KR20090115744A - 광 파워 변조 - Google Patents

광 파워 변조 Download PDF

Info

Publication number
KR20090115744A
KR20090115744A KR1020097018080A KR20097018080A KR20090115744A KR 20090115744 A KR20090115744 A KR 20090115744A KR 1020097018080 A KR1020097018080 A KR 1020097018080A KR 20097018080 A KR20097018080 A KR 20097018080A KR 20090115744 A KR20090115744 A KR 20090115744A
Authority
KR
South Korea
Prior art keywords
optical waveguide
sensor
optical
pressure
waveguide
Prior art date
Application number
KR1020097018080A
Other languages
English (en)
Other versions
KR101486405B1 (ko
Inventor
존 에이 보거스
토마스 에이 보거스
트로이 폰그라츠
Original Assignee
타릴리안 레이저 테크놀로지스, 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39529399&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20090115744(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 타릴리안 레이저 테크놀로지스, 리미티드 filed Critical 타릴리안 레이저 테크놀로지스, 리미티드
Publication of KR20090115744A publication Critical patent/KR20090115744A/ko
Application granted granted Critical
Publication of KR101486405B1 publication Critical patent/KR101486405B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02233Occluders specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35341Sensor working in transmission
    • G01D5/35345Sensor working in transmission using Amplitude variations to detect the measured quantity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0261Strain gauges
    • A61B2562/0266Optical strain gauges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/02225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers using the oscillometric method

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Physics & Mathematics (AREA)
  • Dentistry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

생명 징후 측정 디바이스는 센서 고정 디바이스, 센서 고정 디바이스에 의해 유지된 센서 프레임, 센서 프레임에 의해 유지된 광 감지 시스템(104), 및 출력 유닛을 포함한다. 센서 고정 디바이스는 동맥이 그 내부에 있는 환자의 해부학적 위치에 대해 배치되도록 구성된다. 광 감지 시스템(104)은 광 도파관, 광 도파관에 광 에너지를 공급하는 광원 디바이스, 및 광 도파관을 나오는 광 에너지의 양을 검출하는 광 검출기를 포함한다. 광 감지 시스템(104)은 광 도파관의 적어도 일부의 압축 또는 굴곡으로부터 동맥 펄스를 감지하고, 이는 광 도파관을 나오는 광량의 감소를 초래한다. 출력 유닛은 광 검출기로부터의 수신된 신호에 적어도 부분적으로 기초하여 생명 징후의 측정치를 생성한다.
Figure P1020097018080
생명 징후 측정 디바이스, 센서 고정 디바이스, 센서 프레임, 광 감지 시스템, 출력 유닛, 광 도파관, 광원 디바이스, 광 검출기

Description

광 파워 변조{OPTICAL POWER MODULATION}
본 발명은 생명 징후(vital sign)를 검출하는 것에 관한 것으로서, 더 구체적으로는 생명 징후 측정 디바이스에 관한 것이다.
혈압은 혈관의 벽 상에 혈액을 순환시킴으로써 인가되는 힘을 칭하고 주요한 생명 징후들 중 하나를 구성한다. 수축기 혈압은 동맥 내의 최고 혈압이고, 심장 주기의 시작 부근에서 발생한다. 확장기 혈압은 최저 혈압이고, 심장 주기의 휴식기에 있다. 심장 주기 전체에 걸친 평균 압력은 평균 동맥 혈압으로서 보고된다. 펄스 압력은 측정된 최대 압력과 최소 압력 사이의 차이를 반영한다.
혈압은 침습성으로(피부를 관통하여 혈관 내부에서 측정함으로써) 또는 비침습성으로 측정될 수 있다. 침습성 측정은 일반적으로 병원 환경에 제한된다. 비침습성 청진법 및 진동 측정법은 침습성 방법보다 간단하고 신속하고, 적은 합병증을 갖고, 환자에 대해 덜 불쾌하고 덜 고통적이다. 비침습성 측정법이 일상의 검사 및 모니터링에 더 통상적으로 사용된다.
청진법은 일반적으로 청진기와 혈압계를 사용한다. 팽창형 커프(cuff)가 대략 심장과 동일한 수직 높이에서 상완(upper arm) 둘레에 배치되고 수은 혈압계 또는 아네로이드 게이지(aneroid gauge)에 공압식으로 연결된다. 수은 혈압계는 수 은의 기둥의 높이를 측정하여, 교정의 필요 없이 따라서 다른 압력 게이지에 영향을 주는 교정의 에러 및 드리프트(drift)를 받지 않고 절대 커프 압력 측정을 제공한다. 커프는 상완 동맥이 완전히 폐색될 때까지 고무구(rubber bulb)를 반복적으로 압착함으로써 수동으로 팽창된다. 압축된 커프의 원위측의 상완 동맥 위에서 청진기로 청취하는 동안, 검사자는 커프 내의 압력을 천천히 해제시킨다. 혈액이 동맥 내에 방금 흐르기 시작할 때, 난류가 "휙(whooshing)" 또는 두드림(pounding) 소리[제1 코로트코프음(Korotkoff sound)]를 생성한다. 이 소리가 최초로 들려질 때의 압력이 수축기 혈압이다. 커프 압력은 확장기 혈압에서 어떠한 소리도 들을 수 없을 때까지(제5 코로트코프음) 더 해제된다.
진동 측정법은 연속 모니터링을 위해, 그리고 종종 단일 측정을 수행하기 위해 종종 사용된다. 설비는 청진법의 것과 기능적으로 유사하지만, 청진기 및 검사자의 귀의 사용에 의존하지 않는다. 대신에, 검출 수단은 커프에 공압식으로 연결되어 동맥 압력 파형과 동기인 커프 압력 내의 (비교적 작은) 진동을 기록하는 압력 센서이다. 커프 압력의 제1 진동은 수축기 혈압에서는 발생하지 않지만, 수축기 혈압을 실질적으로 상회하는 커프 압력에서는 발생한다. 커프는 초기에는 수축기 혈압을 초과하는 혈압으로 팽창된다. 커프 압력은 다음에 점진적으로 감소된다. 수축기 및 확장기 혈압의 값은 알고리즘의 사용에 의해 다양한 커프 압력에서 발생하는 상이한 진동 진폭으로부터 계산된다. 수축기 및 확장기 혈압을 계산하는데 사용된 알고리즘은 종종 청진법을 사용하여 얻어진 결과에 진동 측정 결과를 가능한 한 양호하게 매칭하기 위한 목적으로 실험적으로 얻어진 계수를 사용한다.
몇몇 양태에서, 생명 징후 측정 디바이스는 센서 고정 디바이스, 센서 고정 디바이스에 의해 유지되는 센서 프레임, 센서 프레임에 의해 유지되는 광 감지 시스템, 및 출력 유닛을 포함한다. 센서 고정 디바이스는 동맥이 그 내부에 있는 환자의 해부학적 위치에 대해 배치되도록 구성된다. 광 감지 시스템은 광 도파관, 광 도파관에 광 에너지를 공급하는 광원 디바이스, 및 광 도파관을 나오는 광 에너지의 양을 검출하는 광 검출기를 포함한다. 광 감지 시스템은 광 도파관의 적어도 일부의 압축 또는 굴곡으로부터 동맥 펄스를 감지하도록 구성되고, 이는 광 도파관의 제2 단부를 나오는 광량의 감소를 초래한다. 출력 유닛은 광 도파관을 나오는 광량을 지시하는 신호를 수신하고 수신된 신호에 적어도 부분적으로 기초하여 생명 징후의 측정치를 생성한다.
생명 징후 측정 디바이스는 광 파워 변조의 원리로 작동하는데, 즉 동맥 펄스가 광 도파관의 굴곡 또는 압축을 발생시켜 광 도파관의 제2 단부에 전달되는 광 에너지의 양의 변화를 초래한다. 광 도파관의 제2 단부를 나오는 광량을 모니터링함으로써, 동맥 펄스에 관한 데이터가 얻어져서 다양한 생명 징후를 결정하는데 사용될 수 있다. 광 감지 시스템은 일련의 동맥 펄스를 표현하는 광신호를 검출하도록 구성될 수 있고, 출력 유닛은 광 도파관의 제2 단부를 나오는 광 에너지의 양에 기초하여 일련의 동맥 펄스의 각각에 대한 펄스 파형을 결정하도록 구성될 수 있다. 광 감지 시스템은 검출된 광량의 맥동성 감소를 초래하는 압축성 광 도파관의 압축 또는 굴곡에 의해 동맥의 맥동성 개방을 감지하도록 구성될 수 있다. 광 검출기는 광 도파관에 광학적으로 결합되어, 광 검출기가 광 도파관의 측면으로부터 탈출하지 않는 광원으로부터의 실질적으로 모든 광 에너지를 수신하게 한다. 광원은 간섭성 광원을 포함할 수 있다.
몇몇 구현예에서, 센서 고정 디바이스는 커프 내의 팽창형 블래더를 포함하는 커프일 수 있다. 팽창형 블래더는 사지(limb)를 부분적으로 에워쌀 수 있다. 커프는 직물 재료로 제조될 수 있다. 커프는 해부학적 위치에 압력을 인가하여 이에 의해 해부학적 위치 내의 동맥을 압축하도록 구성될 수 있다. 예를 들어, 커프는 팽창형 블래더가 팽창될 때 압력을 인가할 수 있다. 센서 프레임은 블래더의 임의의 부분과 일치하지 않는 위치에서 커프에 부착될 수 있다. 센서 프레임은 커프로의 그의 부착에 의해 사지에 대향하여 유지되어, 센서 프레임에 의해 사지에 인가된 압력이 팽창형 블래더가 팽창될 때 주위 커프에 의해 사지에 인가된 압력과 실질적으로 동일하게 된다.
몇몇 구현예에서, 디바이스는 센서 프레임 내의 센서 패드를 포함할 수 있고, 이는 해부학적 위치에 인접하여 위치될 수 있다. 센서 패드는 블래더의 팽창에 의해 발생되는 증가된 접촉 압력의 결과로서 이동하도록 구성될 수 있다. 센서 패드의 이동은 광 도파관의 압축 또는 굴곡을 초래할 수 있다. 몇몇 구현예에서, 센서 패드는 센서 고정 디바이스의 중간점에 위치될 수 있다. 다른 구현예에서, 센서 패드는 센서 고정 디바이스의 원위 위치에 위치될 수 있다. 몇몇 구현예에서, 센서 패드는 센서 고정 디바이스의 맥동성 긴장이 센서 패드의 맥동성 이동을 발생시키지 않도록 하는 반면에, 해부학적 위치 내의 동맥의 맥동성 개방이 센서 패드의 맥동성 이동을 발생시키도록 구성될 수 있다. 몇몇 구현예에서, 센서 패드에 인가된 최대 접촉 압력이 광 도파관을 나오는 총 광량의 20 내지 80% 감소(예를 들어, 50 내지 70% 감소)를 발생시킬 수 있다.
몇몇 구현예에서, 디바이스는 센서 프레임의 적어도 일부분에 부착되고 또한 센서 패드를 지지하는 로드 스프링을 포함할 수 있다. 로드 스프링은 환자의 해부학적 위치에서 센서 패드에 대해 인가된 압력의 적어도 일부에 반작용하도록 구성될 수 있다. 로드 스프링은 최대 압력에서 센서 패드의 원하는 변위를 허용하도록 구성될 수 있다. 몇몇 구현예에서, 로드 스프링은 최대 압력에서 0.5 내지 3 밀리미터의 센서 패드의 최대 변위를 제공하도록 구성될 수 있다.
몇몇 구현예에서, 디바이스는 해부학적 위치에 인가된 압력을 검출하는 압력 센서를 포함할 수 있다. 출력 유닛은 압력 센서로부터 해부학적 위치에 인가된 압력을 지시하는 압력 입력을 수신할 수 있다. 몇몇 구현예에서, 출력 유닛은 수신된 광신호를 지시하는 신호 및 압력 입력을 사용하여 생명 징후를 생성할 수 있다.
몇몇 구현예에서, 환자의 해부학적 위치는 상완이다. 센서 프레임이 센서 고정 디바이스 상에 구성되어 광 감지 시스템이 압축성 광 도파관의 적어도 일부분의 압축 또는 굴곡을 초래하는 상완 동맥의 펄스에 기인하는 이동을 감지하도록 위치된다. 몇몇 구현예에서, 생명 징후는 심박수, 동맥 펄스 파형, 수축기 혈압, 확장기 혈압, 평균 동맥 혈압, 펄스 압력, 및 동맥 탄성(arterial compliance) 중 적어도 하나일 수 있다.
몇몇 구현예에서, 디바이스는 광 도파관의 적어도 일부분을 지지하는 비탄성 지지면을 갖는 도파관 지지 구조체를 포함할 수 있다. 광 감지 시스템은 동맥 펄스에 응답하여 광 도파관의 지지되지 않은 부분의 굴곡 변형을 발생시키도록 구성될 수 있다.
몇몇 구현예에서, 디바이스는 실질적으로 그 전체 길이에 걸쳐 광 도파관을 지지하는 가요성 및 비압축성 지지면을 포함할 수 있다. 예를 들어, 도파관 지지면은 가요성 전자 회로 기판일 수 있다. 도파관은 가요성 탄성중합체 접착제로 지지면에 접합될 수 있다. 몇몇 구현예에서, 광원 디바이스, 광 검출기, 및/또는 관련 전자 구성 요소는 도파관 지지면의 표면 상에 장착될 수 있다. 몇몇 구현예에서, 도파관 지지면은 지지면 내에 구성되어 지지면의 굴곡에 대향하도록 구성된 지지 복귀 요소를 포함할 수 있다. 센서 패드를 포함하는 몇몇 구현예에서, 지지 복귀 요소는 센서 패드가 휴지 위치로부터 최대 변위의 위치로 이동함에 따라 센서 패드와 광 도파관 사이의 증가하는 접촉 압력을 제공하도록 구성될 수 있다. 광 도파관은 상기 증가하는 접촉 압력이 광 도파관의 제2 단부를 나오는 감소하는 광량을 초래하도록 구성될 수 있다.
몇몇 양태에서, 환자의 생명 징후를 측정하는 방법은 광 도파관의 제1 단부 내로 광 에너지를 전달하는 것, 광 도파관의 제2 단부를 나오는 광 에너지의 양을 검출하는 것, 및 광 도파관의 제2 단부를 나오는 광 에너지의 검출된 양에 기초하여 생명 징후의 측정치를 생성하는 것을 포함할 수 있다. 광 도파관은 센서 프레임과 함께 위치되고 센서 프레임은 동맥이 그 내부에 있는 환자의 해부학적 위치에 대해 위치된다. 광 도파관은 동맥 펄스에 응답하여 압축 또는 굴곡되도록 위치된다. 광 도파관의 제2 단부를 나오는 광 에너지의 양은 센서 프레임에 의해 유지된 광 검출기를 사용하여 검출된다. 광 검출기는 수신된 광 에너지의 양을 지시하는 신호를 생성한다. 광 도파관의 제2 단부를 나오는 광 에너지의 양은 동맥 펄스에 응답하여 변화한다.
몇몇 구현예에서, 센서 프레임은 센서 고정 디바이스에 의해 유지될 수 있고, 이 방법은 센서 고정 디바이스로 환자의 해부학적 위치에 압력을 인가하는 단계를 더 포함할 수 있다. 몇몇 구현예에서, 이 방법은 일정 시간 기간에 걸쳐 센서 고정 디바이스로 해부학적 위치에 인가된 압력을 변경하는 단계와, 일정 시간 기간에 걸쳐 광 도파관의 제2 단부를 나오는 광 에너지의 양의 변화로부터 일정 시간 기간 중에 동맥 펄스에 대한 일련의 펄스 특징을 결정하는 단계를 더 포함할 수 있다. 생명 징후의 생성된 측정치는 일정 시간 기간 동안 일련의 펄스 특징에 기초할 수 있다.
몇몇 구현예에서, 이 방법은 측정된 혈압 측정치를 얻고 이어서 제2 혈압 측정치를 평가하는 단계를 포함할 수 있다. 제2 혈압 측정치를 평가하는 것은 초기 시간에 얻어진 초기 펄스 특징, 및 제2 혈압 측정치를 평가하는 데 사용된 이후의 시간에 얻어진 이후의 펄스 특징에 기초할 수 있다. 초기 시간은 이후의 시간에서보다 측정된 혈압 평가의 시간에 더 근접한다. 생명 징후의 생성된 측정치는 측정된 혈압 측정치, 초기 펄스 특징, 및 이후의 펄스 특징에 기초한다. 몇몇 구현예에서, 초기 펄스 특징 및 이후의 펄스 특징은 펄스 진폭일 수 있다.
몇몇 양태에서, 환자의 혈압을 측정하는 방법은 동맥이 그 내부에 있는 환자의 해부학적 위치에 가변 압력을 인가하는 것, 광 파워 변조 센서로 동맥 펄스 파형을 검출하는 것, 및 인가된 및 변경된 압력의 함수로서 검출 동맥 펄스 파형에 기초하여 수축기 혈압 및 확장기 혈압을 결정하는 것을 포함할 수 있다. 광 파워 변조 센서는 동맥 펄스에 응답하여 압축 또는 굴곡되도록 구성된 광 도파관을 포함한다. 광 도파관의 압축 또는 굴곡은 광 도파관의 단부에 전달된 광량의 감소를 초래한다. 동맥 펄스 파형은 광 도파관의 단부를 나오는 광량으로부터 검출된다.
몇몇 양태에서, 광 동작 감지 디바이스는 개구를 형성하는 센서 프레임, 개구 내에 배치된 센서 패드, 센서 프레임 내의 센서 패드의 이동량을 검출하도록 구성된 광 감지 시스템, 및 출력 유닛을 포함할 수 있다. 광 감지 시스템은 광 도파관, 광원 디바이스, 및 광 검출기를 포함한다. 광 도파관은 센서 프레임 내에 위치되어 센서 패드의 이동이 광 도파관의 굴곡 또는 압축을 초래하게 한다. 광원 디바이스는 광 도파관에 광 에너지를 공급한다. 광 검출기는 광 도파관을 나오는 광 에너지의 양을 검출한다. 출력 유닛은 광 도파관을 나오는 광 에너지의 양을 지시하는 신호를 수신하고 수신된 신호로부터 센서 패드의 이동량의 측정치를 생성하도록 구성된다.
몇몇 양태에서, 국부화된 변위의 양을 검출하는 방법은 광 도파관의 제1 단부 내로 광 에너지를 전달하는 것, 광 도파관의 제2 단부를 나오는 광 에너지의 양을 검출하는 것, 및 광 도파관의 제2 단부를 나오는 광 에너지의 양에 기초하여 센서 패드의 하향 변위량의 측정치를 생성하는 것을 포함할 수 있다. 광 도파관은 센서 패드를 포함하는 센서 프레임 내에 위치되어, 센서 패드의 하향 변위가 광 도파관의 압축 또는 굴곡을 초래하게 한다. 광 도파관을 나오는 광 에너지의 양은 센서 프레임에 의해 유지된 광 검출기를 사용하여 검출된다. 광 검출기는 수신된 광 에너지를 지시하는 신호를 그로부터 생성한다. 센서 패드의 하향 변위량의 생성된 측정치는 광 도파관의 제2 단부를 나오는 광 에너지를 지시하는 신호를 사용하여 생성된다. 광 도파관의 제2 단부를 나오는 광 에너지의 양은 센서 패드의 하향 변위에 응답하여 감소된다.
몇몇 양태에서, 동맥 펄스를 검출하기 위한 탄성 도파관은 편평면을 갖고 루멘을 형성하는 클래딩과, 루멘 내에 배치된 코어를 포함한다. 클래딩은 25 내지 75의 쇼어 A 경도를 갖는 탄성중합체를 포함한다. 코어는 또한 25 내지 75의 쇼어 A 경도를 갖는 탄성중합체를 포함한다. 코어는 클래딩의 굴절률보다 큰 굴절률을 갖는다.
몇몇 구현예에서, 클래딩은 45 내지 55의 쇼어 A 경도를 가질 수 있고, 코어는 30 내지 45의 쇼어 A 경도를 가질 수 있다. 몇몇 구현예에서, 도파관은 적어도 10,000 모드(예를 들어, 적어도 50,000 모드)를 유도할 수 있다. 몇몇 구현예에서, 코어는 1.43 내지 1.50(예를 들어, 1.45 내지 1.47)의 굴절률을 가질 수 있고, 클래딩은 1.39 내지 1.48(예를 들어, 1.39 내지 1.41)의 굴절률을 가질 수 있다. 몇몇 구현예에서, 코어는 적어도 45 마이크로미터(예를 들어, 150 내지 200 마이크로미터)의 반경을 가질 수 있다.
몇몇 구현예에서, 광 도파관은 탄성중합체(예를 들어, 실록산 탄성중합체)를 포함할 수 있다. 탄성중합체는 폴리실록산, 폴리우레탄, 폴리부타디엔 고무, 및 이들의 조합으로 이루어진 그룹으로부터 선택될 수 있다.
본 발명의 하나 이상의 구현예의 세부 사항은 첨부 도면 및 이하의 설명에 설명되어 있다. 본 발명의 다른 특징, 목적 및 장점은 상세한 설명, 도면 및 청구범위로부터 명백해질 것이다.
도 1은 생명 징후 측정 디바이스의 일 구현예를 도시하고 있는 도면.
도 2a, 도 2b 및 도 2c는 상완에 위치된 생명 징후 측정 디바이스의 다양한 구현예를 도시하고 있고, 또한 동맥 수축기 혈압에 대한 커프 압력의 3개의 상이한 레벨을 도시하고 있는 도면.
도 3은 센서 고정 디바이스에 의해 유지된 광 감지 시스템에 의해 검출된 동시에 얻어진 펄스에 비교되는 커프에 공압식으로 결합된 압력 센서에 의해 검출된 커프의 수축 중의 일련의 펄스를 도시하고 있는 도면.
도 4는 팽창형 블래더를 갖는 센서 고정 디바이스를 구비하는 생명 징후 측정 디바이스의 구현예를 도시하고 있는 도면.
도 5a, 도 5b 및 도 5c는 광 감지 시스템의 구성 요소를 포함하는 센서 프레임의 구현예를 도시하고 있는 도면.
도 6은 가요성의 비압축성 도파관 지지면 상의 광 감지 시스템의 구현예를 도시하고 있는 도면.
도 7a 내지 도 7c는 광 감지 시스템의 구현예를 도시하고 있는 도면.
도 8a 및 도 8b는 압축된 도파관이 어떠한 방식으로 전송된 광량의 감소를 초래하는지를 도시하고 있는 도면.
도 9a 및 도 9b는 굴곡된 도파관이 어떠한 방식으로 전송된 광량의 감소를 초래하는지를 도시하고 있는 도면.
도 10a 내지 도 10d는 도파관의 상이한 구현예의 단면도.
도 11은 동맥 펄스에 기인하는 진동 변형을 받게 되는 도파관 내의 맥동성 광 전송을 도시하고 있는 도면.
도 12는 출력 유닛에 의해 하나 이상의 생명 징후를 결정하는데 사용되는 분석법의 구현예를 도시하고 있는 도면.
다양한 도면 내의 유사한 도면 부호는 유사한 요소를 지시함.
도 1에 도시되어 있는 바와 같이, 생명 징후 측정 디바이스는 센서 고정 디바이스(102), 광 감지 시스템을 유지하는 센서 프레임(200), 및 출력 유닛(106)을 포함할 수 있다. 센서 프레임(200) 내의 광 감지 시스템으로부터의 출력은 예를 들어 환자의 혈압, 및 특히 환자의 혈압에 대한 수축기 및 확장기 측정치와 같은 생명 징후의 측정치를 결정하는데 사용될 수 있다.
센서 고정 디바이스(102)는 센서 프레임(200)을 유지하고, 이를 그 내부에 동맥(118)이 있는 환자의 해부학적 위치(112)에 부착한다. 도 1에서, 예를 들어, 해부학적 위치(112)는 인간 환자의 상완이다. 센서 프레임(200)은, 센서 프레임(200)이 환자의 해부학적 위치(112)에 대해 배치될 때 광 감지 시스템(104)이 동맥 펄스에 대응하는 이동을 감지하도록 위치될 수 있다. 이 방식으로, 센서 고정 디바이스(102)가 수축기 혈압 이하에 있는 환자의 상완(112) 상에 압력을 인가할 때 광 감지 시스템으로 동맥 펄스를 검출하지만, 수축기 혈압을 상회할 때에는 센서 고정 디바이스(102)가 동맥 펄스를 검출하지 않는 것이 가능하다. 따라서, 수축기 혈압은 압력이 수축기 혈압을 초과하는 압력으로부터 감소함에 따라, 제1 동맥 펄스가 광 감지 시스템에 의해 검출될 때 해부학적 위치(112)에 인가된 압력으로서 결정될 수 있다. 대안적으로, 수축기 혈압은 압력이 수축기 혈압을 초과하는 압력으로 증가함에 따라, 동맥 펄스가 광 감지 시스템에 의해 관찰될 때의 최종 압력으로 결정될 수 있다. 더욱이, 생명 징후 측정 디바이스는 센서 고정 디바이스가 환자의 팔의 수축기 혈압 미만의 압력을 인가할 때 하나 이상의 동맥 펄스의 상대 강도를 측정하고 그리고/또는 펄스 파형을 검출할 수 있고, 이들 측정치로부터 환자에 대한 수축기 및 확장기 혈압 측정치를 포함하는 다수의 상이한 생명 징후 측정치를 결정할 수 있다. 예를 들어, 확장기 혈압은 펄스 진폭의 비 및/또는 동맥 펄스 사이의 펄스 파형의 형상과 같은 미리 결정된 펄스 파형 특징에 기초하여 결정될 수 있다.
광 감지 시스템(104)은 동맥 펄스를 검출하고 측정하는 광 파워 변조법이라 칭할 수 있는 것을 이용한다. 이러한 광 파워 변조법을 구현하는 예시적인 광 감지 시스템은, 특히 도 5c를 참조하면 센서 프레임(200)에 의해 유지된 광 도파관(212), 광 도파관(212)의 제1 단부에 광 에너지를 공급하도록 위치된 광원(202), 및 광 도파관(212)의 제2 대향 단부에 인가되는 광 에너지의 양을 검출하도록 위치된 광 검출기(240)를 포함한다. 출력 유닛(106)은, 예를 들어 도 1에 도시되어 있 는 바와 같이, 예를 들어 광 감지 시스템으로부터, 특히 광 검출기(240)로부터 전기 신호와 같은 신호를 수신하기 위해 접속되고, 여기서 신호는 광 검출기(240)에 의해 검출되는 광 도파관의 제2 대향 단부에 인가되는 주어진 시점에서의 광량을 지시한다. 수신된 신호로부터, 출력 유닛(106)은 생명 징후의 측정치를 생성한다. 광 감지 시스템(104)은 감지 시스템의 광 도파관(212)의 적어도 일부분의 압축 또는 굴곡에 의해 동맥 펄스에 작용하거나 이에 응답하고, 이는 광 도파관에 인가되는 광 에너지의 양의 감소, 따라서 광 검출기에 의해 수신된 광 에너지의 양의 감소를 초래한다.
예로서, 생명 징후는 심박수, 동맥 펄스 파형, 수축기 혈압 측정치, 확장기 혈압 측정치, 평균 동맥 혈압 측정치, 펄스 압력 측정치, 및/또는 동맥 탄성의 측정치를 포함할 수 있다. 몇몇 구현예에서, 생명 징후는 동맥 펄스의 타이밍, 동맥 펄스의 진폭 및/또는 크기로부터, 및/또는 동맥 펄스 파형으로부터 결정될 수 있다. 몇몇 구현예에서, 생명 징후는 광 감지 시스템(104)으로부터 수신된 출력으로부터 결정될 수 있고, 반면 다른 구현예에서는 생명 징후는 다른 데이터(예를 들어, 공압식 커프 내의 압력에 관한 데이터)와 조합하여 그 출력으로부터 결정될 수 있다. 전자의 경우에, 심박수는 광 감지 시스템(104)만으로부터 수신된 출력으로부터 결정될 수 있다. 본 발명의 생명 징후 측정치는 이들에 한정되는 것은 아니지만, 상완, 허리 영역, 다리 및 손발가락을 포함하는 임의의 사지 위치에서 취해질 수 있다.
센서 고정 디바이스
센서 고정 디바이스는 환자의 해부학적 위치(112)에 인접하여 센서 프레임(200) 또는 그 부분을 유지시키고 위치시키도록 구성되어 센서 프레임(200) 내의 광 감지 시스템(104)이 동맥 펄스를 검출할 수 있게 하는 임의의 구조체일 수 있다. 센서 고정 디바이스는 미리 결정된 센서 고정 압력 또는 조절 가능한 센서 고정 압력에서 환자의 해부학적 위치(112)에 인접하여 센서 프레임(200)을 유지할 수 있다. 예를 들어, 센서 고정 디바이스는 접착성 밴드 또는 커프(예를 들어, 탄성 커프 또는 팽창형 커프)일 수 있다.
도 4에 도시되어 있는 바와 같이, 센서 고정 디바이스(102)는 팽창형 블래더(122)를 갖는 팽창형 커프(120)일 수 있다. 예를 들어, 센서 고정 디바이스(102)는 환자의 해부학적 위치(예를 들어, 사지)를 둘러싸거나 에워싸도록 구성된 직물 재료를 포함하는 커프를 포함하는 조립체일 수 있다. 팽창형 블래더(122)는 사지를 부분적으로 둘러싸거나 에워싸도록 커프 내에 위치될 수 있다. 이와 같이, 센서 고정 디바이스(102)는 팽창될 때 사지에 압력을 인가하여 이에 의해 사지 내의 동맥을 압축하도록 구성된다.
일반적으로, 본 발명에 설명되어 있는 시스템 및 방법에서 사용하기 위한 커프형 센서 고정 디바이스(102)는 사지를 완전히 또는 부분적으로 에워싸는 유형일 수 있고, 또는 노동맥(radial artery) 위의 허리를 포함하는 특정 해부학적 위치에서 유리할 수 있는, 압력을 국부적으로 인가하는 유형일 수도 있다. 이러한 디바이스(102) 내의 블래더(122)는 도 4의 경우에서와 같이, 호스(116)를 경유하여 펌 프(124)에 공압식으로 접속될 수 있다. 도 4에 도시되어 있는 바와 같은 몇몇 구현예에서, 공압식 팽창형 커프는 팽창되고[예를 들어, 펌프(124)를 경유하여] 수축되어[예를 들어, 밸브(126)를 경유하여] 환자의 신체의 부분(112)에 인가된 압력을 조절할 수 있다. 몇몇 구현예에서, 시스템은 도 12에 도시되어 있는 바와 같이 출력 유닛(106) 내에 포함된 것과 같은 팽창 제어기(452)를 포함하여 커프의 팽창 및 수축을 제어할 수 있다. 다른 구현예에서, 팽창 제어기는 생명 징후 측정 디바이스의 작동을 제어하기 위한 개별 제어기 유닛으로서 포함될 수 있다.
이와 같이, 다양한 형태의 센서 고정 디바이스가 환자의 신체의 다양한 상이한 부분에 적용될 수 있다. 센서 고정 디바이스는 환자의 미리 결정된 동맥에 인접하여 환자의 신체의 해부학적 위치에 배치하도록 치수가 정해지고 배열될 수 있다. 도 1 및 도 2a 내지 도 2c에 도시되어 있는 바와 같이, 센서 고정 디바이스(102)는 상완(환자의 팔꿈치 위에)에 위치되어 센서 프레임(200) 내의 광 감지 시스템이 상완 동맥(118) 내의 동맥 펄스에 대응하는 이동을 감지할 수 있게 할 수 있다. 센서 고정 디바이스는 또한 허리 위에 배치를 위해 구성되어 센서 프레임 내의 광 감지 시스템이 노동맥 내의 동맥 펄스에 대응하는 이동을 감지할 수 있게 할 수 있다. 센서 고정 디바이스는 또한 다리(예를 들어, 동맥 내의 펄스를 검출하기 위한 발목), 목, 또는 동맥 펄스가 검출될 수 있는 신체의 임의의 다른 부분에 위치될 수 있다.
도 2a 내지 도 2c에 도시되어 있는 바와 같이, 센서 프레임(200)은 센서 고정 디바이스(102)의 중간점에 대해 근위측에(도 2a에 도시되어 있는 바와 같이), 센서 고정 디바이스(102)의 중간점에(도 2b 및 도 2c에 도시되어 있는 바와 같이), 또는 센서 고정 디바이스(102)의 중간점에 대해 원위측에(도시되어 있지 않음) 위치될 수 있다. 압력 부여 디바이스에 대한 센서 프레임(200), 더 구체적으로는 센서 프레임(200)의 감지부(예를 들어, 센서 패드)의 배치는 얻어진 데이터에 영향을 줄 수 있다. 센서 고정 디바이스(102)가 도 2a 내지 도 2c에 도시되어 있는 바와 같은 해부학적 위치에 압력을 인가하는 구현예에서, 센서 고정 디바이스(102) 내의 감지 프레임(200)의 감지부의 위치는 얻어진 데이터에 영향을 줄 수 있다. 몇몇 구현예에서, 해부학적 위치의 표면 아래에 위치한 동맥에 인가된 압력은 불균일할 수 있다. 예를 들어, 압력 부여체 배치 디바이스(102)가 균일한 압력을 인가할 수 있지만, 조직의 층을 통해 전달된 압력은 표면 아래에 소정 거리에 위치한 동맥에 대해 불균일한 압력을 초래할 수 있다. 몇몇 구현예에서, 팽창형 커프에 의해 피부 아래에 소정 거리에 위치한 동맥에 인가된 압력은 커프 중간선에서 최대이고 커프 가장자리부에서 작을 수 있다. 센서 고정 디바이스(102)에 대한 센서 프레임(200)의 위치는 동맥 펄스의 선택된 특징에 대한 감도를 최적화하도록 고정될 수 있다. 몇몇 구현예에서, 센서 프레임(200) 및 센서 프레임(200)의 감지부(예를 들어, 센서 패드)는 커프의 중간선(134)에 위치되어, 커프 압력이 수축기 혈압을 초과할 때 커프의 근위부 아래의 동맥 세그먼트의 맥동성 확장에 응답하지 않아, 동맥 세그먼트의 중간 섹션이 개방될 때 수축기 혈압의 정밀한 결정을 허용할 수 있다.
도시되어 있지 않은 다른 구현예에서, 센서 프레임(200) 및 센서 프레 임(200)의 감지부(예를 들어, 센서 패드)는 커프의 원위 가장자리부에 인접하여 위치되어, 특히 그 위치에서의 맥동성 동맥 치수 변화에 응답할 수 있다. 따라서, 원위 위치에서 확장기 혈압에서의 동맥 펄스 파형의 고유한 특징이 식별될 수 있고, 더 원위측 동맥에서의 동맥 탄성의 효과가 검출될 수 있다. 커프의 중간선(134) 및 또한 중간선(134)의 원위측에서의 피부의 외향 굴곡은 커프 압력이 수축기 혈압 미만일 때 심장 수축 중에 발생한다. 수축기 혈압을 초과하는 커프 압력에서, 동맥 진동은 전술되어 있는 바와 같이 커프의 근위 영역으로 제한된다.
도시되어 있지 않은 몇몇 구현예에서, 디바이스는 광 감지 시스템을 갖는 센서 프레임을 유지하는 센서 고정 디바이스로부터 분리된 제2 압력 부여 디바이스를 포함할 수 있다. 제2 압력 부여 디바이스는 센서 고정 디바이스의 해부학적 위치에 근위측에서 환자의 제2 해부학적 위치에 대해 배치되어 압력 부여 디바이스의 원위측이고 이로부터 분리된 위치에서 광 감지 시스템에 의한 동맥 펄스 검출을 허용하도록 구성될 수 있다. 따라서, 광 감지 시스템은 동맥 폐색의 지점의 원위측에서 이로부터 이격된 위치에서 동맥 펄스 파형을 검출하고, 따라서 동맥 파형의 고유한 특징의 검출을 허용할 수 있다. 제2 압력 부여 디바이스는 팽창형 커프일 수 있다. 몇몇 구현예에서, 압력 부여 디바이스 및 제2 고정 디바이스의 모두는 팽창형 커프일 수 있다.
도 2a는 심장 수축시에 제2 고정 디바이스(102)의 선단 에지 아래에서의 최소 동맥 개방을 생성하는 데 충분한 상완 동맥의 동맥 수축기 혈압을 초과하는 압력을 팔에 부여하는 제2 고정 디바이스(102)를 도시하고 있다. 제2 고정 디바이 스(102)에 대해 부여된 압력의 양은 동맥 펄스 중에 선단 에지에서의 동맥 팽창에 기인하여 약간 맥동할 것이다. 어떠한 동맥 개방도 센서 프레임(200)의 위치 설정시에 발생하지 않고, 따라서 센서 프레임(200) 내의 광 감지 시스템(104)은 맥동성 신호를 생성하지 않는다. 그러나, 맥동성 신호는, 센서 프레임이 센서 고정 디바이스(102)의 중간에 위치되는 경우보다 센서 프레임(200)이 센서 고정 디바이스(102)의 중간선에 대해 근위측인 위치에 위치되는 경우에 더 높은 압력을 발생시킬 것이다.
도 2b는 동맥 수축기 혈압을 약간 초과하는 압력을 부여하여, 동맥 개구(118)가 심장 수축시에 거의 센서 고정 디바이스(102)의 중간선으로 확장되게 하는 센서 고정 디바이스(102)를 도시하고 있다. 동맥 펄스 압력 동안에 센서 고정 디바이스(102)에 대해 부여되는 압력의 진동은, 동맥 팽창이 센서 고정 디바이스 내에 위치된 세그먼트의 거의 절반에 걸쳐 발생하기 때문에, 도 2a의 경우에서보다 훨씬 클 것이다. 그럼에도 불구하고, 어떠한 동맥 개방도 센서 고정 디바이스(102) 중간선에서 발생하지 않고, 따라서 센서 프레임(200) 내의 광 감지 시스템(104)은 맥동성 신호를 생성하지 않는다.
도 2c는 동맥 수축기 혈압 미만의 압력을 부여하여, 전체 동맥 세그먼트(118)가 심장 수축시에 순간적으로 개방되게 하는 센서 고정 디바이스(102)를 도시하고 있다. 동맥 펄스 동안에 센서 고정 디바이스(102)에 대해 부여된 압력의 진동은 진폭이 훨씬 더 클 것이다. 센서 프레임(200)의 아래의 위치에서의 동맥 개방은 광 감지 시스템(104)이 맥동성 신호를 기록하게 한다.
도 3의 상부 부분은 센서 고정 디바이스(102)에 의해 부여된 압력이 환자의 수축기 혈압을 초과하는 압력으로부터 환자의 확장기 혈압 미만의 압력으로 감소될 때 일련의 동맥 펄스에 의해 부여된 센서 고정 디바이스(102) 내에서 감지된 압력 펄스를 도시하고 있다. 도 3의 하부 부분은 센서 고정 디바이스에 의해 부여된 압력이 환자의 수축기 혈압을 초과하는 압력으로부터 환자의 확장기 혈압 미만의 압력으로 감소될 때 센서 고정 디바이스(102)의 중간선에서 센서 프레임을 갖는 광 감지 시스템으로부터 결정된 펄스를 도시하고 있다. 도시되어 있는 바와 같이, 센서 프레임 내의 광 감지 시스템은 부여된 압력이 수축기 혈압 이하일 때까지 임의의 펄스를 검출하지 않는다. 이는 수축기 혈압의 정확한 결정을 허용할 수 있고, 광 감지 시스템에 의해 검출된 파형은 다른 생명 징후의 계산을 허용할 수 있다.
도 4는 센서 고정 디바이스(102)의 일 구현예를 도시하고 있다. 센서 고정 디바이스는 팽창형 블래더(122)를 갖는 팽창형 커프(120)일 수 있다. 커프는 환자의 사지를 둘러싸도록 구성된 직물 재료를 포함할 수 있다. 팽창형 블래더(122)는 사지를 완전히가 아니라, 부분적으로 에워쌀 수 있고, 팽창될 때 사지에 압력을 인가하여 이에 의해 사지 내의 동맥을 압축하도록 구성될 수 있다. 팽창형 커프(120)는 환자의 상완 둘레에 감겨져서 센서 프레임(200)을 적소에 유지하여 사지에 동일한 압력을 인가하도록 구성될 수 있다. 광 감지 시스템은 센서 프레임(200) 내에 위치되어 상완 동맥으로부터 동맥 펄스를 검출할 수 있다. 커프(120)는 커프(120)를 환자의 사지 둘레에 고정하는데 사용될 수 있는 후크 및 루프 체결구(132)[예를 들어, 벨크로(Velcro)
Figure 112009053128282-PCT00001
] 또는 다른 체결 디바이스를 포함할 수 있다. 커프(120)는 환자의 사지 둘레에 감겨질 수 있고, 블래더(122)는 사지에 압력을 부여하도록 팽창될 수 있다. 블래더(122)는 호스(116)에 의해 펌프(124)에 연결될 수 있다. 블래더(122)는 또한 블래더(122)의 수축을 제어할 수 있는 밸브(126)에 부착될 수 있다. 블래더(122) 내의 압력은 압력 변환기(128)로 측정될 수 있다. 압력 변환기(128)는 도시되어 있는 바와 같이 블래더 내에 위치될 수 있고, 또는 [예를 들어, 호스(116)를 경유하여] 블래더(122)에 공압식으로 연결될 수 있다.
광 감지 시스템의 구성 요소는 커프(120)의 중간점(134)에 위치된 센서 프레임(200)(예를 들어, 하우징) 내에 패키징될 수 있다. 센서 프레임(200)은 블래더의 부분과 일치하지 않는 위치에서 커프에 부착될 수 있다. 센서 프레임(200)은 커프 상에서 대향하여 위치되어 팽창형 블래더(122)가 팽창될 때 센서 프레임에 의해 사지에 인가된 압력이 주위 커프 직물에 의해 사지에 인가되는 압력과 실질적으로 동일하게 될 수 있다. 예를 들어, 센서 프레임(200)의 상부면은 커프의 내부면과 대략적으로 동일한 높이일 수 있다. 센서 프레임(200)은 커프(120) 상에 위치되어 커프(120)가 환자의 해부학적 위치 둘레에 감겨질 때 광 감지 시스템(104)이 동맥의 펄스를 감지할 수 있게 될 수 있다.
출력 유닛
도 4 및 도 12에 도시되어 있는 바와 같이, 출력 유닛은 광 도파관의 제2 단부를 빠져나가는 광 에너지(예를 들어, 광)의 양을 나타내고, 따라서 광 검출 기(240)에 의해 검출된 신호(예를 들어, 전기 신호)를 수신한다. 이들 신호는 전기 와이어(108)를 경유하여 전송될 수 있다. 몇몇 구현예에서, 출력 유닛(106)은 또한 다른 데이터를 수신할 수 있다. 예를 들어, 도 4에 도시되어 있는 바와 같이, 와이어(108)는 블래더(122) 내의 압력 변환기로부터 출력 유닛(106)으로 신호(예를 들어, 전기 신호) 형태의 데이터를 전송하여 출력 유닛(106)이 환자의 해부학적 위치에 인가된 압력의 양을 결정할 수 있게 할 수 있다. 몇몇 구현예에서, 출력 유닛(106)은 무선 전송을 경유하여 광 감지 시스템으로부터 광 검출기에 의해 수신된 광 에너지의 양에 관한 데이터를 수신할 수 있다.
도 1, 도 4 및 도 12에 도시되어 있는 바와 같이, 생명 징후 측정 디바이스는 하나 이상의 생명 징후(예를 들어, 심박수, 수축기 혈압 및 확장기 혈압)를 나타내는 디스플레이 유닛(114)을 포함할 수 있다. 도 4에 도시되어 있는 바와 같이, 출력 유닛(106)은 디스플레이 유닛(114)으로 패키징될 수 있다. 도시되어 있지 않은 몇몇 구현예에서, 출력 유닛은 센서 프레임 내에 있을 수도 있고, 커프 조립체의 다른 부분 내에 있을 수도 있으며, 무선 전송을 경유하여 광 감지 시스템과 통신하여 원격으로 위치될 수도 있다. 와이어는 (예를 들어, 전기 신호를 통해) 출력 유닛(106)으로부터 디스플레이 디바이스(114)로 데이터를 전송할 수 있다. 다른 구현예에서, 출력 유닛(106)은 무선 전송을 통해 생명 징후 측정치를 전송할 수 있다.
몇몇 구현예에서, 출력 유닛은 출력 유닛에 의해 생성된 생명 징후 측정치가 미리 결정된 기준에 부합할 때 인간 검출 가능한 신호를 생성하는 경보 시스템을 포함할 수 있다. 예를 들어, 출력 유닛은 시각 또는 음성 경보를 생성하여 검출된 생명 징후가 미리 결정됨 범위 외에 있다는 것을 사용자에게 경보하도록 구성될 수 있다.
출력 유닛(106)은 다수의 데이터 처리 단계, 계산 또는 평가 기능을 수행할 수 있는데, 이들 중 일부가 이하에 설명된다. 출력 유닛(106)은 다른 데이터(예를 들어, 도 4에 도시되어 있는 바와 같이 팽창형 커프에 의해 해부학적 위치에 인가된 압력에 관한 데이터)를 갖거나 갖지 않고 광 감지 시스템으로부터의 신호로부터 생명 징후를 결정하기 위한 프로세서를 포함할 수 있다.
센서 프레임
도 5a, 도 5b 및 도 5c에 도시되어 있는 바와 같이, 광 감지 시스템(104)은 감지 프레임(200)(예를 들어, 하우징) 내에 포함될 수 있다. 센서 프레임(200)의 기능은 피부에 대해 압력을 유지하고, 공압식 커프 압력 펄스를 전달하지 않고 광 감지 시스템(104)에 동맥 펄스의 기계적 임펄스를 전달하는 것이다. 광 감지 시스템(104)의 기능은 동맥 펄스를 나타내는 신호를 생성하는 것이다.
센서 프레임(200)은 해부학적 위치에 인접하게 위치될 수 있는 센서 패드(232)의 이동에 의해 동맥 펄스를 감지하도록 해부학적 위치에 대해(예를 들어, 환자의 피부에 대해) 배치될 수 있다. 센서 패드(232)는 블래더의 팽창에 의해 발생된 증가된 접촉 압력의 결과로서 이동하도록 구성될 수 있다. 센서 패드(232)의 이동은 광 도파관(212)의 압축 또는 굴곡을 초래할 수 있다. 센서 프레임(200)은 또한 센서 패드(232)에 부착되어 환자의 해부학적 위치에 의해 센서 패드(232)에 인가된 힘에 반작용하는 로드 스프링(load spring)(234)을 포함할 수 있다. 로드 스프링(234)은 또한 센서 프레임(200)의 적어도 일부에 부착될 수 있다. 센서 프레임(200)은 그 상부에 도파관이 놓여지는 가요성 및 비압축성 도파관 지지면(233) 및/또는 센서 패드(232)에 의해 광 도파관(212)에 인가된 힘에 대해 광 도파관(212)을 지지하기 위한 도파관 지지 구조체(235)와 같은 도파관을 지지하기 위한 구조체를 포함할 수 있다. 센서 프레임(200)은 또한 광 검출기(240)로부터 출력 유닛(106)으로 데이터를 전송하는 와이어(108)를 포함할 수 있다. 도시되어 있지 않은 몇몇 구현예에서, 센서 프레임(200)은 출력 유닛을 포함할 수 있고, 출력 유닛으로부터 외부 소스(예를 들어, 디스플레이)로 데이터를 전송하는 와이어를 포함할 수 있다. 몇몇 구현예에서, 센서 프레임(200)은 0.7 내지 1.3 인치(17.8 내지 33.0 mm)[예를 들어, 약 1 인치(25.4 mm)]의 폭, 1.5 내지 2.2 인치(38.1 내지 55.9 mm)[예를 들어, 약 1.7 인치(43.2 mm)]의 길이, 및 0.3 내지 0.9 인치(7.6 내지 22.9 mm)[예를 들어, 약 0.6 인치(15.2 mm)]의 두께를 가질 수 있다.
도 5a, 도 5b 및 도 5c에 도시되어 있는 바와 같이, 환자의 해부학적 위치에 대해 배치되도록 구성된 센서 패드(232)는 로드 스프링(234)에 부착될 수 있다. 센서 패드(232)는 이완 상태일 때 센서 프레임(200)의 외부로 연장될 수 있다. 예를 들어, 센서 패드(232)는 적어도 0.1 인치(2.54 mm)[예를 들어, 0.1 내지 0.3 인치(2.54 내지 7.6 mm)]만큼 센서 프레임(200)의 외부로 연장될 수 있다. 도시되어 있는 바와 같이, 센서 패드(232)는 0.161 인치(4.1 mm)만큼 센서 하우징(200)으로 부터 연장된다. 센서 패드(232)는 임의의 형상을 가질 수 있다. 센서 패드(232)는 적어도 0.3 인치(7.6 mm), 예를 들어, 0.3 내지 0.8 인치(7.6 mm 내지 20.3 mm)[예를 들어, 약 0.6 인치(15.2 mm)]의 직경을 가질 수 있다. 몇몇 구현예에서, 예를 들어 도 5c에 도시되어 있는 바와 같이, 센서 패드(232)는 센서 패드(232)의 전후방 동작을 허용하는 힌지(236)에 의해 스프링(234)에 부착될 수 있다. 몇몇 구현예에서, 도 5c에 도시되어 있는 바와 같이, 센서 패드(232)는 경사진 상부면을 가질 수 있다. 센서 패드(232)는 광 감지 시스템(104)의 광 도파관의 압축 또는 굴곡을 발생시키도록 부착되거나 다른 방식으로 위치될 수 있다. 도 5c에 도시되어 있는 바와 같이, 센서 패드(232)는 광 도파관(212)의 국부화 압축을 발생시키도록 구성된 가압부(238)를 포함할 수 있다. 센서 패드(232)는 또한 절결부(cutout)(252) 내에 위치될 수 있다. 절결부(252)와 센서 패드(232) 사이의 간격은 동맥 펄스에 기인하여 센서 하우징(200)에 의해 허용된 센서 패드(232)의 이동량에 영향을 줄 수 있다. 절결부(252)와 센서 패드(232) 사이의 간격은 약 0.1 인치(2.54 mm)일 수 있다.
와이어(108)는 전술되어 있는 바와 같이 광 검출기(240)로부터 출력 유닛(106)으로 데이터를 전송할 수 있다. 도시되어 있지 않은 몇몇 구현예에서, 출력 유닛은 센서 프레임 내에 포함될 수 있고, 와이어는 하우징의 외부의 디바이스에 생명 징후 데이터를 전송할 수 있다. 도시되어 있지 않은 몇몇 구현예에서, 광 감지 시스템(104)은 무선 전송에 의해 센서 프레임(200)으로부터 데이터를 전송할 수 있다.
로드 스프링(234)은 동맥 펄스로부터 센서 패드(232)에 인가된 힘에 반작용하고, 센서 패드를 동맥 펄스 후에 초기 상태로 복귀시킬 수 있다. 따라서, 로드 스프링(234)은 동맥 펄스에 기인하는 도파관의 압축 및 굴곡 변형의 양을 제한할 수 있다. 로드 스프링(234)은 광 전송 인자가 커프 압력의 유용한 범위 내의 도파관 변형에 가장 민감하도록 선택될 수 있다. 로드 스프링(234)과 센서 프레임(200) 및 광 감지 시스템(104)의 다른 특징의 조합은 반작용력을 제공할 수 있어, 150 mmHg의 인가된 압력이 휴지 상태로부터 적어도 1 mm만큼 센서 패드를 변위시킬 것이다. 몇몇 구현예에서, 센서 프레임(200) 및 광 감지 시스템(104)은 150 mmHg의 인가된 압력이 휴지 상태로부터 적어도 2 mm만큼 센서 패드를 변위시키도록 구성될 수 있다. 몇몇 구현예에서, 로드 스프링(234)은 최대 압력에서 0.5 내지 3 밀리미터(예를 들어, 최대 압력에서 0.8 내지 1.5 밀리미터)의 센서 패드의 최대 변위를 제공하도록 구성될 수 있다. 몇몇 구현예에서, 센서 프레임(200) 및 광 감지 시스템(104)은 80 내지 150 mmHg(예를 들어, 100 내지 130 mmHg)의 인가된 압력이 센서 프레임(200)의 상부면과 대략적으로 동일한 높이에 있는 센서 패드의 상부면을 제공할 수 있도록 구성될 수 있다. 몇몇 구현예에서, 센서 패드(232)는 폐색 디바이스가 수축기 혈압을 초과하는 압력을 해부학적 위치에 제공하는 상태로 폐색 디바이스(102)에 의해 환자의 해부학적 위치에 대해 배치될 때 센서 프레임(200)과 거의 동일한 높이에 있을 수 있다. 몇몇 구현예에서, 센서 프레임(200)의 상부면은 센서 고정 디바이스(예를 들어, 팽창형 커프)의 내부면과 대략 동일한 높이에 있을 수 있다.
센서 프레임(200)은 센서 패드(232)에 의해 인가된 힘에 대해 광 감지 시스템(104)의 도파관(212)을 지지하는 가요성 및 비압축성 도파관 지지면(233) 및/또는 비탄성 도파관 지지 구조체(235)와 같은 도파관 지지 구조체를 또한 포함할 수 있다. 도파관 지지면(233)은 가요성 및 비압축성 지지면을 가질 수 있고, 광 도파관(212)의 전체 길이를 따라 연장될 수 있다. 몇몇 구현예에서, 도 6에 도시되어 있는 바와 같이, 도파관 지지체(233)는 지지면 내에 구성되고 지지면의 굴곡에 대향하도록 구성된 지지 복귀 요소(237)를 가질 수 있다. 예를 들어, 도파관 지지체(233) 내의 지지 복귀 요소(237)는 각각의 맥동성 변형 후에 그 비변형된 위치로 도파관을 복귀시킬 수 있는 강철 스프링과 같은 고메모리를 갖는 부재일 수 있다. 지지 복귀 요소(237)는 센서 패드가 휴지 위치로부터 최대 변위 위치로 이동함에 따라 센서 패드와 광 도파관 사이에 증가하는 접촉 압력을 제공하도록 구성될 수 있고, 광 도파관은 상기 증가하는 접촉 압력이 광 도파관을 나오는 감소하는 광량을 발생시키도록 구성된다. 몇몇 구현예에서, 지지 복귀 요소(237)는 증가하는 접촉 압력을 성취하기 위해 로드 스프링(234)과 함께 작용할 수 있다. 몇몇 구현예에서, 도파관 지지면(233)은 도파관이 가요성 탄성중합체 접착제로 접합되는 가요성 전자 회로 기판일 수 있다. 도 6에 도시되어 있는 바와 같이, 도파관 지지면(233)은 또한 광원(202) 및/또는 광 검출기(240)를 지지하고 지탱할 수 있다. 몇몇 구현예에서, 다른 관련 전자 구성 요소가 도파관 지지면(233) 상에 장착될 수 있다.
도파관 지지 구조체(235)는 비탄성이다. 몇몇 구현예에서, 도 7a에 도시되 어 있는 바와 같이, 도파관 지지 구조체(235)는 센서 패드(232)에 의해 작용하는(예를 들어, 실질적으로 그 전체 길이에 걸쳐) 도파관(212)의 부분을 지지할 수 있다. 따라서, 도파관(212)은 도파관 지지체(235)와 가압부(238) 사이에 압축될 수 있다. 이하에 설명되는 도 8a 및 도 8b는 도파관(212)의 압축이 어떠한 방식으로 광 검출기(240)에 전달된 광량의 감소를 초래할 수 있는지를 도시하고 있다. 다른 구현예에서, 도 7b 및 도 7c에 도시되어 있는 바와 같이, 도파관 지지 구조체(235)는 센서 패드(232)에 의해 작용하는 도파관의 부분으로부터 이격된 도파관의 부분을 지지할 수 있다. 다른 구현예에서, 센서 패드(232)의 이동은 도파관(212)의 굴곡을 초래할 수 있다. 도 7b는 센서 패드가 도파관에 대해 직접 작용하여 광 도파관(212)의 굴곡을 초래하는 구현예를 도시하고 있다. 도 7c는 가압부(238)가 도파관의 국부화된 부분에 대해 가압하는 구현예를 도시하고 있다. 이는 인접한 영역에서 도파관의 소정의 굴곡과 조합된 몇몇 압축을 초래할 수 있다. 이하에 설명되는 도 9a 및 도 9b는 도파관(212)의 굴곡이 어떠한 방식으로 광 검출기(240)에 전달된 광량의 감소를 초래할 수 있는지를 도시하고 있다.
센서 프레임(200) 내의 광 감지 시스템(104)은 동작 감지 시스템(예를 들어, 동맥 펄스와 관련된 국부화된 동작을 검출하도록 구성된 동작 감지 시스템)으로서 작용할 수 있다. 센서 프레임(200) 내의 광 감지 시스템(104)은 센서 고정 디바이스가 환자의 해부학적 위치에 대해 배치될 때 단지 센서 패드(232)에 인가된 압력보다는 동맥 펄스에 대응하는 동작을 검출할 수 있다. 예를 들어, 표면 압력 센서(예를 들어, 압전형 압력 센서)는 폐색 디바이스(102)에 의해 해부학적 위치에 인가된 압력이 수축기 혈압을 초과할 때에도 동맥 펄스에 기인하는 압력의 변화를 검출할 수 있다. 높은 커프 압력(수축기 혈압을 상회하는)에서, 폐색 디바이스(102)(예를 들어, 팽창형 커프)의 근위측의 동맥은 조직을 통해 전달되는 해부학적 위치에 맥동성 충격을 부여할 수 있고, 이는 폐색 디바이스(102) 내의 맥동성 압력 증가를 유발한다. 이 영향은 폐색 디바이스(102)의 맥동성 긴장을 유발하고, 이는 조직이 본질적으로 "비압축성"이고 동맥이 압력 센서 아래의 영역 내에서 연속적으로 폐색되기 때문에 어떠한 커프 수축이 없을지라도 폐색 디바이스(102)의 내부면에 부착된 표면 압력 센서에 의해 검출될 것이다. 폐색 디바이스(즉, 커프 블래더 압력 센서) 및 표면 압력 센서에 의해 인가된 압력의 양의 신호는, 혈류가 발생하게 하는 동맥의 개방의 영향이 전술되어 있는 커프에 대한 맥동성 충격의 영향보다 작기 때문에 유사하게 수축기 혈압보다 높고 낮을 수 있다. 대조적으로, 동작 센서로서 작용하는 센서 프레임 내의 광 감지 시스템은 높은 커프 압력에서 커프의 긴장에 기인하여 거의 응답을 갖지 않을 수 있고 수축기 혈압을 상회하는 압력에서 동맥 펄스 중에 동작의 검출을 방지할 수 있다. 따라서, 동작 센서로서의 센서 프레임 내의 광 감지 시스템의 사용은 압력 센서보다 더 정확하게 수축기 혈압을 지시할 수 있다. 더욱이, 어떠한 개별적인 정확한 혈압 측정이 기준선의 교정 또는 확립에 필요하지 않다.
광 파워 변조를 사용하는 광 감지 시스템
도 5c, 도 6 및 도 7a 내지 도 7c에 도시되어 있는 바와 같이, 광 감지 시스 템(104)은 광원(202), 광 도파관(212) 및 광 검출기(240)를 포함할 수 있다. 전술되어 있는 바와 같이, 광 감지 시스템(104)은 센서 고정 디바이스(102)에 의해 유지된 센서 프레임(200)(예를 들어, 하우징)에 의해 유지될 수 있다. 광원(202)은 광 도파관(212)에 광학적으로 결합되어, 광 에너지[예를 들어, 광파(218)]가 광원(202)으로부터 광 도파관(212)의 제1 단부 내로 이동할 수 있게 할 수 있다. 몇몇 구현예에서, LED가 광원(202)으로서 사용될 수 있다. 광 검출기(240)는 광 도파관(212)의 대향하는 제2 단부를 나타내는 광 에너지를 수신하고, 수신된 광량을 지시하는 신호를 생성할 수 있다. 몇몇 구현예에서, 광 검출기(240)는 광 도파관(212)의 제2 단부를 나타내는 실질적으로 모든 광을 수신한다. 몇몇 구현예에서, 광 검출기(240)는 PIN 다이오드 광검출기, CCD(전하 결합 디바이스) 검출기, 또는 CMOS(삼보형 금속 산화물 반도체) 검출기일 수 있다.
광 도파관
광 도파관(212)은 내부 반사 또는 굴절에 의해 광파를 전달하는 광섬유 또는 임의의 액체, 겔(gel) 또는 고체일 수 있다. 광 도파관(212)은 일반적으로 "클래딩"(217)이라 칭하는 낮은 굴절률의 재료에 의해 둘러싸인 일반적으로 "코어"(215)라 칭하는 기다란 광학적으로 투명한 재료를 포함할 수 있다. 코어(215)는 클래딩(217)의 낮은 굴절률(N1)에 대해 비교적 높은 굴절률(N2)을 가질 수 있다. 코어 및 클래딩 굴절률 사이의 차이는 이하의 관계에 따라 도파관의 개구수(NA)를 규정 한다.
Figure 112009053128282-PCT00002
도파관의 NA 및 임계각(θc)이 도파관의 코어 내의 광의 구속을 지배한다. 계면에 대한 수직 벡터에 대한 코어/클래딩 계면에서의 광선의 입사각이 임계각(θc)보다 낮으면, 광선은 내부 반사되지 않고 코어를 탈출하여 손실될 것이다. N2가 N1에 매우 근접하면(즉, NA→0), 임계각은 90도에 도달할 것이고, 거의 모든 광이 도파관의 짧은 길이 내에서 탈출할 것이다. N2 및 N1이 충분히 상이한 값을 가지면, 광의 대부분이 구속되어 유지될 것이다. 광 에너지(예를 들어, 광)는 광파가 임계각(θc) 미만의 각도에서 2개의 재료[코어(215) 및 클래딩(217)] 사이의 계면에 도달할 때 광 도파관으로부터 손실된다. 임계각(θc)은 이하의 식에 의해 계산될 수 있다.
Figure 112009053128282-PCT00003
광섬유 또는 광 도파관의 다른 특징은 여기 가능한 모드의 수이다. 광 도파관에서, 용어 "모드(mode)"는 광 도파관 축을 횡단하는 평면에서의 특정 강도 패턴을 칭한다. 광섬유의 내부 모드 패턴과 외부 스펙클 패턴(speckle pattern) 사이에는 밀접한 관계가 존재한다. 단일 모드 광섬유에서, 단지 하나의 강도 피크만이 허용된다. 멀티 모드 광섬유에서는, 다수의 강도 피크가 도파관을 따른 임의의 위치에서 발생할 수 있다. 원형 단면을 갖는 임의의 도파관에서, "제로 차수" 모드 는 도파관 축을 따라 전파하는 광에 의해 형성된다(완전 직선형 도파관을 가정함). 소위 "더 높은 차수의" 모드는 축방향으로 이송되지 않고 축에 대해 소정 각도로 이송되는 광에 의해 형성된다. 이들 모드는 코어와 클래딩 사이의 굴절률 차이에 의해 유도되고, 각각의 것은 일반적으로 제로 차수 모드에서보다 낮은 강도를 가질 것이다. 단계형 굴절률(step index) 도파관이 소정 위치에서 굴곡될 때, 더 낮은 차수 및 제로 차수 모드가 더 높은 차수의 모드가 되는데, 이는 이들이 더 이상 중심선에 또는 중심선 부근에 잔류하지 않기 때문이다. 광이 도파관 내에서 더 높은 차수 모드를 점유하게 하기 위해, 광원이 축에 대해 0이 아닌 각도에 있는(그러나, 여전히 도파관의 개구수 내에 있음) 광선으로 부분적으로 구성되어야 하고, 또는 다르게는 도파관이 권취되거나 굴곡되어야 한다. 일반적으로, 소수의 더 높은 차수의 모드가 시준된 광원에 의해 조명되는 도파관 내에 존재할 수 있고, 역으로 다수의 더 높은 차수의 모드가 분기된 광원에 의해 조명되는 도파관 내에 존재할 것이다.
도 8a, 도 8b, 도 9a 및 도 9b에서 볼 수 있는 바와 같이, 도파관의 압축 및/또는 굴곡은 바람직하게는 더 높은 차수의 모드를 제거하고, 더 낮은 차수의 모드에 비교적 적은 영향을 갖는다. 작은 압축 및/또는 소량의 굴곡에 대한 광학 시스템의 감도는 충분한 수의 여기된 도파관 모드의 이용 가능성에 의존한다. 예를 들어, 단지 5개의 여기된 모드의 경우에, 이론적으로 단지 5개의 상이한 광 파워 전달 손실 레벨이 검출될 수 있는데, 이는 광 감지 시스템의 광 검출기에 의해 검출된 광량과 변형 사이의 비교적 개략적인 관계를 생성할 것이다. 한편, 10,000개의 여기된 모드가 있으면, 변형과 검출된 광 에너지 사이의 관계는 훨씬 더 미세하게 결정될 수 있고, 비교적 작은 변형 변화가 검출될 수 있다. 따라서, 몇몇 구현예에서, 광원은 대략 도파관의 NA 이상인 NA의 분기 빔을 제공할 수 있다. 광원 NA가 도파관 NA보다 크면, 결과는 최대 축의 각도에서 방출된 광의 부분이 클래딩 내로 즉시 탈출하게 하는 것이다. 광 도파관은 또한 적어도 10,000개의 모드(예를 들어, 50,000 초과의 모드)를 유도할 수 있도록 형성될 수 있다. 단계형 굴절률 도파관에서의 가능한 모드의 수는 이하의 식에 의해 제공되는데,
Figure 112009053128282-PCT00004
여기서, V는 정규화 주파수이다. 정규화 주파수(V)는 이하와 같이 계산된다.
Figure 112009053128282-PCT00005
여기서, a는 광 도파관의 코어의 반경이고, NA는 전술된 바와 같이 도파관의 개구수이고, λ는 광의 파장이다. 가장 실용적인 광원은 0.7 내지 0.85 마이크로미터의 파장(λ)을 갖는다. 따라서, a와 NA의 적(product)은 50,000 모드에 대한 기준을 만족시키기 위해 40 마이크로미터 정도이어야 한다. NA의 실용적인 범위는 대략 0.2 내지 0.4이다. 따라서, 0.4의 NA를 갖는 도파관은 50,000 모드를 허용하기 위해 100 마이크로미터의 코어 반경의 최소값 및 10,000 모드를 허용하기 위해 약 45 마이크로미터의 최소 반경을 가질 필요가 있을 것이다. 몇몇 구현예에서, 도파관 코어(215)는 적어도 45 마이크로미터(예를 들어, 150 내지 200 마이크로미터)의 반경을 갖는다. 최적 크기는 부분적으로 또한 도파관이 겪는 실제 변형에 의존한다(이는, 이어서 도파관 경도, 도파관에 실제로 인가되는 기계적 압력 및 도파관의 굴곡량에 의존함). 몇몇 구현예에서, 도파관은 45 내지 55 사이의 쇼어 A 경도, 0.35 내지 0.4의 NA(1.46의 코어 굴절률 및 1.41의 클래딩 굴절률에 대응함) 및 150 내지 200 마이크로미터의 코어 반경을 가질 수 있다. 이 디자인은 굴곡 변형이 1 내지 2 cm의 길이에 걸쳐 5 내지 20도일 때 및/또는 코어가 5 내지 50%만큼 압축되는 경우에 도파관의 짧은 길이(2 내지 4 cm)의 5 내지 70% 전달 손실을 생성할 수 있다.
0.2 내지 0.4의 NA는 공통의 광 등급 재료에서 2 내지 4%의 코어와 클래딩 사이의 굴절률 차이를 가짐으로써 성취될 수 있다. 광 전달 용례에서, 광은 도파관의 일단부 내로 도입된다. 도파관이 직선형이면, 내부 전반사는 도파관의 NA 내에 있는 모든 입력 광의 구속을 초래할 수 있고, 광의 손실이 최소일 것이다. 도파관이 직선형이 아니라 소정의 곡률을 가지면, 광의 일부는 만곡부에 도달할 때까지 내부 전반사를 경험하게 될 것이고, 여기서 임계각(θc) 미만으로 코어/클래딩 계면에 도달하여 클래딩 내로 탈출된다. 유사하게, 도파관이 압축되면, 광의 일부는 압축된 영역에 도달할 때까지 내부 전반사를 경험하게 될 것이고, 여기서 임계각(θc) 미만으로 코어/클래딩 계면에 도달하여 클래딩 내로 탈출된다. 맥동성 만곡 또는 압축에 기인하는 가변 전달 손실은 광 도파관에서 광 검출기(240)(예를 들어, 광센서)로 측정되어 도파관에 작용하는 맥동성 힘을 특정화하는데 사용될 수 있다.
도 8a, 도 8b, 도 9a 및 도 9b에 도시되어 있는 바와 같이, 광 도파관(212)은 광 도파관(212)의 코어 내의 광파(218)의 내부 반사를 발생시킨다. 그러나, (도 8b에 도시되어 있는 바와 같은) 광 도파관(212)의 압축 또는 (도 9b에 도시되어 있는 바와 같은) 굴곡은, 광 도파관(212)의 압축 또는 굴곡이 임계각(θc) 미만의 각도로 코어(215)와 클래딩(217) 사이의 계면에 도달하게 하는 부가의 광파[광파(263)와 같은]를 초래하기 때문에 광 에너지의 손실을 초래한다. 도 8a 및 도 8b에 도시되어 있는 바와 같이, 광 도파관(212)의 압축은 손실 광 에너지(263)에 기인하여 전달된 광 에너지(261)의 감소를 초래한다. 도 9a 및 도 9b에 도시되어 있는 바와 같이, 광 도파관(212)의 굴곡은 손실 광 에너지(263)에 기인하여 전달된 광 에너지(261)의 감소를 초래한다.
광 도파관(212)은 가요성 및/또는 비압축성일 수 있다. 몇몇 구현예에서, 광 도파관(212)은 탄성중합체를 포함할 수 있다. 예를 들어, 코어(215), 클래딩(217) 또는 이들의 조합은 탄성중합체를 포함할 수 있다. 통상의 글래스 및 플라스틱 광섬유는 만곡 손실을 나타내지만 일반적으로 기계적 압축에 의해 상당한 정도로 변형될 수는 없다. 그러나, 탄성 도파관은 더 연성의 재료를 사용하여 제조될 수 있다. 글래스 도파관과는 대조적으로, 이러한 탄성 도파관은 작은 압축력에 의해 용이하게 변형될 수 있다. 적합한 탄성중합체의 예는 폴리실록산, 폴리우레탄 및 폴리부타디엔 고무를 포함한다. 몇몇 구현예에서, 코어(215) 및 클래딩(217)의 모두는 실록산 탄성중합체를 포함한다. 예를 들어, 광 도파관은 실리콘 탄성중합체로 구성된 클래딩(217) 및 상이한 굴절률의 제2 실리콘 탄성중합체로 구 성된 코어(215)를 가질 수 있다. 몇몇 구현예에서, 클래딩 탄성중합체는 코어 재료의 경화를 억제하지 않는 재료일 수 있다. 예를 들어, 클래딩 탄성중합체는 추가의 경화 화학물을 가질 수 있고, 코어 탄성중합체는 백금 경화 화학물을 가질 수 있다.
클래딩(217)은 광학적으로 투명한 또는 반투명한 외관일 수 있다. 코어(215)는 광학적으로 투명할 수 있다. 몇몇 구현예에서, 클래딩은 1.39 내지 1.48(예를 들어, 1.39 내지 1.41)의 굴절률을 가질 수 있다. 몇몇 구현예에서, 코어(215)는 1.43 내지 1.50(예를 들어, 1.45 내지 1.47)의 굴절률을 가질 수 있다. 클래딩은 25 내지 75(예를 들어, 45 내지 55)의 쇼어 A 경도를 가질 수 있다. 코어(215)는 25 내지 75(예를 들어, 30 내지 45)의 쇼어 A 경도를 가질 수 있다.
광 도파관(212)은 다수의 형태를 가질 수 있다. 도 10a에 도시되어 있는 바와 같이, 클래딩(217)은 원형 단면 형상을 가질 수 있다. 몇몇 구현예에서, 클래딩은 예를 들어 광 감지 시스템 내의 광 도파관을 지지하는데 사용되는 가요성 회로 기판과 같은 가요성 표면에 대한 광 도파관(212)의 접착을 위한 접착성 접합면으로서 기능할 수 있는 편평한 확장된 지지면을 그 길이를 따라 가질 수 있다. 예를 들어, 편평한 확장된 지지면은 가요성 탄성중합체 접착제에 의해 도파관 지지면에 접합될 수 있다. 도 10b 내지 도 10d는 편평한 확장된 지지면(271)을 갖는 광 도파관(212)의 예의 단면을 도시하고 있다.
광 도파관(212)의 클래딩(217)은 압출 프로세스에 의해 형성될 수 있다. 몇몇 구현예에서, 코어(215) 및 클래딩(217)은 공압출 프로세스에서 형성될 수 있다. 몇몇 구현예에서, 클래딩(217)은 제1 프로세스에서 압출되어 중공형 루멘을 형성하는 일정한 단면 형상을 생성할 수 있다. 다음에, 코어(215)는 코어 재료로 클래딩(217)의 루멘을 충전함으로써 형성될 수 있다. 예를 들어, 압출 프로세스는 도 10a 내지 도 10d에 도시되어 있는 클래딩 단면 형상 중 임의의 형상을 형성하는데 사용될 수 있다. 몇몇 구현예에서, 코어 중심선의 위치는, 광원(202) 및 광 도파관(212)이 가요성 도파관 지지체(235) 상에 장착된 후에 광원(202)의 출구 빔의 위치에 매칭하도록 설정되어, 광원(202)에 대한 광 도파관(212)의 용이한 광학적 정렬을 용이하게 할 수 있다.
분석법
광 감지 시스템(104)의 광 검출기(240)는 수신된 광량을 나타내는 전기 신호(420)를 생성할 수 있다. 전기 신호(420)는 시간의 함수일 수 있다. 전기적 광 검출기 신호(420)는 다수의 생명 징후를 결정하도록 분석된다. 출력 유닛(106)은 각각의 동맥 펄스의 진폭 및/또는 크기를 결정하여 하나 이상의 생명 징후를 결정할 수 있다. 몇몇 구현예에서, 일련의 동맥 펄스에 대한 진폭 및/또는 크기가 결정되어 하나 이상의 생명 징후를 결정할 수 있다. 몇몇 구현예에서, 펄스 사이의 시간 간격이 일련의 검출된 동맥 펄스 중에 측정되어 심박수를 결정하는데 사용될 수 있다. 예를 들어, 도 11은 동맥 펄스에 기인하는 진동 변형을 받게 되는 도파관 내의 맥동성 광 전달을 도시하고 있다. 심박수와 같은 몇몇 생명 징후 측정치는 예를 들어 공압식 커프에 의해 해부학적 위치에 인가된 압력에 관한 입력을 필 요로 하지 않는다.
혈압은 예를 들어 환자의 팔에 커프를 배치하고(예를 들어, 도 4에 도시되어 있는 바와 같이), 환자의 수축기 혈압보다 적어도 10 mmHg 높은 압력으로 커프를 팽창시키고, 확장기 혈압보다 적어도 10 mmHg 낮은 압력으로 커프 압력을 점진적으로 수축시키며, 광 감지 시스템(104)에 의해 생성된 동맥 펄스 파형을 기록하고, 파형을 분석하여 수축기 혈압에 대응하는 하나 이상의 특징을 결정하고, 파형을 더 분석하여 확장기 혈압에 대응하는 하나 이상의 특징을 결정하고, 커프를 완전히 수축시키고, 수축기 및 확장기 혈압을 표시함으로써 측정될 수 있다. 몇몇 구현예에서, 파형은 커프의 팽창 및 수축의 모두 동안에 기록될 수 있고, 양 파형은 수축기 및/또는 확장기 혈압을 결정하는데 사용될 수 있다.
이 프로세스를 통해 형성된 동맥 파형을 관찰함으로써, 수축기 혈압, 확장기 혈압 및 평균 동맥 혈압과 같은 다양한 생명 징후가 결정되고 그리고/또는 평가될 수 있다. 몇몇 구현예에서, 혈압 측정 방법은 커프 수축 중에 기록된 파형의 시퀀스의 진폭을 측정함으로써 동맥 펄스 파형을 분석하는 것, 펄스 파형 진폭이 커프의 수축 중에 더 높은 커프 압력에서 발생하는 선행 펄스의 파형 진폭보다 약간 높은 커프 압력을 결정하는 것, 및 그 압력을 수축기 혈압으로서 표시하는 것을 포함할 수 있다.
수축기 혈압은 광학 시스템(104)으로부터 수신된 데이터에 기초하여, 그리고 센서 고정 디바이스(102)로부터의 데이터로부터 다수의 방식으로 결정될 수 있다. 몇몇 구현예에서, 수축기 혈압은, 펄스 파형 진폭이 커프의 팽창 중에 더 낮은 커 프 압력에서 발생하는 선행 펄스의 파형 진폭보다 약간 낮은 커프 압력에서 결정될 수 있다. 몇몇 구현예에서, 확장기 혈압은, 펄스 파형이 센서 아래의 동맥 세그먼트의 맥동성 작용을 지시하는 커프 압력에서 커프의 수축 중에 결정될 수 있다. 더 구체적으로는, 확장기 혈압은 동맥이 심장 사이클 동안의 임의의 시간에 완전히 폐쇄되지 않은 것을 펄스 파형이 먼저 지시하는 경우에 결정될 수 있다. 상이한 파형 분석의 방법이 또한 가능하다. 환자의 수축기 혈압은 또한 전술된 방법들 중 하나에 의해 기준선 수축기 혈압을 측정하고, 이어서 일정한 압력으로 커프를 압축하고, 이어서 파형을 연속적으로 모니터링함으로써 연속적으로 모니터링될 수 있다. 연속적인 압력은 미리 측정된 혈압 판독치(예를 들어, 피크 동맥 압력)에 의해 결정될 수 있다. 다음에, 제1의 측정된 동맥 펄스 진폭이 기준 펄스 진폭으로서 사용될 수 있고, 이후의 펄스 진폭이 이 기준 펄스 진폭과 비교되어 혈압의 변화를 평가할 수 있다. 몇몇 구현예에서, 커프가 일정한 압력에 유지되어 있는 동안 펄스에 대해 펄스 파형 형태가 결정될 수 있다. 이 파형 형태는 연속적으로 측정되어 기준선 값에 대한 혈압 변화를 모니터링하는 데 사용될 수 있다.
도 12에 도시되어 있는 것과 같은 몇몇 구현예에서, 출력 유닛(106)은 전술된 기술들 중 하나 이상에 의해 생명 징후를 결정할 수 있다. 예를 들어, 출력 유닛(106)은 파형 발생기(436) 내의 하나 이상의 동맥 펄스의 진폭, 크기 및/또는 파형을 결정할 수 있다. 몇몇 구현예에서, 출력 유닛(106)은 결정된 진폭, 크기 및/또는 파형 및 검출될 수 있는(예를 들어, 압력 센서에 의해 팽창형 커프 내에서 검출된 압력) 환자에 인가된 압력에 기초하여 환자에 대한 수축기 혈압을 결정하기 위한 수축기 혈압 계산기(442)를 포함할 수 있다. 몇몇 구현예에서, 출력 유닛(106)은 결정된 진폭, 크기 및/또는 파형 및 검출될 수 있는[예를 들어, 압력 센서(128)에 의해 팽창형 커프 내에서 검출된 압력] 환자에 인가된 압력에 기초하여 환자에 대한 확장기 혈압을 결정하기 위한 확장기 혈압 계산기(444)를 포함할 수 있다. 몇몇 구현예에서, 심박수 계산기(446)는 광신호로부터의 결정된 동맥 펄스 파형으로부터 또는 압력 센서(128)에 의해 팽창형 커프 내에서 검출된 압력으로부터 심박수를 결정할 수 있다.
도 12에 도시되어 있는 출력 유닛(106)은 또한 커프 내의 블래더에 공압식으로 접속된 압력 센서(128)를 포함하고, 이는 커프 내의 압력에 관한 데이터를 시간의 함수로서 아날로그-디지털 변환기(435)로 전송한다. 몇몇 구현예에서, 출력 유닛(106)은 커프 압력의 함수로서 펄스 파형을 생성할 수 있다. 도 12에 도시되어 있는 출력 유닛(106)은 또한 팽창 제어기(452)를 포함하고, 이는 디바이스의 작동을 제어하기 위해 커프의 팽창 및 수축 수단을 제어할 수 있다. 몇몇 구현예에서, 출력 유닛(106)은 검출 동맥 펄스 특징에 기초하여 커프의 팽창 및 수축을 동적으로 조절할 수 있다.
다수의 구현예가 설명되었다. 그럼에도 불구하고, 다양한 수정이 본 발명의 사상 및 범주로부터 벗어나지 않고 이루어질 수 있다는 것이 이해될 수 있을 것이다. 따라서, 다른 구현예가 이하의 청구범위의 범주 내에 속한다.

Claims (35)

  1. 생명 징후 측정 디바이스로서,
    동맥이 내부에 있는 환자의 해부학적 위치에 대해 배치되도록 구성된 센서 고정 디바이스와,
    상기 센서 고정 디바이스에 의해 유지되는 센서 프레임과,
    상기 센서 프레임에 의해 유지되고, 광 도파관, 이 광 도파관의 제1 단부에 광 에너지를 공급하는 광원 디바이스, 및 상기 광 도파관의 제2 단부를 나오는 광 에너지의 양을 검출하는 광 검출기를 포함하고, 상기 광 도파관의 제2 단부를 나오는 광 에너지의 양의 감소를 초래하는 광 도파관의 적어도 일부분의 압축 또는 굴곡으로부터 동맥 펄스를 감지하도록 구성되는 광 감지 시스템, 그리고
    상기 광 도파관의 제2 단부를 나오는 광량을 나타내는 신호를 수신하고, 적어도 부분적으로 이렇게 수신된 신호에 기초하여 생명 징후의 측정치를 생성하도록 구성되는 출력 유닛
    을 포함하는 생명 징후 측정 디바이스.
  2. 제1항에 있어서, 상기 센서 고정 디바이스는 팽창될 때 사지에 압력을 인가하고, 이에 의해 사지 내의 동맥을 압축하도록 구성된 팽창형 블래더(bladder)를 포함하는 커프(cuff)인 것인 생명 징후 측정 디바이스.
  3. 제1항 또는 제2항에 있어서, 해부학적 위치에 인접하게 위치 가능한 센서 프레임 내의 센서 패드를 더 포함하고, 상기 센서 패드의 이동은 압축성 광 도파관의 압축 또는 굴곡을 초래하고, 상기 센서 패드의 조절 이동은 상기 광 도파관의 압축 또는 굴곡의 조절을 초래하는 것인 생명 징후 측정 디바이스.
  4. 제3항에 있어서, 상기 센서 프레임의 적어도 일부에 부착되고, 또한 상기 센서 패드를 지지하며, 환자의 해부학적 위치에서 상기 센서 패드에 대해 인가된 압력의 적어도 일부에 반작용하도록 구성된 로드 스프링을 더 포함하는 생명 징후 측정 디바이스.
  5. 제4항에 있어서, 상기 로드 스프링은 최대 압력에서 0.5 내지 3 밀리미터의 센서 패드의 최대 변위를 제공하도록 구성되는 것인 생명 징후 측정 디바이스.
  6. 제3항에 있어서, 최대 접촉 압력의 위치에서의 상기 광 도파관의 압축 및 굴곡은 광 도파관을 나오는 총 광량의 50 내지 70%의 감소를 야기하는 것인 생명 징후 측정 디바이스.
  7. 제1항에 있어서, 해부학적 위치에 인가된 압력을 검출하는 압력 센서를 더 포함하고, 상기 출력 유닛은 압력 센서로부터 해부학적 위치에 인가된 압력을 나타내는 압력 입력을 수신하며, 상기 출력 유닛은 수신된 상기 광신호 및 압력 입력을 지시하는 신호를 사용하여 생명 징후를 생성하는 것인 생명 징후 측정 디바이스.
  8. 제1항에 있어서, 상기 광 도파관은 폴리실록산, 폴리우레탄, 폴리부타디엔 고무, 및 이들의 조합으로 이루어진 그룹으로부터 선택된 탄성중합체를 포함하는 것인 생명 징후 측정 디바이스.
  9. 제1항에 있어서, 비탄성면을 포함하는 광 도파관 지지 구조체를 더 포함하고, 이 광 도파관 지지 구조체는 광 도파관의 일부분을 지지하고, 상기 광 감지 시스템은 동맥 펄스에 응답하여 광 도파관의 지지되지 않은 부분의 굴곡 변형을 발생시키도록 구성되는 것인 생명 징후 측정 디바이스.
  10. 제1항에 있어서, 실질적으로 전체 길이에 걸쳐 상기 광 도파관을 지지하는 가요성 및 비압축성 지지면을 더 포함하는 생명 징후 측정 디바이스.
  11. 제10항에 있어서, 상기 광원 디바이스 및 광 검출기는 광 도파관 지지면의 표면 상에 장착되는 것인 생명 징후 측정 디바이스.
  12. 제10항에 있어서, 상기 지지면 내에 구성되고 지지면의 굴곡을 저지하도록 구성된 지지 복귀 요소를 더 포함하는 생명 징후 측정 디바이스.
  13. 제1항에 있어서, 상기 광 감지 시스템은 일련의 동맥 펄스를 나타내는 광신호를 검출하도록 구성되고, 상기 출력 유닛은 일련의 동맥 펄스 각각에 대한 펄스 파형을 결정하도록 구성되는 것인 생명 징후 측정 디바이스.
  14. 제1항에 있어서, 상기 생명 징후는 심박수, 동맥 펄스 파형, 수축기 혈압, 확장기 혈압, 평균 동맥 혈압, 펄스 압력, 및 동맥 탄성 중 적어도 하나인 것인 생명 징후 측정 디바이스.
  15. 제1항의 생명 징후 측정 디바이스를 사용하여 환자의 생명 징후를 측정하는 생명 징후 측정 방법으로서,
    환자의 해부학적 위치에 대해 상기 생명 징후 측정 디바이스를 위치시키고,
    광원으로 광 도파관의 제1 단부로 광 에너지를 전달하며,
    센서 프레임에 의해 유지된 광 검출기를 사용하여 상기 광 도파관의 제2 단부를 나오는 광 에너지의 양을 검출하고, 수신된 광 에너지를 나타내는 신호를 그로부터 생성하고,
    상기 광 도파관의 제2 단부를 나오는 광 에너지를 나타내는 생성된 신호를 사용하여 생명 징후의 측정치를 생성하는 것
    을 포함하는 생명 징후 측정 방법.
  16. 제15항에 있어서,
    센서 고정 디바이스로 환자의 해부학적 위치에 압력을 인가하고,
    일정 시간 기간에 걸쳐 상기 센서 고정 디바이스로 해부학적 위치에 인가된 압력을 변경하며,
    일정 시간 기간에 걸쳐 상기 광 도파관의 제2 단부를 나오는 광 에너지의 양의 변화로부터 일정 시간 기간 동안 동맥 펄스에 대한 일련의 펄스 특징을 결정하는 것
    을 더 포함하는 생명 징후 측정 방법.
  17. 제16항에 있어서,
    측정된 혈압 측정치를 얻고,
    상기 광 도파관의 제2 단부를 나오는 광 에너지의 양을 나타내는 입력을 사용하여 초기 시간에 초기 펄스 특징을, 그리고 이후의 시간에 후속 펄스 특징을 얻는 것
    을 더 포함하고, 측정된 혈압 측정치는 이후의 시간에서보다 초기 시간에 더 근접한 측정 시간에 얻어지고, 생명 징후의 생성된 측정치는 측정된 혈압 측정치, 초기 펄스 특징, 및 후속 펄스 특징에 기초하는 것인 생명 징후 측정 방법.
  18. 제1항의 생명 징후 측정 디바이스를 사용하여 환자의 혈압을 측정하는 혈압 측정 방법으로서,
    환자의 해부학적 위치에 대해 측정 디바이스를 위치시키고,
    센서 고정 디바이스로 환자의 해부학적 위치에 변동 압력을 인가하며,
    광 감지 시스템으로 동맥 펄스 파형을 검출하고,
    인가된 변동 압력의 함수로서 검출된 동맥 펄스 파형에 기초하여 수축기 혈압 및 확장기 혈압을 결정하는 것
    을 포함하는 혈압 측정 방법.
  19. 광 동작 감지 디바이스로서,
    개구를 형성하는 센서 프레임과,
    상기 개구 내에 배치된 센서 패드와,
    상기 센서 프레임 내의 센서 패드의 이동량을 검출하도록 구성된 광 감지 시스템으로서,
    (a) 상기 센서 패드의 이동이 광 도파관의 굴곡 또는 압축을 초래하게 하도록 센서 프레임 내에 위치되는 광 도파관,
    (b) 상기 광 도파관의 제1 단부에 광 에너지를 공급하는 광원 디바이스, 및
    (c) 상기 광 도파관의 제2 단부를 나오는 광 에너지의 양을 검출하는 광 검출기를 포함하는 것인 광 감지 시스템, 그리고
    상기 광 도파관을 나오는 광 에너지의 양을 나타내는 신호를 수신하고 수신된 신호로부터 상기 센서 패드의 이동량의 측정치를 생성하도록 구성된 출력 유닛
    을 포함하는 광 동작 감지 디바이스.
  20. 제19항에 있어서, 상기 센서 프레임의 적어도 일부에 부착되고, 또한 상기 센서 패드를 지지하며, 상기 센서 패드에 대해 인가된 압력의 적어도 일부에 반작용하도록 구성되고, 최대 압력에서 상기 센서 패드의 원하는 변위를 허용하도록 더 구성된 로드 스프링을 더 포함하는 광 동작 감지 디바이스.
  21. 제20항에 있어서, 상기 로드 스프링은 최대 압력에서 0.5 내지 3 밀리미터의 센서 패드의 최대 변위를 제공하도록 구성되는 것인 광 동작 감지 디바이스.
  22. 제19항에 있어서, 상기 광 도파관은 폴리실록산, 폴리우레탄, 폴리부타디엔 고무, 및 이들의 조합으로 이루어진 그룹으로부터 선택된 탄성중합체를 포함하는 것인 광 동작 감지 디바이스.
  23. 제19항에 있어서, 상기 광 도파관은 0.2 내지 0.4의 개구수를 포함하는 것인 광 동작 감지 디바이스.
  24. 제19항에 있어서, 상기 광 도파관은 코어 및 클래딩을 포함하고, 상기 코어는 1.43 내지 1.50의 굴절률을 가지며, 상기 클래딩은 1.39 내지 1.48의 굴절률을 갖고, 상기 코어와 클래딩 중 어느 하나 또는 이들 양자는 25 내지 75의 쇼어 A 경도를 갖는 것인 광 동작 감지 디바이스.
  25. 제19항에 있어서, 비탄성면을 포함하는 광 도파관 지지 구조체를 더 포함하고, 이 광 도파관 지지 구조체는 광 도파관의 적어도 일부분을 지지하며, 상기 광 감지 시스템은 동맥 펄스에 응답하여 광 도파관의 지지되지 않은 부분의 굴곡 변형을 발생시키도록 센서 패드의 이동을 위해 더 구성되는 것인 광 동작 감지 디바이스.
  26. 제19항에 있어서, 실질적으로 전체 길이에 걸쳐 상기 광 도파관을 지지하는 가요성 및 비압축성 지지면을 더 포함하는 광 동작 감지 디바이스.
  27. 제26항에 있어서, 상기 광 도파관을 위한 지지면 내에 구성되고 상기 지지면의 굴곡을 저지하도록 구성된 지지 복귀 요소를 더 포함하는 광 동작 감지 디바이스.
  28. 제19항에 있어서, 최대 접촉 압력의 위치에서의 상기 광 도파관의 압축 및 굴곡은 광 도파관을 나오는 총 광량의 50 내지 70%의 감소를 야기하는 것인 광 동작 감지 디바이스.
  29. 제19항의 광 동작 감지 디바이스를 사용하여 국부화된 변위량을 검출하는 변위량 검출 방법으로서,
    광 도파관의 제1 단부로 광 에너지를 전달하고,
    광학 검출기를 사용하여 상기 광 도파관의 제2 단부를 나오는 광량을 검출하며,
    상기 광 도파관의 제2 단부를 나오는 광 에너지를 나타내는 생성된 신호를 사용하여 센서 패드의 하향 변위량의 측정치를 생성하는 것
    을 포함하는 변위량 검출 방법.
  30. 동맥 펄스를 검출하기 위한 탄성 도파관으로서,
    편평면을 갖고 루멘을 형성하는 클래딩으로서, 25 내지 75의 쇼어 A 경도를 갖는 탄성중합체를 포함하는 클래딩과,
    상기 루멘 내에 배치되고, 25 내지 75의 쇼어 A 경도 및 상기 클래딩의 굴절률보다 큰 굴절률을 갖는 코어
    를 포함하는 탄성 도파관.
  31. 제30항에 있어서, 상기 클래딩은 45 내지 55의 쇼어 A 경도를 갖고, 상기 코어는 30 내지 45의 쇼어 A 경도를 갖는 것인 탄성 도파관.
  32. 제30항에 있어서, 상기 탄성 도파관은 적어도 10,000 모드를 유도할 수 있는 것인 탄성 도파관.
  33. 제32항에 있어서, 상기 코어는 1.43 내지 1.50의 굴절률을 갖고, 상기 클래딩은 1.39 내지 1.48의 굴절률을 갖는 것인 탄성 도파관.
  34. 제30항에 있어서, 상기 코어는 적어도 45 마이크로미터의 반경을 갖는 것인 탄성 도파관.
  35. 제30항에 있어서,
    상기 코어는 폴리실록산, 폴리우레탄, 폴리부타디엔 고무 및 이들의 조합으로 이루어진 그룹으로부터 선택된 탄성중합체를 포함하며, 30 내지 45의 쇼어 A 경도를 갖고, 1.45 내지 1.47의 굴절률을 가지며, 150 내지 200 마이크로미터의 반경을 갖고,
    상기 클래딩은 45 내지 55의 쇼어 A 경도를 가지며, 1.39 내지 1.41의 굴절률을 갖고,
    상기 탄성 도파관은 0.35 내지 0.4의 NA를 갖고, 적어도 50,000 모드를 유도할 수 있는 것인 탄성 도파관.
KR1020097018080A 2007-01-31 2007-11-21 광 파워 변조 KR101486405B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US89826907P 2007-01-31 2007-01-31
US60/898,269 2007-01-31
US99874507P 2007-10-15 2007-10-15
US60/998,745 2007-10-15
PCT/US2007/085397 WO2008094340A2 (en) 2007-01-31 2007-11-21 Optical power modulation

Publications (2)

Publication Number Publication Date
KR20090115744A true KR20090115744A (ko) 2009-11-05
KR101486405B1 KR101486405B1 (ko) 2015-01-26

Family

ID=39529399

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020097018080A KR101486405B1 (ko) 2007-01-31 2007-11-21 광 파워 변조

Country Status (14)

Country Link
US (6) US7822299B2 (ko)
EP (1) EP2111532B1 (ko)
JP (1) JP5441715B2 (ko)
KR (1) KR101486405B1 (ko)
CN (2) CN101646924B (ko)
AU (1) AU2007345597B2 (ko)
BR (1) BRPI0721198B8 (ko)
CA (1) CA2676970C (ko)
ES (1) ES2396258T3 (ko)
HK (2) HK1138365A1 (ko)
MX (1) MX2009008082A (ko)
MY (2) MY159916A (ko)
TW (1) TWI429416B (ko)
WO (1) WO2008094340A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018162A1 (ko) * 2010-08-06 2012-02-09 한국광기술원 광센서를 이용한 맥진기

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110301569A1 (en) 2001-01-20 2011-12-08 Gordon Wayne Dyer Methods and apparatus for the CVCS
US20080071180A1 (en) * 2006-05-24 2008-03-20 Tarilian Laser Technologies, Limited Vital Sign Detection Method and Measurement Device
MX2008014932A (es) * 2006-05-24 2009-04-15 Tarilian Laser Technologies Lt Metodo de deteccion optica de signos vitales y dispositivo de medicion.
JP4839179B2 (ja) * 2006-10-18 2011-12-21 敏明 中島 治療システム、治療装置、制御方法
JP5441715B2 (ja) 2007-01-31 2014-03-12 タリリアン レーザー テクノロジーズ,リミテッド 光パワー変調
US8341762B2 (en) * 2008-03-21 2013-01-01 Alfiero Balzano Safety vest assembly including a high reliability communication system
US10460843B2 (en) * 2009-04-22 2019-10-29 Rodrigo E. Teixeira Probabilistic parameter estimation using fused data apparatus and method of use thereof
US11363994B2 (en) * 2009-04-22 2022-06-21 Alton Reich Cardiovascular state determination apparatus and method of use thereof
US10699206B2 (en) * 2009-04-22 2020-06-30 Rodrigo E. Teixeira Iterative probabilistic parameter estimation apparatus and method of use therefor
US9492092B2 (en) 2009-05-20 2016-11-15 Sotera Wireless, Inc. Method for continuously monitoring a patient using a body-worn device and associated system for alarms/alerts
US8974491B2 (en) * 2009-06-23 2015-03-10 Infarct Reduction Technologies Inc. Methods for adaptive limb occlusion
US9375153B2 (en) 2010-05-17 2016-06-28 Industrial Technology Research Institute Motion/vibration sensor
US9603555B2 (en) 2010-05-17 2017-03-28 Industrial Technology Research Institute Motion/vibration detection system and method with self-injection locking
US8754772B2 (en) * 2010-09-20 2014-06-17 Industrial Technology Research Institute Non-contact vital sign sensing system and sensing method using the same
CN101912259B (zh) * 2010-08-06 2012-10-10 深圳瑞光康泰科技有限公司 一种无创血压测量装置
CA2807657A1 (en) * 2010-08-09 2012-02-16 Gabriel Cohn Sensor systems wirelessly utilizing power infrastructures and associated systems and methods
US8665098B2 (en) 2010-09-20 2014-03-04 Industrial Technology Research Institute Non-contact motion detection apparatus
US9448053B2 (en) 2010-09-20 2016-09-20 Industrial Technology Research Institute Microwave motion sensor
US9017256B2 (en) 2010-09-22 2015-04-28 Milieu Institute, Llc System and method for physiological monitoring
EP2632324A4 (en) * 2010-10-27 2015-04-22 Gen Hospital Corp DEVICES, SYSTEMS AND METHOD FOR MEASURING BLOOD PRESSURE IN AT LEAST ONE VESSEL
US8501103B2 (en) 2010-11-29 2013-08-06 The Invention Science Fund I, Llc Material, system, and method that provide indication of a breach
US8747328B2 (en) 2011-04-29 2014-06-10 Raytheon Bbn Technologies Corp. Continuous blood pressure monitoring
WO2013019991A1 (en) * 2011-08-04 2013-02-07 Masimo Corporation Occlusive non-inflatable blood pressure device
US8701500B2 (en) * 2011-12-02 2014-04-22 Lake Shore Cryotronics, Inc. Method and apparatus for fixing strained optical fibers against creep and temperature and strain sensors using said technology
WO2013148753A1 (en) 2012-03-28 2013-10-03 Wayne State University Sensor and method for continuous health monitoring
US10219709B2 (en) 2012-03-28 2019-03-05 Wayne State University Sensor and method for continuous health monitoring
US9808342B2 (en) * 2012-07-03 2017-11-07 St. Jude Medical, Cardiology Division, Inc. Balloon sizing device and method of positioning a prosthetic heart valve
US20140107495A1 (en) * 2012-10-17 2014-04-17 Nokia Corporation Wearable Apparatus and Associated Methods
PL2931121T3 (pl) 2012-12-14 2017-08-31 Koninklijke Philips N.V. Urządzenie do pomiaru parametru fizjologicznego użytkownika
TWI539930B (zh) * 2013-10-03 2016-07-01 國立臺灣科技大學 可自動調整量測位置之生理訊號量測裝置及其方法
US10292654B2 (en) * 2013-12-16 2019-05-21 Johnson & Johnson Consumer Inc. Biomedical device, systems and methods having conductive elements
RS20140247A1 (en) 2014-05-14 2015-12-31 Novelic D.O.O. RADAR SENSOR FOR DETECTION OF SIGNS OF LIFE OPERATING IN THE MILLIMETER FREQUENCY RANGE AND METHOD OF OPERATION
CN103984266B (zh) * 2014-05-21 2016-11-23 杭州大力神医疗器械有限公司 一种理疗治疗仪照射双工功率控制方法及装置
US20150342480A1 (en) * 2014-05-30 2015-12-03 Microsoft Corporation Optical pulse-rate sensing
US10123710B2 (en) * 2014-05-30 2018-11-13 Microsoft Technology Licensing, Llc Optical pulse-rate sensor pillow assembly
CN104013389B (zh) * 2014-06-18 2016-01-20 香港应用科技研究院有限公司 用于搜索动脉位置的方法和设备
KR102299361B1 (ko) * 2014-09-03 2021-09-07 삼성전자주식회사 혈압을 모니터링하는 장치 및 방법, 혈압 모니터링 기능을 갖는 웨어러블 디바이스
JP2017535316A (ja) 2014-09-30 2017-11-30 深▲せん▼市大耳馬科技有限公司Shenzhen Darma Technology Co.,Ltd. 姿勢と生命徴候用モニターリングシステム及び方法
KR102411658B1 (ko) 2015-01-15 2022-06-21 삼성전자주식회사 생체 정보 검출 장치
KR102384225B1 (ko) 2015-03-06 2022-04-07 삼성전자주식회사 혈압 측정 장치 및 방법
KR102434701B1 (ko) 2015-09-01 2022-08-22 삼성전자주식회사 생체 정보 획득 장치 및 생체 정보 획득 방법과 생체 정보 검사 장치
WO2017147573A1 (en) * 2016-02-25 2017-08-31 Cornell University Waveguides for use in sensors or displays
US11788869B2 (en) 2016-02-25 2023-10-17 Cornell University Waveguides for use in sensors or displays
US10736570B2 (en) 2016-03-24 2020-08-11 CardiacSense Ltd. Methods circuits assemblies devices systems facets and associated machine executable code for detecting vital signs
US11350837B2 (en) 2016-03-30 2022-06-07 Elfi-Tech Ltd. Method and apparatus for optically measuring blood pressure
US11134901B2 (en) 2016-03-30 2021-10-05 Elfi-Tech Ltd. Method and apparatus for optically measuring blood pressure
US11045103B2 (en) 2016-04-28 2021-06-29 Samsung Electronics Co., Ltd. Physiological parameter detecting apparatus and method of detecting physiological parameters
KR102655671B1 (ko) 2016-10-12 2024-04-05 삼성전자주식회사 생체정보 추정 장치 및 방법
CN109984736A (zh) * 2017-12-29 2019-07-09 华为技术有限公司 一种血压测量装置及血压测量方法
AU2019218710A1 (en) * 2018-02-06 2020-10-01 Huma Therapeutics Limited Non-invasive continuous blood pressure monitoring
IL261466B2 (en) * 2018-08-29 2023-02-01 Cardiacsense Ltd Displacement sensor for measuring biological values
CN112105290B (zh) * 2018-05-10 2024-08-06 卡迪艾克森思有限公司 一种用于测量生物参数的移位传感器
AU2019278953A1 (en) * 2018-06-01 2021-01-21 Cardio Ring Technologies, Inc. Optical blood pressure measurement devices and methods
US20220015681A1 (en) 2018-11-11 2022-01-20 Biobeat Technologies Ltd. Wearable apparatus and method for monitoring medical properties
CN110558958B (zh) * 2019-08-21 2022-07-01 武汉凯锐普信息技术有限公司 一种基于光波模式选择的生命体征监测装置
WO2022006634A1 (en) * 2020-07-08 2022-01-13 The University Of Sydney Blood pressure measurement system
KR20220028348A (ko) 2020-08-28 2022-03-08 삼성전자주식회사 연신 스트레인 센서, 복합 센서, 표시 패널 및 장치
EP3991644A1 (en) 2020-10-29 2022-05-04 Cherry Biotech SAS Method and apparatus for the electronic monitoring of life-threatening conditions
CN113317765B (zh) * 2021-05-28 2023-03-28 华中科技大学 一种光学纹身传感薄膜、其制备方法和全光纤数字脉象仪

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3517999A (en) 1966-01-07 1970-06-30 Itt Optical strain gauge
GB1584173A (en) 1977-07-27 1981-02-11 Battelle Development Corp Apparatus for measuring strain in a solid object
DE2951207A1 (de) 1978-12-26 1980-07-10 Canon Kk Verfahren zur optischen herstellung einer streuplatte
US4297684A (en) 1979-03-26 1981-10-27 Honeywell Inc. Fiber optic intruder alarm system
US4409983A (en) 1981-08-20 1983-10-18 Albert David E Pulse measuring device
US4421979A (en) 1981-08-27 1983-12-20 Trw Inc. Microbending of optical fibers for remote force measurement
US5107847A (en) 1983-05-25 1992-04-28 Camino Laboratories Fiber-optic transducer apparatus
JPS6030914A (ja) 1983-07-29 1985-02-16 Toshiba Corp パルス燃焼装置
SU1219047A1 (ru) 1984-04-18 1986-03-23 Свердловский Научно-Исследовательский Институт Гигиены Труда И Профзаболеваний Датчик пульса
JPH0646244B2 (ja) 1985-05-17 1994-06-15 三菱レイヨン株式会社 プラスチック系光ファイバ
JPS61277028A (ja) 1985-05-31 1986-12-08 Sumitomo Electric Ind Ltd センサ−
US4701017A (en) * 1986-03-03 1987-10-20 Dow Corning Corporation Touch position sensitive optical waveguides
US4830461A (en) 1987-01-29 1989-05-16 Bridgestone Corporation Pressure-sensitive sensors
US4854706A (en) 1987-07-27 1989-08-08 Virginia Tech Intellectual Properties, Inc. Modal domain optical fiber sensors
US4822135A (en) 1987-08-07 1989-04-18 George Seaver Optical wave guide band edge sensor and method
US4927264A (en) * 1987-12-02 1990-05-22 Omron Tateisi Electronics Co. Non-invasive measuring method and apparatus of blood constituents
JP2613628B2 (ja) 1988-06-24 1997-05-28 コーリン電子株式会社 圧脈波検出装置
US5089697A (en) 1989-01-11 1992-02-18 Prohaska Otto J Fiber optic sensing device including pressure detection and human implantable construction
US4915473A (en) 1989-02-23 1990-04-10 The Dow Chemical Company Pressure sensor utilizing a polyurethane optical fiber
US5039617A (en) 1989-04-20 1991-08-13 Biotrack, Inc. Capillary flow device and method for measuring activated partial thromboplastin time
GB2236388A (en) 1989-09-21 1991-04-03 Bestquint Ltd Signal sensing in fibre optic sensor control systems
DE3935083A1 (de) * 1989-10-20 1991-06-13 Siemens Ag Messanordnung zum erfassen einer atembewegung
DE58904654D1 (de) * 1989-10-20 1993-07-15 Siemens Ag Induktiver bewegungssensor.
US5154680A (en) 1990-03-27 1992-10-13 Rutgers University Pressure waveform monitor
ATE132720T1 (de) 1990-07-18 1996-01-15 Avl Medical Instr Ag Einrichtung und verfahren zur blutdruckmessung
US5165416A (en) * 1990-08-23 1992-11-24 Colin Electronics Co., Ltd. Continuous blood pressure monitoring system having a digital cuff calibration system and method
US5065010A (en) * 1990-08-30 1991-11-12 Camino Laboratories Fiber optic measurement system having a reference conductor for controlling the energy level of the light source
EP0479490A3 (en) 1990-10-02 1992-08-12 Physical Optics Corporation Volume holographic diffuser
US5276322A (en) * 1990-10-17 1994-01-04 Edjewise Sensor Products, Inc. Fiber optic accelerometer
US5158091A (en) 1990-11-30 1992-10-27 Ivac Corporation Tonometry system for determining blood pressure
US5144689A (en) 1991-07-30 1992-09-01 Fiber Sensys, Inc. Multimode fiber sensor system with sensor fiber coupled to a detection fiber by spacer means
US5291013A (en) 1991-12-06 1994-03-01 Alamed Corporation Fiber optical monitor for detecting normal breathing and heartbeat motion based on changes in speckle patterns
US5212379A (en) 1991-12-06 1993-05-18 Alamed Corporation Fiber optical monitor for detecting motion based on changes in speckle patterns
US5436444A (en) 1991-12-06 1995-07-25 Alamed Corporation Multimode optical fiber motion monitor with audible output
US5241300B1 (en) 1992-04-24 1995-10-31 Johannes Buschmann Sids detection apparatus and methods
US5711291A (en) 1992-06-29 1998-01-27 Minnesota Mining And Manufacturing Company Blood pressure transducer
JP3131292B2 (ja) * 1992-07-15 2001-01-31 松下電工株式会社 生体信号検出装置
US6052613A (en) 1993-06-18 2000-04-18 Terumo Cardiovascular Systems Corporation Blood pressure transducer
US5438873A (en) * 1993-07-01 1995-08-08 Fiberoptic Sensor Technologies, Inc. Fiberoptic sensor using tapered and bundled fibers
US5363458A (en) 1994-02-28 1994-11-08 Fiber Guide Industries Fiber optic light diffuser
US5534000A (en) 1994-03-17 1996-07-09 Endeavor Surgical Products, Inc. Laser fiber apparatus having a contact tip and adjacent diffuser element and surgical methods for using same
DE4428650A1 (de) * 1994-08-12 1996-02-15 Marinitsch Waldemar Optische Druckkrafterfassungsvorrichtung
US5908027A (en) 1994-08-22 1999-06-01 Alaris Medical Systems, Inc. Tonometry system for monitoring blood pressure
WO1996008197A1 (en) 1994-09-12 1996-03-21 Alamed Corporation Fiber optic motion monitor for breath and heartbeat detection and a technique for processing biomedical sensor signals contaminated with body movement noise
US5649535A (en) 1995-01-25 1997-07-22 Marquette Electronics, Inc. Blood pressure measuring method and apparatus
JPH08280638A (ja) * 1995-04-10 1996-10-29 A & D Co Ltd 血圧計用カフ
JPH08285709A (ja) * 1995-04-14 1996-11-01 N T T Lease Kk 光ファイバ変位センサ
JP3534887B2 (ja) * 1995-04-19 2004-06-07 株式会社エー・アンド・デイ 血圧計
JPH09152308A (ja) * 1995-11-29 1997-06-10 Nissei Denki Kk 変位センサ
IL120881A (en) * 1996-07-30 2002-09-12 It M R Medic L Cm 1997 Ltd Method and device for continuous and non-invasive monitoring of peripheral arterial tone
US6723054B1 (en) * 1998-08-24 2004-04-20 Empirical Technologies Corporation Apparatus and method for measuring pulse transit time
US6907148B2 (en) * 1998-08-24 2005-06-14 Empirical Technologies Corporation Sensing apparatus employing variable coupler fiberoptic sensor
GB9820467D0 (en) * 1998-09-18 1998-11-11 Europ Economic Community Sensing apparatus and a measurment method
US6491647B1 (en) 1998-09-23 2002-12-10 Active Signal Technologies, Inc. Physiological sensing device
US6490931B1 (en) 1998-12-04 2002-12-10 Weatherford/Lamb, Inc. Fused tension-based fiber grating pressure sensor
AU756444B2 (en) 1998-12-04 2003-01-16 Weatherford Technology Holdings, Llc Bragg grating pressure sensor
CA2273113A1 (en) * 1999-05-26 2000-11-26 Tactex Controls Inc. Touch pad using a non-electrical deformable pressure sensor
JP2001093074A (ja) * 1999-09-20 2001-04-06 Sumitomo Electric Ind Ltd 状態監視用センサ及び光遠隔監視システム
US6816266B2 (en) 2000-02-08 2004-11-09 Deepak Varshneya Fiber optic interferometric vital sign monitor for use in magnetic resonance imaging, confined care facilities and in-hospital
US6498652B1 (en) 2000-02-08 2002-12-24 Deepak Varshneya Fiber optic monitor using interferometry for detecting vital signs of a patient
US6533729B1 (en) 2000-05-10 2003-03-18 Motorola Inc. Optical noninvasive blood pressure sensor and method
SG94349A1 (en) 2000-10-09 2003-02-18 Healthstats Int Pte Ltd Method and device for monitoring blood pressure
US6918879B2 (en) 2000-10-09 2005-07-19 Healthstats International Pte. Ltd. Method and device for monitoring blood pressure
JP2002172095A (ja) 2000-12-06 2002-06-18 K & S:Kk 脈波測定装置
US20030212316A1 (en) * 2002-05-10 2003-11-13 Leiden Jeffrey M. Method and apparatus for determining blood parameters and vital signs of a patient
US6763256B2 (en) 2002-08-16 2004-07-13 Optical Sensors, Inc. Pulse oximeter
US7189958B2 (en) 2002-11-18 2007-03-13 Virginia Tech Intellectual Properties, Inc. System, device, and method for detecting perturbations via a fiber optic sensor
JP3490433B1 (ja) 2003-06-02 2004-01-26 株式会社サイバーファーム 生体情報監視システム
JP4503318B2 (ja) 2004-03-16 2010-07-14 株式会社エー・アンド・デイ 健康測定具
JP2006011497A (ja) 2004-06-22 2006-01-12 Mitsumi Electric Co Ltd タッチセンサ
US20070142715A1 (en) 2005-12-20 2007-06-21 Triage Wireless, Inc. Chest strap for measuring vital signs
US20070185393A1 (en) 2006-02-03 2007-08-09 Triage Wireless, Inc. System for measuring vital signs using an optical module featuring a green light source
US20080071180A1 (en) 2006-05-24 2008-03-20 Tarilian Laser Technologies, Limited Vital Sign Detection Method and Measurement Device
MX2008014932A (es) * 2006-05-24 2009-04-15 Tarilian Laser Technologies Lt Metodo de deteccion optica de signos vitales y dispositivo de medicion.
US7993275B2 (en) 2006-05-25 2011-08-09 Sotera Wireless, Inc. Bilateral device, system and method for monitoring vital signs
US9149192B2 (en) 2006-05-26 2015-10-06 Sotera Wireless, Inc. System for measuring vital signs using bilateral pulse transit time
JP5441715B2 (ja) 2007-01-31 2014-03-12 タリリアン レーザー テクノロジーズ,リミテッド 光パワー変調
US8469895B2 (en) 2007-06-07 2013-06-25 Healthstats International Pte Ltd Deriving central aortic systolic pressure and analyzing arterial waveform data to derive central aortic systolic pressure values
JP2012507341A (ja) 2008-11-04 2012-03-29 ヘルススタッツ インターナショナル ピーティーイー リミテッド 血圧を測定する方法および血圧測定装置
US20110132393A1 (en) * 2009-12-08 2011-06-09 White Mark Nicholas Arrangement for dispensing dental floss

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018162A1 (ko) * 2010-08-06 2012-02-09 한국광기술원 광센서를 이용한 맥진기

Also Published As

Publication number Publication date
WO2008094340A3 (en) 2008-10-30
TWI429416B (zh) 2014-03-11
CA2676970A1 (en) 2008-08-07
US8111953B2 (en) 2012-02-07
US8467636B2 (en) 2013-06-18
AU2007345597A1 (en) 2008-08-07
TW200838472A (en) 2008-10-01
CN102519500B (zh) 2015-08-12
US20130324860A1 (en) 2013-12-05
EP2111532A2 (en) 2009-10-28
US20080181556A1 (en) 2008-07-31
MY159916A (en) 2017-02-15
CN101646924B (zh) 2011-11-16
BRPI0721198B1 (pt) 2019-07-30
JP5441715B2 (ja) 2014-03-12
US20110021931A1 (en) 2011-01-27
HK1138365A1 (en) 2010-08-20
US7822299B2 (en) 2010-10-26
MY146999A (en) 2012-10-15
US20120130260A1 (en) 2012-05-24
EP2111532B1 (en) 2012-10-31
CN101646924A (zh) 2010-02-10
JP2010517617A (ja) 2010-05-27
ES2396258T3 (es) 2013-02-20
CN102519500A (zh) 2012-06-27
US7463796B2 (en) 2008-12-09
BRPI0721198B8 (pt) 2021-06-22
HK1170563A1 (zh) 2013-03-01
WO2008094340A2 (en) 2008-08-07
BRPI0721198A2 (pt) 2014-03-18
MX2009008082A (es) 2009-12-14
US9277868B2 (en) 2016-03-08
AU2007345597B2 (en) 2014-01-16
CA2676970C (en) 2016-10-11
US20080183053A1 (en) 2008-07-31
US7657135B2 (en) 2010-02-02
US20090073461A1 (en) 2009-03-19
KR101486405B1 (ko) 2015-01-26

Similar Documents

Publication Publication Date Title
KR101486405B1 (ko) 광 파워 변조
EP2023805B1 (en) Optical vital sign detection method and measurement device
US20080071180A1 (en) Vital Sign Detection Method and Measurement Device
AU2014200060B2 (en) Optical vital sign detection method and measurement device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180108

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190109

Year of fee payment: 5