KR20100037640A - Egfr 저해제 처리 마커 - Google Patents

Egfr 저해제 처리 마커 Download PDF

Info

Publication number
KR20100037640A
KR20100037640A KR1020107003320A KR20107003320A KR20100037640A KR 20100037640 A KR20100037640 A KR 20100037640A KR 1020107003320 A KR1020107003320 A KR 1020107003320A KR 20107003320 A KR20107003320 A KR 20107003320A KR 20100037640 A KR20100037640 A KR 20100037640A
Authority
KR
South Korea
Prior art keywords
cancer
patients
treatment
patient
egfr inhibitor
Prior art date
Application number
KR1020107003320A
Other languages
English (en)
Other versions
KR101169247B1 (ko
Inventor
뽈 델마
바르바라 클루그함머
베레나 루츠
파트리샤 맥러플린
Original Assignee
에프. 호프만-라 로슈 아게
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에프. 호프만-라 로슈 아게 filed Critical 에프. 호프만-라 로슈 아게
Publication of KR20100037640A publication Critical patent/KR20100037640A/ko
Application granted granted Critical
Publication of KR101169247B1 publication Critical patent/KR101169247B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 암 환자에서 EGFR 저해제 처리에 대한 반응의 예측자인 바이오마커를 제공한다.

Description

EGFR 저해제 처리 마커 {EGFR INHIBITOR TREATMENT MARKER}
본 발명은 암 환자에서의 EGFR 저해제 처리에 대한 반응의 예측자인 바이오마커를 제공한다.
다수의 인간 악성종양은 상피세포 성장 인자 수용체 (EGFR) 의 정도를 벗어난 발현 또는 과발현과 연관되어 있다. EGF, 형질전환 성장 인자 α (TGF-α) 및 다수의 기타 리간드가 EGFR 에 결합하여, 수용체의 세포내 티로신 키나아제 도메인의 자가인산화를 자극한다. 여러가지 세포내 경로들이 후속하여 활성화되며, 이들 하류방향 사건들은 시험관 내에서 종양 세포 증식을 초래한다. EGFR 을 통한 종양 세포의 자극이 생체 내 종양 성장 및 종양 생존 모두에 중요할 수 있다는 것은 기정사실이다.
EGFR 티로신 키나아제의 저해제인 TarcevaTM 를 이용한 초기 임상 데이타는, 상기 화합물이 안전하며, 표적으로 하는 유효 농도를 제공하는 투여량 (전임상 데이타로 결정됨) 에서 일반적으로 널리 용인된다고 한다. 진행성 질환이 있던 환자에서의 임상 I 상 및 II 상 시도는, TarcevaTM 가 일정 범위의 상피 종양에서 유망한 임상 활성을 갖는다는 것을 증명했다. 실제로, TarcevaTM 는 이미 치료를 받았던 두경부암 환자 및 NSCLC (비-소세포 폐암) 환자에서 기존 확립된 2 차 항암치료법과 유사한 정도로 오래 지속되는 부분적인 차도를 유도할 수 있으며, 그러나 화학치료법보다 더 양호한 안전성 프로파일 및 개선된 편의성 (정맥 내 [i.v.] 투여 대신 정제) 이라는 장점을 추가하는 것으로 나타났다. 최근 완료된, 무작위적인 이중맹검 위약 통제 시도 (BR.21) 는, 단일 약제 TarcevaTM 가 진행성 질환에 대한 표준 치료법이 실패한 NSCLC 환자의 생존을 현저하게 연장시키고 개선시킨다는 것을 보여줬다.
TarcevaTM (에를로티니브; erlotinib) 는 작은 화학 분자이다; 이는 EGFR 티로신 키나아제의 경구 활성이면서도 강력하고 선택적인 저해제 (EGFR-TKI) 이다.
폐암은 북미 및 유럽에서 암 관련한 사망의 주된 요인이다. 미국에서, 폐암으로 인한 부차적인 사망자 숫자는 조합된 두번째 (대장암), 세번째 (유방암) 및 네번째 (전립선암) 암 사망의 주요 원인을 조합한 총 사망자 수를 능가한다. 전체 폐암의 약 75% 내지 80% 가 비-소세포폐암 (NSCLC) 이며, 약 40% 의 환자들은 국소적으로 진행되고/되거나 수술로 제거할 수 없는 질환을 나타내고 있다. 이러한 군에는 일반적으로 악성 흉수를 제외한, 종양의 부피가 큰 상태인 IIIA 기 및 IIIB 기 질환을 가진 이들이 포함된다.
유럽 연합에서, 폐암의 대략적인 발생율은 매 년 100,000 명당 52.5 명이며, 사망율은 48.7 명이다. 남성들 중에서는 상기 비율이 각각 79.3 및 78.3 이며, 여성들 중에서는 상기 비율이 각각 21.6 및 20.5 이다. NSCLC 는 폐암 전체의 80% 를 차지한다. 남성 폐암 사망률의 약 90% 및 여성 폐암 사망률의 80% 는 흡연이 원인이다.
미국에서, 미국 암 학회에 따르면, 2004 년 동안, 약 173,800 건의 신규한 폐암 발병 (남성 93,100 건, 여성 80,700 건) 이 있었으며, 이는 모든 신규한 암 발병의 약 13% 를 차지했다. 대부분의 환자들은 진단 후 2 년 내에 그 질환의 결과로 사망한다. 많은 NSCLC 환자에 있어서, 성공적인 치료는 달성하기 힘든 것으로 남아있다. 진행된 종양은 종종 수술로도 고치기 힘들며, 용인가능한 선량의 방사선요법 및 용인가능한 투여량의 화학요법에도 내성을 띠게 될 수 있다. 무작위적인 시도에서, 현재 가장 활발한 병용 화학요법은 약 30% 내지 40% 의 반응률을 달성하며, 1 년간 생존율은 35% 내지 40% 이다. 이는 단독적인 보존적 치료가 보여주는 10% 의 1 년 생존율을 훨씬 앞선다.
최근까지, 재발한 환자에 대한 치료 선택폭은 최선의 보존적 치료 또는 일시적 완화에 제한되어 있었다. 도세탁셀 (Taxotere
Figure pct00001
) 과 최선의 보존적 치료를 비교한 최근의 시도는, NSCLC 환자가 시스플라틴-계 1 차 섭생이 실패한 후, 2 차 항암치료법으로 효과를 볼 수 있다는 것을 보여줬다. 모든 연령대의, ECOG 전신 수행 상태 (performance status) 가 0, 1, 또는 2 인 환자에서, 먼저 했던 백금-계 치료로는 치료가 어려웠던 이들에서처럼, 도세탁셀의 이용으로 생존이 개선되었음을 증명했다. 치료법으로 이득을 못 본 환자들에는, 10% 가 넘는 체중 손실이 있거나, 젖산 탈수소효소 수준이 높거나, 여러 장기에 연루되어 있거나, 또는 간에 연루되어 있는 이들이 포함된다. 추가로, 도세탁셀 단독치료법의 이점은 2 차 설정을 넘어서진 못했다. 3 차 이상의 치료법으로서 도세탁셀을 수여받은 환자들에서 생존의 연장이 나타나지 않았다. 단일 약제 도세탁셀은 NSCLC 에 대한 표준 2 차 치료법이 되었다. 최근, NSCLC 의 2 차 항암치료법에서 또다른 무작위적인 III 상 시도에서는 페메트렉세드 (Alimta
Figure pct00002
) 와 도세탁셀을 비교했다. 페메트렉세드를 이용한 치료는 임상적으로 동등한 효능을 도출했으나, 부작용은 도세탁셀보다 훨씬 더 적었다.
개인 맞춤형 암 치료 방법을 개발할 필요가 있음은 오래전부터 인정되어 왔다. 목표로 삼은 암 치료법을 개발하면서, 종양 표적의 분자적인 프로파일을 제공할 수 있는 방법론 (즉, 임상적인 이점에 대해 예측하는 것) 이 특별한 관심대상이 되었다. 암에서의 유전자 발현 프로파일에 대한 원리의 증거는, 현재의 형태학적 및 면역조직화학적 테스트를 근거로 해서는 불분명한 종양 유형의 분자적 분류를 이용하여 이미 확립되어 있다.
따라서, 본 발명의 목적은 암 환자에서의 EGFR 저해제 치료에 대한 반응을 예측하는 발현 바이오마커를 제공하는 것이다.
첫번째 목적에서, 본 발명은 하기 단계를 포함하는, EGFR 저해제 치료에 대한 암 환자의 반응성을 시험관 내에서 예측하는 방법을 제공한다 :
환자의 종양 시료에서 PSPH 유전자의 발현 수준을 측정하는 단계, 및
PSPH 유전자의 발현 수준을 비반응성 환자 집단의 종양 내 PSPH 유전자의 발현 수준의 대표값과 비교하는 단계,
여기서 환자의 종양 시료에서 PSPH 유전자의 발현 수준이 더 높은 점은 치료에 반응할 환자에 대한 지표임.
용어 "비반응성 환자 집단의 종양에서의 PSPH 유전자의 발현 수준 대표값" 은 EGFR 저해제 치료에 반응하지 않는 환자 집단의 종양에서의 마커 유전자의 평균 발현 수준의 값을 말한다.
바람직한 구현예에서, 마커 유전자 PSPH (서열 번호 1) 는 일반적으로, 비반응성 환자 집단의 종양 내 PSPH 유전자의 발현 수준의 대표값과 비교해볼 때 반응성 환자의 종양 시료에서 1.8 내지 3.7 배 이상 더 높은 발현을 나타낸다.
바람직한 구현예에서, PSPH 유전자의 발현 수준은 마이크로어레이 기술, 또는 정량적 RT-PCR 처럼 RNA 발현 수준을 평가하는 기타 기법으로, 또는 각각의 단백질의 발현 수준을 관찰하는 임의의 방법, 예를 들어 면역조직화학법 (IHC) 으로 측정한다. 유전자 칩의 구축 및 이용은 당업계에 널리 공지되어 있다. 미국 특허 제 5,202,231 호; 제 5,445,934 호; 제 5,525,464 호; 제 5,695,940 호; 제 5,744,305 호; 제 5,795,716 호 및 제 5,800,992 호를 참조한다. 물론, 유전자 발현 수준은 당업자에게 공지된 기타 방법, 예를 들어 노던 블롯, RT-PCR, 실시간 정량적 PCR, 프라이머 신장, RNase 프로텍션, RNA 프로파일링으로 측정될 수 있다.
본 발명의 마커 유전자는 기타 바이오마커와 조합되어 바이오마커 세트로 될 수 있다. 바이오마커 세트는 암 환자에서의 EGFR 저해제 치료 효과에 대해 예측하기 위해 예측 바이오마커의 임의의 조합으로부터 성립될 수 있다. 본원에 기술된 바이오마커 및 바이오마커 세트는 예를 들어, 암 환자가 EGFR 저해제를 사용한 치료 개입에 어떻게 반응할 것인지를 예측하는데 사용될 수 있다.
본원에서 사용되는 바와 같은 "유전자" 라는 용어는 유전자의 변이체를 포함한다. "변이체" 라는 용어는 GenBank 등록 번호로 주어진 핵산 서열과 실질적으로 유사한 핵산 서열을 말한다. "실질적으로 유사한" 이라는 용어를 당업자는 잘 이해한다. 특히, 유전자 변이체는 인간 집단 내에서 가장 우세한 대립형질의 핵산 서열과 비교하여 뉴클레오타이드 교환을 보이는 대립형질일 수 있다. 바람직하게는, 이러한 실질적으로 유사한 핵산 서열은 가장 우세한 대립형질과 80% 이상, 바람직하게는 85% 이상, 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 유사성을 갖는다. "변이체" 라는 용어는 또한 스플라이싱 (splice) 변이체를 말하는 것으로 의미된다.
EGFR 저해제는 게피티니브 (gefitinib), 에를로티니브 (erlotinib), PKI-166, EKB-569, GW2016, CI-1033, 및 트라스투주마브 (trastuzumab) 및 세툭시주마브 (cetuxizumab) 와 같은 항-erbB 항체로 이루어진 군으로부터 선택될 수 있다.
더욱 또다른 구현예에서, EGFR 저해제는 에를로티니브이다.
또다른 구현예에서, 암은 NSCLC 이다.
본 발명에 의해 기술되는 유전자의 유전자 발현 검출 기술에는 노던 블롯, RT-PCR, 실시간 정량 PCR, 프라이머 확장, RNase 프로텍션, RNA 발현 프로파일링 및 관련 기술이 포함되나 이에 제한되는 것은 아니다. 이러한 기술은 당업자에게 잘 알려져 있으며, 예를 들어 [Sambrook J 등, Molecular Cloning: A Laboratory Manual, Third Edition (Cold Spring Harbor Press, Cold Spring Harbor, 2000)] 를 참조한다.
본 발명에 의해 기술되는 각 유전자의 단백질 발현 검출 기술에는 면역조직화학 (IHC; Immunohistochemistry) 이 포함되나 이에 제한되는 것은 아니다.
본 발명에 따르면, 종양 또는 암 생검과 같은 환자 조직 시료의 세포를 어세이하여, 하나 이상의 바이오마커의 발현 패턴을 측정할 수 있다. 암 치료의 성공 또는 실패는, 종양 또는 암 생검과 같은 테스트 조직의 세포 (테스트 세포) 의 바이오마커 발현 패턴이, 하나 이상의 바이오마커의 대조군 세트의 발현 패턴과 비교적 유사한지 또는 상이한지를 바탕으로 측정될 수 있다. 본 발명의 문맥에서, EGFR 저해제 치료에 반응하지 않는 환자의 종양과 비교하여 EGFR 저해제 치료에 반응하는 환자의 종양에서, PSPH 유전자가 상향조절된다는, 즉 더 높은 발현 수준을 보인다는 것을 발견하였다. 따라서, 테스트 세포가 암 치료에 반응하였던 환자의 바이오마커 발현 프로파일에 상응하는 바이오마커 발현 프로파일을 보이는 경우, 개체의 암 또는 종양이 EGFR 저해제를 사용한 치료에 바람직하게 반응할 것 같거나 그러할 것으로 예상된다. 반대로, 테스트 세포가 암 치료에 반응하지 않았던 환자의 바이오마커 발현 프로파일에 상응하는 바이오마커 발현 프로파일을 보이는 경우, 개체의 암 또는 종양이 EGFR 저해제를 사용한 치료에 바람직하게 반응하지 않을 것 같거나 반응하지 않을 것으로 예상된다.
본 발명의 바이오마커는 암 환자, 특히 불응성 NSCLC 환자를 위한 개인 맞춤형 치료법을 향한 첫 단계이다. 이러한 개인 맞춤형 치료법은 의사가 기존의 암 치료 약물, 특히 NSCLC 치료 약물 중에서 가장 적절한 제제를 선택하도록 할 수 있을 것이다. 각각의 미래의 환자를 위한 개인 맞춤형 치료법의 이점은 : 이점을 받을 환자의 반응률/수가 증가할 것이라는 점과 비효율적인 치료로 인한 부작용의 위험이 감소될 것이라는 점이다.
추가의 목적에서, 본 발명은 본 발명의 시험관 내 방법에 의해 규명되는 암 환자를 치료하는 치료 방법을 제공한다. 상기 치료 방법은 PSPH 유전자의 예측성 발현 패턴에 근거해 치료하기로 선택되었던 환자에게 EGFR 저해제를 투여하는 것을 포함한다. 바람직한 EGFR 저해제는 에를로티니브이고, 치료하고자 하는 바람직한 암은 NSCLC 이다.
도 1 은 연구 디자인을 보여준다;
도 2 는 시료 처리 과정 도식을 보여준다;
도 3a 는 PSPH 발현 수준 대 (vs) Genechip
Figure pct00003
프로파일링에 대한 임상 결과를 보여준다;
도 3b 는 PSPH 발현 수준 대 qRT-PCR 에 대한 임상 결과를 보여준다; 및
도 3c 는 PSPH 에 대한 qRT-PCR 측정값과 Genechip
Figure pct00004
간의 상관관계를 보여준다.
실험 부문
연구에 대한 근거 및 연구 디자인
최근 NSCLC 환자의 부분집합 (subset) 의 종양 조직 내의 EGFR 유전자에서의 돌연변이, 및 에를로티니브 및 게피티니브에 대한 민감성을 가진 이러한 돌연변이의 연관성이 기재되었다 (Pao W, 등, 2004; Lynch 등, 2004; Paez 등, 2004). 2 가지 연구를 조합한 환자의 경우, 돌연변이된 EGFR 은 게피티니브에 반응을 보였던 14 명의 환자 중 13 명에서 관찰되었고, 반응을 보이지 않았던 11 명의 게피티니브-처리 환자에서는 관찰되지 않았다. 이들 돌연변이의 보고된 발생률 (prevalence) 은 미선별된 NSCLC 환자 중에서 8% (25 명 중 2 명) 였다. 이들 돌연변이는 선암종 (21%), 여성에서 생긴 종양 (20%), 및 일본인 환자에서 생긴 종양 (26%) 에서 더욱 자주 발견되었다. 이들 돌연변이는 EGFR 의 시험관 내 활성 증가 및 게피티니브에 대한 민감성 증가를 초래하였다. 돌연변이와 연장된 안정한 질환 또는 생존 기간과의 관계는 유망하게 평가되지는 않았다.
BR.21 연구의 탐색적 분석에 근거하여, 관찰되는 생존 이점은 단지 EGFR 돌연변이로 인한 것만은 아닌 것으로 보이는데, 그 이유는 목적하는 반응을 보인 환자를 분석에서 제외한 경우에도 유의한 생존 이점이 유지되기 때문이다 (파일의 자료). 기타 분자 메커니즘도 또한 효과에 기여해야만 한다.
Tarceva™ 처리에 대한 반응/이점을 예측하는 유전자 발현 수준의 변화가 있다는 가정하에, 마이크로어레이 분석을 사용하여 이들 변화를 검출하였다.
이를 위해서는 1 차 치료법의 실패 후, Tarceva™ 단독치료법으로 처리된 명확하게 정의된 연구 집단이 필요하였다. BR.21 연구로부터의 경험에 근거하여, 이점을 본 집단을 목적하는 반응, 또는 12 주 이상 동안의 질환 안정화를 가진 집단으로서 정의하였다. 임상 및 마이크로어레이 데이타 세트를 미리 정의된 통계 계획에 따라 분석하였다.
이 기술을 적용하기 위해서는 갓 동결된 조직 (FFT; fresh frozen tissue) 이 필요하다. 따라서, 치료 시작 전에 의무적인 생검을 실시해야만 한다. 수합한 물질을 액체 질소 (N2) 에서 동결시켰다.
동시에 두번째 종양 시료를 수합하고, 파라핀에 저장하였다 (포르말린 고정 파라핀 포매: FFPE). 상기 시료를 EGFR 신호 경로에서의 변경에 대해 분석하였다.
기관지경술을 통해 종양 생검을 실시하는 능력은 본 연구를 위한 전제 조건이었다. 기관지경술은 폐암 진단을 확인하기 위한 표준 절차이다. 일반적으로 안전하지만, 출혈과 같은 합병증의 위험이 남아 있다.
본 연구는 불응성 NSCLC 환자에 대한 개인 맞춤형 치료 (individualized therapy) 를 향한 첫 단계였다. 상기 개인 맞춤형 치료는 진료 의사가 상기 징후에 대해 기존의 약물들 중 가장 적절한 제제를 선택할 수 있게 할 것이다.
일단 개인 맞춤형 치료가 가능해지면, 각각의 미래 환자에 대한 이점은 본 연구에서 환자들이 감수해야 하는 위험을 능가할 것이다 :
반응률/이점을 얻는 환자의 수가 증가할 것임,
비효율적인 치료로 인한 유해한 부작용의 위험성이 감소할 것임.
투여량 선택에 대한 근거
TarcevaTM 를 질환 진행, 용인불가한 독성 또는 사망시까지 150 mg 의 투여량으로 1 일 1 회 경구 투여하였다. 상기 투여량에 대한 선택은 약동학적 파라미터, 뿐만 아니라 사전-치료를 과도하게 받은 진행성 암 환자들에서 제 I, II 및 III 상 시도에서 관찰된 상기 투여량의 안전성 및 내약성 프로파일을 기초로 하였다. 150 mg/일의 투여량을 받은 암 환자의 혈장에서 나타난 약물 수준은 임상적 효능을 목적으로 하는 500 ng/ml 의 평균 혈장 농도보다 지속적으로 높았다. BR.21 은 상기 투여량에 의한 생존 이점을 보여주었다.
본 연구의 목적
일차적 목적은 TarcevaTM 치료의 이점 (CR, PR 또는 SD ≥ 12 주) 에 대해 예측적인 유의 유전자 (differentially expressed gene) 를 규명하는 것이었다. TarcevaTM 치료에 대한 "반응" (CR, PR) 에 대해 예측하는 유의 유전자들의 규명은 중요한 추가적인 목적이었다.
이차적인 목적은 EGFR 신호전달 경로에서의 변경을 치료를 통한 이점에 관하여 평가하는 것이었다.
연구 디자인
연구 디자인 및 투여 섭생에 대한 개관
이는 공개 (open-label) 예측 마커 규명 제 II 상 연구였다. 본 연구는 약 12 개국의 대략 26 개 지역에서 수행되었다. 1 가지 이상의 사전 화학치료 섭생이 실패한 진행성 NSCLC 환자 264 명을 12 개월의 기간에 걸쳐 등록하였다. 지속적으로 경구 TarcevaTM 를 150 mg/일의 투여량으로 투여하였다. 약물 치료법에 대한 내약성에 기초하여 투여량 감소가 허용되었다. 질환 제어 및 독성을 평가하기 위해 임상 및 실험 파라미터를 평가하였다. 치료는 질환 진행, 허용불가능한 독성 또는 사망시까지 계속되었다. 본 연구 디자인은 도 1 에 나타나 있다.
분자적 분석을 위해 종양 조직 및 혈액 시료를 수득하여, TarcevaTM 의 효과를 평가하고 치료를 통해 이점을 얻는 환자들의 하위군을 규명하였다.
예측 마커 평가
종양 생검들을 치료 시작 전 2 주 내에 취하였다. 하기 2 가지의 상이한 시료들을 수합하였다:
첫번째 시료는 항상 액체 N2 에서 즉시 동결시켰음.
두번째 시료는 포르말린에서 고정시킨 후 파라핀에서 포매시켰음.
즉시 (snap) 동결 조직은 본 연구에서 가장 높은 우선순위를 가졌음.
도 2 는 시료 처리에 대한 도식을 보여줌.
마이크로어레이 분석
종양 세포의 레이저 포착 미세절제 (laser capture microdissection; LCM) 에 즉시 동결 시료를 사용하여, 종양 RNA 및 종양 주변 조직의 RNA 를 추출하였다. 상기 RNA 를 Affymetrix 마이크로어레이 칩 (HG-U133A) 상에서 분석하여 상기 환자들의 종양 유전자 발현 프로파일을 확립하였다. Affymetrix 칩에 대한 품질 관리 (Quality Control) 를 이용하여 통계학적 비교를 위한 적절한 품질의 시료들을 선택하였다.
포르말린 고정된 파라핀 포매 조직에 대한 단일 바이오마커 분석
상기 두번째 종양 생검인 FFPE 시료를 사용하여, DNA 돌연변이, IHC 및 ISH 분석을 상기 기술한 바와 같이 수행하였다. 초기 진단시 수합한 조직에 대해서도 유사한 분석을 수행하였다.
EGFR 및 EGFR 신호전달 경로에 관여하는 기타 분자들을 인코딩하는 유전자의 DNA 돌연변이 상태를 DNA 서열분석을 이용하여 분석하였다. EGFR 및 관련 유전자의 유전자 증폭은 FISH 에 의해 연구하였다.
단백질 발현 분석에는 EGFR 및 EGFR 신호전달 경로 중의 기타 단백질에 대한 면역조직화학 [IHC] 분석이 포함되었다.
반응 평가
RECIST (일차원적 종양 측정 (Uni-dimensional Tumour Measurement)) 기준을 이용하여 반응을 평가하였다. 상기 기준은 하기 링크에서 찾아볼 수 있다:http://www.eortc.be/recist/
다음을 주의한다: CR 또는 PR 의 상태로 규정하기 위해서는, 상기 치료 기간 중의 임의의 시점과는 적어도 4 주 떨어진 시점에서 반복 평가에 의해 종양 크기의 변화를 확인해야 한다.
SD 의 경우, 추적조사 측정값은 연구 시작 후 최소 6 주의 간격으로 SD 기준을 1 회 이상 충족해야 한다.
유지되는 SD 의 경우, 추적조사 측정값은 연구 시작 후 12 주 이상의 지속 기간에 걸쳐 SD 기준을 1 회 이상 충족해야 한다.
생존 평가
환자는 진료소로 방문하거나 또는 전화를 이용하여 3 개월마다 정기적으로 상태를 점검받았다. 모든 사망을 기록하였다. 연구의 말미에 각 환자에 대해 최종적 생존 확인을 요청하였다.
에를로티니브 치료에 대한 반응
12 개국 및 26 개 센터의 총 264 명의 환자를 본 연구에 등록하였다. 26% 는 IIIB 기 NSCLC 였고, 24% 는 IV 기 NSCLC 였다. 환자 중 13.6% (n=36) 는 목적하는 반응 (objective response) 을 달성한 한편, 31.4% (n=83) 는 임상적 이점 (12 주 이상 동안 목적하는 반응 또는 안정한 질환 (stable disease) 중 하나를 가진 것으로 정의함) 을 가졌다. 전체 생존 중앙값은 7.6 (CI 7-9) 개월이었고, 무진행 생존 중앙값은 11.3 (CI 8-12) 주였다. 임상 데이타에 대한 전체적인 상세한 것은 표 1 에 나타나 있다.
모든 환자들로부터 갓 동결된 기관지경 생검들을 수합하였는데, 그러나 모든 시료가 미세절제 (LCM) 전에 충분한 함량의 종양을 가진 것은 아니었거나, 또는 LCM 후 마이크로어레이 분석을 진행하기에 충분한 RNA 산출량을 가진 것은 아니어서, 종양 재료는 125 명의 환자에 대한 것만 이용가능하였다; 이들 중 122 명은 평가가능한 RNA 를 가졌다. 20 개 시료로 된 또다른 세트는 상기 마이크로어레이 데이타에 대한 본 발명자들의 품질 관리 평가를 통과하지 못하였다. 통계적 분석에 적합하였던 상기 102 개 마이크로어레이 데이타 세트 중에서, 임상적 특징들은 표 1 에 나타나 있다. 전체 연구에서 36 명의 환자가 목적하는 치료를 달성한 한편, 이들 중 단지 6 명만이 마이크로어레이 데이타를 가졌다; 임상적 이점을 달성한 환자들에서와 유사하게, 마이크로어레이 데이타를 가진 환자들의 수는 전체 데이타 세트 중의 83 명에 비해 불과 21 명이었다. 6 명은 부분 반응자 (PR) 인 것으로 판단되었고, 31 명은 SD 였고, 49 명은 PD 였다; PR 인 6 명의 환자 중, 5 명은 선암종을 가졌고, 1 명만이 편평상피 세포암종을 가졌다. 상기 데이타 세트에서 CR 을 달성한 환자는 없었다.
방법
RNA 시료 제제 및 RNA 시료에 대한 품질 관리
모든 생검 시료 처리는 병리학 표준 실험실에서 다루어졌다; 갓 동결된 조직 시료는 조사기관 지역에서 Roche Basel 의 Clinical Sample Operations 시설로 수송되었고, 추가적인 처리를 위해 그곳에서 상기 병리학 실험실로 수송되었다. 레이저 포착 미세절제를 이용하여 주변 조직으로부터 종양 세포를 선별하였다. LCM 후, 상기 종양이 풍부한 물질로부터 RNA 를 정제하였다. 다음, 상기 병리학 실험실은 상기 RNA 의 농도 및 품질을 평가하기 위해 많은 단계를 수행하였다.
RNase는 RNA 분해 효소이며 도처에서 발견되고, 따라서 RNA 가 사용될 모든 절차는 RNA 분해를 최소화하도록 엄격히 조절되어야만 한다. 대부분의 mRNA 종 자체는 다소 짧은 반감기를 가지며, 따라서 상당히 불안정한 것으로 간주된다. 따라서, 임의의 어세이 전에 RNA 온전성 (integrity) 체크 및 정량화를 수행하는 것이 중요하다.
RNA 농도 및 품질 프로파일은 2100 Bioanalyzer
Figure pct00005
이라고 하는 Agilent 기기 (Agilent Technologies, Inc., Palo Alto, CA) 를 사용하여 평가될 수 있다. 기기 소프트웨어는 RNA 온전성 번호 (RIN), 정량화 평가 (Schroeder, A., 등, The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol, 2006. 7: p.3) 를 생성하고, 총 RNA 시료의 리보솜 비율을 계산한다. RIN은 RNA 시료의 전체 전기영동적 추적으로부터 측정되며, 여기에는 분해 생성물의 존재 또는 부재가 포함된다.
RNA 품질을 2100 Bioanalyzer
Figure pct00006
로 분석하였다. Affymetrix 플랫폼 상에서의 추가적 분석을 위해, 충분한 RNA, 및 첨가된 폴리-I 노이즈 초과의 하나 이상의 rRNA 피크를 갖는 시료만을 선택하였다. 마이크로어레이에 의한 분석을 위해, 정제된 RNA 를 Roche Centre for Medical Genomics (RCMG; Basel, Switzerland) 로 보냈다. 추가적인 처리를 위해 병리학 실험실로부터 122 개의 RNA 시료를 받았다.
조직 RNA 시료의 표적 표지
제조업자의 지시사항에 따라, Affymetrix 사의 2-사이클 표적 표지 증폭 프로토콜 (Affymetrix, Santa Clara, California) 에 따라 표적 표지를 수행하였다.
상기 방법은 표준 Eberwine 선형 증폭 절차를 바탕으로 하지만, 마이크로어레이에 대한 혼성화를 위해 충분히 표지된 cRNA가 생성되도록 상기 과정을 두 사이클 사용한다.
표지 반응에서 사용된 총 RNA 투입량은, 10 ng 이 넘는 RNA 를 사용가능한 경우 이들 시료에 대해서는 10 ng 이었고; 상기 양보다 더 적은 양이 사용가능하거나 또는 사용가능한 양의 데이타가 없는 경우 (매우 낮은 RNA 농도로 인해), 총 시료의 절반을 반응에 사용하였다. 표지 반응으로부터의 산출량의 범위는 20 ~ 180 ㎍ cRNA 였다. 15 ㎍ cRNA 를 모든 시료에 대해 사용한 경우, 혼성화의 수준에서 표준화 단계를 도입하였다.
인간 대조군 RNA (Stratagene, Carlsbad, CA, USA) 를 각각의 배치 (batch)의 시료를 사용한 작업흐름에서 대조군 시료로서 사용하였다. 10 ng 의 상기 RNA 를 테스트 시료와 함께 투입물로서 사용하여, 표지 및 혼성화 시약이 예측한 바와 같이 작용하는지 확인하였다.
마이크로어레이 혼성화
Affymetrix HG-U133A 마이크로어레이는 22,000 개가 넘는 프로브 세트를 함유하고, 이 프로브 세트들은 약 14,500 개의 잘 특징화된 유전자를 나타내는 약 18,400 개의 전사체 및 변이체를 표적으로 한다.
Affymetrix 지시사항 (Affymetrix Inc., Expression Analysis Technical Manual, 2004) 에 따라 모든 시료에 대한 혼성화를 수행하였다. 간략하게는, 각각의 시료에 대해, 15 ㎍ 의 바이오틴-표지 cRNA 를 2가 양이온의 존재 하 및 가열 하에 절편화하고, Affymetrix HG-U133A 전체 게놈 올리고뉴클레오타이드 어레이에 밤새 혼성화하였다. 다음날, 어레이를 제조업자의 지시사항에 따라 스트렙타비딘-피코에리트린 (Molecular Probes; Eugene, OR) 으로 염색하였다. 다음, GeneChip Scanner 3000 (Affymetrix) 을 사용하여 어레이를 스캐닝하고, GeneChip Operating Software (GCOS) 버전 1.4 (Affymetrix) 에 의해 신호 세기를 자동으로 계산하였다.
통계적 분석
AffymetrixTM 데이타의 분석은 4 개의 주요 단계로 이루어졌다.
단계 1 은 품질 관리였다. 목표는 하위-표준 품질 프로파일을 갖는 분석 어레이 데이타를 확인하고 제외하는 것이었다.
단계 2 는 예비-처리 및 표준화였다. 목표는 칩 간 비교를 위해 수정가능한, 표준화되고, 스케일화된 "분석 데이타 세트" 를 생성하는 것이었다. 이는 배경 노이즈 측정 및 감산, 프로브 요약 및 스케일링을 포함하였다.
단계 3 은 탐색 및 기술이었다. 목표는 가변성의 공급원 및 퍼텐셜 바이어스 (potential bias) 를 확인하는 것이었다. 이는 다변량 및 단변량 기술적 분석 기술을 적용하여 유력한 공변량을 확인하는 것으로 이루어졌다.
단계 4 는 모델링 및 테스트였다. 목표는 "반응자 (최상의 반응으로서 "일부 반응" 또는 "전체 반응" 을 가진 환자) 및 "비반응자" (최상의 반응으로서 "진행성 질환" 을 가진 환자) 사이의 평균 발현 수준의 차이를 통계적으로 평가한 것을 바탕으로 후보 마커의 목록을 확인하는 것이었다. 이는 적합한 통계적 모델을 각각의 프로브-세트에 대해 맞추고, 통계적 유의성의 측정값을 추론하는 것으로 이루어졌다.
R 소프트웨어 패키지를 사용하여 모든 분석을 수행하였다.
단계 1: 품질 관리
데이타 품질의 평가는 여러 파라미터를 체크한 것을 바탕으로 하였다. 이에는 표준 Affymetrix GeneChipTM 품질 파라미터, 특히 스케일링 인자, 현재 콜% (Percentage of Present Call) 및 평균 배경이 포함되었다. 이러한 단계는 또한 국소 혼성화 문제점을 검출하기 위한 가상 칩 이미지의 시각적 검사, 중앙 거동으로부터의 임의의 비정상적 이탈을 검출하기 위한 가상 중앙 칩에 대한 각각의 칩의 비교가 포함된다. 칩 간 상관관계 분석을 또한 수행하여 특이점 (outlier) 시료를 검출하였다. 또한, Agilent BioanalyzerTM 2100 으로 RNA 시료를 분석하여 수득한 RNA 품질의 부수적 측정을 고려하였다.
이들 파라미터를 바탕으로, 20 개 어레이에서 가져온 데이타는 분석에서 제외하였다. 따라서, 102 명의 환자를 나타내는 총 102 개의 어레이의 데이타를 분석에 포함하였다. 이들 102 명의 환자 집합에 대한 임상적 설명을 하기 표 1에 기록한다.
Figure pct00007
단계 2: 데이타 예비-처리 및 표준화
rma 알고리즘 (Irizarry, R.A., 등, Summaries of Affymetrix GeneChip probe level data. Nucl. Acids Res., 2003. 31(4): p. e15) 을 예비-처리 및 표준화에 사용하였다. mas5 알고리즘 (AFFYMETRIX, GeneChip
Figure pct00008
Expression: Data Analysis Fundamentals. 2004, AFFYMETRIX) 을 개별적 프로브-세트에 대한 검출 콜을 만드는데 사용하였다. 모든 시료에서의 "부재" 또는 "최소한 (marginal)" 라고 하는 프로브-세트를 추가의 분석에서 제외하고; 5930 개의 프로브-세트를 상기 기준을 근거로 한 분석에서 제외하였다. 따라서, 분석 데이타 세트는 102 명의 환자에서 측정된 16353개 (22283개 중) 프로브-세트를 갖는 매트릭스로 이루어졌다.
단계 3 : 데이타 기술 및 탐색 (exploration)
기술적인 탐색적 분석 (descriptive exploratory analysis) 을 수행하여, 퍼텐셜 바이어스 (potential bias) 및 가변성의 주요 공급원을 규명하였다. 유전자 발현 프로파일에 대한 잠재적인 영향을 가진 공변량 1 세트를 스크리닝하였다. 기술적 및 임상적 변수 둘 다 포함되었다. 기술적 공변량은 : RNA 가공일자 (후에 배치 (batch) 라고 함), RIN (RNA 품질/온전성의 측정임), 조작자 및 시료 수합 센터를 포함하였다. 임상적 공변량은 : 이력 유형 (histology type), 흡연 상태, 종양 등급, 전신 수행 지수 (performance score) (Oken, M.M., 등, Tox-icity and response criteria of the Eastern Cooperative Oncology Group. Am J Clin Oncol, 1982. 5(6): p. 649-55), 인적 데이타 (demographic data), 반응자 상태 및 임상적 이점 중요도 (clinical benefit status) 를 포함하였다.
분석 툴 (tool) 은 단변량 ANOVA 및 주성분 분석 (principal component analysis) 을 포함하였다. 이들 공변량 각각에 대해, 단변량 ANOVA 를 각각의 프로브-세트 (probe-set) 에 독립적으로 적용하였다.
배치 변수의 유의한 효과를 규명하였다. 실제로, 배치 변수는 시료 가공 일자 및 Affymetrix 칩 로트 (Affymetrix chip lot) 간의 차이를 포착하였다. 배치 변수가 흥미있는 변수로부터 거의 독립적이라는 점을 체크한 후, 배치 효과를 [Johnson, W.E., C. Li, and A. Rabinovic, Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostat, 2007. 8(1): p. 118-127] 에서 기술된 방법을 사용해 보정하였다.
배치 효과 보정 후 표준화된 데이타 세트는 후속한 분석에서 분석 데이타 세트로서 작용하였다.
이력 및 RIN 은 기술적 분석에 의해 강조된 2 개의 추가의 중요한 변수였다.
단계 4 : 데이타 모델링 및 테스트
선형 모델을 각각의 프로브-세트에 대해 독립적으로 맞추었다. 모델에 포함된 변수는 표 2 에 기록하였다. 모델 파라미터를 최대 가능도 방법 (maximum likelihood technique) 에 의해 평가하였다. "반응" 변수 (X1) 에 상응하는 파라미터를 사용하여, "반응" 환자 및 "비반응" 환자 군 간의 발현 수준의 차이를 측정하였다.
Figure pct00009
안정한 질환 상태를 가진 환자들은 제외하였다 (n=31). 이론적인 근거는, 치료에 대해 더욱 두드러진 반응을 가진 환자에 초점을 맞춤으로써, 비-반응자 군이 더욱 균질해질 것이라는 점이었다.
각각의 프로브-세트 i 에 대해, 통계 테스트의 목적은 표 2 에 열거된 다른 조정 공변량을 고려하여, 처리에 대해 반응성인 환자 및 처리에 대해 반응이 없는 환자에서 평균 발현 수준이 동일하다는 가정을 거부하는 것이었다. 정식으로, 균등의 귀무 가설 (null hypothesis of equality) 을 양측 대립 가설에 대해 테스트하였다. 귀무 가설 하에, 이러한 테스트에 대한 Wald-통계 분포는 64 의 자유도 (degree of freedom) 를 갖는 Chi Square 분포를 따른다. 상응하는 p-값을 표 3 에 기록한다.
선형 모델의 선택은 2 가지 이유에 의해 동기부여되었다. 우선, 선형 모델링은 다목적적이고, 잘-특징화되고, 탄탄한 접근법이어서, 흥미있는 변수의 효과를 평가하는 경우 혼란 변수를 조정할 수 있다. 두번째로, 71 이라는 시료 크기, 및 데이타 세트의 표준화 및 스케일링을 봤을 때, 정규 분포 가정은 타당하고 정당하였다.
유의 유전자 (differentially expressed gene) 의 목록을 규명하기 위한 오류 발견률 (False Discovery Rate, FDR) 기준을 사용함으로써, 다중 테스트의 이슈를 취급하였다 (Benjamini 등, Journal of the Royal Statistical Society Series B-Methodological, 1995. 57(1): p. 289-300). 0.3 역치 미만의 FDR 을 가진 프로브-세트는 유의한 것으로 선언된다. 0.3 컷-오프 (cut-off) 는 거짓 양성의 위험도 및 빠뜨려지는 실제의 유의 마커 (missing truly differential marker) 의 위험도를 엄격히 조절하는 다중 테스트에 대한 철저한 보정 간의 타당한 약속으로서 선택되었다. 규명된 마커 유전자를 표 3 에 기록한다.
표 3: "반응자" 를 "진행자" 와 비교한 것을 바탕으로 한 마커들. 반응자들은 최상의 반응이 "부분 반응 (PR)" 과 동일한 환자로서 정의하였다. "진행자" 는 최상의 반응이 "진행성 질환 (PD)" 과 동일한 환자 또는 사용가능한 평가가 없는 환자로서 정의하였다.
종양 평가가 없는 환자는 "진행자" 군에 포함하였는데, 그 이유는 대부분의 경우, 질환 진행 또는 사망으로 인해 일찍 제거되어 평가가 빠뜨려지기 때문이었다.
제 1 열은 프로브-세트의 Affymetrix 규명자이다. 제 2 열은 상응하는 유전자 서열의 GenBank 등록 번호이다. 제 3 열은 상응하는 공식적인 유전자 명칭이다. 제 4 열은 선형 모델에서 추정한 바와 같이, "반응자" 및 "진행자" 간의 발현 수준에 있어서의 상응하는 조정된 평균 배수 변화이다. 제 5 열은 선형 모델로부터 유도한 바와 같이, "반응자" 및 "진행자" 간의 발현 수준의 차이의 테스트에 대한 p-값이다. 제 6 열은 발현 수준에 있어서의 조정된 평균 배수 변화에 대한 95% 신뢰 구간이다.
Figure pct00010
각각의 프로브-세트에 대해, 분산의 균일성에 대한 가정을 잔여 모델 (model residual) 을 바탕으로 한 Fligner-Killeen 테스트를 사용해 평가하였다. 분석은 하기 3 단계로 이루어졌다 :
잔차 분산 (residual variance) 의 동일성에 대해 모든 범주의 변수를 그의 수준 사이에서 테스트하는 단계,
가장 낮은 p-값을 가진 변수 V 를 주목하는 단계,
가장 낮은 p-값이 0.001 미만이라면, 상이한 수준의 변수 V 가 상이한 분산을 갖도록 모델을 다시 맞추는 단계.
추가의 통계학적 분석
선별된 후보 마커인 PSPH 에 대해, 독립적인 통계학자에 의해 인증된 환경에서 하기 추가의 분석을 수행하였다:
· 일차 Affymetrix 분석으로부터 PFS (Progression free survival: 무진행 생존기간) 에 대한 단변량 Cox 회귀,
· 일차 Affymetrix 분석으로부터 반응성에 대한 단변량 Logistic 회귀,
· 일차 Affymetrix 분석으로부터 생존에 대한 단변량 Cox 회귀.
상기 분석 결과를 하기에 제시한다. 이들은 일차 분석 결과와 일치하며, 선별된 마커 선택을 확인시켜 준다.
Figure pct00011
qRT - PCR (정량적 실시간 PCR )
qRT-PCR 을 위한 SuperScriptTM III First-strand Synthesis SuperMix (Invitrogen, CA, USA) 를, 제조업자의 지시사항에 따르되 RNase H 소화물 (digest) 을 포함시키지 않고 사용하여, cDNA 를 합성하였다.
제조업자의 권장사항에 따라 ABI PRISM
Figure pct00012
7900HT Sequence Detection System (Applied Biosystems, CA, USA) 상에서 TaqMan
Figure pct00013
Gene Expression Assays 를 이용하여 정량 PCR 을 수행하였다. 모든 어세이는 3 벌로 수행하였다.
Gene Expression Assays 는 Hs00190154_m1 [PSPH] 를 사용하였고, 프라이머 및 프로브가 엑손 경계를 가로지르거나 또는 흥미 있는 Affymetrix Genechip
Figure pct00014
프로브 서열 내에 존재하는 것으로 선택하였다. 2 가지의 하우스-키핑 (house-keeping) 유전자들이 내인성 대조군으로서 포함되었다: 베타-2-마이크로글로불린 (B2M; Assay Hs99999907_m1) 및 하이폭산틴포스포리보실 트랜스퍼라아제 (HPRT; Assay Hs99999909_m1).
모든 실행에는 보정 시료 (calibrator sample) (성인의 폐에서 가져온 MVPTM 총 RNA; Stratagene, CA, USA) 및 표준 곡선이 포함되었다. PSPH 표준 곡선에 대한 주형으로서 Universal Human Reference 총 RNA (Stratagene, CA, USA) 를 사용하였다. 모든 시료를 3 벌로 측정하였다. 상대 정량은 -ΔCt 방법을 이용하여 수행하였다.
결과
앞서 보고한 바와 같이, 본 연구에 포함된 102 명의 환자에 대해 Affymetrix Genechip® 유전자 발현 프로파일을 측정하였다. 이들 환자 중, 75 명에 대해 qRT-PCR 결과가 수득되었다 (표 3). qRT-PCR 결과가 나온 환자들의 인적 데이타 및 임상적 특징은 전체 집단 (n=264) 및 이용가능한 Genechip® 유전자 발현 프로파일을 가진 환자들과 유사하였다.
Figure pct00015
Figure pct00016
qRT-PCR 결과가 나온 75 명의 환자 중에서, 4 명 (5%) 은 부분 반응 (PR) 을 나타내었고, 23 명 (31%) 은 SD 를 나타내었고, 39 명 (52%) 은 PD 를 나타내었고, 9 명 (12%) 은 평가가능하지 않았다. 이러한 결과는 전체 연구 집단 (n=264) 에서 관찰된 결과와 매우 유사하였다.
Affymetrix Genechip
Figure pct00017
데이타, qRT - PCR 데이타 및 임상적 결과 간의 상관관계
도 3 은 Affymetrix Genechip
Figure pct00018
프로파일링 및 qRT-PCR 로 평가된 바와 같이, 개별 환자들에서 PSPH 에 대한 상대적 mRNA 수준을 보여준다. 도 3a 는 발현 수준 대 (vs) Genechip
Figure pct00019
프로파일링에 대한 임상 결과를 나타내고, 도 3b 는 발현 수준 대 qRT-PCR 에 대한 임상 결과를 보여준다.
도 3c 는 Genechip
Figure pct00020
및 PSPH 에 대한 qRT-PCR 측정치 간의 상관관계를 보여준다. PSPH mRNA 수준 및 Genechip
Figure pct00021
에서 관찰된 에를로티니브를 사용한 임상적 결과 간의 연관성을 qRT-PCR 데이타에 보존하였다.
에를로티니브에 대한 반응과 관련된 유전자의 규명
반응자들은 최상의 반응이 부분 반응이었던 환자로서 정의하였고, 한편, "진행자들" 은 진행성 질환을 가진 환자 또는 평가가 이루어지지 않은 환자 (대부분의 경우, 질환 진행 또는 사망으로 인해 초기에 없어진 결과) 로서 정의하였다. 따라서, 이 모델에서 6 명의 "반응자들" 을 65 명의 "진행자들" 과 비교하였다.
HG-U133A 마이크로어레이 상에서 총 22283 개의 시료 중에서 임의의 시료에 존재하지 않은 프로브-세트를 제거한 후, 분석에 사용된 16353 개의 남은 프로브-세트의 각각에 대해 선형 모델을 독립적으로 맞추었다. 각각의 프로브-세트에 대한 반응 및 비-반응 간의 발현 차이에 대해 p-값을 계산하였다. 0.3 의 오류 발견률 (false discovery rate, FDR) 을 적용하여, 다중 테스트에 대해 보정하였다. 상기 분석으로부터 규명된 마커를 표 3 에 나타낸다.
토의
암 치료법의 수단으로서 상피세포 성장 인자 수용체 (EGFR) 를 표적으로 하는 것은 여러 상피암에서 상기 수용체가 아주 흔하게 정도를 벗어나서 발현되는 것을 바탕으로 제안되었다. EGFR 은 티로신 키나아제 도메인에서의 활성화 돌연변이 및/또는 그의 증폭의 결과, NSCLC 종양의 40 ~ 80% 를 포함하여 많은 종양의 발병 및 진행에 연루되어 있다. 활성화 시, 수용체는 이량체화되어, 세포 증식, 전이, 세포자살 억제 및 혈관신생에서 역할을 하는 하류 표적을 인산화시킨다.
2 개의 주요한 부류의 EGFR 저해제가 개발되었는데, 수용체의 세포외 도메인을 표적으로 하는 모노클로날 항체, 및 수용체의 촉매성 도메인을 표적으로 하는 소분자 티로신 키나아제 저해제가 그것이다. 소분자 티로신 키나아제 저해제는 세포내 결합 부위에 대해 ATP 와 경쟁하는 에를로티니브를 포함한다.
최근에는, 여성 성별, 비흡연 상태, 아시안인 기원 및 선암종 이력을 포함한 여러 인자가 에를로티니브에 대한 민감도에 있어서 역할을 한다는 것이 도출되었고 ; 향상된 반응률이 그러한 환자의 임상적 하위군에서의 증거이고, 환자 계층화를 위해 예측성 분자 마커를 설명하려는 광범위한 노력이 진행 중이다. EGFR 에서의 돌연변이, EGFR 유전자 좌의 증폭, 및 단백질 수준 상에서 EGFR 의 과발현은, 이들이 반응의 유일한 분자적 결정원이 아님에도 불구하고, 정도를 달리하면서 모두 반응에 관련되어 있다.
고-밀도 올리고뉴클레오타이드 마이크로어레이 기술을 사용해 조직 시료를 분석하고, 통계 모델링을 데이타에 적용함으로써, 본 발명자들은 유전자의 발현 수준이 에를로티니브에 대한 반응의 예측자라고 규명할 수 있게 되었다 (PR 대 PD 의 비교) (표 3). 상기 유전자는 PSPH 이다 (2.6 배 상향조절되었음 ; p = 0.000014).
포스포세린 포스파타아제 (PSPH) 는 포도당신생합성 및 아미노산 생합성에서 중간 효소이고, L-세린 형성의 마지막 단계에서 특이적으로 관여한다. PSPH 효소 활성은 정상 폐 조직보다는 암 조직에서 더 높게 존재하는 것으로 밝혀졌고, 뿐만 아니라, 미분화 폐 종양 또는 중피종과 비교해 고도로 분화된 폐 종양에서 더 높게 존재하는 것으로 밝혀졌다. mRNA 전사체 수준에서, PSPH 는 진행성 위암에서 미세전이에 대한 마커로서 평가되었으며, 표준 마커인 암배아 항원 (CEA) 과 함께 증가된 특이성을 나타내었다.
<110> F. Hofffmann-La Roche AG <120> Predictive marker for EGFR inhibitor treatment <130> 24412WO <150> 07114312.7 <151> 2007-08-14 <150> 08156511.1 <151> 2008-05-20 <160> 1 <170> PatentIn version 3.4 <210> 1 <211> 2142 <212> DNA <213> Homo sapiens <400> 1 ggcgttggag ctctttgggg cccagctttg cggacccggg agctcgggac gcaggcgggg 60 cttgtgctcc gcgggggcag ggcgtagggt gggcctccta cctcccctga tctcgcggtt 120 tgttccgttt cattggagct tcccggaccg tgtgctcgac ggtgccctag gtgccgtggg 180 gccacacgcg agtctgataa gcaccctccc ccggaatcat gcggtgctgt gaggcctagc 240 gaagatgaag atagaatgca aggtagaaag tgctggatac ctttagaaag ctgcaggact 300 ggtgcgatgg gagttgagac gtaagaacct gcccgtccgt agggctctgg atgctgctga 360 ggcccgaggc ccctatggca gatttgaaaa ttcacccttg tagagtcatt cctgcctttg 420 agcggactcc cttttaagca gatctcaaga gagcgttcgg tggaggccct gggtctgcac 480 agctcacctc cctgggaact gctcgcccga gcgtcggagc cggcgctggc cccctgcagc 540 cggaaggttg cagccgcagg agccccggag gcccaggaca cagggctctt gctcttgcag 600 aatccacagg tctttcttga ggaaatctgt agacagaact ttgtgctgcg tttttatcta 660 gggaaggaac agaagagtgt cgtctcctag aaatctagca ctggagaaac gaggaaaatt 720 cttccagcga tggtctccca ctcagagctg aggaagcttt tctactcagc agatgctgtg 780 tgttttgatg ttgacagcac ggtcatcaga gaagaaggaa tcgatgagct agccaaaatc 840 tgtggcgttg aggacgcggt gtcagaaatg acacggcgag ccatgggcgg ggcagtgcct 900 ttcaaagctg ctctcacaga gcgcttagcc ctcatccagc cctccaggga gcaggtgcag 960 agactcatag cagagcaacc cccacacctg acccccggca taagggagct ggtaagtcgc 1020 ctacaggagc gaaatgttca ggttttccta atatctggtg gctttaggag tattgtagag 1080 catgttgctt caaagctcaa tatcccagca accaatgtat ttgccaatag gctgaaattc 1140 tactttaacg gtgaatatgc aggttttgat gagacgcagc caacagctga atctggtgga 1200 aaaggaaaag tgattaaact tttaaaggaa aaatttcatt ttaagaaaat aatcatgatt 1260 ggagatggtg ccacagatat ggaagcctgt cctcctgctg atgctttcat tggatttgga 1320 ggaaatgtga tcaggcaaca agtcaaggat aacgccaaat ggtatatcac tgattttgta 1380 gagctgctgg gagaactgga agaataacat ccattgtcgt acagctccaa acaacttcag 1440 atgaattttt acaagttata cagattgata ctgtttgctt acagttgcct attacaactt 1500 gctatagaaa gttggtacaa atgatctgta ctttaaacta cagttaggaa tcctagaaga 1560 ttgctttttt ttttttttta actgtagttc cagtattata tgatgactat tgatttcctg 1620 gagaggtttt tttttttttt gagacagaat cttgctctgt tgcccaggct ggagtgcagt 1680 ggcgcggtct cggctcactg caagctctgc ctcccaggtt cacgccattc tcctgcctca 1740 gcctcccgag tagctgggac tacaggcacc cgccaccaca tccggctaat tttttgtatt 1800 tttagtagag acggggtttg accgtgttag ccaggatggt cttgatctcc tgaccttgtg 1860 atccgcctgc ctcagcctcc caaagtgctg ggattacagg cttgggccac cgcgcccagc 1920 caatgtccta gagagttttg tgatctgaat tctttatgta tatttgtagc tatatttcat 1980 acaaagtgct ttaagtgtgg agagtcaatt aaacaccttt actcttagaa atacggattc 2040 ggcagccttc agtgaatatt ggtttctctt tggtatgtca ataaaagttt atccgtatgt 2100 cagaacggat ttgtggaaaa aaaaaaaaaa aaaaaaaaaa aa 2142

Claims (11)

  1. 하기 단계를 포함하는, EGFR 저해제 처리에 대한 암 환자의 반응을 시험관 내에서 예측하는 방법 :
    환자의 종양 시료에서 PSPH 유전자의 발현 수준을 측정하는 단계, 및
    비 반응성 환자 집단의 종양에서의 PSPH 유전자 발현 수준의 대표값과 상기 PSPH 유전자의 발현 수준을 비교하는 단계,
    여기서, 환자의 종양 시료 내에서 PSPH 유전자의 발현 수준이 더 높은 점은 상기 치료에 대해 반응할 환자에 대한 지표임.
  2. 제 1 항에 있어서, 발현 수준을 마이크로어레이 기술에 의해 측정하는 방법.
  3. 제 1 항 또는 제 2 항에 있어서, 마커 유전자는 비-반응성 환자 집단 내 PSPH 유전자 발현 수준의 대표값과 비교해, 반응성 환자의 종양 시료에서 1.8 내지 3.7 배 이상 더 높은 발현을 나타내는 방법.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, EGFR 저해제가 에를로티니브 (erlotinib) 인 방법.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 암이 NSCLC 인 방법.
  6. EGFR 저해제 처리에 대한 암 환자의 반응을 예측하기 위한, PSPH 유전자의 용도.
  7. 제 6 항에 있어서, 암이 NSCLC 인 용도.
  8. 제 6 항 또는 제 7 항에 있어서, EGFR 저해제가 에를로티니브인 용도.
  9. 제 1 항 내지 제 5 항 중 어느 한 항의 방법에 의해 규명되는 암 환자에게 EGFR 저해제를 투여하는 것을 포함하는, 상기 암 환자의 치료 방법.
  10. 제 9 항에 있어서, EGFR 저해제가 에를로티니브인 방법.
  11. 제 9 항 또는 제 10 항에 있어서, 암이 NSCLC 인 방법.
KR1020107003320A 2007-08-14 2008-08-07 Egfr 저해제 처리 마커 KR101169247B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP07114312 2007-08-14
EP07114312.7 2007-08-14
EP08156511.1 2008-05-20
EP08156511 2008-05-20
PCT/EP2008/006520 WO2009021681A2 (en) 2007-08-14 2008-08-07 Egfr inhibitor treatment marker

Publications (2)

Publication Number Publication Date
KR20100037640A true KR20100037640A (ko) 2010-04-09
KR101169247B1 KR101169247B1 (ko) 2012-08-03

Family

ID=40227482

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107003320A KR101169247B1 (ko) 2007-08-14 2008-08-07 Egfr 저해제 처리 마커

Country Status (15)

Country Link
US (1) US20110195982A1 (ko)
EP (1) EP2179056B1 (ko)
JP (1) JP5276103B2 (ko)
KR (1) KR101169247B1 (ko)
CN (2) CN101784676A (ko)
AU (1) AU2008286334C1 (ko)
BR (1) BRPI0815414A2 (ko)
CA (1) CA2695415A1 (ko)
DK (1) DK2179056T3 (ko)
ES (1) ES2395879T3 (ko)
IL (1) IL203599A (ko)
MX (1) MX2010001578A (ko)
PL (1) PL2179056T3 (ko)
SI (1) SI2179056T1 (ko)
WO (1) WO2009021681A2 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013056153A1 (en) * 2011-10-13 2013-04-18 Kung Charles Activators of pyruvate kinase m2 and methods of treating disease
CN111798918A (zh) * 2020-05-28 2020-10-20 中山大学孙逸仙纪念医院 一种免疫治疗疗效预测的血肿瘤突变算法及其构建方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202231A (en) 1987-04-01 1993-04-13 Drmanac Radoje T Method of sequencing of genomes by hybridization of oligonucleotide probes
US5525464A (en) 1987-04-01 1996-06-11 Hyseq, Inc. Method of sequencing by hybridization of oligonucleotide probes
US5800992A (en) 1989-06-07 1998-09-01 Fodor; Stephen P.A. Method of detecting nucleic acids
US5143854A (en) 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5744101A (en) 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
US5795716A (en) 1994-10-21 1998-08-18 Chee; Mark S. Computer-aided visualization and analysis system for sequence evaluation
KR101126560B1 (ko) * 2003-05-30 2012-04-05 도꾜 다이가꾸 약제 반응 예측 방법
US20050164218A1 (en) * 2003-05-30 2005-07-28 David Agus Gene expression markers for response to EGFR inhibitor drugs
US20060019284A1 (en) * 2004-06-30 2006-01-26 Fei Huang Identification of polynucleotides for predicting activity of compounds that interact with and/or modulate protein tyrosine kinases and/or protein tyrosine kinase pathways in lung cancer cells
PE20070207A1 (es) * 2005-07-22 2007-03-09 Genentech Inc Tratamiento combinado de los tumores que expresan el her
US20070128636A1 (en) * 2005-12-05 2007-06-07 Baker Joffre B Predictors Of Patient Response To Treatment With EGFR Inhibitors

Also Published As

Publication number Publication date
AU2008286334A1 (en) 2009-02-19
EP2179056B1 (en) 2012-09-19
PL2179056T3 (pl) 2013-02-28
JP2010535521A (ja) 2010-11-25
DK2179056T3 (da) 2012-10-22
AU2008286334C1 (en) 2013-11-14
CA2695415A1 (en) 2009-02-19
AU2008286334B2 (en) 2013-06-20
EP2179056A2 (en) 2010-04-28
MX2010001578A (es) 2010-03-15
IL203599A (en) 2013-07-31
CN101784676A (zh) 2010-07-21
CN103725791A (zh) 2014-04-16
ES2395879T3 (es) 2013-02-15
WO2009021681A2 (en) 2009-02-19
SI2179056T1 (sl) 2012-12-31
BRPI0815414A2 (pt) 2015-02-03
US20110195982A1 (en) 2011-08-11
KR101169247B1 (ko) 2012-08-03
WO2009021681A3 (en) 2009-04-09
JP5276103B2 (ja) 2013-08-28

Similar Documents

Publication Publication Date Title
JP2010535517A (ja) Egfr阻害因子治療のための予測マーカー
KR101169247B1 (ko) Egfr 저해제 처리 마커
JP5416107B2 (ja) Egfr阻害剤治療のための予測マーカー
JP2010535516A (ja) Egfr阻害剤治療のための予測マーカー
KR101169245B1 (ko) Egfr 저해제 치료에 대한 예측 마커
KR101169246B1 (ko) Egfr 저해제 치료에 대한 예측 마커
JP2010535523A (ja) Egfrインヒビター処理のための予測マーカー
JP2010535518A (ja) Egfr阻害剤治療のための予測マーカー
US20130217712A1 (en) Predictive marker for egfr inhibitor treatment
KR20100037641A (ko) Egfr 저해제 처리에 대한 예측성 마커
US20110184004A1 (en) Predictive marker for egfr inhibitor treatment
JP2010535520A (ja) Egfr阻害因子治療のための予測マーカー

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee