KR20090100998A - 인유두종바이러스 바이러스 유사 입자의 생산 및 정제 방법 - Google Patents

인유두종바이러스 바이러스 유사 입자의 생산 및 정제 방법 Download PDF

Info

Publication number
KR20090100998A
KR20090100998A KR1020080026586A KR20080026586A KR20090100998A KR 20090100998 A KR20090100998 A KR 20090100998A KR 1020080026586 A KR1020080026586 A KR 1020080026586A KR 20080026586 A KR20080026586 A KR 20080026586A KR 20090100998 A KR20090100998 A KR 20090100998A
Authority
KR
South Korea
Prior art keywords
hpv
protein
hpv type
yeast
type
Prior art date
Application number
KR1020080026586A
Other languages
English (en)
Other versions
KR100959145B1 (ko
Inventor
김홍진
김형진
박민아
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Priority to KR1020080026586A priority Critical patent/KR100959145B1/ko
Publication of KR20090100998A publication Critical patent/KR20090100998A/ko
Application granted granted Critical
Publication of KR100959145B1 publication Critical patent/KR100959145B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • B01D15/36Selective adsorption, e.g. chromatography characterised by the separation mechanism involving ionic interaction
    • B01D15/361Ion-exchange
    • B01D15/362Cation-exchange
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/18Ion-exchange chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/30Extraction; Separation; Purification by precipitation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/36Extraction; Separation; Purification by a combination of two or more processes of different types
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/20011Papillomaviridae
    • C12N2710/20051Methods of production or purification of viral material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 생산 수율을 현저히 향상시킬 수 있는 다음의 단계를 포함하는 인인유두종바이러스(human papillomavirus, HPV) 바이러스 유사 입자(virus-like particles, VLPs)의 생산 및 정제 방법에 관한 것이다: (a) HPV L1 단백질을 발현하는 형질전환 효모(yeast)를 배양하는 단계; (b) 상기 배양된 효모를 용해(lysis)하는 단계; (c) 상기 효모 용해물(lysate)에 암모늄 설페이트(ammonium sulfate)를 첨가하여 단백질을 침전시키는 단계; (d) 상기 단백질 침전물에 대해 크기-배제 크로마토그래피(size-exclusion chromatography)를 수행하는 단계; 및 (e) 상기 크기-배제 크로마토그래피 분획물에 대해 양이온 교환 크로마토그래피(cation-exchange chromatography)를 행하는 단계. 본 발명의 방법을 HPV L1 단백질의 파일럿 및 산업적 규모의 생산 및 정제에 적용하면 단백질 생산에 요구되는 시간, 제조비용 및 노동력을 크게 절감시킬 수 있는 효과가 있다.
인유두종바이러스(HPV), 바이러스 유사입자(VLPs), L1 단백질, 단백질 생산 및 정제, 암모늄 설페이트 침전, 생산 수율

Description

인유두종바이러스 바이러스 유사 입자의 생산 및 정제 방법{Process for Producing and Purifying Human Papillomavirus Virus-Like Particles}
본 발명은 생산 수율이 증가된 인유두종바이러스(human papillomavirus, HPV) 바이러스 유사 입자(virus-like particles, VLPs)의 생산 및 정제 방법에 관한 것이다.
인유두종바이러스(human papillomavirus, HPV)는 세계적으로 여성암으로 인한 사망원인 중 두 번째를 기록하고 있다[1]. HPV DNA는 자궁경부암에서 99% 확률로 검출되고 있어서[1, 2], HPV는 자궁경부암의 주요 원인으로 간주되고 있다[3]. HPV 타입(type) 16은 자궁경부암에서 50-60 %의 확률로 발견되고[4-6], HPV 타입 16 감염은 자궁경부암의 전개에 있어서 가장 중요한 위험 인자로 간주되고 있다[7, 8]. HPV는 DNA 서열의 상동성에 근거하여 현재 약 70 가지 타입이 확인되어 있다. HPV의 지놈(genome)의 ORFs(open reading frames)는 E1-E7, L1 및 L2 유전자로 명명되어 있고 "E" 는 초기(early)를 지칭하며, "L"는 후기(late)를 지칭한다. E 유전자는 바이러스의 복제 및 세포 형질전환(cellular transformation)과 같은 기능과 관련되어 있고, L1 및 L2 유전자는 바이러스의 캡시드(capsid) 단백질을 인코딩한다. 인유두종 바이러스(HPV) 비리온(virion)은 캡시드 단백질 L1 및 L2로 구성된다[9, 10]. L1 단백질은 자기-조립(self-assemble)성 특성을 가져서 자연의 HPV 비리온과 구조적으로 흡사한 바이러스-유사 입자(virus-like particles, VLPs)를 형성할 수 있다[3]. VLPs는 상업적 목적의 훌륭한 백신 후보물질로 사용될 수 있다. HPV L1 VLPs 백신은 예방 효율이 높고 좋은 안전성 프로파일을 갖는다[11]. HPV VLPs는 이미 포유동물, 곤충, 효모(yeast) 및 박테리아 세포에서 발현되는 것으로 확인되었고, 자궁경부암을 예방하기 위한 선도적 후보 백신으로 사용되고 있다 [12-15].
효모를 이용한 발현 시스템은 비용-절감적 백신 개발 및 대규모 발효기 배양에의 응용 적합성 등의 이점이 있다; 또한, 박테리아 및 동물세포 발현 시스템에 비해 독소 또는 감염성 바이러스에 의한 감염 가능성이 낮다[16-18]. 생화학적 특성 분석 및 진단 테스트 기술 개발에서는 상당한 양의 VLPs가 필요하다[19]. 그러나, 효모 발현 시스템에서 재조합 단백질의 생산성은 여러 가지 인자에 의해 제한을 받는다[20-22]. 또한, 타깃 단백질의 대부분의 양이 정제 과정 동안에 소실된다[23, 24]. 효모로부터 생산된 HPV 16 L1 VLP 백신이 2006년 FDA에 의해 승인되었지만, 효모 발현 시스템내에서 HPV L1 단백질에 대한 최적의 생산 및 정제 조건에 대한 연구는 계속되고 있다 [25].
HPV L1 단백질은 다양한 배양 조건하의 효모 발현 시스템내에서 발현되었다. Cook et al. 과 Mach et al. 은 효모 발현시스템에서 2% 글루코오스(glucose) 및 4% 갈락토오스(galactose)를 사용하였고[16,26], Kim et al.은 2% 글루코오스를 사용하였으며[14], Buonamassa et al.은 4% 글루코오스를 사용하였고 [27], Hofmann et al.은 2% 갈락토오스를 사용하였다[9]. 그러나, 생산성에 대한 탄소원의 효과에 대해서는 정확하게 연구되어 있지 않다. 또한, HPV L1은 다수의 다른 공정에 의해 정제할 수 있다[3, 16, 27, 28]. 효모 세포 파쇄물 상등액은 수크로오스 쿠션을 사용한 초원심분리(ultracentrifugation)에 의해 분획된다[3, 9, 14, 27-31]. 그러나, 이 공정은 원심분리에 1.5-10 시간이 요구되는 단점을 갖고 있다[3, 9, 14, 27-29, 31]. 이러한 단점에도 불구하고, 더 효율적인 방법이 아직 개발되어 있지 않다. 종래의 연구에서, 크기-배제 크로마토그래피 및 양이온-교환 크로마토그래피가 L1 정제에 대해 자주 사용되어 왔으나[14, 16, 26, 31, 32], 이러한 정제 방법에 의해 회수율(recovery)이 어느 정도인지는 알려져 있지 않다.
본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
본 발명자들은 인유두종바이러스(human papillomavirus, HPV)에 대한 백신 제조 용도의 HPV 바이러스 유사 입자(virus-like particles, VLPs)의 효모 발현시스템을 이용한 생산 공정에서 HPV VLPs의 생산 수율을 증가시킬 수 있는 배양 및 정제 조건에 대해 연구하였다. 그 결과, HPV L1 단백질 발현 재조합 벡터로 형질전환된 효모 세포 배양시 탄소원으로 글루코오스 및 갈락토오스를 혼합 사용하면 HPV L1 단백질의 발현량을 극대화할 수 있고, HPV L1 단백질 정제 과정에서 암모늄 설페이트(ammonium sulfate)에 의한 침전 방법과 크로마토그래피(chromatography) 정제 방법을 조합 사용하면 HPV L1 단백질의 정제 효율을 크게 향상시킬 수 있음을 실험적으로 확인함으로써 본 발명을 완성하였다.
따라서, 본 발명의 목적은 인유두종바이러스(HPV) 바이러스 유사입자(VLPs)의 생산 수율을 크게 향상시킬 수 있는 HPV VLPs 의 생산 및 정제 방법을 제공하는 것에 있다.
본 발명의 목적 및 장점은 하기의 발명의 상세한 설명, 청구의 범위 및 도면에 의해 보다 명확하게 된다.
본 발명의 일 양태에 따르면, 본 발명은 다음의 단계를 포함하는 인유두종 바이러스(human papillomavirus, HPV) L1 단백질의 제조 및 정제 방법을 제공한다: (a) HPV L1 단백질을 발현하는 형질전환 효모(yeast)를 배양하는 단계; (b) 상기 배양된 효모를 용해(lysis)하는 단계; (c) 상기 효모 용해물(lysate)에 암모늄 설페이트(ammonium sulfate)를 첨가하여 단백질을 침전시키는 단계; (d) 상기 단백질 침전물에 대해 크기-배제 크로마토그래피(size-exclusion chromatography)를 수행하여 HPV L1 단백질을 정제하는 단계; 및 (e) 상기 크기-배제 크로마토그래피 분획물에 대해 양이온 교환 크로마토그래피(cation-exchange chromatography)를 행하여 HPV L1 단백질을 정제하는 단계.
본 발명자들은 인유두종바이러스(human papillomavirus, HPV)에 대한 백신 제조 용도의 HPV 바이러스 유사 입자(virus-like particles, VLPs)의 효모 발현시스템을 이용한 생산 공정에서 HPV VLPs의 생산 수율을 증가시킬 수 있는 배양 및 정제 조건에 대해 연구하였다. 그 결과, HPV L1 단백질 발현 재조합 벡터로 형질전환된 효모 세포 배양시 탄소원으로 글루코오스 및 갈락토오스를 혼합 사용하면 HPV L1 단백질의 발현량을 극대화할 수 있고, HPV L1 단백질 정제 과정에서 암모늄 설페이트(ammonium sulfate)에 의한 침전 방법과 크로마토그래피(chromatography) 정제 방법을 조합 사용하면 HPV L1 단백질의 정제 효율을 크게 향상시킬 수 있음을 실험적으로 확인함으로써 본 발명을 완성하였다.
이하 각 단계에 따라 본 발명을 상세하게 설명한다.
(a) HPV L1 단백질을 발현하는 형질전환된 효모(yeast)를 배양하는 단계
본 발명의 명세서에서 용어 "HVP L1 단백질"은 HPV의 L1 유전자로부터 발현 되는 것으로서 HPV의 캡시드(capsid)를 구성하는 주요(major) 단백질을 의미한다. L1 단백질은 캡시드를 구성하는 다른 마이너(minor) 단백질인 L2 단백질과 함께 또는 L1 단백질 단독으로 적합한 조건하에서 바이러스 유사 입자(Virus-Like Particles, VLPs)로 자기조립(self-assemble)되는 특성을 갖는다.
유두종바이러스(Papillomavirus)는 최대 8 개의 초기(early, E) 및 2 개의 후기(late, L) 유전자를 갖고, 50-60 nm의 크기이며, 엔벨로프가 없고, 정20면체(icosahedral)의 DNA 지놈 바이러스이다. 유전자 E에서 "E" 는 초기(early)를 의미하며, 유전자 L에서 "L"은 후기(late)를 의미한다. E 유전자는 바이러스 복제 및 형질전환(transformation)의 기능에 관련된 유전자이다. L1 및 L2 유전자는 바이러스 캡시드 단백질을 인코딩한다. L1 단백질은 주요 캡시드 단백질이고, 55-60 kDa의 분자량을 갖는다. L2 단백질은 55-60 kDa의 예측 분자량 및 75-100 kDa의 PAGE에 의해 측정되는 겉보기 분자량를 갖는 마이너(minor) 캡시드 단백질이다.
본 발명의 방법에서 L1 단백질이 유래되는 인유두종바이러스(HPV)의 타입(type)은 특별히 한정되지 않으며, HPV 타입 6a, HPV 타입 6b, HPV 타입 11, HPV 타입 16, HPV 타입 18, HPV 타입 31, HPV 타입 33, HPV 타입 35, HPV 타입 39, HPV 타입 45, HPV 타입 51, HPV 타입 52, HPV 타입 56, HPV 타입 58 및 HPV 타입 68 등을 예로 들 수 있으나, 이에 한정되지 않는다. 바람직하게는 본 발명의 L1 단백질은 HPV 타입 6a, HPV 타입 6b, HPV 타입 11, HPV 타입 16, HPV 타입 18, HPV 타입 31, HPV 타입 33 및 HPV 타입 45로 이루어지는 군으로부터 선택되는 HPV 로부터 유래된 것이며, 보다 바람직하게는 HPV type 16의 L 1 단백질이다.
본 발명에서 숙주세포(host cell)로 이용되는 세포는 효모(yeast)이며, 예를 들어, 빵효모(baker's yeast), 사카로마이세스 세레비지에(Saccharomyces cerevisiae), 사카로마이세스 파스토리아누스(Saccharomyces pastorianus), 사카로마이세스에스피.(Saccharomycessp,), 쉬조사카로마이세스폼베(Schizosaccharomyces pombe) 등을 사용할 수 있으나 이에 한정되지 않는다. 가장 바람직하게는 본 발명의 숙주 효모는 사카로마이세스 세레비지에(Saccharomyces cerevisiae)이다.
본 발명의 HPV L1 단백질을 발현하는 형질전환 효모(transformed yeast)는 HPV L1 단백질을 성공적으로 발현시키는 발현 벡터(expression vector)로 형질전환된 효모 세포를 의미한다. 상기 발현 벡터는 당업계에 공지된 전사(transcription) 또는 트랜스레이션(translation) 조절 요소, 다른 마커 유전자(marker gene)을 포함할 수 있다. 본 발명의 HPV L1 단백질 발현 형질전환된 효모(transformed yeast)는 당업계에 공지된 방법을 사용하여 용이하게 제조할 수 있으며, 이러한 방법은 미국특허 Pat. Nos. US 7250170, US 6613557, US 5888516, US 5871998, US 5618536, US5437951 등에 개시되어 있고, 이들 특허 문헌의 내용은 본 명세서에 참조로써 포함된다.
본 발명의 바람직한 구현예에 의하면, HPV L1 단백질 발현 형질전환 효모를 탄소원이 배지 100㎖에 대해 2g 초과 5 g이하의 함량으로 포함된 배지에서 배양한다. 바람직하게는 상기 탄소원은 배지 100㎖에 대해 3-5g의 함량으로 포함되며, 보다 바람직하게는 3.5-5g, 보다 더 바람직하게는 3.5-4.5g, 가장 바람직하게는 4g의 함량으로 포함된다.
본 발명의 특징은 본 발명의 방법에서 HPV L1 단백질 발현 형질전환 효모를 탄소원 함량이 배지 100㎖에 대해 2g을 초과하여 함유된 배지에서 배양하면 HPV L1 단백질의 발현량이 현저히 증가한다는 것을 발견한 것에 있다.
본 발명의 다른 바람직한 구현예에 의하면, 상기 형질전환 효모는 탄소원으로서 글루코오스(glucose) 및 갈락토오스(galactose) 중 하나 이상의 탄소원이 첨가된 배지에서 배양한다.
본 발명의 또 다른 바람직한 구현예에 의하면, 상기 글루코오스와 갈락토오스의 비율은 중량기준으로 글루코오스 : 갈락토오스 = 0-1 : 3-4 이고, 보다 바람직하게는 중량기준으로 글루코오스 : 갈락토오스 = 0.5-1 : 3.5-4이고, 가장 바람직하게는 글루코오스 : 갈락토오스 = 1 : 3 이다. 본 발명의 방법에서 배지에 함유된 글루코오스와 갈락토오스의 중량 비율이 상기와 같은 범위에 있는 경우 HPV L1 단백질의 발현이 최대로 된다.
(b) 상기 배양된 효모를 용해(lysis)시키는 단계
본 발명에서 배양된 효모 세포의 용해 방법은 효모 세포의 전체 용해물(lysate)을 얻을 수 있는 방법이면 좋고, 특정한 방법으로 한정되지 않는다. 본 발명에 사용될 수 있는 용해 방법은 예를 들어, 소니케이션(sonication), 유리 비드(glass beads)에 의한 파쇄를 이용하는 방법이 있으나, 이에 한정되지 않는다.
(c) 상기 효모 용해물에 암모늄 설페이트(ammonium sulfate)를 첨가하여 단 백질을 침전시키는 단계
HPV L1 단백질이 발현된 형질전환 효모 세포의 용해물에 암모늄 설페이트를 첨가하여 발현된 HPV L1 단백질을 포함하는 단백질을 침전시킨다.
본 발명의 가장 큰 특징은 종래에 사용하던 수크로오스 쿠션(sucrose cushion)이 구비된 초원심분리(ultracentrifugation) 방법 대신 암모늄 설페이트를 첨가하여 발현 HPV L1 단백질의 침전물을 얻는 것에 있다. 본 발명의 방법에서 암모늄 설페이트 첨가법에 의하면 종래의 초원심분리 방법에 비해 HPV L1 단백질의 회수율을 놀랍게 향상시킬 수 있다.
본 발명의 바람직한 구현예에 의하면, 상기 첨가되는 암모늄 설페이트의 농도는 40-50 중량%이고, 보다 바람직하게는 45-50 중량%이다. 암모늄 설페이트의 농도가 40 중량% 미만이면, 본 발명에서 발현된 HPV L1 단백질의 침전 효율이 떨어지고, 50 중량% 초과이면 암모늄 설페이트 증가 만큼의 L1 단백질 침전 증가 효과를 얻을 수 없다.
(d) 상기 단백질 침전물에 대해 크기-배제 크로마토그래피(size-exclusion chromatography)를 행하여 HPV L1 단백질을 정제하는 단계
본 발명의 방법에서 암모늄 설페이트를 첨가하여 침전시킨 단백질 침전물에 대해 적합한 조건하에서 크기-배제 크로마토그래피를 수행하여 HPV L1 단백질을 정제한다. HPV L1 단백질을 포함하는 용출 분획은 SDS-PAGE 및 웨스턴 블로팅(western blotting)에 의해 확인할 수 있다.
(e) 상기 크기-배제 크로마토그래피의 HPV L1 단백질 분획물에 대해 양이온 교환 크로마토그래피(cation-exchange chromatography)를 행하여 HPV L1 단백질을 정제하는 단계
본 발명의 방법에서 크기-배제 크로마토그래피를 수행하여 얻어진 HPV L1 단백질 분획물에 대해 양이온 교환 크로마토그래피를 행하여 HPV L1 단백질을 더욱 정제한다. 크기-배제 크로마토그래피에 의한 정제 단계에 이어서, 양이온 교환 크로마토그래피를 행하면 암모늄 설페이트 침전방법에 의해 발생되는 오염물질을 매우 효과적으로 제거할 수 있다.
본 발명의 바람직한 구현예에 의하면, 양이온 교환 크로마토그래피를 행하는 단계에서 세정 버퍼(wash buffer)로서 0.4-0.8 M의 NaCl을 포함하는 버퍼를 사용한다. 세정 버퍼에 포함되는 NaCl의 농도는 보다 바람직하게는 0.5-0.7 M 이고, 가장 바람직하게는 0.6 M 이다. 0.4 M 미만 농도의 NaCl을 포함하는 세정 버퍼를 사용하면 최종 용출 분획물에서 오염물질이 바람직한 수준으로 제거되지 않고, 0.8 M 초과 농도의 NaCl을 포함하는 세정 버퍼를 사용하면 HPV L1 단백질이 세정 단계에서 용출될 우려가 있다.
본 발명의 다른 바람직한 구현예에 의하면, 양이온 교환 크로마토그래피를 행하는 단계에서 활성화 버퍼용액은 0.01-0.3 M의 NaCl을 포함한다. 보다 바람직하게는 상기 활성화 버퍼용액은 0.05-0.2 M의 NaCl을 포함한다.
본 발명의 또 다른 바람직한 구현예에 의하면, 양이온 교환 크로마토그래피 를 행하는 단계에서 용출 버퍼용액은 0.9-1.3 M의 NaCl을 포함한다. 보다 바람직하게는 상기 용출 버퍼용액은 1.0-1.2 M의 NaCl을 포함한다.
본 발명은 인유두종바이러스 바이러스 유사 입자(VLPs)의 생산 및 정제 방법에 관한 것이다. 본 발명의 방법에서 HPV L1 단백질 발현 재조합 벡터로 형질전환된 효모세포 배양 과정에서 탄소원으로 글루코오스 및 갈락토오스를 혼합 사용하면 HPV L1 단백질의 발현량을 극대화할 수 있고, HPV L1 단백질 정제 과정에서 암모늄 설페이트 침전방법과 크로마토그래피 방법을 조합하여 사용하면 HPV L1 단백질의 정제 효율을 크게 향상시킬 수 있다. 본 발명의 방법을 HPV L1 단백질의 파일럿 및 산업적 규모로 생산 및 정제에 적용하면 단백질 생산에 요구되는 시간, 제조비용 및 노동력을 크게 절감시킬 수 있는 효과가 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
실험재료 및 실험방법
효모(yeast)에서 HPV16 L1 단백질의 발현
HPV 16 L1 단백질 생성 형질전환 효모 균주는 이미 보고된 방법에 따라 플라스미드 YEGα-HPV 16 L1으로 형질전환(transformation)된 S. cerevisiae Y2805 균주를 사용하여 제조하였다[14, 33].
방해판(baffle)이 부착된 플라스크에 우라실(uracil)이 없는 합성 완전 배지 SD-ura에 상기 제조한 효모 균주 세포를 접종하고, 30℃에서 진탕 배양하였다. GAL10 프로모터로부터 HPV16 L1 단백질을 발현시키기 위해, YPDG 배지를 사용하였다. HPV 16 L1 단백질 생산에 대한 탄소원의 효과를 조사하기 위해, 네 가지의 상이한 YPDG 배지를 제조하였다: 배지 1 (1% 글루코오스, 1% 갈락토오스), 배지 2 (0% 글루코오스, 4% 갈락토오스), 배지 3 (0.5% 글루코오스, 3.5% 갈락토오스) 및 배지 4 (1% 글루코오스, 3% 갈락토오스) (상기 1% 글루코오스는 배지 100ml에 대해 1g의 글루코오스가 포함된 배지를 의미하며, 다른 탄소원 성분의 %도 동일한 의미이고, 이하 동일한 의미로 사용한다). 모든 배지에 1% 효모추출액(yeast extract) 및 2% 펩톤(DIFCO Laboratories, USA)을 첨가하였다. YPDG 배지 3 리터에 플라스미드 YEGα-HPV16 L1를 갖는 S. cerevisiae 균주로 접종한 후 30 ℃에서 48 시간 동안 진탕 배양하였다.
세포 용해물(Cell Lysate)의 제조
배양한 세포들을 펠릿으로 수득하고, 수득된 세포 펠릿을 70 ℃에서 냉동시켰다. 모든 후속 과정은 4 ℃에서 수행하였다. 세포 펠릿을 녹이고 얼음-냉각시 킨 100 ㎖ 브레이크 버퍼(break buffer)(20 mM sodium phosphate, pH 7.2, 100 mM NaCl, 1.7 mM EDTA)에 재현탁시키고, 프로테아제 저해제 칵테일 정제(Roche, USA)를 첨가하였다. 세포들을 유리 비드(Sigma, USA)와 함께 비드-비터(Bead-Beater)(Biospec Products, USA)의 챔버로 옮기고, 5 분간 흔든 후에, 용해물(lysate)들을 4 ℃에서 10 분간 6000 g에서 원심분리하여 맑게 제거하였다[14, 31].
수크로오스 쿠션(sucrose cushion)을 사용한 초원심분리
맑게 제거된 용해물을 브레이킹 버퍼(breaking buffer) (20 mM sodium phosphate, pH 7.2, 100 mM NaCl, 1.7 mM EDTA)내의 45% 또는 40% 수크로오스 쿠션위에 층상으로 로딩(loading)하고, 25,000 rpm에서 10시간 또는 6시간 초원심분리하여 펠릿을 수득하였다(표 1). 펠릿을 0.01% Tween 80 으로 브레이킹 버퍼내에서 재현탁시켰다.
암모늄 설페이트(ammonium sulfate) 침전
맑게 제거된 세포 용해물에 암모늄 설페이트(Sigma, USA)를 첨가하여 HPV L1 단백질을 회수하였다. 회수 효율(recovery efficiency)을 평가하기 위해, 암모늄 설페이트를 40 중량%, 45 중량% 및 50 중량%의 농도로 첨가한 후, 각각 4 ℃에서 30 분간 교반하고, 12,000g에서 10 분간 원심분리하였다. 단백질 펠릿을 수득하였다.
크기-배제 크로마토그래피( size - exclusion chromatography )
암모늄 설페이트 침전물로부터의 펠릿을 PBS/EDTA 버퍼 (6.25 mM sodium phosphate, pH 7.2, 150 mM NaCl, 1 mM EDTA)내에서 재현탁시키고, 동일한 버퍼에 대해 4 ℃에서 3 시간 동안 투석(dialyze)하고, SephacrylTM S-1000 레진(Amersham Pharmacia, Sweden)으로 로딩한 1.0 cm × 100 cm Glass Econo-column (Bio-Rad Laboratories Inc., USA)을 사용하여 크기-배제 크로마토그래피를 수행하였다.
이 컬럼에 대한 러닝 버퍼(running buffer)로는 10 mM sodium phosphate, pH 7.2, 150 mM NaCl, 0.01% Tween 80를 사용하였다. 후술하는 바와 같이 분획물들은 8 ㎖/h에서 컬럼으로부터 회수하였고, 이들의 흡광도를 280 nm에서 측정하였다. HPV 16 L1 단백질을 SDS-PAGE 및 웨스턴 블로팅(western blotting)에 의해 분석하였다.
양이온 교환 크로마토그래피(cation-exchange chromatography)
L1 단백질을 포함하는 분획들을 크기-배제 크로마토그래피로부터 수집하고 결합 버퍼(binding buffer)(20 mM Tris, pH 7.2, 0.1 M NaCl, 0.1 mM EDTA, 5% 글리세롤, 15 mM 2-머캅토에탄올)로 4 ℃에서 평형을 유지하였다. 평형이 유지된 샘플들을, 미리 4 ℃에서 결합 버퍼와 평형을 유지시켜 놓은 P-11 cationic phosphocellulose (Whatman, UK)로 로딩된 8 cm X 4 cm Poly-Prep column (Bio-Rad Lab., USA)상에서 분획하였다. 컬럼을 표 1에 기재된 정제방법에 따라, (결합 버퍼에 기초한) 0.35 M NaCl 을 포함하는 세정 버퍼(washing buffer) 또는 (결합 버퍼에 기초한) 0.6 M NaCl 을 포함하는 세정 버퍼를 사용하여 컬럼의 5 배 부피로 세정하였다; HPV 16 L1 단백질은 (결합 버퍼에 기초한) 1.1 M NaCl 을 포함하는 용출 버퍼(elution buffer)로 용출(elution)시켰다.
SDS - PAGE 웨스턴 블로팅
Laemmli의 방법에 따라 소디엄 도데실 설페이트의 존재하에서 12.5% PAGE에 의해 모든 샘플들을 분석하였다 [34]. HPV 16 L1를 포함하는 샘플들을 120 mA에서 100 분간 PVDF 막(Q-Biogene, USA)으로 전달시키고, L1 단백질을 1차 항체로서 마우스 항-HPV 16 L1 항체(Camvir-1; Chemicon Interna-tional Inc., USA)로, 2차 항체로서 고우트(goat) 항-마우스 IgG-HRP 컨쥬게이트(Sigma, USA)를 사용하여 검출하였다. 단백질들은 웨스턴 블로팅 루미놀 시약(Santa Cruz Biotechnology, USA)을 사용하여 시각화하고, HPV 16 L1 밴드 밀도는 Scion Image (Scion Corporation, USA)로 측정하였다[35].
단백질 농도의 결정
단백질은, 표준물질로서 소 혈청 알부민(bovine serum albumin)(Sigma, USA)과 브래드포드(Bradford) 단백질 분석 시약(Bio-Rad Laboratories, USA)를 사용하여 분석하였다.
ELISA
VLP 항원은 VLPs에 대해 특이적인 VLP의 구조적 에피토프를 인지하는 모노클로날 항체를 사용하여 다층(multi-layer) ELISA에 의해 분석하였다. ELISA 플레이트를 4 ℃에서 PBS안의 모노클로날 마우스 항-HPV 16 L1 항체 (Camvir-1; Chemicon International Inc., USA)로 100ng/웰의 농도로 코팅하고, 세정 버퍼(PBS-T; 0.05% Tween 20 in PBS)로 3회 세정하고, 상온에서 PBS-T안의 3% BSA 으로 1 시간 동안 블로킹하였다. 흡착되지 않은 단백질들은 세정하여 제거하고 표준 및 테스트 샘플을 0.3% (w/v) BSA를 포함하는 PBS-T로 희석한 후, 플레이트를 37 ℃에서 2 시간 동안 인큐베이션하였다. 이후에, PBS-T로 세정하고 폴리클로날 래빗 항--HPV 16 L1 항체(Merck, West Point, PA)를 웰에 첨가하고, 플레이트를 37 ℃에서 30 분간 인큐베이션하였다. 세정 후, 고우트 항-래빗 IgG-HRP 컨쥬게이트를 웰에 첨가하고, 37 ℃에서 30 분간 인큐베이션하였다. 색 반응은 o-페닐렌디아민(o-phenylenediamine) (Sigma, USA)을 사용하여 행하였고, 492 nm에서 측정하였다.
전자 현미경
정제한 HPV 16 L1 단백질을 5 ℃ 에서 PBS에 대해 3 시간 동안 투석하고, 카본-코팅된 그리드에 흡착시킨 후, 2 % 포스포텅스텐산(phosphotungstic acid)으로 네가티브 염색하였다. 투과 전자 현미경 사진은 41,000 X 의 최종배율에서 TEM200CX를 사용하여 촬영하였다[14].
실험 결과
탄소원에 대한 HPV 16 L1 단백질의 생산성 의존도
탄소원에 대한 HPV 16 L1 단백질의 생산성 의존도를 연구하기 위해, 총 탄소원의 비율을 2% 내지 4%로 변화시킴과 동시에 글루코오스(glucose)와 갈락토오스(galactose)의 비율을 달리하여 L1 단백질 생산성을 조사하였다.
도 1에 나타낸 바와 같이, 웨스턴 블로팅에 의해 HPV 16 L1 단백질을 분석한 결과, 4% 탄소원에서의 HPV 16 L1 생성량이 2% 탄소원에서의 생성량 보다 약 2.2배 내지 2.7배 증가함을 확인하였다. ELISA를 이용하여 얻은 결과에서도 유사한 차이를 보였다(데이터는 제시하지 않음).
최적의 탄소원 혼합 비율은 1% 글루코오스 및 3% 갈락토오스이었다; 1 % 글루코오스 및 3 % 갈락토오스에서의 밴드 밀도는 4% 갈락토오스에 비해 23 % 높았다(도 1 참조).
이러한 결과는 탄소원의 총 함량 비율 뿐만 아니라 갈락토오스에 대한 글루코오스의 비율도 효모 발현 시스템에서의 HPV 16 L1 단백질의 생산에 중요한 요소라는 것을 암시하는 것이다.
수크로오스 쿠션( sucrose cushion )을 사용한 초원심분리
수크로오스 쿠션내에서 수크로오스 비율에 대한 HPV 16 L1 단백질의 회수(recovery) 의존도를 비교하였다. 종래에는 초원심분리시에 다양한 수크로오스 의 비율(30-65%) 및 다양한 원심분리 시간(1.5-10 시간)하에 사용하였다[3, 9, 12, 14, 27, 28, 30, 31]. 표 1에서 보여지는 바와 같이, 6 시간 동안 40% 수크로오스 쿠션을 사용한 초원심분리 방법(방법 b)의 회수율은 27%인 반면, 10 시간 동안 45% 수크로오스 쿠션을 사용한 초원심분리 방법(방법 a)의 회수는 18.1%이었다 (표 1 참조). 그러나, 방법 (a)를 사용하여 얻은 L1의 순도는 방법 (b)를 사용하여 얻은 경우의 순도 보다 높았다. 따라서, 수크로오스의 비율이 높을수록 순도는 증가하였으나 회수율은 감소함을 확인하였다.
암모늄 설페이트 침전(ammonium sulfate precipitation)
사용한 암모늄 설페이트 비율에 대한 HPV 16 L1 단백질의 회수율(recovery) 의존도를 검사하였다. 40%, 45%, 및 50%의 암모늄 설페이트를 사용한 경우 펠릿 및 상등액내에서의 HPV 16 L1 단백질의 존재를 SDS-PAGE 및 웨스턴 블로팅에 의해 분석하였다.
40 중량% 암모늄 설페이트의 상등액에서는 소량의 HPV 16 L1 단백질이 검출되었으나, 45 중량% 및 50 중량% 암모늄 설페이트의 상등액내에서는 L1 단백질이 전혀 검출되지 않았다. 45 중량% 및 50 중량% 암모늄 설페이트를 사용한 경우 펠릿은 거의 대부분의 HPV L1 단백질을 포함하고 있었다(도 4 참조).
암모늄 설페이트 침전법(방법 (c))의 회수율은 78.3%인 반면, 초원심분리법 (방법 (a) 및 (b))를 사용한 회수율은 각각 18.1% 및 27%이었다(표 1). 이러한 결과들은 45% 암모늄 설페이트가 세포 용해물로부터 L1 단백질을 회수하는데 최적 의 방법이라는 것과 암모늄 설페이트 침전법이 수크로오스 쿠션을 사용한 초원심분리법 보다 더욱 효과적이라는 것을 나타낸다.
크기-배제 크로마토그래피(size-exclusion chromatography)
재현탁시킨 단백질 펠릿을 SephacrylTM S-1000 사이즈 컬럼을 사용하여 크기-배제 크로마토그래피를 수행하였다. 부분적으로 정제한 HPV 16 L1 단백질을 약 56 ㎖의 러닝 버퍼를 사용하여 단일 대칭 피크에서 용출시켰다. 얻어진 분획물을 280 nm 에서 검사하였고, SDS-PAGE 및 웨스턴 블로팅에 의해 분석하였다. L1 단백질(55.9 kDa)은 분획 42-74 에서 검출되었고, 표 1에 나타낸 다양한 정제 단계를 거친 모든 경우에서 유사한 용출 프로파일을 보였다(데이터 제시하지 않음). 분획 42-56에서의 HPV 16 L1의 순도는 분획 56-70에서의 것보다 높았다.
양이온-교환 크로마토그래피(cation-exchange chromatography)
크기-배제 크로마토그래피로부터의 분획 42-54 또는 모든 활성 분획을 합치고, 이를 방법 (a), (b) 및 (c)(표 1)에 따라 0.1 M NaCl을 포함하는 평형 버퍼를 사용한 Poly-Prep 양이온-교환 컬럼 크로마토그래피를 수행하였다. HPV 16 L1 단백질의 회수(recovery)은 SDS-PAGE, ELISA 및 웨스턴 블로팅에 의해 측정하였다. HPV 16 L1 단백질은 세가지 모든 방법에서 1.1 M NaCl에 의해 성공적으로 용출되었다(도 2). 각 경우에서 최종 순도는 98.5-100%이었다(표 1 참조).
방법 (a)에서, 크기-배제 크로마토그래피로부터의 분획 42-54을 수집하고 이미 보고된 방법에 따라 양이온 교환 크로마토그래피를 수행하였다[14]. 방법 (a)에서 로드된 샘플의 순도는 19.2%이었고, 이는 가장 높은 수준의 순도이었으며, 컬럼은 0.35 M NaCl을 포함하는 버퍼로 세정하였다(표 1 참조) [14].
방법 (b) 및 (c)에 의해 얻어진 샘플들은 더욱 많은 오염 물질을 포함하였다(도 2 및 표 1). 따라서, 컬럼을 0.35 M NaCl로 세정한 경우, 방법 (b) 및 (c)에서의 오염물들은 최종 용출 분획물에 여전히 존재하였다(데이터 제시하지 않음). 따라서, 오염물질들을 제거하기 위해 0.6 M NaCl을 포함하는 새로운 세정 버퍼를 사용하였다. 도 2D에서 보여지는 바와 같이, HPV 16 L1 단백질은 0.6 M NaCl에 의한 세정으로 용출되지 않았고, 0.6 M NaCl을 포함하는 세정 버퍼는 크기-배제 크로마토그래피로부터 발생된 오염물질들을 효과적으로 제거함을 확인하였다(도 2D). HPV 16 L1 단백질의 순도는 방법 (c)의 공정에 의해 1%로부터 98.5%까지 증가함을 확인하였다(표 1).
정제된 HPV 16 L1 단백질의 자기조립성(self-assembly)
도 3에 보여지는 바와 같이, 방법 (c)의 공정에 의해 정제된 HPV 16 L1 단백질은 HPV VLPs의 크기와 동등한 크기인 35 nm 내지 64 nm 의 직경(평균 직경 49 nm)을 갖는 VLPs 로 자기조립되었다(도 3), [3, 14, 16, 26]. 따라서, 암모늄 설페이트 침전법에 의해 L1 단백질 정제방법은 VLP 형성에 아무런 영향을 미치지 않았고, 이는 암모늄 설페이트 침전법이 HPV 16 L1 단백질의 정제에 적합하다는 것을 의미한다.
한편, 방법 (a), (b) 및 (c)의 공정에 의한 전체 회수율(recovery)은 각각 1.9%, 10.2% 및 30.6% 이었다(표 1). 암모늄 설페이트를 사용한 경우 L1 단백질의 전체 회수율은 수크로오스 쿠션 초원심분리를 사용한 경우에 비해 최대 15 배 증가함을 확인할 수 있었다. 상기 방법 (c)를 사용함으로써 얻은 30% 회수율은 지금까지 보고된 회수율 중 가장 높은 값이다.
이러한 결과들은 암모늄 설페이트 침전법이 HPV 16 L1 단백질을 회수하는데 있어서 매우 효과적인 방법이며, 이 단계에서 발생되는 오염물들은 후속하는 크기-배제 및 양이온-교환 크로마토그래피 공정을 행함으로써 성공적으로 제거할 수 있음을 보여주고 있다.
[표 1]
Figure 112008020817572-PAT00001
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
참고문헌
[1] P. Pisani, D.M. Parkin, F. Bray, J. Ferlay, Estimates of the worldwide 359 mortality from 25 cancers in 1990, Int. J. Cancer 83 (1999) 18-29. 360
[2] J.M. Walboomers, M.V. Jacobs, M.M. Manos, F.X. Bosch, J.A. 361 Kummer, K.V. Shah, P.J. Snijders, J. Peto, C.J. Meijer, N. Munoz, 362 Human apillomavirus is a necessary cause of invasive cervical cancer 363 worldwide, J. Pathol. 189 (1999) 12-19. 364
[3] K.A. Aires, A.M. Cianciarullo, S.M. Carneiro, L.L. Villa, E. 365 Boccardo, G. Perez-Martinez, I. Perez-Arellano, M.L. Oliveira, P.L. 366 Ho, Production of human papillomavirus type 16 L1 virus-like 367 particles by recombinant Lactobacillus casei cells, Appl. Environ. 368 Microbiol. 72 (2006) 745-752. 369
[4] F.X. Bosch, M.M. Manos, N. Munoz, M. Sherman, A.M. Jansen, J. 370 Peto, M.H. Schiffman, V. Moreno, R. Kurman, K.V. Shah, Preva- 371 lence of human papillomavirus in cervical cancer: a worldwide 372 perspective. International biological study on cervical cancer (IBSCC) 373 Study Group, J. Natl. Cancer Inst. 87 (1995) 796-802. 374
[5] J.T. Bryan, Developing an HPV vaccine to prevent cervical cancer 375 and genital warts, Vaccine 25 (2007) 3001-3006. 376
[6] J.R. Daling, M.M. Madeleine, S.M. Schwartz, K.A. Shera, J.J. 377 Carter, B. McKnight, P.L. Porter, D.A. Galloway, J.K. McDougall, 378 H. Tamimi, A population-based study of squamous cell vaginal 379 cancer: HPV and cofactors, Gynecol. Oncol. 84 (2002) 263-270. 380
[7] L.A. Koutsky, K.A. Ault, C.M. Wheeler, D.R. Brown, E. Barr, F.B. 381 Alvarez, L.M. Chiacchierini, K.U. Jansen, A controlled trial of a 382 human papillomavirus type 16 vaccine, N. Engl. J. Med. 347 (2002) 383 1645-1651. 384
[8] D.M. Harper, E.L. Franco, C. Wheeler, D.G. Ferris, D. Jenkins, 385 A. Schuind, T. Zahaf, B. Innis, P. Naud, N.S. De Carvalho, C.M. 386 Roteli-Martins, J. Teixeira, M.M. Blatter, A.P. Korn, W. Quint, G. 387 Dubin, Efficacy of a bivalent L1 virus-like particle vaccine in 388 prevention of infection with human papillomavirus types 16 and 18 389 in young women: a randomised controlled trial, Lancet 364 (2004) 390 1757-1765.
[9] K.J. Hofmann, J.C. Cook, J.G. Joyce, D.R. Brown, L.D. Schultz, H.A. George, M. Rosolowsky, K.H. Fife, K.U. Jansen, Sequence determination of human papillomavirus type 6a and assembly of virus-like particles in Saccharomyces cerevisiae, Virology 209 (1995) 506-518.
[10] Y. Ishii, K. Kondo, T. Matsumoto, K. Tanaka, F. Shinkai-Ouchi, K. Hagiwara, T. Kanda, Thiol-reactive reagents inhibits intracellular trafficking of human papillomavirus type 16 pseudovirions by binding to cysteine residues of major capsid protein L1, Virol. J. 4 (2007) 110.
[11] J.T. Schiller, D. Nardelli-Haefliger, Chapter 17: second generation HPV vaccines to prevent cervical cancer, Vaccine 24 (Suppl. 3) (2006) S147-S153.
[12] R. Kirnbauer, Papillomavirus-like particles for serology and vaccine development, Intervirology 39 (1996) 54-61.
[13] R.S. Lowe, D.R. Brown, J.T. Bryan, J.C. Cook, H.A. George, K.J. Hofmann, W.M. Hurni, J.G. Joyce, E.D. Lehman, H.Z. Markus, M.P. Neeper, L.D. Schultz, A.R. Shaw, K.U. Jansen, Human papillomavirus type 11 (HPV-11) neutralizing antibodies in the serum and genital mucosal secretions of African green monkeys immunized with HPV-11 virus-like particles expressed in yeast, J. Infect. Dis. 176 (1997) 1141-1145.
[14] S.N. Kim, H.S. Jeong, S.N. Park, H.J. Kim, Purification and immunogenicity study of human papillomavirus type 16 L1 protein in Saccharomyces cerevisiae, J. Virol. Methods 139 (2007) 24-30.
[15] J. Zhou, X.Y. Sun, D.J. Stenzel, I.H. Frazer, Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles, Virology 185 (1991) 251-257.
[16] J.C. Cook, J.G. Joyce, H.A. George, L.D. Schultz, W.M. Hurni, K.U. Jansen, R.W. Hepler, C. Ip, R.S. Lowe, P.M. Keller, E.D. Lehman, Purification of virus-like particles of recombinant human papillomavirus type 11 major capsid protein L1 from Saccharomyces cerevisiae, Protein Expr. Purif. 17 (1999) 477-484.
[17] J.G. Joyce, J.S. Tung, C.T. Przysiecki, J.C. Cook, E.D. Lehman, J.A. Sands, K.U. Jansen, P.M. Keller, The L1 major capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and cell-surface glycosaminoglycans on human keratinocytes, J. Biol. Chem. 274 (1999) 5810-5822.
[18] M.P. Neeper, K.J. Hofmann, K.U. Jansen, Expression of the major capsid protein of human papillomavirus type 11 in Saccharomyces cerevisae, Gene 180 (1996) 1-6.
[19] D. Rolland, F. Raymond, M. Gauthier, C. Fournier, J.P. Charrier, M. Jolivet, P. Dantigny, Strategies for improving production and purification of a recombinant protein: rP30 of Toxoplasma gondii expressed in the yeast Schizosaccharomyces pombe, J. Chromatogr. B Q1 Analyt. Technol. Biomed. Life Sci. (2007).
[20] A.M. Wolff, O.C. Hansen, U. Poulsen, S. Madrid, P. Stougaard, Optimization of the production of Chondrus crispus hexose oxidase in Pichia pastoris, Protein Expr. Purif. 22 (2001) 189-199.
[21] B. Gasser, M. Maurer, J. Rautio, M. Sauer, A. Bhattacharyya, M. Saloheimo, M. Penttila, D. Mattanovich, Monitoring of transcrip-tional regulation in Pichia pastoris under protein production condi-tions, BMC Genomics 8 (2007) 179.
[22] M.H. Toivari, L. Ruohonen, A.N. Miasnikov, P. Richard, M. Penttila, Metabolic engineering of Saccharomyces cerevisiae for conversion of D-glucose to xylitol and other five-carbon sugars and sugar alcohols, Appl. Environ. Microbiol. 73 (2007) 5471-5476.
[23] Y.P. Tan, T.C. Ling, W.S. Tan, K. Yusoff, B.T. Tey, Purification of recombinant nucleocapsid protein of Newcastle disease virus from unclarified feedstock using expanded bed adsorption chromatogra-phy, Protein Expr. Purif. 46 (2006) 114-121.
[24] Y.P. Tan, T.C. Ling, K. Yusoff, W.S. Tan, B.T. Tey, Comparative evaluation of three purification methods for the nucleocapsid protein of Newcastle disease virus from Escherichia coli homogenates, J. Microbiol. 43 (2005) 295-300.
[25] G. Gross, HPV-vaccination against cervical carcinoma: will it really work ? Med. Microbiol. Immunol. 196 (2007) 121-125.
[26] H. Mach, D.B. Volkin, R.D. Troutman, B. Wang, Z. Luo, K.U. Jansen, L. Shi, Disassembly and reassembly of yeast-derived recombinant human papillomavirus virus-like particles (HPV VLPs), J. Pharm. Sci. 95 (2006) 2195-2206.
[27] D.T. Buonamassa, C.E. Greer, S. Capo, T.S. Yen, C.L. Galeotti, G. Bensi, Yeast coexpression of human papillomavirus types 6 and 16 capsid proteins, Virology 293 (2002) 335-344.
[28] H.S. Jeong, J.H. Shin, J.Y. Choi, Y.L. Kim, J.J. Bae, B.G. Kim, S.R. Ryu, S.N. Kim, H.K. Min, H.J. Kim, S.N. Park, Evaluation of viral clearance in the production of HPV-16 L1 virus-like particles purified from insect cell cultures, Biologicals 34 (2006) 273-279.
[29] R. Kirnbauer, J. Taub, H. Greenstone, R. Roden, M. Durst, L. Gissmann, D.R. Lowy, J.T. Schiller, Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles, J. Virol. 67 (1993) 6929-6936.
[30] M.P. McCarthy, W.I. White, F. Palmer-Hill, S. Koenig, J.A. Suzich, Quantitative disassembly and reassembly of human papillomavirus type 11 viruslike particles in vitro, J. Virol. 72 (1998) 32-41.
[31] J.Y. Park, H.M. Pyo, S.W. Yoon, S.Y. Baek, S.N. Parz, C.J. Kim, H. Poo, Production and prophylactic efficacy study of human papillomavirus-like particle expressing HPV16 L1 capsid protein, J. Micro-biol. 40 (2002) 313-318.
[32] X.J.S. Chen, G. Casini, S.C. Harrison, R.L. Garcea, Papillomavirus capsid protein expression in Escherichia coli: purification and assembly of HPV11 and HPV16 L1, J. Mol. Biol. 307 (2001) 173-182.
[33] M.K. Woo, S.J. Hur, S. Park, H.J. Kim, Study of cell-mediated response in mice by HPV16 l1 virus-like particles expressed in Saccharomyces cerevisiae, J. Microbiol. Biotechnol. 17 (2007) 1738-1741.
[34] U.K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227 (1970) 680-685.
[35] H.J. Kim, H-.J. Kim, Glycosylation variant analysis of recombinant human tissue plasminogen activator produced in urea-cycle-enzyme-expressing Chinese hamster ovary (CHO) cell line, J. Biosci. Bioeng. 102 (2006) 447-451.
도 1은 효모(Saccharomycess cerevisiae)에서 HPV 16 L1 단백질의 생성에 대한 탄소원의 의존도를 보여주는 실험결과이다. HPV 16 L1 단백질의 생성은 웨스턴 블로팅에 의해 측정하였다. 글루코오스/갈락토오스 비율의 관계에 대한 L1 단백질의 생성 수준을 정량적으로 비교하기 위해, 각 샘플에 대해 총 용해물(lysate)의 동일한 부피를 로딩하였다. 밴드 밀도는 실험방법에 기술한 바와 같이 Scion Image를 사용하여 결정하였다.
도 2a - 도 2d는 양이온교환 크로마토그래피에 의한 HPV 16 L1의 생산의 결과를 보여준다. 양이온교환 크로마토그래피는 표 1의 방법 (a), (b) 및 (c)에 따라 수행하였다. 방법 (a), (b) 및 (c) 에 따라 행한 정제 결과는 각각 도 2a, 도 2b 및 도 2c의 SDS-PAGE 결과로 나타내었다. 레인(lane) 1은 크기 배제 크로마토그래피로부터 수집한 분획들이고, 레인 2는 결합되지 않은 경우이고, 레인 3은 세정 후의 경우이고, 레인 4는 용출된 분획이다. 도 2 d는 방법 (c)에 의해 분리된 HPV 16 L1 단백질을 웨스턴 블로팅에 의해 검출된 것을 보여준다.
도 3은 인 비트로 자기 조립된 HPV 16 L1 단백질의 전자현미경 사진이다. 도 2c에 나타낸 바와 같은 정제된 HPV 16 L1 단백질을 PBS에서 3시간 동안 평형화시켰다. 평형화된 L1 단백질을 카본-코팅된 구리 그리드(grid)에 흡착시키고 포스포텅스텐산(phosphotungstic acid)로 염색한 후 투과전자현미경으로 검사하였다. 확대배율은 41,000 X 이고, 막대(bar)는 100 nm를 나타낸다.
도 4는 암모늄 설페이트 침전 후 상등액 및 펠릿에서의 HPV 16 L1 단백질의 존재를 12.5% SDS-PAGE(패널 A) 및 웨스턴 블로팅(패널 B)에서 확인한 것을 보여주는 사진이다. 레인 1은 세포 용해물(lysate)이고; 레인 2, 3 및 4는 40%, 45% 및 50% 암모늄 설페이트 침전의 상등액이고, 레인 5, 6 및 7은 40%, 45% 및 50% 암모늄 설페이트 침전의 펠릿이다. SDS-PAGE 분석에 대해서는 500 ng의 단백질을 로딩(loading)하였고, 웨스턴 블로팅 분석을 위해서는 25 μg의 단백질을 로딩하였다.

Claims (7)

  1. 다음의 단계를 포함하는 인유두종바이러스(human papillomavirus, HPV) 바이러스 유사 입자(virus-like particles, VLPs)의 생산 및 정제 방법:
    (a) HPV L1 단백질을 발현하는 형질전환 효모(yeast)를 배양하는 단계;
    (b) 상기 배양된 효모를 용해(lysis)시키는 단계;
    (c) 상기 효모 용해물(lysate)에 암모늄 설페이트(ammonium sulfate)를 첨가하여 단백질을 침전시키는 단계;
    (d) 상기 단백질 침전물에 대해 크기-배제 크로마토그래피(size-exclusion chromatography)를 행하여 HPV L1 단백질을 정제하는 단계; 및
    (e) 상기 크기-배제 크로마토그래피 분획물에 대해 양이온 교환 크로마토그래피(cation-exchange chromatography)를 행하여 HPV L1 단백질을 정제하는 단계.
  2. 제 1 항에 있어서, 상기 단계 (a)의 효모의 배양은 탄소원이 배지 100㎖에 대해 2g 초과 5g 이하의 함량으로 포함된 배지에서 행하는 것을 특징으로 하는 HPV VLPs의 생산 및 정제 방법.
  3. 제 2 항에 있어서, 상기 탄소원은 글루코오스(glucose) 및 갈락토오 스(galactose) 중 하나 이상인 것을 특징으로 하는 HPV VLPs의 생산 및 정제 방법.
  4. 제 3 항에 있어서, 상기 글루코오스와 갈락토오스의 비율은 중량 기준으로 글루코오스 : 갈락토오스 = 0-1 : 3-4 인 것을 특징으로 하는 HPV VLPs의 생산 및 정제 방법.
  5. 제 1 항에 있어서, 상기 단계 (c)에서 첨가되는 암모늄 설페이트의 농도는 40-50 중량% 인 것을 특징으로 하는 HPV VLPs의 생산 및 정제 방법.
  6. 제 1 항에 있어서, 상기 단계 (e) 양이온 교환 크로마토그래피 수행시에 0.4-0.8 M NaCl을 포함하는 세정 버퍼(wash buffer)로 세정하는 단계를 포함하는 것을 특징으로 하는 HPV VLPs의 생산 및 정제 방법.
  7. 제 1 항에 있어서, 상기 HPV VLP는 HPV 타입 6a, HPV 타입 6b, HPV 타입 11, HPV 타입 16, HPV 타입 18, HPV 타입 31, HPV 타입 33, HPV 타입 35, HPV 타입 39, HPV 타입 45, HPV 타입 51, HPV 타입 52, HPV 타입 56, HPV 타입 58 및 HPV 타입 68로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 HPV VLP의 생산 및 정제 방법.
KR1020080026586A 2008-03-21 2008-03-21 인유두종바이러스 바이러스 유사 입자의 생산 및 정제 방법 KR100959145B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080026586A KR100959145B1 (ko) 2008-03-21 2008-03-21 인유두종바이러스 바이러스 유사 입자의 생산 및 정제 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080026586A KR100959145B1 (ko) 2008-03-21 2008-03-21 인유두종바이러스 바이러스 유사 입자의 생산 및 정제 방법

Publications (2)

Publication Number Publication Date
KR20090100998A true KR20090100998A (ko) 2009-09-24
KR100959145B1 KR100959145B1 (ko) 2010-05-25

Family

ID=41359108

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080026586A KR100959145B1 (ko) 2008-03-21 2008-03-21 인유두종바이러스 바이러스 유사 입자의 생산 및 정제 방법

Country Status (1)

Country Link
KR (1) KR100959145B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101458270B1 (ko) * 2011-06-15 2014-11-10 중앙대학교 산학협력단 인유두종바이러스 l1 단백질의 생산 수율을 향상시키는 방법
KR20220071180A (ko) * 2019-07-19 2022-05-31 사이노셀테크 엘티디. 키메라 유두종바이러스 l1 단백질

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101559622B1 (ko) 2012-07-30 2015-10-13 중앙대학교 산학협력단 인유두종바이러스 바이러스 유사입자의 고효율 정제방법
WO2016104923A1 (ko) 2014-12-26 2016-06-30 아이진 주식회사 인유두종 바이러스의 바이러스 유사 입자 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970042592A (ko) * 1995-12-23 1997-07-24 손경식 사람 파필로마바이러스 18형 e7 재조합 단백질의 정제방법 및 이를 이용한 자궁암의 진단방법
UA79735C2 (uk) 2000-08-10 2007-07-25 Глаксосмітклайн Байолоджікалз С.А. Очищення антигенів вірусу гепатиту b (hbv) для використання у вакцинах
WO2003068163A2 (en) 2002-02-14 2003-08-21 Novavax, Inc. Optimization of gene sequences of chimeric virus-like particles for expression in insect cells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101458270B1 (ko) * 2011-06-15 2014-11-10 중앙대학교 산학협력단 인유두종바이러스 l1 단백질의 생산 수율을 향상시키는 방법
KR20220071180A (ko) * 2019-07-19 2022-05-31 사이노셀테크 엘티디. 키메라 유두종바이러스 l1 단백질

Also Published As

Publication number Publication date
KR100959145B1 (ko) 2010-05-25

Similar Documents

Publication Publication Date Title
Kim et al. One-step chromatographic purification of human papillomavirus type 16 L1 protein from Saccharomyces cerevisiae
Park et al. Optimum conditions for production and purification of human papillomavirus type 16 L1 protein from Saccharomyces cerevisiae
NO328128B1 (no) Antigenisk formulering som omfatter et humant papillomaviruskapsomer for anvendelse som en vaksine, samt anvendelse derav for fremstilling av en farmasoytisk sammensetning for behandling og forebygging av HPV infeksjon og tilstander beslektet dermed.
EP1105466A1 (en) Process for purifying human papillomavirus virus-like particles
Kim et al. Purification and immunogenicity study of human papillomavirus type 16 L1 protein in Saccharomyces cerevisiae
Kim et al. Optimizing the secondary structure of human papillomavirus type 16 L1 mRNA enhances L1 protein expression in Saccharomyces cerevisiae
KR100959145B1 (ko) 인유두종바이러스 바이러스 유사 입자의 생산 및 정제 방법
KR101559622B1 (ko) 인유두종바이러스 바이러스 유사입자의 고효율 정제방법
AU753391B2 (en) Protein delivery system using human papillomavirus virus-like particles
Kim et al. The composition of the carbon source and the time of cell harvest are critical determinants of the final yield of human papillomavirus type 16 L1 protein produced in Saccharomyces cerevisiae
Woo et al. Expression and purification of human papillomavirus 18 L1 virus-like particle from Saccharomyces cerevisiae
CN114127100A (zh) 嵌合的人乳头瘤病毒39型l1蛋白
RU2445357C1 (ru) Рекомбинантный штамм дрожжей pichia angusta - продуцент капсидного белка l1 вируса папилломы человека типа 16
RU2546242C1 (ru) РЕКОМБИНАНТНЫЙ ШТАММ ДРОЖЖЕЙ Hansenula polymorpha - ПРОДУЦЕНТ ГЛАВНОГО КАПСИДНОГО БЕЛКА L1 ВИРУСА ПАПИЛЛОМЫ ЧЕЛОВЕКА ТИПА 18
RU2676160C1 (ru) Рекомбинантный штамм дрожжей Hansenula polymorpha - продуцент главного капсидного белка L1 вируса папилломы человека типа 11
CN114127092A (zh) 人乳头瘤病毒多价免疫原性组合物
RU2546241C1 (ru) РЕКОМБИНАНТНЫЙ ШТАММ ДРОЖЖЕЙ Hansenula polymorpha - ПРОДУЦЕНТ ГЛАВНОГО КАПСИДНОГО БЕЛКА L1 ВИРУСА ПАПИЛЛОМЫ ЧЕЛОВЕКА ТИПА 16
Kim et al. A method for removing contaminating protein during purification of human papillomavirus type 18 L1 protein from Saccharomyces cerevisiae
RU2546240C1 (ru) РЕКОМБИНАНТНЫЙ ШТАММ ДРОЖЖЕЙ Hansenula polymorpha - ПРОДУЦЕНТ ГЛАВНОГО КАПСИДНОГО БЕЛКА L1 ВИРУСА ПАПИЛЛОМЫ ЧЕЛОВЕКА ТИПА 56
RU2675471C1 (ru) Рекомбинантный штамм дрожжей Hansenula polymorpha - продуцент главного капсидного белка L1 вируса папилломы человека типа 6
RU2681174C1 (ru) Способ получения рекомбинантной вакцины для профилактики папилломавирусной инфекции человека, рекомбинантная вакцина
KR101458270B1 (ko) 인유두종바이러스 l1 단백질의 생산 수율을 향상시키는 방법
LIU et al. Assembly and immunogenicity of human papillomavirus type 16 major capsid protein (HPV16 L1) in Pichia pastoris
CN113528544A (zh) 编码可溶性hpv23 l1蛋白的基因及其重组质粒的构建与应用
CN109666691A (zh) Ev71疫苗制备方法及通过该方法制备的疫苗

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130429

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140326

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150417

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160325

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170327

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190614

Year of fee payment: 10