JP5416107B2 - Egfr阻害剤治療のための予測マーカー - Google Patents

Egfr阻害剤治療のための予測マーカー Download PDF

Info

Publication number
JP5416107B2
JP5416107B2 JP2010520470A JP2010520470A JP5416107B2 JP 5416107 B2 JP5416107 B2 JP 5416107B2 JP 2010520470 A JP2010520470 A JP 2010520470A JP 2010520470 A JP2010520470 A JP 2010520470A JP 5416107 B2 JP5416107 B2 JP 5416107B2
Authority
JP
Japan
Prior art keywords
treatment
patient
expression level
patients
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010520470A
Other languages
English (en)
Other versions
JP2010535522A (ja
Inventor
デルマー,ポール
クルクハンマー,バーバラ
ルッツ,フェレナ
マクローリン,パトリシア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of JP2010535522A publication Critical patent/JP2010535522A/ja
Application granted granted Critical
Publication of JP5416107B2 publication Critical patent/JP5416107B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Oncology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Hospice & Palliative Care (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

本発明は、癌患者におけるEGFR阻害剤治療の臨床的利益の予測のためのバイオマーカーを提供する。
多くのヒトの悪性疾患は、上皮細胞増殖因子受容体(EGFR)の異常又は過剰発現に関連する。EGF、形質転換増殖因子−α(TGF−α)、及びその他多くのリガンドは、受容体の細胞内チロシンキナーゼドメインの自己リン酸化を刺激するEGFRに結合する。その後、様々な細胞内経路が活性化され、これらの下流事象はインビトロ(in vitro)での腫瘍細胞増殖をもたらす。EGFRを介する腫瘍細胞の刺激が、インビボ(in vivo)における腫瘍増殖及び腫瘍生存の双方にとって重要であり得ると考えられている。
EGFRチロシンキナーゼの阻害剤であるタルセバ(Tarceva)(商標)の初期の臨床データは、当該化合物が、目標有効濃度(前臨床データにより決定される)を提供する用量で、安全且つ一般的に十分耐性であることを示唆している。進行疾患に罹患する患者における、第I相及びII相臨床試験では、タルセバ(商標)が、様々な上皮腫瘍において臨床活性を有する見込みが実証されている。実際、タルセバ(商標)は、頭部及び頸部の癌、及びNSCLC(非小細胞肺癌)に罹患する事前の治療された患者において、確立された二次化学療法と類似するオーダーで耐久性のある部分寛解を誘導できるが、化学療法より良好な安全プロファイル及び利便性の向上(静脈[i.v.]投与の代わりにタブレット)という追加的利益を有することが示されている。近年完了した無作為二重盲検プラセボ対照試験(BR.21)から、進行疾患のため標準的療法が失敗したNSCLC患者の生存が、タルセバ(商標)単剤により顕著に延長及び向上させたことが示されている。
タルセバ(商標)(エルロチニブ)は、化学小分子で経口活性があり、EGFRチロシンキナーゼ(EGFR−TKI)の強力な選択的阻害剤である。
肺癌は、北米や欧州において癌関連死亡の主要原因である。米国においては、肺癌による死亡者が、第二(結腸)、第三(乳房)、及び第四(前立腺)がもたらす複合した癌死亡原因による複合した総死者を超える。全肺癌の約75%〜80%はNSCLCであり、患者のおよそ40%は、局所的に進行且つ/又は切除不能な疾患症状を呈する。典型的にこの群には、悪性胸膜浸潤のない、バルキーな病期IIIA及びIIIBに罹患する者が含まれる。
欧州にける肺癌のおおよその罹患率は年間100,000人当たり52.5人であり、死亡率は48.7人である。当該率は、男性においてはそれぞれ79.3人及び78.3人であり、女性においては21.6人及び20.5人である。NSCLCは、全ての肺癌患者の80%を占めている。肺癌致死率は、男性で約90%、女性では80%であり、これは喫煙に起因する。
米国癌協会によると、米国では2004年に新規の肺癌患者がおよそ173,800人おり(男性で93,100人、及び女性で807,000人)、全新規癌の約13%を占めた。大半の患者は、診断から2年以内にその疾患の結果死亡した。多くのNSCLC患者にとって、成功する治療は依然として不明である。進行した腫瘍は、多くの場合外科手術に適さず、放射線療法及び化学療法の耐容用量に対して耐性となることもある。無作為試験において、現在最も盛んな組み合わせ化学療法では、応答比率がおよそ30%〜40%であり、1年生存率が35%から40%に達した。これは対症療法のみの治療で観察される、1年生存率10%と比較すると非常に大きな進歩である(Shepherd 1999)。
これまで、後に再発する再発患者のための療法の選択肢は、最良の対症療法又は緩和に限定されていた。ドセタキセル(タキソテール)と、最良の対症療法を比較した最近の試験では、NSCLCに罹患する患者は、シスプラチンベースの一次治療計画失敗後、二次化学療法から利益を受けられることが示された。ECOGパフォーマンスステータスが0、1、又は2である全年齢の患者は、ドセタキセルによる生存率の向上が実証され、プラチナベースの以前の治療が無効であった者でも同様であった。療法から利益が得られなかった患者には、10%の体重減少、高レベルの乳酸脱水素酵素、多臓器併発、又は肝臓併発を示す者がいた。さらに、ドセタキセルの単剤療法の利益は、二次以上の設定には及ばなかった。ドセタキセルを三次又はそれ以上の療法で受ける患者は、生存の延長を示さなかった。単剤ドセタキセルは、NSCLCのための標準的な二次療法となった。最近、NSCLCの二次療法における別の無作為第III相試験で、ペメトレキセド(アリムタ(Alimta)(登録商標))をドセタキセルと比較した。ペメトレキセドでの治療の結果は、臨床的に同等の有効性であったが、ドセタキセルと比較して副作用が有意に少なかった。
個別の癌治療法の開発の必要性が長年認識されている。標的とする癌治療の開発に関して、腫瘍標的の分子プロファイルを提供できる方法論(即ち、臨床的利益に対する予測となるようなもの)が特に注目されている。癌における遺伝子発現プロファイリング原理の論証は、現在の形態学的及び免疫組織化学的試験に基づくと不明な腫瘍タイプの分子分類において、既に確立されている。2つの別個の疾患は、遺伝子発現プロファイリングを用いる広範性巨大B細胞リンパ腫の現在唯一の分類とは異なる予後診断によって区別される。
従って、癌患者におけるEGFR阻害剤の臨床的利益を予測する発現バイオマーカーを提供することが、本発明の目的である。
第一の目的において本発明は、EGFR阻害剤での治療に対する応答において、癌患者の臨床的利益を予測するインビトロでの方法であって、患者の腫瘍サンプルにおけるPTP4A1遺伝子の発現レベルを決定するステップ、及び当該PTP4A1遺伝子の発現レベルを、治療から臨床的利益を受けない患者群の腫瘍における当該PTP4A1遺伝子の発現レベルの代表値と比較するステップ、を含んでなり、ここで当該患者の腫瘍サンプルにおける当該PTP4A1遺伝子の発現レベルの低下は、当該治療から臨床的利益を受けることになる患者のための指標となる方法を提供する。
図1は、試験計画を示す。 図2は、サンプルプロセスのスキームを示す。 図3aは、GeneChip(登録商標)プロファイリングでの、PTP4A1発現レベル対臨床転帰を示す。 図3bは、RT−PCRでの、PTP4A1発現レベル対臨床転帰を示す。 図3cは、PTP4A1に対する、GeneChip(登録商標)とqRT−PCR測定との間の相関を示す。
略記のPTP4A1は、プロテイン・チロシンホスファターゼ・タイプIV A,メンバー1(protein tyrosine phosphatase type IVA,member 1)を意味する。配列番号1は、ヒトPTP4A1のヌクレオチド配列を示す。
「治療から臨床的利益を受けない患者群の腫瘍におけるPTP4A1遺伝子の発現レベルの代表値」なる用語は、当該治療から臨床的利益を受けない患者群の腫瘍におけるマーカー遺伝子の、平均発現レベルの推定値のことを言う。臨床的利益は、客観的応答があること、又は12週以上の疾患安定であることとして定義された。
さらに好ましい実施態様によれば、PTP4A1遺伝子は、患者の腫瘍サンプルにおいて、治療から臨床的利益を受けない患者群の腫瘍におけるPTP4A1遺伝子の発現レベルの代表値と比較して、1.2〜1.8倍又はそれ以上低い発現レベルを示す。
さらに好ましい実施態様によれば、マーカー遺伝子の発現レベルは、マイクロアレイ技術、又は定量RT−PCR様のRNA発現レベルを評価するその他の技術により、又は各々のタンパク質の発現レベルを見る任意の方法、例えば免疫組織染色(IHC)により決定される。遺伝子チップの構成及び使用は、当業界で周知であり、米国特許第5,202,231号、第5,445,934号、第5,525,464号、第5,695,940号、第5,744,305号、第5,795,716号及び第15,800,992号を参照されたい。また、Johnston,M.Curr.Biol.8:R171−174(1998);Iyer VR et al.,Science 283:83−87(1999)も参照されたい。当然、この遺伝子発現レベルは、例えば、ノーザンブロット、RT−PCR、リアルタイム定量PCR、プライマー伸長、RNase保護、RNA発現プロファイリング等の当業界で既知のその他の方法により決定することができる。
本発明のマーカー遺伝子は、バイオマーカーセットと他のバイオマーカーを組み合わせることができる。バイオマーカーセットは、予測バイオマーカーの任意の組み合わせから構築でき、癌患者におけるEGFR阻害剤の有効性についての予測が可能となる。本明細書に記載のバイオマーカー及びバイオマーカーセットは、例えば癌に罹患する患者が、EGFR阻害剤による治療介入に対してどのような応答をするかを予測するために使用できる。
本明細書で使用される「遺伝子」なる用語は、その遺伝子の変異体を含んでなる。「変異体」なる用語は、GenBank受託番号によって与えられる核酸配列と実質的に相同な核酸配列に関する。「実質的に相同な」なる用語は当業者に十分理解される。特に、遺伝子変異体は、ヒト群における最も一般的な対立遺伝子の核酸配列と比較して、ヌクレオチド交換を示す対立遺伝子であってもよい。好ましくは、かかる実質的に相同な核酸配列は、最も一般的な対立遺伝子と、少なくとも80%、好ましくは少なくとも85%、より好ましくは少なくとも90%、最も好ましくは少なくとも95%の配列相同性を有する。用語「変異体」はまた、スプライスバリアントに関するものを意味する。
EGFR阻害剤は、ゲフィチニブ、エルロチニブ、PKI−166、EKB−569、GW2016、CI−1033及び抗erbB抗体、例えばトラスツズマブ及びセツキシマブからなる群から選択できる。
別の実施態様によれば、EGFR阻害剤はエルロチニブである。
さらに別の実施態様によれば、癌はNSCLCである。
本発明により記載される遺伝子の遺伝子発現の検出及び定量のための技術には、限定するものではないが、ノーザンブロット、RT−PCR、リアルタイム定量PCR、プライマー伸長、RNase保護、RNA発現プロファイリング及び関連技術がある。当該技術は、当業界で周知であり、例えば、Sambrook J et al.,Molecular Cloning:A Laboratory Manual,Third Edition(Cold Spring Harbor Press,Cold Spring Harbor,2000)を参照されたい。
本発明により記載されるそれぞれの遺伝子のタンパク質発現の検出のための技術には、限定するものではないが、免疫組織化学(IHC)がある。
本発明によれば、患者の組織サンプル、例えば腫瘍又は癌の生検由来の細胞を評価し、1又は複数のバイオマーカーの発現パターンを決定することができる。癌治療の成功又は失敗を、1又は複数のバイオマーカーの対照セットの発現パターンとの比較で類似するか又は異なるとして、被検組織由来の細胞(被検細胞)、例えば腫瘍又は癌の生検のバイオマーカー発現パターンに基づいて決定できる。本発明では、表3の遺伝子は下方制御され、すなわちEGFR阻害剤治療から臨床的利益を受けなかった患者と比較して、EGFR阻害剤治療からの臨床的利益を受けた患者の腫瘍において、より低い発現レベルを示すことがわかった。すなわち、この被検細胞が、癌治療に応答した患者のものに相当するバイオマーカー発現プロファイルを示す場合、その個体の癌又は腫瘍は、EGFR阻害剤での治療に順調に応答する可能性が高いか、又はそうであると予測される。反対に、この被検細胞が、癌治療に応答しなかった患者のものに相当するバイオマーカー発現パターンを示す場合、その個体の癌又は腫瘍は、EGFR阻害剤での治療に応答しない可能性が高いか、又はそうであると予測される。
本発明のバイオマーカー、すなわち表3に挙げる遺伝子は、癌に罹患する患者、特に難治性NSCLCに罹患する患者に対する個別療法への第一歩である。この個別療法により、治療する医師は、特にNSCLCにおける癌療法のために存在する薬物の中から最も適切な剤を選択することが可能となるであろう。将来の各患者のための個別療法の利益により、利益を受ける患者の応答率/数が増加し、非有効治療による副作用のリスクを低減するであろう。
さらなる目的によれば本発明は、本発明のインビトロでの方法により確認される患者を治療する、治療方法を提供する。前記治療方法は、表3の遺伝子の発現パターン予測に基づき治療が選択された患者に、EGFR阻害剤を投与することを含んでなる。好ましいEGFR阻害剤はエルロチニブであり、治療される好ましい癌は、NSCLCである。
実験の部
試験及び試験設計の原理
近年、NSCLC患者のサブセットの腫瘍組織におけるEGFR遺伝子内の変異、及びエルロチニブ及びゲフィチニブに対する感受性と当該変異との関連が報告された(Pao W,et al.2004;Lynch et al.2004;Paez et al.2004)。2つの試験から組み合わせた患者について、変異EGFRは、ゲフィチニブに応答した14人中13人において観察され、応答しなかった11人のゲフィチニブ治療患者では一人も観察されなかった。報告された当該変異の有病率は、非選択NSCLC患者において8%(25人中2人)であった。当該変異は、腺癌(21%)、女性の腫瘍(20%)、及び日本人患者の腫瘍(26%)においてより頻繁に発見された。当該変異は、EGFRのインビトロ活性を増加させ、ゲフィチニブに対する感受性を増加させる。この変異と、安定疾患期間又は生存期間の延長との関連は、予め評価されていなかった。
BR.21の研究による診査解析に基づくと、目的の応答を有する患者が解析から除外されても有意な生存利益が維持されるため(社内資料)、観察された生存利益は、EGFR変異のみに起因する可能性は低いようである。当該効果には、その他の分子メカニズムも寄与することになる。
タルセバ(商標)治療に対する応答/利益の予測となる遺伝子発現レベルにおいて変化があるという仮定に基づき、これらの変化を検出するためにマイクロアレイ解析を使用した。
この目的のために、一次療法の失敗後にタルセバ(商標)単剤療法で治療した、明確に規定される対象母集団が必要であった。BR.21試験の経験に基づき、利益群とは、目的の応答を有するか、12週以上の疾患安定であることとして規定した。臨床及びマイクロアレイのデータセットを、既定の統計計画に従って解析した。
本技術の応用には、新鮮凍結組織(fresh frozen tissu(FFT))が必要である。従って、必須の生体検査は処置の開始前に行わなければならなかった。回収した物質を、液体窒素(N2)中で凍結させた。
第二の腫瘍サンプルは、同時に回収しパラフィンに保存した(ホルマリン固定パラフィン包埋(formalin fixed paraffin embedded:FFPE)。このサンプルを、EGFRシグナル伝達経路における変化について解析した。
この試験のためには、気管支鏡検査を用いて腫瘍の生体検査を行うことができなければならない。気管支鏡検査は、肺癌の診断を確認するための標準的方法である。一般的には安全であるが、依然として併発症、即ち出血のリスクがある。
この試験は、難治性NSCLCに罹患する患者に対する個別療法の第一歩であった。この個別療法により、治療する医師は、この適応症のために存在する薬物の中から最も適切な剤を選択することが可能となるであろう。
個別療法が利用可能となれば、将来の患者各々のための利益は、現在の試験において患者が取らなければならないリスクを上回り、利益を受ける患者の応答率/数を増加させ、非有効治療による副作用のリスクを低減させるだろう。
投薬量選択の原理
タルセバ(商標)は、疾患進行、不耐性毒性、又は死亡まで、150mgの用量で1日に1回経口で投与した。この用量の選択は、薬物動態的パラメータに基づいているとともに、この用量の安全性及び耐性プロファイルは、事前に重度の処置をされた進行癌に罹患する患者における、第I、II及びIII相治験において観察された。150mg/日投与される癌患者の血漿中に見られる薬物レベルは、臨床的有効性の目標である平均血漿濃度500ng/mlを常に超えていた。BR.21はこの用量で生存利益を示した。
試験の目的
第一の目的は、タルセバ(商標)治療の利益(CR、PR又はSD≧12週)を予測する、遺伝子の発現差異の確認であった。タルセバ(商標)治療に対して「応答」(CR、PR)を予測する遺伝子の発現差異の確認は、重要なもう一つの目的であった。
第二の目的は、治療からの利益に関するEGFRシグナル経路伝達経路における変化を評価することであった。
試験計画
試験設計及び用量計画の概説
これは、非盲検、予測マーカー特定の第II相試験であった。試験は、約12カ国のおよそ26箇所で行われた。少なくとも1回の事前の化学療法計画に失敗した後、進行NSCLCに罹患する264人の患者が、12ヶ月間にわたって登録された。タルセバ(商標)の経口連続投与を、150mg/日の用量で投与した。臨床的及び実験的なパラメータを、疾患制御及び毒性の評価として判断した。疾患の進行、受容不能な毒性又は死亡まで治療を継続した。この試験計画を図1に示す。
腫瘍組織及び血液サンプルは、タルセバ(商標)の有効性を評価するため、及び療法から利益を受ける患者のサブグループを特定するための分子解析用として入手した。
予測マーカー評価
治療の開始から2週間以内に腫瘍の生検を採取した。2つの異なるサンプルを回収した。
第一のサンプルは、常に液体N2中で速やかに凍結させた。
第二のサンプルは、ホルマリンで固定化し、パラフィンに包埋させた。
本研究においては、急速凍結(snap frozen)組織の優先度が最も高い。
図2には、サンプル処理のスキームを示す。
マイクロアレイ解析
急速凍結サンプルを、腫瘍サンプルのレーザー・キャプチャ・マイクロダイセクション(LCM)のために使用し、腫瘍周辺組織から腫瘍RNAとRNAを抽出した。RNAを、Affymetrixマイクロアレイチップス(HG−U133A)で解析し、患者の腫瘍遺伝子の発現プロファイルを確立した。統計比較に対し十分な品質のサンプルを選択するために、Affymetrixチップスの品質管理を使用した。
ホルマリン固定パラフィン包埋組織での単一バイオマーカー解析
第二の腫瘍生検、FFPEサンプルを、以下に記載のDNA変異、IHC及びISH解析を行うために使用した。同様の解析を、第一の診断で回収した組織で行った。
EGFR及びEGFRシグナル伝達経路に関与するその他の分子をコードする遺伝子のDNA変異状態を、DNA配列解析により解析した。EGFR及び関連遺伝子の遺伝子増幅を、FISHにより調べた。
タンパク質発現解析には、EGFR及びEGFRシグナル伝達経路内でのその他のタンパク質の免疫組織化学(IHC)解析がある。
応答評価
応答を評価するために、RECIST(単次元の腫瘍測定(Uni−dimensional))基準を使用した。当該基準は、以下のリンク(http://www.eortc.be/recist/)で見ることができる。
CR又はPRの状態にするために、腫瘍における変化の測定は、治療期間中の少なくとも4週間の間隔を置いた任意の時点で評価を繰り返すことにより確認すべきである。
SDについては、最低6週間の間隔で試験開始後少なくとも1回、追跡測定をSD基準に適合させるべきである。
維持SDについては、少なくとも12週の維持期間中、試験開始後少なくとも1回、追跡測定をSD基準に適合させるべきである。
生存評価
患者の来院又は電話により、3ヶ月ごとに通常状態の確認を行った。死亡は全例記録した。試験の最後に、生存の最終的な確認を患者に要請した。
方法
RNAサンプル調製及びRNAサンプルの品質管理
全ての生検サンプル処理は、病理参照研究所で処理された。新鮮凍結組織サンプルは、調査部門からRoche Baselにおける臨床サンプル操作設備(Clinical Sample Operations facility)に輸送され、さらなる処理のためにそこから病理研究室に輸送された。周囲の組織から腫瘍細胞を選択するために、レーザー・キャプチャ・マイクロダイセクションを使用した。LCM後に、RNAを富化腫瘍物質から精製した。その後、病理研究室では、RNAの濃度及び品質の推定値を作成するための多数の工程を行った。
RNaseは、RNA分解酵素であり、あらゆる場所に存在するため、RNAを使用する場合は、RNA分解を最小限にするよう厳密に制御されるべきである。多くのmRNA種それ自身の半減期はかなり短いため、非常に不安定であると考えられている。従って、任意のアッセイの前に、RNA完全性チェックと定量を行うことは重要である。
RNA濃度及び品質プロファイルは、Agilent(Agilent Technologies,Inc.,Palo Alto,CA)製の2100 Bioanalyzer(登録商標)と呼ばれる装置を用いて評価することができる。この装置ソフトウェアは、RNA完全数(RIN)、定量推定値(Schroeder,A.,et al.,The RIN:an RNA integrity number for assigning integrity values to RNA measurements.BMC Mol Biol,2006.7:p.3)を出し、総RNAサンプルのリボソーム比率を計算する。RNAサンプルの全ての電気泳動バンドからRINを決定するが、ここには分解産物の存在物又は非存在物が含まれる。
RNA品質は、2100 Bioanalyzer(登録商標)により解析した。添加したpoly−Iノイズと十分なRNAを超える少なくとも1つのrRNAピークを有するサンプルだけを、Affymetrixプラットフォームでのさらなる解析のために選択した。精製RNAは、マイクロアレイによる解析のため、Roche Centre for Medical Genomics(RCMG;Basel,Switzerland)に送られた。この病理研究室から受け取った122個のRNAサンプルをさらに処理した。
組織RNAサンプルの標的標識
Affymetrix(Affymetrix,Santa Clara,California)製の2サイクル標的標識増幅プロトコル(Two−Cycle Target Labeling Amplification Protocol)を用い、製品の指示書に従い標的標識を行った。
方法は、標準Eberwine線形増幅方法に基づくが、マイクロアレイに十分なハイブリダイゼーション用の標識cRNAを作製するため、この方法のうち2つのサイクルを用いる。
標識反応で使用される総RNA投入量は、10ng以上のRNAが利用できるようなサンプルでは10ngであり、利用できる量がこの量より少ないか、あるいは(RNA濃度が非常に低いことにより)利用できる定量データがない場合、総サンプルの半分を当該反応に使用した。標識反応から得られる産物は、cRNAが20〜180μgの範囲であった。全サンプルについて、cRNAを15μg使用した場合のハイブリダイゼーションレベルで、工程の標準化を行った。
ヒト参照RNA(Human Reference RNA)(Stratagene,Carlsbad,CA,USA)を、各サンプルバッチのワークフローにおいて、対照サンプルとして使用した。標識及びハイブリダイゼーション試薬が期待通りに機能しているかを確認するため、試験サンプルと同時に、この10ngのRNAを投入物として使用した。
マイクロアレイハイブリダイゼーション
Affymetrix HG−U133Aマイクロアレイには、およそ18,400個の転写物、及び約14,500個の十分に特徴付けられた遺伝子を表す変種を標的とする、22,000個以上のプローブセットが含まれる。
全サンプルのハイブリダイゼーションは、Affymetrix指示書(Affymetrix Inc.,Expression Analysis Technical Manual,2004)に従って行った。簡潔に述べると、各サンプルに、15μgのビオチン標識cRNAを、二価カチオンの存在下断片化し、加熱し、Affymetrix HG−U133A全長ゲノムオリゴヌクレオチドアレイとハイブリダイズさせた。後日、アレイをストレプトアビジン−フィコエリトリン(Molecular Probes;Eugene,OR)を用い、製品の指示書に従って染色した。その後、GeneChipスキャナー3000(Affymetrix)を用いてアレイをスキャンし、GeneChipオペレーションソフトウェア(GCOS)バージョン1.4(Affymetrix)を用いて、シグナル強度を自動的に計算した。
統計解析
Affymetrix(商標)データの解析は、5つの主要なステップから構成された。
ステップ1は、品質管理であった。目的は、標準以下品質のプロファイルのアレイデータ解析を特定し、排除することであった。
ステップ2は、前処理及び標準化であった。目的は、チップ間の比較に適する、標準化及びスケール化(scaled)した「解析データセット」を作製することであった。これには、背景ノイズの推定と除去、プローブの要約及びスケーリング(scaling)が含まれる。
ステップ3は、調査及び記述であった。目的は、変動性の潜在的な偏り及び原因を特定することであった。これは、多変量及び一変量の記述解析技術を、影響共変量を特定するために適用することから成った。
ステップ4は、モデリング及び検査であった。目的は、「臨床的利益のある」患者と「臨床的利益のない」患者との間の平均発現レベルにおける差異の、統計的評価に基づく、候補マーカーのリストを特定することであった。これは、統計的に十分なモデルを各プローブセットに適合させること、及び統計的有意性の測定値を導出することから成った。
ステップ5は、ロバスト性解析であった。目的は、前処理方法及び統計的仮定に多く依存しない、候補マーカーの定量化リストを作成することであった。これは、異なる方法論的アプローチを有する解析を反復し、その候補リストを交差させることであった。
全ての解析は、Rソフトウェアパッケージを用いて行われた。
ステップ1:品質管理
データ品質の評価は、複数のパラメータのチェックを基にした。当該パラメータには、標準Affymetrix GeneChip(商標)品質パラメータ、特に、倍率(Scaling Factor)、存在コールと平均背景の割合(Percentage of Present Call and Average Background)が含まれた。本ステップには、局在化ハイブリダイゼーション問題を検出するための、バーチャルチップ画像の視覚的調査、及び平均的挙動からの任意の異常な解離を検出するための、平均的バーチャルチップと各チップとの比較も含まれた。チップ間の相関分析は、異常値サンプルを検出するためにも行われた。さらに、Agilent Bioanalyzer(商標)2100による、RNAサンプルの解析から得られたRNA品質の補助的な測定値を考慮に入れた。
これらのパラメータに基づき、20アレイから得られたデータを解析から除外した。すなわち、102人の患者に相当する計102アレイから得られたデータを解析した。当該102個のサンプルセットの臨床記述を表1で報告する。
表1:解析に含まれる患者の臨床的特徴の記述
Figure 0005416107
ステップ2:データの前処理及び標準化
前処理及び標準化のために、rmaアルゴリズム(Irizarry,R.A.,et al.,Summaries of Affymetrix GeneChip probe level data.Nucl.Acids Res.,2003.31(4):p.e15)を使用した。この個々のプローブセットのための検出コールを作成するために、mas5アルゴリズム(AFFYMETRIX,GeneChip(登録商標)Expression:Data Analysis Fundamentals.2004,AFFYMETRIX)を使用した。全サンプル中、「absent」又は「marginal」とコールされたプローブセットをさらなる解析から除外したため、この基準により5930個のプローブセットが除外された。従って、解析データセットは、102人の患者において、16353個(22283個中)を有するマトリクスから構成された。
ステップ3:データの記述及び調査
変動性の潜在的な偏りと主要な原因を特定するために、記述的調査解析を行った。遺伝子発現プロファイルに与える潜在的影響を有する共変量のセットをスクリーニングした。ここには、技術的及び臨床的変動性の双方が含まれていた。技術的共変量には、RNA処理(バッチとして後述する)、RIN(RNA品質/完全性の測定値として)、サンプル回収の操作者及びセンターがあった。臨床的共変量には、組織構造型、喫煙状況、腫瘍悪性度、行動スコア(Oken,M.M.,et al.,Toxicity and response criteria of the Eastern Cooperative Oncology Group.Am J Clin Oncol,1982.5(6):p.649−55)、人口統計的データ、応答状況及び臨床的利益状況があった。
この解析ツールには、単変量ANOVA及び主成分分析がある。前記の共変量の各々については、各プローブセットに対し、独立に単変量ANOVAを適用した。
バッチ変数の有意な効果を特定した。実際には、バッチ変数は、サンプル処理のデータとAffymetrixチップのロットとの間の差異をとらえた。バッチ変数が注目の変数からほぼ独立していることを確認後、Johnson,W.E.,C.Li,and A.Rabinovic,Adjusting batch effects in microarray expression data using empirical Bayes methods.Biostat,2007.8(1):p.118−127に記載の方法を用いて、バッチ効果を補正した。
バッチ効果補正後の標準化データセットは、その後の解析における解析データセットとして用いた。
組織構造及びRINは、記述解析により強調される、追加的な2つの重要変数であった。
ステップ4:データのモデリング及び検査
各プローブセットに対し、線形モデルを個別に適合させた。モデルに含まれる変数を表2で報告する。モデルパラメータを、最大尤度技術により推定した。「臨床的利益」変数(X1)に相当するパラメータを、臨床的利益のある患者群と、臨床的利益のない患者群との間の発現レベルにおける差異を調べるために用いた。
表2:線形モデルに含まれる変数の記述
Figure 0005416107
各プローブセットiについて、統計的検定の目的は、表2に列挙されるその他の調整共変量を考慮すると、臨床的利益のある患者と、臨床的利益のない患者における平均発現レベルが等しいという仮定を否定することであった。形式に則り、両側検定で行う対立仮説(alternative)について、等しさの帰無仮説を検定した。対応するp値を表3で報告する。
線形モデルの選択の理由は、以下の2つにより動機付けされた。第一に、線形モデリングは、汎用的で、十分に特徴付けられ、且つ堅実なアプローチであり、注目の変数の影響を推定する場合、交絡変数の調整を可能とする。第二に、102個というサンプルサイズ、及びデータセットの標準化とスケーリングの場合、正規分布の仮定は、合理的且つ正当である。各プローブセットについて、残差モデルに基づくFligner Killeen検定を用いて等分散性の仮説を評価した。この解析は3つのステップから構成された。
1.残差変数の等分散性に対して、各々のカテゴリカル変数を検定する。
2.最小のp値を有する変数Vに留意する。
3.この最小のp値が0.001未満の場合、当該モデルへの再適合により、異なるレベルの変数Vに異なる分散を持たせる。
ステップ5:ロバスト性
ロバスト性解析の目的は、解析の結果が人為的になる危険性、及び前処理ステップ又は仮説が統計解析の基礎となるという結果を低減させることであった。以下の3つの態様が考慮された。a)品質管理ステップでの少数の追加チップの包含と排除、b)前処理及び標準化アルゴリズム、c)統計的仮説及び検査アプローチ。
候補マーカーのリストは、異なる解析設定での有意性として、一貫して認定される遺伝子のサブセットとして規定された。異なる応用解析の選択肢は以下の通りである。
a)8つのチップの追加サブセットは、より厳格な品質管理基準に基づいて特定された。「縮小(reduced)データセット」は、当該8つのチップを排除して規定した。
b)MAS5は、前処理及び標準化のためのrmaに対する代替として特定された。MAS5は、背景推定、プローブ要約及び標準化のために異なる方法を用いる。
c)2つの追加の統計的検定を用いた。
a.臨床的利益と非臨床的利益との間の差異についてのウィルコクスン検定、及び
b.臨床的利益が、応答変数及び共変量としての遺伝子発現とされる場合のロジスティック回帰モデルを検定する、尤度比検定(LRT)。当該2つの追加の検定は、統計的仮定の基礎となる異なるセットに依存する。各プローブセットについて、LRTは、自由度1のカイ二乗に従った。
要約すると、2つのサンプルセット(「完全な」データセットと、「縮小」データセット)、及び2つの前処理アルゴリズム(mas5及びrma)を考慮し;この結果、4つの異なる解析データセットが得られた。当該4つのデータセットの各々について、3つの異なる統計的検定を適用した。従って、各プローブセットに対し、3つのp値が算出された。各解析データセットにおいて、別々に制御された遺伝子のリストを特定するため、複合基準を適用した。この基準は、最大p値が0.05未満であり、最小p値が0.001未満であると規定した。マーカー遺伝子特定のために基準1を用いるロバスト性解析から、EGFR阻害剤治療についての予測マーカーとしてのPTP4A1が得られた。
表3:複合基準適用後のロバスト性解析に基づく臨床的利益の遺伝子マーカー。
第一カラムは、プローブセットのAffymetrix識別子である。第二カラムは、対応する遺伝子配列のGenBank受託番号である。第三カラムは、対応する公式な遺伝子名である。第四カラムは、線形モデルから推定された、臨床利益のある患者と臨床利益のない患者との間の発現レベルにおける、対応する調整平均倍率変化(adjusted mean fold change)である。第五カラムは、線形モデルから誘導された、臨床利益のある患者と臨床利益のない患者との間の発現レベルにおける差異についての検定のp値である。第六カラムは、発現レベルにおける調整平均倍率変化についての95%信頼区間である。
Figure 0005416107
追加の統計的解析
選択した候補マーカーPTP4A1について、以下の追加の解析を、有効環境において別々の統計手法によって行った。
・Affymetrix一次解析から、PFS(無増悪生存率)についての一変量Cox回帰
・Affymetrix一次解析から、臨床的利益についての一変量ロジスティック回帰
・Affymetrix一次解析から、生存についての一変量Cox回帰
これらの解析の結果を以下に示す。これらは、一次解析の結果と一致し、選択した候補マーカーの選択を確認するものである。
結果:Affymetrix一次解析から、PFS(無増悪生存率)についての共変量Cox回帰
Figure 0005416107
結果:Affymetrix一次解析から、臨床的利益についての共変量ロジスティック回帰
Figure 0005416107
結果:Affymetrix一次解析から、生存についての共変量Cox回帰
Figure 0005416107
qRT−PCR
qRT−PCR用のSuperScript(商標)IIIファーストストランド合成SuperMix(Invitrogen,CA,USA)を用い、RNase H消化を用いる点以外は製品の指示書に従い、cDNAを合成した。全てのアッセイは三重に行った。
定量PCRは、ABI PRISM(登録商標)7900HT シーケンス検出システムで、TaqMan(登録商標)遺伝子発現アッセイを用い、製品の推奨(Applied Biosystems,CA,USA)に従って行った。全てのアッセイは三重に行った。
使用したプライマー及びプローブは、エクソン境界を超えるか、注目のAffymetrix Genechip(登録商標)プローブシーケンス内であった。ハウスキーピング遺伝子の、ベータ−2−ミクログロブリン(B2M;Assay Hs99999907−m1)及びヒポキサンチンホスホリボシルトランスフェラーゼ(HPRT;Assay Hs99999909−m1)を、内部対照として用いた。
全てのランには、標準物質サンプル(ヒト成人肺由来のMVP(商標)総RNA; Stratagene,CA,USA)及び標準曲線を用いた。PTP4A1標準曲線用のテンプレートとして、ユニバーサルヒト参照総RNA(Universal Human Reference total RNA)(Stratagene,CA,USA)を用いた。全サンプルは三重に測定した。相対定量を、−ΔCt法を用いて行った。
結果
既報の通り、本試験で対象とする102人の患者について、Affymetrix Genechip(登録商標)遺伝子発現プロファイルを決定した。qRT−PCRの結果は、これらの患者のうち75人から得られた(表4)。qRT−PCRの結果を得た患者の人口統計学的及び臨床的特徴は、母集団(n=264)のもの、及び入手可能なGenechip(登録商標)遺伝子発現プロファイルを有する患者のものと類似した。
表4:qRT−PCR解析を行った患者の基本特性(n=75)
Figure 0005416107
qRT−PCRの結果を得た75人の患者のうち、4人(5%)が部分的応答(PR)、23人(31%)がSD、39人(52%)がPDであり、9人(12%)が評価できなかった。これらの結果は、全試験母集団(n=264)において観察されたものと非常に類似した。
図3は、Affymetrix Genechip(登録商標)プロファイリング及びqRT−PCRにより評価した、個別の患者におけるPTP4A1に対する相対的なmRNAレベルを示す。図3aは、Genechip(登録商標)プロファイリングでの、発現レベル対臨床転帰を示し、図3bは、qRT−PCRについての発現レベルを示す。
PTP4A1 mRNA転写物の、Genechip(登録商標)とqRT−PCR測定との間には良好な相関があった(図3c、ピアソン、p=0.6、p<0.01)。Genechip(登録商標)プロファイリングで観察されたように、qRT−PCRを用いて評価したPTP4A1 mRNAレベルは、非応答者と比較して応答者においてより高レベルで観察される、エルロチニブに対する応答と相関があるようである。
考察
高密度オリゴヌクレオチドマイクロアレイ技術で組織サンプルを解析し、データに統計的モデリングを適用することにより、発現レベルが、エルロチニブでの処理から臨床的利益を受ける患者を予測できる遺伝子を特定することができた。
複合基準(上で規定)を適用した。この結果、EGFR阻害剤治療のための予測マーカーとしてPTP4A1が得られた。
PTP4A1は、プロテイン・チロシンホスファターゼファミリーの第二メンバーである。それは、染色体6q12上に位置し、そしてプレニル化されたプロテイン・チロシンホスファターゼ(PTPs)の小クラスに属するタンパク質をコードし、そしてそれは、PTPドメイン及び特徴的なC末端プレニル化モチーフを含む。このチロシンホスファターゼは核タンパク質であるが、主として細胞膜と関連付けられ得る。
幾つかの報告が、PTP4A1の高い発現を、発癌活性、具体的には増殖率の向上、並びに細胞の可動性及び侵襲性と関連付けた。非小細胞肺癌に関する近年の研究は、細胞の可動性及び侵襲性の過程において、PTP4A1の機能的役割を実証した。
この研究では、PTP4A1が、エルロチニブによる治療から臨床的利益を受ける患者において下方制御されることがわかった。この遺伝子の発癌における機能は、腫瘍マーカーとしてのその利用を支持する、明確な根拠である。

Claims (4)

  1. エルロチニブでの治療に対する非小細胞肺癌(NSCLC)患者の応答を予測するためのインビトロ(in vitro)での方法であって;
    患者の腫瘍サンプルにおけるPTP4A1遺伝子の発現レベルを決定するステップ、及び前記PTP4A1遺伝子の発現レベルを、前記治療から臨床的利益を受けない患者群の腫瘍におけるPTP4A1遺伝子の発現レベルの代表値と比較するステップ、を含んでなり、ここで前記患者の腫瘍サンプルにおけるPTP4A1遺伝子のより低い発現レベルは、前記治療から臨床的利益を受けることになる患者のための指標となる、前記方法。
  2. 前記発現レベルがマイクロアレイ技術により決定される、請求項1に記載の方法。
  3. 前記PTP4A1遺伝子が、前記患者の腫瘍サンプルにおいて、前記治療から臨床的利益を受けない患者群の腫瘍におけるPTP4A1遺伝子の発現レベルの代表値と比較して、1.2〜1.8倍又はそれ以上低い発現レベルを示す、請求項1又2に記載の方法。
  4. エルロチニブでの治療に対するNSCLC患者の応答を予測するための、PTP4A1遺伝子のインビトロでの使用であって:
    患者の腫瘍サンプルにおけるPTP4A1遺伝子の発現レベルを決定するステップ、及び前記PTP4A1遺伝子の発現レベルを、前記治療から臨床的利益を受けない患者群の腫瘍におけるPTP4A1遺伝子の発現レベルの代表値と比較するステップ、を含んでなり、ここで前記患者の腫瘍サンプルにおけるPTP4A1遺伝子のより低い発現レベルは、前記治療から臨床的利益を受けることになる患者のための指標となる、前記使用
JP2010520470A 2007-08-14 2008-08-07 Egfr阻害剤治療のための予測マーカー Expired - Fee Related JP5416107B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07114309.3 2007-08-14
EP07114309 2007-08-14
PCT/EP2008/006521 WO2009021682A1 (en) 2007-08-14 2008-08-07 Predictive marker for egfr inhibitor treatment

Publications (2)

Publication Number Publication Date
JP2010535522A JP2010535522A (ja) 2010-11-25
JP5416107B2 true JP5416107B2 (ja) 2014-02-12

Family

ID=39863108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010520470A Expired - Fee Related JP5416107B2 (ja) 2007-08-14 2008-08-07 Egfr阻害剤治療のための予測マーカー

Country Status (12)

Country Link
US (2) US20110212979A1 (ja)
EP (1) EP2179057B1 (ja)
JP (1) JP5416107B2 (ja)
KR (1) KR101169244B1 (ja)
CN (1) CN101855364B (ja)
AU (1) AU2008286335B2 (ja)
BR (1) BRPI0814257A2 (ja)
CA (1) CA2695250A1 (ja)
ES (1) ES2395588T3 (ja)
IL (1) IL203594A (ja)
MX (1) MX2010001573A (ja)
WO (1) WO2009021682A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10378900B2 (en) * 2015-09-16 2019-08-13 Raytheon Company Magnetic field gradient navigation aid
US10338261B2 (en) 2015-09-16 2019-07-02 Raytheon Company Measurement of magnetic field gradients

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070026398A1 (en) * 2003-03-03 2007-02-01 Farnsworth Amanda L Protein tyrosine phosphatase-prl-1 a a marker and therapeutic target for pancreatic cancer
GB0312451D0 (en) * 2003-05-30 2003-07-09 Astrazeneca Uk Ltd Process
CA2527321A1 (en) * 2003-05-30 2004-12-23 Genomic Health, Inc. Gene expression markers for response to egfr inhibitor drugs
MXPA05012939A (es) * 2003-05-30 2006-05-17 Astrazeneca Uk Ltd Procedimiento.
CA2552686A1 (en) * 2003-11-12 2005-05-26 Trustees Of Boston University Isolation of nucleic acid from mouth epithelial cells
US20060019284A1 (en) * 2004-06-30 2006-01-26 Fei Huang Identification of polynucleotides for predicting activity of compounds that interact with and/or modulate protein tyrosine kinases and/or protein tyrosine kinase pathways in lung cancer cells
PE20070207A1 (es) * 2005-07-22 2007-03-09 Genentech Inc Tratamiento combinado de los tumores que expresan el her
US20070128636A1 (en) * 2005-12-05 2007-06-07 Baker Joffre B Predictors Of Patient Response To Treatment With EGFR Inhibitors

Also Published As

Publication number Publication date
CN101855364A (zh) 2010-10-06
KR101169244B1 (ko) 2012-08-02
EP2179057A1 (en) 2010-04-28
EP2179057B1 (en) 2012-10-03
US20110212979A1 (en) 2011-09-01
CN101855364B (zh) 2013-04-17
ES2395588T3 (es) 2013-02-13
AU2008286335B2 (en) 2011-10-27
US20130217713A1 (en) 2013-08-22
AU2008286335A1 (en) 2009-02-19
BRPI0814257A2 (pt) 2015-10-06
JP2010535522A (ja) 2010-11-25
KR20100037636A (ko) 2010-04-09
MX2010001573A (es) 2010-03-15
CA2695250A1 (en) 2009-02-19
IL203594A (en) 2013-06-27
WO2009021682A1 (en) 2009-02-19

Similar Documents

Publication Publication Date Title
JP2010535517A (ja) Egfr阻害因子治療のための予測マーカー
JP5416107B2 (ja) Egfr阻害剤治療のための予測マーカー
JP5276103B2 (ja) Egfr阻害因子治療マーカー
JP2010535516A (ja) Egfr阻害剤治療のための予測マーカー
JP5368445B2 (ja) Egfr阻害因子治療のための予測マーカー
US20110245279A1 (en) Predictive marker for egfr inhibitor treatment
JP5421260B2 (ja) Egfr阻害剤治療のための予測マーカー
JP2010535518A (ja) Egfr阻害剤治療のための予測マーカー
JP2010535520A (ja) Egfr阻害因子治療のための予測マーカー
JP2010535519A (ja) Egfr阻害剤治療のための予測マーカー

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131114

LAPS Cancellation because of no payment of annual fees