KR20100030619A - 전자 부품 기판을 스크라이빙하는데 사용되는 레이저 렌즈를 위한 유체 평형추 - Google Patents

전자 부품 기판을 스크라이빙하는데 사용되는 레이저 렌즈를 위한 유체 평형추 Download PDF

Info

Publication number
KR20100030619A
KR20100030619A KR1020097026501A KR20097026501A KR20100030619A KR 20100030619 A KR20100030619 A KR 20100030619A KR 1020097026501 A KR1020097026501 A KR 1020097026501A KR 20097026501 A KR20097026501 A KR 20097026501A KR 20100030619 A KR20100030619 A KR 20100030619A
Authority
KR
South Korea
Prior art keywords
fluid
laser lens
mass
piston
assembly
Prior art date
Application number
KR1020097026501A
Other languages
English (en)
Inventor
마크 코스모우스키
Original Assignee
일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 filed Critical 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드
Publication of KR20100030619A publication Critical patent/KR20100030619A/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/023Mountings, adjusting means, or light-tight connections, for optical elements for lenses permitting adjustment
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laser Beam Processing (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

전자 부품 기판을 프로세싱하기 위한 장치를 지지하는 장치 및 방법은 선형 액츄에이터에 의한 Z-축을 따른 이동을 포커싱하기 위해 중력장 내에서 레이저 렌즈를 지지하는 어셈블리를 포함한다. 그 어셈블리를 위한 유체 평형추는 트래블(travel)의 말단 경계들 사이의 이동을 위하여 하우징과 연관된 피스톤에 의해 정의된다. 피스톤은 하우징을 제1 및 제2 유체 전달부를 갖는 제1 및 제2 유체 챔버들로 나눈다. 유체 압력 소스는 제1 및 제2 챔버들에 연결가능하고, 중력장 내에서 상기 지지된 레이저 렌즈를 평형상태에서 정적으로 머무르게 하도록 조절가능하다. 유체 압력 소스는 피스톤의 트래블의 반대 말단 경계들 사이의 임의의 위치로의 상기 지지된 레이저 렌즈의 이동을 허용하는 한편, 상기 지지된 레이저 렌즈의 질량을 평형상태로 유지한다.
평형추, 댐핑 특성, 고유 진동수, 오리피스, 유체 압력 소스

Description

전자 부품 기판을 스크라이빙하는데 사용되는 레이저 렌즈를 위한 유체 평형추{FLUID COUNTERBALANCE FOR A LASER LENS USED TO SCRIBE AN ELECTRONIC COMPONET SUBSTRATE}
본 발명은 전자 부품을 프로세스 하는데 사용되는 레이저 렌즈를 위한 유체 평형추에 관한 것이며, 보다 구체적으로는 전자 부품을 프로세스 하는데 사용되는 레이저 렌즈를 위한 공기(pneumatic) 평형추에 관한 것이다.
현재 알려진 방법은 레이저 렌즈와 같은 질량(mass)에 대한 중력에 반작용하기 위하여 블록 및 고리(tackle), 스프링 또는 모터를 사용한다. 이런 해결책들 모두는 단점을 갖는다. 블럭 및 고리 구성은 그 시스템에 상당한 질량을 더한다. 만일 그 어셈블리가 높은 속도율 및 높은 가속도로 움직여질 필요가 있다면, 추가적인 질량은 열발생 및 감소된 동적 능력(dynamic capability)에 기인하여 바람직하지 않다. 스프링들은 무시할 수 있는 양의 질량을 더한다. 그러나, 스프링은 동적 시스템의 고유 진동수를 낮추는 경향이 있고, 이는 때때로, 동적 환경 특히 진동 주파수가 그 시스템의 고유 진동수에 근접하는 경우에, 그 장치를 동작하는데 있어서 문제를 야기할 수 있다. 이 주파수 정합 문제에 대한 해결책은 더 딱딱한 스프링 또는 더 부드러운 스프링을 제공하는 것이다. 이 해결책의 단점은 그것이 구동 모터로 하여금 그 스프링에 대하여 더 세게 밀도록 야기하거나 중력장에 대하여 그 질량 일부를 지지하도록(hold) 행동하게 야기하여, 따라서 그 구동 모터를 가열시킨다는 것이다. 그 질량을 지지하기 위하여 모터를 사용하는 것의 단점은 힘 또는 토크를 생성하는데 필요한 계속적인 전류로 인하여 그 모터가 가열되기 시작한다는 것이다. 추가적인 열 생성은 열에 민감한 구조들이나 장치들에 문제를 일으킨다. 상당한 양의 질량을 그 어셈블리에 부가하지 않고, 계속적인 전류로 인한 과도한 열을 생성하지 않고, 및/또는 그 어셈블리의 고유 진동수를 낮추지 않고, 중력장 내에서 질량 균형을 맞추는 것이 바람직하다.
본 발명의 일 실시예에 따른 장치는 금속 스프링 또는 블록 및 고리를 이용하지 않고 중력장 내에서 질량의 평형을 맞춘다. 유체 평형 장치는 자동 또는 수동으로 그 시스템의 고유 진동수 및 댐핑 특성들을 변경하는 능력을 갖는다. 실린더의 양측에 동일한 압력을 가함으로써, 지지된 질량은 중력장 내에서 정적 평형을 얻는다. 각 포트의 오리피스(orifice)는 그 시스템의 댐핑의 양을 변경시키기 위하여 수동 또는 자동으로 조절될 수 있다. 그 장치는 그 시스템에 상당한 질량을 부가하지 않고 그 시스템의 고유 진동수를 낮추지 않고, 시스템 내에서 질량의 평형을 맞춘다. 그 장치는 실린더의 일 측의 압력을 증가시킴으로써 고유 진동수가 변경되도록 허용한다. 그 시스템의 댐핑은 또한 그 실린더의 포트의 오리피스 크기를 변경함으로써 조절될 수 있다. 그 장치는 상당한 질량을 부가하거나 고유 진동수를 감소시키지 않고 중력장 내에서 스프링 질량 시스템의 평형을 맞춘다. 그 장치는 실린더 내의 압력을 변경시킴으로써 그 시스템의 스프링 레이트를 변경할 수 있다. 그 장치는 실린더 포트의 오리피스 크기를 변경함으로써 그 시스템의 댐핑을 변경할 수 있다.
본 발명의 다른 애플리케이션들은 첨부된 도면과 관련된 다음의 설명을 통하여 당업자에게 자명하게 될 것이다.
도 1은 유체 실린더의 하우징 내에서 이동가능한 피스톤의 양측에 마련된 각 챔버를 위한 유체 전달부를 갖는 유체 실린더의 단순화된 개략 도면이다.
도 2는 본 발명의 일 실시예에 따라 유체 평형추에 의해 정적 평형 상태에 머무르는 레이저 렌즈를 갖는 전자 부품 기판을 프로세싱하기 위한 장치의 일부에 대한 단순화된 개략 도면이다.
도 3은 본 발명이 결합될 수 있는 미세 구조의 자외선 레이저 애블러티브(ablative) 패터닝을 위한 레이저 시스템의 단순화된 도면이다.
이하, 첨부된 도면을 참조하여 본 발명을 설명하기로 하며, 도면 전체에서 유사한 참조 번호는 유사한 부분을 언급한다.
이제 도 1 및 2를 참조하면, 제한적이 아니라 예시의 방법으로서, 장치(10)는 전자 부품 기판 상의 스크라이빙을 수행하기 위한 것과 같은, 전자 부품 기판의 프로세싱을 위한 장치(14)의 지지부(12)에 대하여 도시되어 있다. 장치(10)는 선형 액츄에이터(26)에 의한 Z-축을 따른 전자 부품 기판과 관련한 이동(22)을 포커싱하 기 위해 중력장(20) 내에서 레이저 렌즈(18)를 지지하는 어셈블리(16)를 포함한다. 어셈블리(16)를 위한 유체 평형추(28)는 트래블(travel)(36, 38)의 말단 경계들 사이의 이동을 위해서 하우징(34)과 연관된 피스톤(32)을 갖는 유체 작동식 실린더(30)에 의해 정의된다. 피스톤(32)은 하우징(34)을 각각 제1 및 제2 유체 전달 부(44, 46)를 갖는 제1 및 제2 유체 챔버들(40, 42)로 나눈다.
유체 압력 소스(48)는 각각 제1 및 제2 유체 전달 부(44, 46)를 통하여 제1 및 제2 챔버들(40, 42)에 연결될 수 있다. 유체 압력 소스(48)는 중력 장(20) 내에서 레이저 렌즈(18)를 평형 상태에서 정적으로 머무르게 하기 위해서 피스톤(32)의 양측에 상이한 압력을 전달하기 위한 각각의 공급 라인 내에서 압력 조절기들(48a, 48b)을 통해서 조절될 수 있다. 유체 압력 소스(48)는 레이저 렌즈(18)와 연관된 질량이 하우징(34)과 연관된 피스톤(32)의 트래블(36, 38)의 말단 경계들 사이의 임의의 위치로 이동하는 것을 허용하는 한편, 레이저 렌즈(18)의 질량을 유지한다.
제1 및 제2 챔버들(40, 42) 안에서의 압력은 조절되어, 레이저 렌즈(18)의 질량이 중력장(20) 내에서 평형 상태에 정적으로 머무르게 한다. 유체 작동식 실린더(30)의 제1 및 제2 챔버들(40, 42) 내의 압력을 조절하는 것은 레이저 렌즈(18)를 하우징(34) 내의 피스톤(32)의 트래블의 범위 내의 임의의 위치로 이동시킬 수 있는 한편, 하우징(34) 내의 피스톤(32)의 위치와 무관하게 레이저 렌즈(18)의 질량을 평형상태로 유지시킨다. 선형 액츄에이터(26)는 레이저 렌즈(18)를 원하는 위치로 이동시키기 위하여 유체 압력 평형추(28)로부터 분리되어 제공될 수 있는 한편, 유체 압력 평형추(28)에 의한 평형 상태에서 정적으로 균형잡힌다. 유체 압력 평형추(28)는 임의의 원하는 유체 압력으로 동작될 수 있다. 제한적이 아니라 예시의 방법으로서, 유체 압력 평형추(28)는 공기(pneumatic) 평형추(28)이다.
유체 작동식 실린더(30)는 레이저 렌즈(18)의 댐핑(damping)을 조절하여, 어셈블리(16)로 힘이 가해진 이후에 피스톤(32) 및 레이저 렌즈(18)의 과이동(over-travel)이 최소화된다. 어셈블리(16)의 댐핑 특성은 유체 작동식 실린더(30)의 제1 및 제2 전달부(44, 46) 중 적어도 하나와 연관된 오리피스(orifice) 크기를 변경함으로써 변화될 수 있다. 원한다면, 어셈블리(16)의 댐핑 특성을 수동 또는 자동으로 변경시키기 위하여 조절가능한 오리피스(50)가 각각의 유체 전달부(44, 46)와 연관될 수 있다.
유체 작동식 실린더(30)는 어셈블리(16)의 고유 진동수 특성을 낮추지 않고, 중력장(20) 내에서 레이저 렌즈(18)와 연관된 질량과 평형을 이룬다. 유체 작동식 실린더(30)는 어셈블리(16)에 상당한 질량을 부가하지 않고, 중력장(20) 내에서 레이저 렌즈(18)의 질량과 평형을 이룬다. 유체 압력은 중력장(20) 내에서 정적 평형을 얻기 위하여 피스톤(32)의 양측 상의 힘들을 동등하게 하기 위해 각각의 공급 라인 내의 압력 조절기들(48a, 48b)을 통해서 개별적으로 제어된다. 어셈블리(16)의 스프링 레이트 특성은 하우징(34)의 제1 및 제2 챔버들(44, 46) 중 적어도 하나 안에서의 유체 압력의 변화에 응답하여 변경될 수 있다.
전자 부품 기판 상에 스크라이브를 형성하기 위한 것과 같은, 전자 부품 기판의 프로세싱을 위한 장치(10) 내에서 선형 액츄에이터(26)에 의한 Z축(24)을 따른 전자 부품 기판에 관한 이동(22)을 포커싱하기 위하여 중력장(20) 내에서 레이 저 렌즈(18)를 포함하는 어셈블리(16)를 지지하기 위한 방법은 어셈블리(16)를 위한 유체 평형추(28)를 제공하는 단계를 포함할 수 있다. 도시된 바와 같이, 어셈블리(16)는 트래블(36, 38)의 반대 말단 경계들 사이에서 상호(reciprocal) 이동을 위하여 하우징(34)과 연관된 피스톤(32)을 갖는 유체 작동식 실린더(30)에 의해 정의된다. 피스톤(32)은 실린더(30)를 각각 제1 및 제2 유체 전달부(44, 46)를 갖는 제1 및 제2 챔버들(40, 42)로 나눈다. 그 방법은 대응하는 제1 및 제2 유체 전달부(44, 46)에 연결된 각각의 공급 라인 내에서 개별 압력 조절기들(48a, 48b)을 통하여 유체 압력 소스(48)를 제1 및 제2 챔버들(40, 42)로 연결하는 단계를 포함할 수 있다. 그 방법은 또한, 중력장(20) 내에서 레이저 렌즈(18)를 평형상태에서 정적으로 머물도록 압력 조절기들(48a, 48b)로써 자동 또는 수동으로 유체 압력 소스(48)를 조절하는 단계를 포함할 수 있다. 압력 조절기들(48a, 48b)을 통해 작동하는, 유체 압력 소스(48)는 하우징(34)과 연관된 피스톤(32)의 트래블(36, 38)의 반대 말단 경계들 사이의 임의의 위치로의 레이저 렌즈(18)의 질량의 이동을 허용하는 한편, 레이저 렌즈(18)의 질량을 평형 상태로 유지한다. 유체 압력 소스(48)는 가스 시스템이나 액체 시스템일 수 있다. 제한적이 아니라 예시의 방법으로서, 유체 압력 소스(48)는 공기 시스템, 유압식(hydraulic) 시스템 또는 특정 애플리케이션에 적합한 임의의 원하는 가스 또는 액체 매체이다. 공기 시스템들은 일반적으로 전자 부품 장치 애플리케이션의 대부분의 프로세싱 동작들에 이용가능하고 적용가능하다.
동작에서, 대응하는 부분들(44, 46)을 통하여 유체 작동식 실린더(30)와 연 통되는 개별 압력 조절기들(48a, 48b)을 통하여 작동하는, 유체 압력 소스(48)는 레이저 렌즈(18)의 질량을 중력장(20) 내에서 평형상태에 정적으로 머무르게 한다. 유체 작동식 실린더(30)와 연통되는 대응하는 부분들(44, 46)을 통하여 피스톤의 양측에 상이한 압력을 전달하기 위한 각각의 공급 라인들 내의 개별 압력 조절기들(48a, 48b)을 통하여 유체 압력 소스(48)를 조절하는 것은 레이저 렌즈(18)를 하우징(34) 내의 피스톤(32)의 트래블(36, 38)의 범위 내에서 임의의 위치로 이동시키는 한편, 레이저 렌즈(18)의 질량을 하우징(34) 내의 피스톤(32)의 위치와 무관하게 평형 상태로 유지한다. 레이저 렌즈(18)는 유체 압력 변화에 응답하거나 유체 작동식 실린더(30)로부터 분리된 선형 액츄에이터(26)로부터의 외부 구동력의 결과로서 움직일 수 있다. 결과적으로, 유체 작동식 실린더(30)는 레이저 렌즈(18)의 질량을 평행 상태에서 유지하고, 외부 구동력의 생성을 위한 낮은 전력 요구들을 허용한다. 제한적이 아니라 예시의 방법으로서, 선형 액츄에이터(26)는 발성 코일(voice coil) 자석(52) 및 발성 코일 와인딩(windings)(54)으로서 형성된다. 피스톤(32)의 양측 상의 유체 압력으로 인한 평형력들은 어셈블리(16)로 하여금 중력장(20) 내에서 레이저 렌즈(18)의 정적 평형을 얻을 수 있도록 허용한다.
유체 작동식 실린더(30)와 연통하는 압력 조절기들(48a, 48b)을 통하여 유체 압력 소스(48)를 조절하는 것은 레이저 렌즈(18)의 댐핑 특성을 조절하여, 어셈블리(16)에 힘이 적용된 이후에 레이저 렌즈(18)를 지지하는 어셈블리(16)의 과-이동이 최소화되도록 한다. 동작에서, 그 방법은 유체 작동식 실린더(30)의 제1 및 제2 전달부들(44, 46) 중 적어도 하나와 연관된 오리피스(50)의 크기를 변경함으로써 어셈블리(16)의 댐핑 특성을 변경할 수 있다. 유체 작동식 실린더(30)의 각각의 유체 전달부(44, 46)와 연관된 오리피스(50)의 조절은 또한 어셈블리(16)의 댐핑 특성을 변화시킬 수 있다.
유체 작동식 실린더(30)와 연통하는 압력 조절기들(48a, 48b)을 통하여 유체 압력 소스(48)를 조절하는 것은 어셈블리(16)의 고유 진동수 특성을 낮추지 않고, 중력장(20) 내에서 레이저 렌즈(18)와 연관된 질량과 평형을 이룬다. 유체 작동식 실린더(30)와 연통하는 압력 조절기들(48a, 48b)을 통한 유체 압력 소스(48)의 조절은 어셈블리(16)에 상당한 질량을 추가하지 않고, 중력장(20) 내에서 레이저 렌즈(18)의 질량과 평형을 이룬다. 어셈블리(16)의 스프링 레이트 특성은 어셈블리(16)의 제1 및 제2 챔버들(40, 42) 중 적어도 하나 안에서의 압력의 변화에 응답하여 변한다.
본 발명은 제한적이 아니라 예시의 방법으로서, 전자 부품 기판 상에의 스크라이브의 형성과 같은 전자 부품 기판의 프로세싱과 관련하여 기술되었다. 도면은 어셈블리(16)를 위한 유체 평형추(28)와 직접 상호작용하는 스크라이브 형성 부품의 일부를 도시하기 위하여 단순화되었다. 스크라이브 형성 부붐의 다른 부분들 및 스크라이브 형성 부품의 동작은 종래의 공지된 구성들이 될 수 있고, 예를들어, 미국 특허 제6,949,449호, 국제 공개 번호 WO 2005/008849 A2, 미국 공개 특허 제 US2005/0042805 A1 및 미국 공개 특허 제 US2007/0050075A1에 기술되었다. 다른 공지의 스크라이브 형성 장치 및 프로세스는 미국 특허 제 5,961,852호 및 국제 공개 번호 WO 2006/0088991호에서 볼 수 있다. 여기 설명된 바와 같이 유체 평형추(28) 는 전자 부품 기판과 같은 작업대상물(workpiece)과 관련한 이동을 포커싱하기 위하여 레이저 렌즈가 중력장 내에서 지지되는 다른 부품과 결합되어 사용될 수 있음을 알아야 한다.
본 발명과 결합될 수 있는 어셈블리의 예가 도 3에 도시되었으며, 미국 특허 제 7,157,038 B1으로부터 실질적으로 재현될 수 있다. 물론, 이것은 단순히 한 예시이다. 미국 특허 제 7,157,038 B1의 도 4의 어셈블리(10b), 위에서 참조된 어셈블리들, 및 다른 공지의 어셈블리들 또한 사용될 수 있다.
도 3의 어셈블리는 반도체 작업대상물(workpiece)(13) 내의 미세구조의 자외선 레이저 애블러티브(ablative) 패터닝을 위해서 채용될 수 있는 웨이퍼 척 어셈블리(140)와 함께 구비되는 복합(compound) 빔 포지셔닝(positioning) 시스템을 이용하는 레이저 프로세싱 시스템(110)이다. 도시된 레이저 시스템(110)은 소정 파장 및 공간 모드 프로파일에서 하나 또는 그 이상의 레이저 펄스들의 레이저 출력(116)을 제공하는 레이저(114)를 포함한다.
레이저 출력(116)은 다양한 공지의 확대(expansion) 및/또는 시준(collimation) 광학기구들(118)을 통하여 광학적으로 전달되고, 광학 경로(120)를 따라 전파되고, 작업대상물(13) 상의 원하는 레이저 목표 위치(134) 상에 레이저 시스템 출력 펄스(들)(132)을 충돌시키기 위해 빔 포지셔닝 시스템(130)에 의해 방향 지워진다(directed). 빔 포지셔닝 시스템(130)은 바람직하게 예를들어, X, Y 및/또는 Z 위치 미러들(242, 244)을 지지하고 동일하거나 상이한 작업대상물들(13) 상의 목표 위치들(134) 사이에서의 신속한 이동을 허용하는 적어도 2개의 횡 단(transverse) 스테이지들(136, 138)을 바람직하게 채용하는 전달(translation) 스테이지 포지셔너(positioner)를 포함한다.
도시된 바와 같이, 전달 스테이지 포지셔너는 통상 레일들(146)을 따르는 선형 모터들에 의해 이동되는 Y 스테이지(136)가 작업대상물(13)을 지지하고 이동시키며, 통상 레일들(148)을 따르는 선형 모터들에 의해 이동되는 X 스테이지(138)가 고속(fast) 포지셔너(150) 및 하나 또는 그 이상의 연관된 어셈블리들(16)을 지지하고 이동시키며, 각각 포커싱 렌즈(18)를 지지하는 분할-축(split-axis) 시스템이다. 어셈블리(16)는 다수의 장착 기술들 중 임의의 기술에 의해 고속 포지셔너(150) 내에서 장착되어, 레이저 렌즈(18)가 하우징(34)의 말단 경계들(36, 38)에 의해 정의되는 범위 내에서 Z축(24)을 따라서 자유로이 이동가능하다. 포지셔닝 미러(미도시)는 레이저 렌즈(18)를 통과하여 Z 축(24)을 따르는 광학 경로(120)가 원하는 레이저 목표 지점(134)으로 향하도록 고속 포지셔너(150)의 하우징 내에 장착된다. 장치(10)의 나머지 부분은 외부적으로-장착된다. 따라서, 압력 조절기들(48a, 48b)에 의해 정의되는 포트들(44, 46)로의 경로들은 각각 고속 포지셔너(150)의 하우징을 통하여 유체 압력 소스(48)로 전달된다.
X 스테이지(138)와 Y 스테이지(136) 사이의 Z 치수(dimension)는 또한 조절가능하다. 포지셔닝 미러들(242, 244)은 레이저(114)와 고속 포지셔너(150) 사이의 임의의 턴(turn)들을 통하여 광학 경로(120)를 정렬하고, 이것은 광학 경로(120)를 따라서 위치한다. 고속 포지셔너(150)는 예를들어, 주어진 테스트 또는 디자인 데이터에 기초하여 고유의 또는 개별 프로세싱 동작들에 영향을 미칠 수 있는 고해상 선형 모터들 또는 한 쌍의 검류계(galvanometer) 미러들을 채용할 수 있다. 스테이지들(136, 138) 및 포지셔너(150)는 독립적으로 제어되고 이동될 수 있거나 조립식(panelized) 또는 비조립식(unpanelized) 데이터에 응답하여 함께 이동하도록 조화(coordinate)될 수 있다.
고속 포지셔너(150)는 바람직하게는 또한, 작업대상물(13)의 표면 상에서 하나 또는 그 이상의 기준(fiducial)으로 정렬될 수 있는 비젼(vision) 시스템을 포함할 수 있다. 빔 포지셔닝 시스템(130)은 개별 카메라를 가지고 대물 렌즈들을 통해 또는 오프 축으로 작동하는 정렬 시스템들을 작동시키기 위해 종래의 비젼 또는 빔을 채용할 수 있고, 이것은 당업자에게 잘 알려져 있다. 포지셔닝 시스템(130)의 일부 실시예들은 Cutler 등에 의한 미국 특허 제5,751,585호에 자세히 기술되어 있다.
반파 편광판과 같은 광학 레이저 전력 제어기(152)는 광학 경로(120)를 따라서 위치될 수 있다. 또한, 광 다이오드와 같은 하나 또는 그 이상의 빔 검출 장치들(154)이 레이저 출력(116)의 파장에 부분적으로 투과되도록 적용된 포지셔닝 미러(244)와 함께 정렬된 것과 같은 레이저 전력 제어기(152)의 다운스트림이 될 수 있다. 빔 검출 장치들(154)은 바람직하게는 레이저 전력 제어기(152)의 영향을 변경하기 위한 신호들을 전달하는 빔 진단(diagnostic) 전자기기와 통신할 수 있다.
작업대상물(13)은 척 어셈블리(140)에 의해 지지되며, 이는 진공 척 베이스(142), 척 상부(144) 및 광학 판(148)을 포함한다. 광학판(148)은 적어도 하나의 스테이지들(136, 138)에 쉽게 연결되고, 또한 이로부터 쉽게 떨어진 다(disengaged). 척 베이스(142)는 대안적으로 스테이지들(136, 138)에 직접 고정(secure)되도록 적응될 수 있다.
다시 도 1을 참조하면, 동작에서, 실린더(30) 내의 반대의 유체 압력 P1 및 P2가 조절되어 그 지지된 질량이 중력장 내에서 평형상태에서 정적으로 머무르도록 되고, 여기서, (P1*A1)-(P2*A2)=(MASS*GRAVITY)이고, 여기서, P1은 제1 챔버(40) 내의 압력이고, A1은 제1 챔버(40) 내의 피스톤(32)의 표면적이고, P2는 제2 챔버(42) 내의 압력이고, A2은 제2 챔버(42) 내의 피스톤(32)의 표면적이고, MASS는 평형 상태에서 머무르게 될 어셈블리(16)의 질량이며, 그리고 GRAVITY는 공지의 중력 상수(gravitational constant)이다. 질량은 하우징(34) 내의 피스톤(32)의 트래블의 범위 내의 임의의 위치로 이동될 수 있고, 그 질량은 항상 피스톤(32)의 나머지의 위치에 무관하게 평형상태에 있다. 시스템의 댐핑은 구동력이 인가된 이후에 과이동이 없도록 조절된다. 제한적이 아니라 예시의 방법으로서, 평형 장치(28)의 하나의 적당한 애플리케이션은 여기에 도시된 것과 같은 선형 액츄에이터를 사용하는 Z-축 어셈블리를 서스펜딩하기 위한 것이다. 요약하면, 그 장치는 그 질량이나 힘에 영향을 미칠 수 있는 중력 또는 스프링 힘들의 영향을 제거할 수 있다.
전술한 실시예들은 본 발명을 제한하고자 하는 것이 아니라, 보다 쉽게 이해할 수 있도록 하기 위해서 설명되었다. 반대로 본 발명은 첨부된 청구항의 범위 내에서 포함되는 다양한 변경사항들 및 균등한 배열을 커버하도록 의도되며, 본 발명의 범위는 법이 허용하는 한 가장 넓은 범위로 해석되어 그러한 변경사항들 및 균등한 배열 모두를 포함한다.

Claims (13)

  1. 전자 부품 기판을 프로세싱하기 위한 장치의 일부를 지지하기 위한 장치로서,
    선형 액츄에이터에 의한 Z-축을 따른 상기 전자 부품 기판과 관련한 이동을 포커싱하기 위해 중력장 내에서 레이저 렌즈를 지지하는 어셈블리를 포함하며,
    트래블(travel)의 말단 경계들 사이의 이동을 위한 하우징과 연관된 피스톤을 갖는 유체 작동식 실린더에 의해 정의되는 상기 어셈블리를 위한 유체 평형추로서, 상기 피스톤은 상기 하우징을 각각 제1 및 제2 유체 전달부를 갖는 제1 및 제2 챔버들로 나누는 유체 평형추; 및
    각각 상기 제1 및 제2 유체 전달부를 통하여 상기 제1 및 제2 챔버들에 연결가능한 유체 압력 소스로서, 상기 유체 압력 소스는 중력장 내에서 상기 지지된 레이저 렌즈가 평형상태에서 정적으로 머무르도록 조절가능하며, 상기 유체 압력 소스는 상기 하우징과 연관된 상기 피스톤의 트래블의 반대 말단 경계들 사이의 임의의 위치로의 상기 지지된 레이저 렌즈의 질량의 이동을 허용하는 한편, 상기 지지된 레이저 렌즈의 질량을 평형 상태로 유지하는 것인 유체 압력 소스
    를 포함하는 지지 장치.
  2. 청구항 1에 있어서, 상기 유체 작동식 실린더의 제1 및 제2 챔버들 내의 압력은 상기 지지된 레이저 렌즈의 질량이 중력장 내에서 평형상태에서 정적으로 머 무르도록 조절될 수 있는 것인 지지 장치.
  3. 청구항 1 또는 2에 있어서, 상기 유체 작동식 실린더의 제1 및 제2 챔버들 내의 압력을 변화시키는 것은 상기 지지된 레이저 렌즈를 상기 하우징 내의 상기 피스톤의 트래블의 범위 내에서 임의의 위치로 이동시킬 수 있는 한편, 상기 지지된 레이저 렌즈의 질량을 상기 하우징 내의 피스톤 위치에 무관하게 평형상태로 유지하는 것인 지지 장치.
  4. 청구항 1 내지 3 중 어느 한 항에 있어서, 상기 유체 작동식 실린더는 힘이 인가된 이후에 과이동이 최소화되도록 상기 지지된 레이저 렌즈의 댐핑을 조절하는 것인 지지 장치.
  5. 청구항 1 내지 4 중 어느 한 항에 있어서, 상기 유체 작동식 실린더는 상기 어셈블리의 고유 진동수 특성을 낮추거나, 및/또는 상당한 질량을 추가함이 없이, 중력장 내에서 상기 지지된 레이저 렌즈의 질량의 평형을 맞추는 것인 지지 장치.
  6. 청구항 1 내지 5 중 어느 한 항에 있어서, 상기 어셈블리의 스프링 레이트 특성은 상기 하우징의 상기 제1 및 제2 챔버들 중 적어도 하나 내의 압력의 변화에 응답하여 변하는 것인 지지 장치.
  7. 청구항 1 내지 6 중 어느 한 항에 있어서, 중력장 내에서 정적 평형을 얻기 위하여 상기 피스톤의 양측에서의 압력이 동일하게 되는 것인 지지 장치.
  8. 청구항 1 내지 7 중 어느 한 항에 있어서, 상기 어셈블리의 댐핑 특성을 변경하기 위하여 상기 유체 작동식 실린더의 상기 제1 및 제2 유체 전달부 중 하나와 연관된 조절가능한 오리피스를 더 포함하는 것인 지지 장치.
  9. 전자 부품 기판을 프로세싱하기 위한 장치 내에서 선형 액츄에이터에 의한 Z-축을 따른 상기 전자 부품 기판과 관련한 이동을 포커싱하기 위해 중력장 내에서 레이저 렌즈를 포함하는 어셈블리를 지지하기 위한 방법으로서,
    트래블의 말단 경계들 사이의 상호 이동을 위하여 하우징과 연관된 피스톤을 갖는 유체 작동식 실린더에 의해 정의되는 상기 어셈블리를 위하여 유체 평형추를 제공하는 단계로서, 상기 피스톤은 상기 실린더를 각각 제1 및 제2 유체 전달부를 갖는 제1 및 제2 챔버들로 나누는 상기 유체 평형추 제공 단계;
    유체 압력 소스를 각각 상기 제1 및 제2 유체 전달부를 통하여 상기 제1 및 제2 챔버들로 연결하는 단계; 및
    중력장 내에서 상기 지지된 레이저 렌즈를 평형상태에서 정적으로 머무르게 하기 위하여 상기 유체 압력 소소를 조절하는 단계로서, 상기 유체 압력 소스는 상기 하우징과 연관된 상기 피스톤의 트래블의 반대 말단 경계들 사이의 임의의 위치로의 상기 지지된 레이저 렌즈의 질량의 이동을 허용하는 한편, 상기 지지된 레이 저 렌즈의 질량을 평형상태로 유지하는 상기 유체 압력 소스 조절 단계
    를 포함하는 지지 방법.
  10. 청구항 9에 있어서, 상기 유체 작동식 실린더와 연통되는 상기 유체 압력 소스를 조절하는 단계는,
    상기 지지된 레이저 렌즈의 질량을 중력장 내에서 평형 상태에서 정적으로 머무르게 하는 단계;
    상기 하우징 내의 상기 피스톤의 트래블의 범위 내의 임의의 위치로 상기 지지된 레이저 렌즈를 이동시키는 한편, 상기 하우징 내의 피스톤 위치에 무관하게 상기 지지된 레이저 렌즈의 질량을 평형상태에서 유지하는 상기 이동 단계;
    힘이 인가된 이후에 과이동이 최소화되도록 상기 지지된 레이저 렌즈의 댐핑을 조절하는 단계;
    상기 어셈블리의 고유 진동수 특성을 낮추지 않고 중력장 내에서 상기 지지된 레이저 렌즈의 질량의 평형을 맞추는 단계; 및/또는
    상당한 질량을 부가하지 않고 중력장 내에서 상기 지지된 레이저 렌즈의 질량의 평형을 맞추는 단계 중 적어도 하나의 단계를 더 포함하는 것을 특징으로 하는 방법.
  11. 청구항 9 내지 10에 있어서, 상기 유체 작동식 실린더의 상기 제1 및 제2 유체 전달부의 적어도 하나와 연관된 오리피스의 크기를 변경시킴으로써 상기 어셈블 리의 댐핑 특성을 변경하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  12. 청구항 9에 있어서, 상기 하우징의 상기 제1 및 제2 챔버들 중 적어도 하나 내의 압력 변화에 응답하여 상기 어셈블리의 스프링 레이트 특성을 변경하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  13. 청구항 9에 있어서, 중력장내에서 상기 지지된 레이저 렌즈의 정적 평형을 얻기 위하여 상기 피스톤의 양측의 압력을 동일하게 하는 단계를 더 포함하는 것을 특징으로 하는 방법.
KR1020097026501A 2007-05-21 2008-05-20 전자 부품 기판을 스크라이빙하는데 사용되는 레이저 렌즈를 위한 유체 평형추 KR20100030619A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/751,380 2007-05-21
US11/751,380 US7602562B2 (en) 2007-05-21 2007-05-21 Fluid counterbalance for a laser lens used to scribe an electronic component substrate

Publications (1)

Publication Number Publication Date
KR20100030619A true KR20100030619A (ko) 2010-03-18

Family

ID=40072147

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097026501A KR20100030619A (ko) 2007-05-21 2008-05-20 전자 부품 기판을 스크라이빙하는데 사용되는 레이저 렌즈를 위한 유체 평형추

Country Status (6)

Country Link
US (1) US7602562B2 (ko)
JP (1) JP5461392B2 (ko)
KR (1) KR20100030619A (ko)
CN (1) CN101678506B (ko)
TW (1) TWI412420B (ko)
WO (1) WO2008144688A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2062679B1 (de) * 2007-11-26 2015-01-07 Bystronic Laser AG Bearbeitungskopf einer Laserbearbeitungsmaschine mit einer Zuführung von Gas und einer Kompensationseinrichtung zur Kompensation der von zugeführtem Gas übertragenen Kräfte
JP2011156574A (ja) * 2010-02-02 2011-08-18 Hitachi High-Technologies Corp レーザ加工用フォーカス装置、レーザ加工装置及びソーラパネル製造方法
CN103988448B (zh) 2011-11-24 2017-02-22 Lg电子株式会社 在无线lan系统中基于分组的数据收发方法和支持该方法的设备

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3704657A (en) * 1971-05-05 1972-12-05 Computervision Corp Adaptive optical focusing system
US4705447A (en) 1983-08-11 1987-11-10 Intest Corporation Electronic test head positioner for test systems
US5149029A (en) 1982-08-25 1992-09-22 Intest Corporation Electronic test head positioner for test systems
JPH0251637A (ja) * 1988-08-12 1990-02-21 Tokico Ltd 減衰力調整式油圧緩衝器
JPH0357585A (ja) * 1989-07-24 1991-03-12 Canon Inc プリント配線板の孔明け方法及びその装置
US6447232B1 (en) 1994-04-28 2002-09-10 Semitool, Inc. Semiconductor wafer processing apparatus having improved wafer input/output handling system
JPH07328785A (ja) * 1994-06-06 1995-12-19 Amada Co Ltd レーザ加工装置
JP3394343B2 (ja) * 1994-11-08 2003-04-07 株式会社アマダ レーザ加工ヘッドの焦点位置変更方法およびその装置
US5685995A (en) 1994-11-22 1997-11-11 Electro Scientific Industries, Inc. Method for laser functional trimming of films and devices
US6279724B1 (en) 1997-12-19 2001-08-28 Semitoll Inc. Automated semiconductor processing system
US6723174B2 (en) 1996-03-26 2004-04-20 Semitool, Inc. Automated semiconductor processing system
US6942738B1 (en) 1996-07-15 2005-09-13 Semitool, Inc. Automated semiconductor processing system
US6736148B2 (en) 1997-05-05 2004-05-18 Semitool, Inc. Automated semiconductor processing system
US5961852A (en) 1997-09-09 1999-10-05 Optical Coating Laboratory, Inc. Laser scribe and break process
US5949002A (en) 1997-11-12 1999-09-07 Teradyne, Inc. Manipulator for automatic test equipment with active compliance
KR19990040544U (ko) 1999-05-29 1999-12-06 조재학 벨로우즈가장착된유압유니트
DE10006908A1 (de) 2000-02-16 2001-08-23 Caterpillar Sarl Genf Geneva Hydraulische Kolbenzylindereinheit für landwirtschaftliche Arbeitsmaschinen
WO2001067440A1 (en) * 2000-02-24 2001-09-13 Koninklijke Philips Electronics N.V. Optical scanning device comprising an actuator for a displaceable collimator lens
CN1138697C (zh) * 2000-04-28 2004-02-18 博隆工程有限会社 空气平衡装置
MY127154A (en) 2000-09-22 2006-11-30 Intest Corp Apparatus and method for balancing and for providing a compliant range to a test head
CN1315718C (zh) * 2000-10-11 2007-05-16 博隆工程有限会社 空气平衡装置
US7095482B2 (en) * 2001-03-27 2006-08-22 Nikon Corporation Multiple system vibration isolator
TWI230844B (en) * 2002-06-07 2005-04-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7333143B2 (en) * 2002-07-16 2008-02-19 Olympus Corporation Light amount adjustment actuator unit, stepping motor, optical unit, and electronic camera
JP4242143B2 (ja) 2002-11-20 2009-03-18 株式会社アマダ レーザ加工装置
JP2004189370A (ja) * 2002-12-09 2004-07-08 Hirotaka Engineering:Kk エアバランス装置
JP4111879B2 (ja) * 2003-06-17 2008-07-02 三洋電機株式会社 対物レンズ駆動装置
US6949449B2 (en) 2003-07-11 2005-09-27 Electro Scientific Industries, Inc. Method of forming a scribe line on a ceramic substrate
KR20060098370A (ko) 2003-11-04 2006-09-18 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 레이저-기반의 수동 전자 소자 절단
US7191529B2 (en) 2005-02-15 2007-03-20 Columbia Marking Tools Apparatus and method for controlling a programmable marking scribe
JP4245577B2 (ja) * 2005-03-22 2009-03-25 シャープ株式会社 レンズ位置制御装置及び撮像モジュール
WO2007017089A1 (en) * 2005-07-25 2007-02-15 Carl Zeiss Smt Ag Projection objective of a microlithographic projection exposure apparatus
US20070050075A1 (en) 2005-08-26 2007-03-01 Electro Scientific Industries, Inc. Automatic wafer tracking process and apparatus for carrying out the process
JP2008100257A (ja) * 2006-10-19 2008-05-01 Seiko Epson Corp スクライブ装置、基板の分断方法及び、電気光学装置の製造方法

Also Published As

Publication number Publication date
US7602562B2 (en) 2009-10-13
CN101678506B (zh) 2013-08-28
WO2008144688A1 (en) 2008-11-27
US20080291554A1 (en) 2008-11-27
TWI412420B (zh) 2013-10-21
CN101678506A (zh) 2010-03-24
TW200914187A (en) 2009-04-01
JP2010527796A (ja) 2010-08-19
JP5461392B2 (ja) 2014-04-02

Similar Documents

Publication Publication Date Title
US6281654B1 (en) Method for making apparatus with dynamic support structure isolation and exposure method
US6327024B1 (en) Vibration isolation apparatus for stage
TWI825958B (zh) 用於對準基板之方法及裝置
TWI307526B (en) Supporting device and the mamufacturing method thereof, stage device and exposure device
EP1882983A1 (en) Gravity compensating support for an optical element
US20040017167A1 (en) Vibration control device, stage device and exposure apparatus
JP2001506427A (ja) 制御されたガス供給源を具えるリソグラフ空気式支持装置
JP2002313716A (ja) デュアル分離されたシステムを有するリソグラフィーツールおよびそれを構成する方法
JP2002198310A (ja) ステージ装置及び露光装置
KR20020009483A (ko) 스테이지 장치 및 노광장치
KR20100030619A (ko) 전자 부품 기판을 스크라이빙하는데 사용되는 레이저 렌즈를 위한 유체 평형추
JP2000040650A (ja) 走査型露光装置およびデバイス製造方法
KR20140007911A (ko) 유지 장치, 노광 장치, 및 디바이스의 제조 방법
TW200923588A (en) Driving apparatus and exposure apparatus using the same and device manufacturing method
JP2004342987A (ja) ステージ装置
TWI735589B (zh) 用於定位工件之平台總成、曝光設備以及用於製造一裝置之程序
TWI712831B (zh) 用於微影設備的光學裝置與微影設備
JP2003045785A (ja) ステージ装置及び露光装置、並びにデバイス製造方法
JP5495948B2 (ja) ステージ装置、露光装置及びデバイスの製造方法
JPH11145041A (ja) ステージ装置およびこれを用いた露光装置、ならびにデバイス製造方法
JP2001023896A (ja) ステージ装置及び露光装置
JPH08170990A (ja) ステージ装置
US20190376531A1 (en) Dual valve fluid actuator assembly
US11269262B2 (en) Frame assembly, lithographic apparatus and device manufacturing method
US20210268602A1 (en) Apparatus and method for focus adjustment for a material processing device, and device for laser material processing

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application