막과 경계를 이룬 압축성 유체 체적을 하우징하는 것인 장치.
  17. 청구항 1 내지 청구항 16 중 어느 한 항에 있어서, 상기 튜브의 내부 직경이 원부 방향으로 좁아지는 것인 장치.
  18. 청구항 1 내지 청구항 17 중 어느 한 항에 있어서, 상기 튜브의 원부 말단에 위치된 프로브를 추가로 포함하는 장치.
  19. 청구항 18에 있어서, 상기 튜브를 따라 연장하고 상기 프로브에 연결되는 복수의 도관을 추가로 포함하는 장치.
  20. 청구항 19에 있어서, 상기 복수의 도관이, 상기 튜브를 따라 연장하고 상기 프로브에 연결되는 하나 이상의 전기 도관을 포함하여, 프로브에 및 프로브로부터 신호의 송신 및 수신 중 하나 이상을 수행하는 것인 장치.
  21. 청구항 19 또는 청구항 20에 있어서, 상기 복수의 도관이 공기 공급 도관, 물 공급 도관 및 생체검사 도관 중 하나 이상을 포함하는 것인 장치.
  22. 청구항 19 내지 청구항 21 중 어느 한 항에 있어서, 상기 도관의 하나 이상이 상기 튜브의 적어도 일부를 따라 나선형으로 연장하는 것인 장치.
  23. 청구항 19 내지 청구항 22 중 어느 한 항에 있어서, 상기 튜브가 상기 도관이 연장하는 중심 루멘을 정의하는 것인 장치.
  24. 청구항 19 내지 청구항 23 중 어느 한 항에 있어서, 상기 튜브 내에서 연장하는 2차 루멘을 추가로 포함하고, 여기서 상기 도관이 상기 튜브의 적어도 일부를 따라 상기 2차 루멘 내에서 연장하는 것인 장치.
  25. 청구항 1 내지 청구항 24 중 어느 한 항에 있어서, 상기 원부 말단에 위치되고, 상기 액체 컬럼의 원부 이동에 대응하여 액체 컬럼의 근부 이동을 촉진하도록 구성된 바이어스 수단을 추가로 포함하는 장치.
  26. 청구항 1 내지 청구항 25 중 어느 한 항에 있어서, 상기 튜브의 원부 말단에 위치된 이미징 디바이스를 추가로 포함하는 장치.
  27. 청구항 1 내지 청구항 26 중 어느 한 항에 있어서, 상기 관이 혈관 또는 소화관인 것인 장치.
  28. 청구항 1 내지 청구항 26 중 어느 한 항에 있어서, 상기 관이 구조적 관인 것인 장치.
  29. 프로브를 전진시키는 방법으로서,
    세장형 플렉시블 튜브의 원부 말단을 적어도 부분적으로 관의 하부 말단에 위치시키는 단계로서, 상기 튜브는 상기 관 내에 수용되는 크기를 갖고 튜브의 근부 말단으로부터 원부 말단까지 연장하는 액체 컬럼을 갖고, 여기서 상기 프로브는 상기 튜브의 원부 말단에 위치되는 것인 단계; 및
    구동 메커니즘을 가동하여 상기 튜브 내에서 상기 컬럼의 전진을 일으켜서 상기 튜브에 전방 모멘텀을 부여하고, 그에 의해 상기 관 내에서 적어도 상기 튜브의 원부 말단의 전진을 촉진하는 단계
    를 포함하는 프로브의 전진 방법.
  30. 청구항 29에 있어서, 상기 관 내에서 상기 튜브의 전방 이동을 향상시키기 위하여 상기 가동이 상기 액체 컬럼의 근부 말단에 특정의 속도 프로파일을 부여하는 것을 포함하는 것인 프로브의 전진 방법.
  31. 청구항 30에 있어서, 상기 속도 프로파일이
    상기 액체 컬럼의 전방 이동의 제1 부분의 점진적 가속부;
    상기 전방 이동의 제1 부분에 이어 상기 액체 컬럼의 전방 이동의 제2 부분의 샤프한 감속부;
    상기 액체 컬럼의 후방 이동의 제1 부분의 샤프한 가속부; 및
    상기 후방 이동의 제1 부분에 이어 상기 액체 컬럼의 후방 이동의 제2 부분에서의 점진적 감속부
    중 하나 이상을 포함하는 것인 프로브의 전진 방법.
  32. 청구항 29 내지 청구항 31 중 어느 한 항에 있어서, 상기 가동이 상기 튜브 내에서 상기 액체 컬럼의 반복된 전진 및 후퇴를 일으키도록 구동 부재 및 피스톤을 가동하는 것을 포함하는 것인 프로브의 전진 방법.
  33. 청구항 32에 있어서, 상기 가동이 상기 피스톤을, 피스톤의 각 스트로크의 말단을 향해 샤프하게 감속하도록 하는 것인 프로브의 전진 방법.
  34. 청구항 32 또는 청구항 33에 있어서, 상기 가동이 상기 피스톤을, 피스톤의 각 스트로크의 말단에서부터 멀어지게 샤프하게 가속하도록 하는 것인 프로브의 전진 방법.
  35. 청구항 29 내지 청구항 34 중 어느 한 항에 있어서, 상기 가동 도중 관내에서 근부 방향으로 상기 튜브의 이동을 막기 위해 튜브의 외부를 따라 윤곽(contour)을 제공하는 것을 추가로 포함하는 것인 프로브의 전진 방법.
  36. 청구항 29 내지 청구항 35 중 어느 한 항에 있어서, 원부 방향으로 상기 튜브를 통한 상기 액체 컬럼의 이동을 막기 위해 튜브의 내부를 따라 윤곽을 제공하는 것을 추가로 포함하는 것인 프로브의 전진 방법.
  37. 청구항 29 내지 청구항 36 중 어느 한 항에 있어서, 상기 프로브가 이미징 디바이스를 포함하고, 상기 이미징 디바이스를 사용하여 관 내에서 이미지를 캡쳐하는 것을 추가로 포함하는 프로브의 전진 방법.
  38. 청구항 37에 있어서, 상기 캡쳐된 이미지에 상응하는 이미지 데이터를, 이미지를 처리 및 디스플레이하도록 구성된 시스템에 전송하는 것을 추가로 포함하는 프로브의 전진 방법.
  39. 청구항 38에 있어서, 하나 이상의 전기 도관이 상기 튜브를 따라 연장하여 상기 프로브에 및 프로브로부터 신호의 송신 및 수신 중 하나 이상을 수행하고, 이 때 상기 전송은 하나 이상의 전기 도관을 사용하여 수행되는 것인 프로브의 전진 방법.
  40. 세장형 부재(elongate member)의 길이를 따라 상기 부재의 전방 이동을 부여하기 위하여 부재의 한쪽 말단으로부터 그 부재의 반대쪽 말단으로 세장형 부재 내에서 연장하는 액체 컬럼의 왕복 이동을 유발하는 것을 포함하는 전진 방법.
  41. 세장형 부재의 한쪽 말단에 위치된 프로브 및 상기 세장형 부재의 반대쪽 말단의 구동 메커니즘을 포함하는 장치로서, 상기 세장형 부재가 한쪽 말단으로부터 반대쪽 말단까지 연장하는 액체 컬럼을 하우징하며, 여기서 상기 구동 메커니즘은 상기 세장형 부재 내에서 상기 액체 컬럼의 왕복 이동을 일으켜서 상기 프로브에 전방 이동을 부여하는 것인 장치.
  42. 세장형 플렉시블 튜브, 상기 튜브의 근부 말단에 배치된 액체 챔버 및 상기 튜브의 원부 말단에 배치된 프로브를 포함하는 어셈블리로서, 상기 튜브가 상기 액체 챔버 및 상기 원부 말단 사이에서 연장하는 액체 컬럼을 갖는 것인 어셈블리.
KR1020107027214A 2008-05-05 2009-05-05 프로브를 전진시키기 위한 방법 및 장치 KR101605577B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2008902195 2008-05-05
AU2008902195A AU2008902195A0 (en) 2008-05-05 Endoscopic probe and assembly

Publications (2)

Publication Number Publication Date
KR20110009215A true KR20110009215A (ko) 2011-01-27
KR101605577B1 KR101605577B1 (ko) 2016-03-22

Family

ID=41264329

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107027214A KR101605577B1 (ko) 2008-05-05 2009-05-05 프로브를 전진시키기 위한 방법 및 장치

Country Status (12)

Country Link
US (2) US9566415B2 (ko)
EP (1) EP2271395B1 (ko)
JP (1) JP5443472B2 (ko)
KR (1) KR101605577B1 (ko)
CN (1) CN102036709B (ko)
AU (1) AU2009243914B2 (ko)
BR (1) BRPI0912573B8 (ko)
CA (1) CA2758434C (ko)
ES (1) ES2664743T3 (ko)
HU (1) HUE038575T2 (ko)
RU (1) RU2506966C2 (ko)
WO (1) WO2009135251A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200029388A (ko) * 2017-04-27 2020-03-18 엔도진 리미티드 기구 추진을 위한 방법 및 장치

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2559450A1 (en) * 2011-08-19 2013-02-20 Abbott Laboratories Vascular Enterprises Limited Shaft for medical devices and catheter
FR3037249A1 (fr) * 2015-06-12 2016-12-16 Robocath Procede robotise d'entrainement de catheter et de guide de catheter
CA3045873A1 (en) * 2016-11-11 2018-05-17 The Cleveland Clinic Foundation Rapid-exchange system and method
TWI627411B (zh) * 2017-12-15 2018-06-21 致茂電子股份有限公司 電流探針結構
EP3873321A4 (en) * 2018-10-31 2022-11-30 Endogene Limited SELF-FEEDING ENDOSCOPIC PROBE AND SYSTEM WITH IT
WO2020096892A1 (en) * 2018-11-05 2020-05-14 Medivators Inc. Automated borescope insertion systems and methods
WO2020096888A1 (en) 2018-11-05 2020-05-14 Medivators Inc. Endoscope cleaning and inspection system and method
US11116942B2 (en) * 2018-12-28 2021-09-14 Biosense Webster (Israel) Ltd. Medical device shaft with reduced whipping
CN110037837B (zh) * 2019-04-03 2021-10-01 中山大学附属第三医院 一种可变管径的自适应胰管支架管
DE102022107857A1 (de) 2022-04-01 2023-10-05 Tuebingen Scientific Medical Gmbh Pneumatische Antriebsvorrichtung zur translatorischen und/oder rotatorischenBewegung
US12128189B2 (en) * 2023-03-13 2024-10-29 California Institute Of Technology Anti-infection fluidic channel

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3485237A (en) * 1967-03-20 1969-12-23 Rca Corp Self-propelling hose
JPS474601Y1 (ko) 1968-12-19 1972-02-17
US3602102A (en) 1970-03-19 1971-08-31 Westinghouse Electric Corp Fluid pressure actuator apparatus
JPS4730891U (ko) * 1971-04-28 1972-12-07
SU429345A1 (ru) * 1972-03-30 1974-05-25 А. Д. Олейников ГИБКИЙ ЗОНДR П Тl^.'t ^ ^ ^фрП y^^^tty'si?;...» *-^ ,, -'
JPS5646721Y2 (ko) * 1973-06-09 1981-11-02
US3895637A (en) 1973-10-19 1975-07-22 Daniel S J Choy Self propelled conduit traversing device
US3946459A (en) 1974-07-19 1976-03-30 Lipe Rollway Corporation Self-propelled pipe cleaner
JPS5431825Y2 (ko) * 1975-06-30 1979-10-04
US4176662A (en) 1977-06-17 1979-12-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Apparatus for endoscopic examination
US4207872A (en) * 1977-12-16 1980-06-17 Northwestern University Device and method for advancing an endoscope through a body passage
US4211300A (en) 1979-01-22 1980-07-08 Western Geophysical Co. Of America Air gun with reciprocating shuttle
US4475902A (en) 1981-03-24 1984-10-09 Werner Schubert Device for introducing medical instruments into a body
US4690131A (en) 1985-05-31 1987-09-01 The United States Of America As Represented By The Department Of Health And Human Services Medical apparatus
US4676228A (en) 1985-10-25 1987-06-30 Krasner Jerome L Medical apparatus having inflatable cuffs and a middle expandable section
US4676229A (en) * 1986-04-09 1987-06-30 Welch Allyn, Inc. Biopsy channel for an endoscope
US4735501A (en) * 1986-04-21 1988-04-05 Identechs Corporation Method and apparatus for fluid propelled borescopes
US5090259A (en) 1988-01-18 1992-02-25 Olympus Optical Co., Ltd. Pipe-inspecting apparatus having a self propelled unit
DE3943872B4 (de) 1989-08-01 2005-08-25 Stm Medizintechnik Starnberg Gmbh Vorrichtung zum Einführen eines medizinischen Endoskops in einen Körperkanal
US4934786A (en) * 1989-08-07 1990-06-19 Welch Allyn, Inc. Walking borescope
US5053588A (en) 1990-02-20 1991-10-01 Trw Technar Inc. Calibratable crash sensor
CA2055461A1 (fr) 1990-03-02 1991-09-03 Benoit Vacquer Sonde autopropulsee, notamment pour penetrer dans une matiere pulverulente
JP2941040B2 (ja) 1990-11-09 1999-08-25 オリンパス光学工業株式会社 管内自走装置
JPH04176443A (ja) 1990-11-09 1992-06-24 Olympus Optical Co Ltd 医療用カプセル
DE4138240A1 (de) 1991-11-21 1993-05-27 Peter C Dr Krueger Medizinisches instrument
US5337732A (en) 1992-09-16 1994-08-16 Cedars-Sinai Medical Center Robotic endoscopy
JPH06121767A (ja) * 1992-10-13 1994-05-06 Olympus Optical Co Ltd 内視鏡装置
DE4244990C2 (de) * 1992-12-15 2002-03-14 Stm Medtech Starnberg Vorrichtung zum Bewegen eines Endoskopschafts längs eines kanalartigen Hohlraums
US5345925A (en) 1993-03-26 1994-09-13 Welch Allyn, Inc. Self-advancing endoscope
US5522601A (en) 1994-01-18 1996-06-04 Goulds Pumps, Incorporated Locking labyrinth sealing assembly
US5562601A (en) 1994-05-27 1996-10-08 Takada; Masazumi Self-propelled colonoscope
JPH08322786A (ja) * 1995-05-30 1996-12-10 Toshiba Medical Eng Co Ltd 生体内診断治療装置
JPH08340681A (ja) 1995-06-09 1996-12-24 Nikon Corp 駆動装置の駆動方法
IT1285533B1 (it) 1996-10-22 1998-06-08 Scuola Superiore Di Studi Universitari E Di Perfezionamento Sant Anna Robot endoscopico
US5816342A (en) 1997-01-27 1998-10-06 Columbia Gas Distribution Companies Small diameter impact boring tool
US5817101A (en) 1997-03-13 1998-10-06 Schneider (Usa) Inc Fluid actuated stent delivery system
AU729709B2 (en) 1998-01-07 2001-02-08 Peter Ayre Self advancing endoscope
AUPP123698A0 (en) * 1998-01-07 1998-01-29 Ayre, Peter Self propelling endoscope
GB9808426D0 (en) 1998-04-21 1998-06-17 Univ London Device with means for propelling it along a passage
BG102493A (en) 1998-05-28 2000-02-29 СТЕФАНОВ Александър Canal with built-in control network, hydraulic orientation and control system
AU4979299A (en) 1998-07-10 2000-02-01 Micro Medical Devices, Inc. Hydraulic surgical system
DE19855775A1 (de) 1998-07-17 2000-06-08 Bayerische Motoren Werke Ag Verfahren zur Bewegungssteuerung eines Ankers eines elektromagnetischen Aktuators zur Betätigung eines Gaswechsel-Hubventiles einer Brennkraftmaschine
IL126150A0 (en) 1998-09-09 1999-05-09 Prowell Technologies Ltd Gas impulse device and method of use thereof
US6162171A (en) 1998-12-07 2000-12-19 Wan Sing Ng Robotic endoscope and an autonomous pipe robot for performing endoscopic procedures
US6083152A (en) * 1999-01-11 2000-07-04 Welch Allyn, Inc. Endoscopic insertion tube
US6250977B1 (en) 1999-03-26 2001-06-26 Dwight Ness Compressed-air-powered immersible prime mover providing impulse propulsion to pool cleaners, trolling boats, and scuba divers
DE10027447A1 (de) 1999-07-22 2001-02-01 Univ Ilmenau Tech Fluidischer, peristaltischer Antrieb
JP2001091860A (ja) 1999-09-22 2001-04-06 Asahi Optical Co Ltd カプセル内視鏡
JP2001161635A (ja) * 1999-12-07 2001-06-19 Olympus Optical Co Ltd 内視鏡装置
US6309346B1 (en) 2000-06-29 2001-10-30 Ashkan Farhadi Creeping colonoscope
US6702735B2 (en) 2000-10-17 2004-03-09 Charlotte Margaret Kelly Device for movement along a passage
KR100380181B1 (ko) 2001-02-10 2003-04-11 한국과학기술연구원 대장 검사용 마이크로 로봇
KR100952532B1 (ko) 2001-12-20 2010-04-12 엔도진 피티와이 엘티디 자동전진장치
US20030199852A1 (en) 2002-04-23 2003-10-23 Endobionics, Inc. Attachment joints with polymer encapsulation
US7141041B2 (en) 2003-03-19 2006-11-28 Mercator Medsystems, Inc. Catheters having laterally deployable needles
US20050261719A1 (en) 2002-11-25 2005-11-24 Israel Chermoni Catheter and method of its use
CA2547021A1 (en) 2003-11-25 2005-06-09 F.D. Cardio Ltd. Stent positioning using inflation tube
JP4504003B2 (ja) * 2003-12-16 2010-07-14 オリンパス株式会社 内視鏡挿入補助装置
US7637933B2 (en) 2005-11-01 2009-12-29 Cordis Corporation Method for preparing and employing an implant delivery apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200029388A (ko) * 2017-04-27 2020-03-18 엔도진 리미티드 기구 추진을 위한 방법 및 장치

Also Published As

Publication number Publication date
JP5443472B2 (ja) 2014-03-19
CN102036709B (zh) 2014-12-03
CA2758434C (en) 2017-08-08
EP2271395B1 (en) 2018-01-03
US20110270037A1 (en) 2011-11-03
EP2271395A4 (en) 2011-10-05
ES2664743T3 (es) 2018-04-23
KR101605577B1 (ko) 2016-03-22
RU2506966C2 (ru) 2014-02-20
HUE038575T2 (hu) 2018-10-29
CA2758434A1 (en) 2009-11-12
BRPI0912573A2 (pt) 2015-10-13
US20170112367A1 (en) 2017-04-27
CN102036709A (zh) 2011-04-27
AU2009243914A1 (en) 2009-11-12
WO2009135251A1 (en) 2009-11-12
EP2271395A1 (en) 2011-01-12
AU2009243914B2 (en) 2014-09-18
BRPI0912573B1 (pt) 2020-05-19
US9566415B2 (en) 2017-02-14
RU2010149785A (ru) 2012-06-20
US10772487B2 (en) 2020-09-15
JP2011519639A (ja) 2011-07-14
BRPI0912573B8 (pt) 2021-06-22

Similar Documents

Publication Publication Date Title
KR20110009215A (ko) 프로브를 전진시키기 위한 방법 및 장치
US20240260817A1 (en) Robotic Device
US20070179339A1 (en) Self-propelled endoscopic device
US8540625B2 (en) Endoscope
CN102525380B (zh) 弯曲结构及使用该弯曲结构的内窥装置、胃管和机械关节
US5259364A (en) Endoscope device
CN103565518B (zh) 双控弯电生理导管
US20110237888A1 (en) Guide tube for guiding endoscope or surgical tool in or into body cavity
CN105026116A (zh) 机械手
US20160038003A1 (en) Endoscope
JP2011519639A5 (ko)
CN103190877B (zh) 具有吸附能力的柔性内窥镜机器人
JP5096079B2 (ja) 回転自走式内視鏡システム
Kim et al. Functional colonoscope robot system
KR101840317B1 (ko) 와이어 구동형 내시경 로봇
CN103566454B (zh) 双控弯手柄
US20170143192A1 (en) Fabric Tube Propulsion Drive
JP2010035759A (ja) 内視鏡
JPH01185508A (ja) 管内自走式検査装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190305

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200228

Year of fee payment: 5