KR20090046807A - 비디오 디코더 메모리 저감 방법 - Google Patents
비디오 디코더 메모리 저감 방법 Download PDFInfo
- Publication number
- KR20090046807A KR20090046807A KR1020097001801A KR20097001801A KR20090046807A KR 20090046807 A KR20090046807 A KR 20090046807A KR 1020097001801 A KR1020097001801 A KR 1020097001801A KR 20097001801 A KR20097001801 A KR 20097001801A KR 20090046807 A KR20090046807 A KR 20090046807A
- Authority
- KR
- South Korea
- Prior art keywords
- image
- resolution
- memory
- decoding
- images
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/156—Availability of hardware or computational resources, e.g. encoding based on power-saving criteria
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/50—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
- H04N19/59—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/103—Selection of coding mode or of prediction mode
- H04N19/105—Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/42—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/42—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
- H04N19/423—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation characterised by memory arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/42—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
- H04N19/423—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation characterised by memory arrangements
- H04N19/426—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation characterised by memory arrangements using memory downsizing methods
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/42—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
- H04N19/423—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation characterised by memory arrangements
- H04N19/426—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation characterised by memory arrangements using memory downsizing methods
- H04N19/428—Recompression, e.g. by spatial or temporal decimation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/44—Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/76—Television signal recording
- H04N5/91—Television signal processing therefor
- H04N5/92—Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Television Signal Processing For Recording (AREA)
Abstract
비디오 디코딩 방법이 개시된다. 이 방법은 (A) 제1 해상도를 갖는 제1 영상을 비트스트림으로부터 디코딩하는 단계; (B) 제1 해상도의 제1 영상을 메모리에 저장하는 단계; 및 (C) 제2 해상도의 제1 영상을 메모리에 저장하는 단계를 포함하고, 제2 해상도는 제1 해상도 보다 낮은 것을 특징으로 한다.
Description
본 발명은 비디오 디코딩에 관한 것으로, 특히 비디오 디코더 메모리 저감 방법에 관한 것이다.
비디오 디코더 시장이 성숙함에 따라, 디코딩 처리시 영상을 버퍼링하는데 이용되는 메모리의 가격 및 크기는 중요한 요소가 되고 있다. MPEG-2 컴플리언트 비트스트림을 위한 디코딩 메모리를 저감하는데 이용되는 종래의 기술은 (i) B-프레임을 드롭하는 것과 (ii) 저감된 해상도로 기준 프레임을 저장하는 것이다. 하지만, 종래의 해결책은 H.264-컴플리언트 디코드를 위한 품질 대 메모리 트레이드오프의 점에서 보면 최적의 해결책과는 거리가 멀다. MPEG-2 등과 종래의 다른 표준과 달리, H.264 디코드는 (ⅰ) 다수의 기준 프레임, (ⅱ) 재배열 지연만(기준으로서 사용되지 않음)을 위한 비기준 영상의 의무적인 저장, (ⅲ) 매우 유연한 영상 패턴(즉, 영상 그룹), (ⅳ) 계층적인 영상 그룹, 및 (ⅴ) 기준 B-프레임을 허용한다.
본 발명은 비디오 디코딩 방법에 관한 것이다. 이 방법은 (A) 제1 해상도를 갖는 제1 영상을 비트스트림으로부터 디코딩하는 단계; (B) 상기 제1 해상도의 상기 제1 영상을 메모리에 저장하는 단계; 및 (C) 제2 해상도의 상기 제1 영상을 상기 메모리에 저장하는 단계를 포함하고, 상기 제2 해상도는 상기 제1 해상도 보다 낮은 것을 특징으로 한다.
본 발명의 목적, 특징 및 장점은 (ⅰ) 디코딩된 영상 버퍼의 사이즈를 저감시키고, (ⅱ) 기준 영상의 해상도 저감으로 인한 잠재적인 드리프트 및/또는 에러를 최소화시키고, (ⅲ) 기준 영상의 누락으로 인한 잠재적인 드리프트 및/또는 에러를 최소화시키고, 및/또는 (ⅳ) 종래기술에 비교하여 메모리 사이즈 대 디코딩된 비디오 품질의 양호한 트레이드 오프를 제공할 수 있는 비디오 디코더 메모리 저감 방법의 제공을 포함한다.
본 발명의 목적, 특징, 및 장점은 다음의 설명, 첨부한 청구범위, 및 도면으로부터 명백하다.
도 1은 본 발명의 바람직한 실시예에 따른 회로의 블록도.
도 2는 가장 오래된 기준 영상을 폐기하는 제1 예의 디코딩 순서 테이블.
도 3은 제1 버퍼 사이즈로부터 가장 오래된 기준 영상을 동적으로 저감시키는 제1 예의 디코딩 순서 테이블.
도 4는 제2 버퍼 사이즈로부터 가장 오래된 기준 영상을 동적으로 저감시키는 제1 예의 디코딩 순서 테이블.
도 5는 모든 기준 영상을 저감시키고 가장 오래된 기준 영상을 폐기하는 제1 예의 디코딩 순서 테이블.
도 6은 가장 오래된 기준 영상을 폐기하는 제2 예의 디코딩 순서 테이블.
도 7은 제1 버퍼 사이즈로부터 가장 오래된 기준 영상을 동적으로 저감시키는 제2 예의 디코딩 순서 테이블.
도 8은 제2 버퍼 사이즈로부터 가장 오래된 기준 영상을 동적으로 저감시키는 제2 예의 디코딩 순서 테이블.
도 9는 모든 기준 영상을 저감시키고 가장 오래된 기준 영상을 폐기하는 제2 예의 디코딩 순서 테이블.
도 10은 가장 오래된 기준 영상을 폐기하는 제3 예의 디코딩 순서 테이블.
도 11은 기준 B-영상을 일시적으로 축적하고 가장 오래된 기준 영상을 폐기하는 제3 예의 디코딩 순서 테이블.
도 12는 모든 기준 영상을 저감시키고 가장 오래된 기준 영상을 폐기하는 제3 예의 디코딩 순서 테이블.
도 13은 가장 오래된 기준 영상을 폐기하는 제4 예의 디코딩 순서 테이블.
도 14는 가장 오래된 저감 해상도 기준 영상을 동적으로 저감시키는 제4 예의 디코딩 순서 테이블.
도 15는 일부 기준 영상을 저감시키고, 시간적인 에러를 최소화하고, 일시적으로 축적하는 제4 예의 디코딩 순서 테이블.
도 16은 일부 기준 영상을 저감시키고, 시간적인 축적을 최소화하고, 가장 오래된 기준 영상을 폐기하는 제4 예의 디코딩 순서 테이블.
도 17은 모든 기준 영상을 저감시키고 가장 오래된 기준 영상을 폐기하는 제4 예의 디코딩 순서 테이블.
도 18은 영상 처리 방법의 흐름도.
도 19는 디코딩된 영상 버퍼에서의 샘플 쓰기 및 해제를 나타낸 도면.
도 20은 저감된 해상도의 기준 데이터를 처리하는 예시적인 방법의 흐름도.
도 21은 영상의 예시적인 순서를 나타낸 도면.
도 1은 본 발명의 바람직한 실시예에 따른 회로(100)의 블록도이다. 회로(또는 시스템)(100)은 미디어 처리 회로로서 간주될 수 있다. 미디어 처리 회로(100)는 회로(또는 모듈)(102)와 회로(또는 모듈)(104)를 포함한다. 입력신호(예를 들면, BS)는 회로(102)에 의해 수신될 수 있다. 출력 신호(예를 들면, VOUT)는 회로(102)에 의해 생성되어 제공될 수 있다. 회로(102)와 회로(104)는 데이터를 교환하기 위해 서로 통신할 수 있다.
신호 BS는 압축된 비디오 신호일 수 있으며, 일반적으로 비트스트림으로서 간주될 수 있다. 신호 BS는 프로그레시브-포맷 프레임 및/또는 인터레이스-포맷 필드의 시퀀스를 포함할 수 있다. 신호 BS는 VC-1, MPEG 및/또는 H.26x 표준으로 컴플리언트될 수 있다. MPEG/H.26x 표준은 일반적으로 H.261, H.264, H.263, MPEG-1, MPEG-2, MPEG-4 및 H.264/AVC를 포함한다. MPEG 표준은 국제 표준화 기구, 동화상 전문가 그룹(스위스, 제네바)에 의해 정의될 수 있다. H.26x 표준은 국제 전기통신 표준화 부문(스위스, 제네바)에 의해 정의될 수 있다. VC-1 표준은 문 서(SMPTE(Society of Motion Picture and Television Engineer) 421M-2006, SMPTE, White Plains, New York)에 의해 정의될 수 있다.
신호 VOUT은 하나 이상의 아날로그 비디오 신호 및/또는 하나 이상의 디지털 비디오 신호일 수 있다. 신호 VOUT은 일반적으로 프로그레시브-포맷 프레임 및/또는 인터레이스-포맷 필드의 시퀀스를 포함한다. 신호 VOUT은 디스플레이를 비디오 정보와 함께 동기화하기에 적합한 동기화 신호를 포함할 수 있다. 신호 VOUT은 RGB(Red, Green, Blue) 신호, EIA-770(예를 들면, YCrCb) 신호, S-비디오 신호 및/또는 CVBS(Composite Video Baseband Signal)와 같은 아날로그 형태로 생성될 수 있지만, 거기에 한정되지는 않는다. 디지털 형태에 있어서, 신호 VOUT은 HDMI(High Definition Multimedia Interface) 신호, DVI(Digital Video Interface) 신호 및/또는 BT.656 신호로서 생성될 수 있지만, 거기에 한정되지는 않는다. 신호 OUT은 SD(Standard Definition) 신호 또는 HD(High Definition) 신호로서 포맷될 수 있다.
회로(102)는 디코더 회로로서 간주될 수 있다. 디코더 회로(102)는 신호 VOUT를 생성하기 위해 신호 BS로 수신된 비디오 정보를 디코딩하여 포맷하도록 동작할 수 있다. 디코딩은 VC-1, MPEG 및/또는 H.26x 표준과 호환될 수 있다.
회로(104)는 메모리 회로로서 간주될 수 있다. 메모리 회로(104)는 디지털 비디오 및 오디오 데이터의 디코딩 및 포맷에 이용되는 프레임/필드(영상) 등의 정보를 일시적으로 버퍼링하도록 동작할 수 있다. 디코딩된 영상을 버퍼링하는데 이용되는 메모리 회로(104)내의 버퍼링 영역은 DPB(Decoded Picture Buffer)로서 간 주될 수 있다. 메모리 회로(104)는 SDR(Single Data Rate) DRAM(Dynamic Random Access Memory) 또는 DDR(Double Data Rate) DRAM으로 구현될 수 있다. 특정 응용의 기준을 충족하기 위해 다른 메모리 기술이 구현될 수 있다.
DPB의 사이즈 저감은 다음과 같은 하나 이상의 기술을 이용할 수 있다. 일부 실시예에 있어서, 디코더 회로(102)는 먼저 메모리 회로(104)에 정상 해상도(예를 들면, RESA)로 영상(예를 들면, PIC1)을 저장한 후에 메모리 회로(104)에 다른 해상도(예를 들면, RESB)로 영상 PIC1을 저장할 수 있다. 일반적으로, 정상 해상도 RESA는 RESB 보다 높다. 예를 들면, 해상도 RESA는 디코딩된 영상의 풀해상도일 수 있다. 해상도 RESB는 반수평 해상도, 반수직 해상도, 반 수평 및 반수직 해상도, 또는 다른 저감된 해상도일 수 있다.
다른 실시예로, 디코더 회로(102)는 다른 영상의 재구성/디코딩에 적합한 것으로 표시될 수 있는 모든 기준 영상을 기록하지 않을 수 있다. 기준 영상이 메모리 회로(104)에서 누락되면, 디코딩에 이용하기 위한 대체 기준 영상을 만들기 위해 에러 은닉 기술이 이용될 수 있다.
또 다른 실시예로, 디코더 회로(102)는 일반적으로 저감된 해상도의 재배열 지연 목적을 위한 영상을 기록한다(및/또는 리사이즈한다). "저감"은 표준 디코딩 해상도/프로세스(예를 들면, 특정 비트스트림 신택스를 위한 H.264 표준 디코딩 프로세스)와 관련될 수 있다. 저감된 영상이 메모리 회로(104)에서 읽혀진 후 디스플레이되기 이전에, 저감된 영상은 표준 해상도를 복원하기 위해 업샘플링(upsampling)될 수 있다.
다른 실시예로, 디코더 회로(102)는 저감된 해상도로 영상의 일부만을 기록하도록 동작할 수 있다. 나머지 디코딩된 영상은 정상(풀) 해상도로 메모리 회로(104)에서 버퍼링될 수 있다.
도 2 내지 도 21을 참조하면, 두문자어 RR은 저감된 해상도로 DPB(예를 들면, 메모리 회로(104))에 저장되는 기준 영상으로 인해 영상을 디코딩하는 동안 잠재적인 드리프트 및/또는 에러가 도입될 수 있는 조건으로 간주될 수 있다. 두문자어 FR은 DPB로부터 이전에 해제/겹쳐쓰기/제거된 누락 기준 영상으로 인해 영상을 디코딩하는 동안 잠재적인 드리프트 및/또는 에러가 도입될 수 있는 조건으로 간주될 수 있다. 두문자어 HHR은 반수평 해상도로 DPB에 영상이 저장된 조건으로 간주될 수 있다. 어떤 실시예로, DPB는 디스플레이 전에 디코딩되는 현재 영상을 수신 및 버퍼링하기 위해 하나의 추가 풀해상도 영상을 위한 스토리지를 가질 수 있다. 다른 실시예로, DPB는 디스플레이 전에 현재 영상 로우를 수신 및 버퍼링하기 위해 적어도 두개의 여분의 매크로블록 로우를 위한 추가 스토리지를 가질 수 있다.
도 2는 가장 오래된 기준 영상을 폐기하는 제1 예의 디코딩 시퀀스 테이블이다. 예시적인 디코딩 시퀀스는 인트라-영상("I")에 이어 예측된 영상("P")의 시퀀스와 IDR(Instantaneous Decoding Refresh) 영상 액세스점(예를 들면, GOP(Group of Pictures)의 시작)이 뒤를 따른다. 영상의 예시적인 시퀀스는 I P P P..을 포함하는 스트림일 수 있다. P-영상의 디코딩은 4개의 기준 영상까지 이용할 수 있다. 디스플레이 지연(로우(132))는 (i) 매크로블록 적용 필드/프레임을 갖는 H.264 스트림용 디코드 뒤의 적어도 2개의 매크로블록 로우 및 (ii) 대부분의 다른 경우에 디코드 뒤의 적어도 하나의 매크로블록 로우일 수 있다. DPB에의 디코딩된 영상의 저장은 일반적으로 풀해상도로 수행된다.
디코딩 시퀀스는 일반적으로 컬럼(110)에서 시작하며 여기서 초기 I-영상(예를 들면, I0)는 (i) 디코딩되고(로우(130)) (ii) 짧은 지연후에 디스플레이된다(로우(132)). 컬럼(112)에서, (ⅰ) 영상 I0가 DPB에 저장되고(로우(134)), (ⅱ) 영상 I0를 기준영상으로서 이용하는 초기 P-영상(예를 들면, P0)는 디코딩되고(로우(130)), (ⅲ) 영상 P0가 디스플레이될 수 있다(로우(132)). 영상 I0는 DPB에서 이용될 수 있기 때문에, 디코딩된 영상 P0는 일반적으로 누락 기준 영상으로 인해 어떠한 드리프트 및/또는 에러도 경험하지 않는다(예를 들면, RF 유도 왜곡 없음).
컬럼(114)에서, (ⅰ) 영상 P0는 DPB(로우132)에 기준 영상으로서 저장될 수 있고, (ⅱ) 새로운 P-영상(예를 들면, P1)은 DPB로부터 하나 이상의 기준 영상(예를 들면, I0 및/또는 P0)을 이용하여 디코딩될 수 있고(로우130), (ⅲ) 영상 P1은 디스플레이될 수 있다(로우132). DSP가 둘 이상의 풀해상도 기준 영상을 유지하기 위한 사이즈이면(로우136,138,140), 영상 P1을 디코딩하는데 모든 잠재적인 기준 영상이 이용되고 영상 P1에서 누락 영상 드리프트를 경험하지 않을 수 있다. DPB가 두개 이하의 풀해상도 기준 영상을 유지하기 위한 사이즈이면(로우134), 가장 오래된 영상 I0이 DPB로부터 해제되고 및/또는 기준 영상 P0에 의해 겹쳐쓰기되기 때문에 영상 P1은 어떤 약간의 드리프트/에러를 경험할 수 있다.
컬럼(116)에서, (ⅰ) 영상 P1은 기준영상으로서 DPB(로우132)에 저장될 수 있고, (ⅱ) 새로운 P-영상(예를 들면, P2)는 DPB로부터 하나 이상의 기준 영상(예 를 들면, IO,P0 및/또는 P1)을 이용하여 디코딩(로우130)될 수 있고, (ⅲ) 영상 P2는 디스플레이될 수 있다(로우132). DPB가 적어도 3개의 풀 기준 영상을 유지하기 위한 사이즈이면(로우 138 및 140), 영상 P2의 디코딩은 이용가능한 모든 3개의 기준 영상을 가질 수 있다. DPB가 3개 이하의 풀 기준 영상을 유지하기 위한 사이즈이면(로우 134 및 136), 영상 P2는 기준 영상 I0 및/또는 P0가 가장 오래된 기준 영상으로서 버려지는 경우에 일부 제한된 드리프트 및/또는 에러를 경험할 수 있다.
컬럼(118)에서, (ⅰ) 영상 P2는 기준 영상으로서 DPB(로우132)에 저장될 수 있고, (ⅱ) 새로운 P-영상(예를 들면, P3)은 DPB로부터 하나 이상의 기준 영상(예를 들면, I0, P0, P1 및/또는 P2)을 이용하여 디코딩될 수 있고(로우130), (ⅲ) 영상 P3는 디스플레이될 수 있다(로우132). DPB가 모든 4개의 기준 영상(로우140)을 유지하기에 충분한 이용가능 공간을 가지면, 누락 기준 영상으로 인한 드리프트 및/또는 에러가 영상 P3의 디코딩에 도입되지 않을 수 있다. DPB가 4개 이하의 풀해상도 기준 영상을 저장하는 사이즈이면(로우134,136,138), 영상 P3는 잠재적으로 누락 기준 영상으로 인해 어떤 작은 드리프트/에러를 경험할 수 있다.
컬럼(120)에서, (ⅰ) 기준 영상 IO(여전히 DPB에 있는 경우)는 새로운 기준 영상을 위한 공간을 만들기 위해 폐기 또는 해제될 수 있고, (ⅱ) 영상 P3는 기준 영상으로서 DPB에 저장될 수 있고(로우132), (ⅲ) 다음 P-영상(예를 들면, P4)는 하나 이상의 기준 영상(예를 들면, P0, P1, P2 및/또는 P3)을 이용하여 디코딩될 수 있고(로우130), (ⅳ) 영상 P4는 디스플레이될 수 있다(로우 132). DPB이 4개 이 상의 풀해상도 기준 영상을 유지할 정도로 크면(로우 140), 드리프트/에러가 도입된 누락 기준 영상이 영상 P4에서 발생하지 않는다. 그렇지 않으면, 영상(P4)내의 가능한 약간의 드리프트/에러를 일으키는 가장 오래된 기준 영상은 폐기될 수 있다(로우 134,136,138).
컬럼(122)에서, (ⅰ) 기준 영상 P0은 폐기될 수 있고, (ⅱ) 영상 P4는 기준 영상으로서 DPB(로우132)에 저장될 수 있고, (ⅲ) 새로운 P-영상(예를 들면, P5)은 DPB의 이용가능한 기준 영상(예를 들면, P1,P2,P3 및/또는 P4)를 이용하여 디코딩(로우130)될 수 있고, (ⅳ) 영상 P5는 디스플레이될 수 있다(로우132). 영상 P4로, 영상 P5는 DPB가 적어도 4개의 풀해상도 기준 영상을 유지하기 위한 사이즈이면(로우140) 드리프트/에러가 유도된 누락 기준 영상을 갖지 않을 수 있다. DPB 용량이 4개 이하의 기준 영상을 유지하면(로우 134,136,138), 누락 기준 영상으로 인해 일부 제한된 드리프트/에러가 영상 P5의 디코딩에 도입될 수 있다.
도 3은 가장 오래된 기준 영상의 해상도를 동적으로 저감시키는 제1 예의 디코딩 시퀀스 테이블이다. 영상의 예시적인 시퀀스는 I P P P..를 포함하는 스트림일 수 있다. P-영상의 디코딩은 4개의 기준 영상까지 이용할 수 있다. 예에서 DPB는 3개의 풀해상도 기준영상까지 유지하기 위해 사이즈될 수 있다.
컬럼(110-116)에서, 도 2에 도시한 바와 같이 영상(I0,P0,P1,P2)이 디코딩되어 디스플레이될 수 있다. DPB가 적어도 3개의 풀해상도 기준 영상을 유지할 수 있기 때문에 누락 기준 영상으로 인해 디코드동안 드리프트 또는 에러가 도입되지 않는다. 컬럼(150)에서, (ⅰ) 단일 풀해상도 기준 영상과 같은 공간을 차지하기 위해 기준 영상 I0 및 P0가 도입될 수 있고(로우 156 및 로우 158), (ⅱ) 영상 P2는 풀해상도 기준 영상으로서 DPB(로우 134)에 저장될 수 있고, (ⅲ) 영상 P3는 디코딩될 수 있고(로우 130), (ⅳ) 영상 P3는 디스플레이될 수 있다(로우 132). 영상 P3의 디코딩은 저감된 해상도의 기준 영상(예를 들면, hI0 및/또는 hP0)에 의존할 수 있기 때문에, 어떤 작은 드리프트 및/또는 에러가 영상 P3에 도입될 수 있다.
컬럼(152)에서, (i) DPB로부터 저감된 영상 I0(예를 들면, hI0)을 폐기하고 (ii) 기준 영상 P1(로우 156)을 저감시킴으로써 새로운 기준 영상을 위한 공간이 개방되어 저감된 영상 P1(예를 들면, hP1) 및 저감된 영상 P0(예를 들면, hP0)는 단일 풀해상도 영상의 공간을 소모한다(로우 156 및 158). 다음, (ⅲ) 영상 P3는 DPB에 저장될 수 있고(로우 134), (ⅳ) 영상 P4는 디코딩될 수 있고, (ⅴ) 영상 P4는 디스플레이될 수 있다. 영상 P4의 디코딩은 저감된 해상도의 기준 영상(예를 들면, hP0 및/또는 hP1)에 의존할 수 있기 때문에, 어떤 작은 드리프트 및/또는 에러가 영상 P4에 도입될 수 있다. 영상 P5의 디코딩은 영상 P4와 같은 방식으로 처리될 수 있다(컬럼 154).
도 4는 가장 오래된 기준영상을 동적으로 저감시키는 제1 예의 디코딩 시퀀스 테이블이다. 영상의 예시적인 시퀀스는 I P P P..를 포함하는 스트림일 수 있다. P-영상의 디코딩은 4개의 기준영상까지 이용할 수 있다. 예에서 DPB는 2.5 풀해상도 기준 영상까지 유지하기 위해 사이즈될 수 있다. 다른 사이즈의 DPB(예를 들면, 3.5 풀해상도 기준 영상)가 동일한 기술을 따를 수 있다.
컬럼(110-114)에서, 영상 I0, P0, P1은 이전과 같이 디코딩되고, 디스플레이 되고, DPB에 저장될 수 있다. 컬럼(160)에서, (ⅰ) 1/2 풀해상도 공간에 고정하기 위해 기준 영상 I0이 다운샘플링(예를 들면, hI0)될 수 있고(로우 170), (ⅱ) 기준 영상 P1은 DPB에 저장될 수 있고(로우 134), (ⅲ) 영상 P2는 하나 이상의 기준 영상 hI0, P1 및/또는 P2를 이용하여 디코딩될 수 있고(로우 130), (ⅳ) 영상 P2는 디스플레이될 수 있다(로우 132). 영상 P2의 디코딩은 저감된 해상도의 기준 영상 hI0를 잠재적으로 이용하기 때문에, 어떤 제한된 드리프트 및/또는 에러가 영상 P2에 존재할 수 있다.
컬럼(162)에서, 가장 새로운 기준 영상은 (i) 기준 영상 P0(로우 168) 및 기준 영상 P1(로우 170)의 해상도를 저감시킴으로써 DPB에서 개방될 수 있다. 또한, (ii) 기준 영상 hI0는 DPB에 유지될 수 있다(로우 172). 다음, (ⅲ) 영상 P2는 기준 영상으로서 저장될 수 있고, (ⅳ) 영상 P4이 디코딩되고(로우 130), (ⅴ) 영상 P4가 디스플레이된다(로우 132). 영상 P3을 디코딩하는데 이용되는 4개의 가능한 기준 영상(예를 들면, hI0, hP0, hP1) 중 3개는 저감된 해상도로 저장되기 때문에, 영상 P3는 제한된 드리프트 및/또는 에러를 포함할 수 있다.
컬럼(164)에서, (ⅰ) 기준 영상 hI0은 폐기될 수 있고 (ⅱ) 새로운 기준 영상을 위한 공간을 만들기 위해 기준 영상 P2의 해상도는 저감될 수 있다(예를 들면, hP2). 다음, (ⅲ) 영상 P3는 DPB에 저장될 수 있고, (ⅳ) 영상 P4는 디코딩될 수 있고 (ⅴ) 영상 P4는 디스플레이될 수 있다. 이전과 같이, 영상 P4는 저감된 해상도로 DPB에 저장된 4개의 기준 영상중 3개로 인해 영상 P4는 약간 잠재적인 드리프트 및/또는 에러를 가질 수 있다. 디코딩은 컬럼(166)에서 지속되고 P5 영상은 풀해상도 기준 영상 P4 및 저감된 해상도의 기준 영상 hP3, hP2 및/또는 hP1을 이용할 수 있다.
도 5는 모든 기준 영상을 저감시키고 가장 오래된 기준 영상을 폐기하는 제1 예의 디코딩 시퀀스 테이블이다. 예시적인 영상 시퀀스는 I P P P..를 포함하는 스트림일 수 있다. P-영상의 디코딩은 4개의 기준 영상까지 이용할 수 있다. DPB가 다른 사이즈로 예시되어 있다.
도 6은 가장 오래된 기준 영상을 폐기하는 제2 예의 디코딩 시퀀스 테이블이다. 제2 예의 영상 시퀀스는 스트림 I B B P B B..일 수 있다. 이 예에서, B-영상은 일반적으로 비기준 영상이다. 블루레이 디스크TM H.264 실시예에 대하여, B-영상은 I-영상, P-영상 및/또는 기준 B-영상 직전/직후의 기준일 수 있다. 영상을 대체하는 상보적인 필드쌍을 갖는 I P B B B B P P B B B B P P를 포함하는 필드 영상 GOP는 다음 예에서 기능할 수 있다. 블루레이 디스크TM는 블루레이 디스크 어소시에이션의 상표이다.
도 7은 가장 오래된 기준 영상을 동적으로 저감시키는 제2 예의 디코딩 시퀀스 테이블이다. DPB는 이 예에서 3개의 풀해상도 기준 영상을 저장하기 위한 사이즈일 수 있다. (i) 영상 P3 및 블루레이 기준하 및 (ii) 영상 B4 및 블루레이 기준없이 시작하는 저감된 기준 영상으로 인한 드리프트/에러에 대한 약간의 가능성이 존재할 수 있다.
도 8은 가장 오래된 기준 영상을 동적으로 저감시키는 제2 예의 디코딩 시퀀 스 테이블이다. DPB는 이 예에서 2.5 풀해상도 기준 영상을 저장하기 위한 사이즈일 수 있다. 다른 반 사이즈(예를 들면, 3.5)의 DPB는 유사한 방식으로 동작할 수 있다. (i) 영상 P2 및 블루레이 기준하 및 (ii) 영상 B2 및 블루레이 기준없이 시작하는 저감된 기준 영상으로 인한 드리프트/에러에 대한 작은 가능성은 존재할 수 있다.
도 9는 저장을 위한 모든 기준 영상을 저감시키고 가장 오래된 기준 영상을 폐기하는 제2 예의 디코딩 시퀀스 테이블이다. 모든 기준 영상이 저감된 해상도로 저장되기 때문에, P0에서 시작하는 모든 영상은 작은 저감 해상도 도입 드리프트/에러를 가질 수 있다. 누락 기준 영상 도입 드리프트/에러는 도 6과 유사할 수 있다.
도 10 내지 도 17을 참조하면, 용어 "B"는 비기준 B-영상으로 간주되고 "Br"은 기준 B-영상으로 간주될 수 있다. I Br B P Br B...을 포함하는 제3 예의 시퀀스가 예시되어 있다. 블루레이 H.264 기준에 대하여, B-영상은 I-영상, P-영상 및 기준 Br-영상 직전/직후의 기준일 수 있다.
도 10은 가장 오래된 기준 영상을 폐기하는 제3 예의 디코딩 시퀀스 테이블이다. 도 11은 기준 B-영상을 일시적으로 축적하고 가장 오래된 기준 영상을 폐기하는 제3 예의 디코딩 시퀀스이다. 도 12는 모든 기준 영상을 저감시키고 가장 오래된 기준 영상을 폐기하는 제3 예의 디코딩 시퀀스 테이블이다.
도 13은 가장 오래된 기준 영상을 폐기하는 제4 예의 디코딩 시퀀스 테이블이다. 제4 예의 시퀀스는 일반적으로 계층적인 GOP에서 영상 I B Br B P B Br B... 을 포함한다. 사이즈 3과 비블루레이 기준의 DPB에 대하여, 잠재적인 누락 기준 영상 드리프트는 영상 B2 후에 존재할 수 있다. 블루레이 기준을 갖는 DPB 사이즈 3에 대하여, 잠재적인 누락 기준 영상 드리프트는 영상 P2후에 존재할 수 있다.
도 14는 가장 오래된 저감 해상도 기준 영상을 동적으로 저감시키는 제4 예의 디코딩 시퀀스 테이블이다. 블루레이 기준으로, 잠재적인 저감 기준 영상 드리프트는 영상 P2로 시작하는 디코딩된 영상을 위하여 존재할 수 있다. 블루레이 기준 없이, 잠재적인 저감 기준 영상 드리프트는 디코딩된 영상 B2에서 시작하여 존재할 수 있다.
도 15는 어떤 기준 영상을 저감시키고, 시간적인 에러를 최소화하고, 일시적으로 축적하는 제4 예의 디코딩 시퀀스 테이블이다. 일반적으로, 드리프트는 P-영상이 아니라 B-영상으로 보여질 수 있다. 이 예에서 P-영상을 넘어서 축적이 수행되지 않는다. 또한, 서브 샘플링된 스토리지가 충분할 수 있기 때문에 이 예는 동적 메모리 저감 없이 수행될 수 있다. 3.5의 DPB 사이즈에 대하여, 기준 영상 hI0는 영상 Br2의 디코딩에만 사용되어 저감된 해상도의 기준 에러는 짧은 시간적 거리만을 축적할 수 있다.
도 16은 어떤 기준 영상을 저감시키고, 일시적인 축적을 최소화하고, 가장 오래된 기준 영상을 폐기하는 제4 예의 디코딩 시퀀스 테이블이다. 도 17은 모든 기준 영상을 저감시키고 가장 오래된 기준 영상을 폐기하는 제4 예의 디코딩 시퀀스 테이블이다. 모든 예에 대하여 영상 I0 후에 모든 영상에 대하여 어떤 저감된 기준 영상 도입 드리프트/에러가 발생할 수 있다. 누락 기준 영상 드리프트/에러는 가장 오래된 기준 영상을 폐기함으로써 일어날 수 있다.
상기 설명을 기초로 하여 미디어 처리 회로(100)는 인터레이스된 블루레이 1080 라인을 위한 해결책으로 대부분의 시간동안 매우 적은 드리프트(가시적인 에러)를 가질 수 있는 4 기준 영상 디코드를 제공할 수 있다. 스토리지/메모리의 가치가 있는 단 3개의 기준 영상이 가장 공통의 GOP 구조에 이용되더라도 드리프트가 작게 유지될 수 있다. H.264, I P P P P..., I B B P B B P..., I Br B P Br B P Br B P... 및 I B Br B P B Br B P...에 이용되는 가장 공통의 GOP 구조중 일부를 위하여 DPB=3 영상을 위한 서너개의 바람직한 해결책이 도 2 내지 도 17에 굵게 도시되어 있다.
다음은 공간 고려를 위하여 적절하다면 H.264 디코드에 이용되는 메모리 저감으로부터 "최악의 경우" 영향을 제한하기 위한 예시적인 규정 세트이다. 규정 1: 비기준 영상은 일반적으로 시간적으로 진행하는 드리프트를 일으키지 않기 때문에 비기준 영상을 먼저 저감시킨다. 룰 규정2: 미스매치로 인한 드리프트의 일시적인 시간을 저감시키기 위해 예상(Prediction)/재구성에의 짧은(예를 들면, 어느 하나의 방향에서 1 또는 2 영상) 일시적인 가능성의 간접 영향을 갖는 기준 영상을 저감시킨다. 규정 3: "가장 오래된" 기준 영상, 또는 더 먼 기준 영상이 예상/재구성을 위해 (일반적으로) 덜 빈번하게 이용될 수 있는 원리로 연속적인 디코딩 영상에서 일시적으로 가장 먼 "가장 오래된" 기준 영상을 저감시킨다. 규정 4: 메모리 대역폭 및 메모리에 이미 존재하는 영상을 다운사이징하는 처리 비용을 고려한다. 메모리 대역폭 및/또는 처리 사이클이 부족하면, 재구성된 정보는 (ii) 풀해상도로 저장되고, 다시 읽고, 해상도로 저감되고 메모리에 다시 쓰여지기 보다는 (i)저감된 해상도로 한번에 저장될 수 있도록 현재 디코딩되는 영상을 저감시킨다. 규정 4는 시스템 병목에 따라 규정 1-3을 거치는 순위를 취할 수 있다. 메모리 스토리지가 메인 시스템 병목이면, 일반적으로 규정 1, 2, 3을 순서대로 적용한다. 처리 사이클 및/또는 메모리 대역폭중 하나 또는 둘이 메인 시스템 병목이면, 규정 4는 사이클/대역폭이 예산내에 있을 때까지 고려될 수 있다.
도 18은 영상을 처리하는 방법(200)의 흐름도이다. 이 방법(또는 처리)(200)는 일반적으로 단계(또는 블록)(202), 단계(또는 블록)(204), 단계(또는 블록)(206), 단계(또는 블록)(208), 단계(또는 블록)(210), 단계(또는 블록)(212), 단계(또는 블록)(214), 단계(또는 블록)(216), 단계(또는 블록)(218), 단계(또는 블록)(220), 단계(또는 블록)(222), 단계(또는 블록)(224), 및 단계(또는 블록)(226)을 포함한다.
디코더 회로(102)는 단계(202)에서 신호 BS로 인코딩된 영상을 수신할 수 있다. 단계(204)에서, 재구성된 영상을 풀해상도로 생성하기 위해 인코딩된 영상은 디코더 회로(102)에 의해 디코딩될 수 있다. 어떤 실시예로, 풀해상도로 재구성된 영상은 단계(206)에서 메모리 회로(104)에 저장될 수 있다. 단계(208)에서 재구성된 영상은 (디코드 시퀀스와 다를 수 있는) 디스플레이 시퀀스로 메모리 회로(104)로부터 읽혀질 수 있다. 단계(210)에서, 재구성된 영상이 디스플레이될 수 있다.
어떤 실시예로, 한번에 모든 재구성된 영상의 스토리지가 회피될 수 있다. 이러한 경우에, 풀해상도로 디코딩된 영상의 적은 (예를 들면, 2개) 매크로블록 로 우는 영상이 디코딩되는 동안 메모리 회로(104)에서 버퍼링될 수 있다. 보다 새로운 매크로블록 로우가 저장되는 동시에, 보다 오래된 매크로블록 로우는 단계(214)에서 메모리 회로(104)로부터 읽혀지고 단계(210)에서 디스플레이될 수 있다.
어떤 실시예로, 재구성 영상은 저감된 해상도 포맷으로 메모리 회로(104)에 저장될 수 있다. 예를 들면, 영상이 풀(정상) 해상도로 디코딩된 후에, 단계(216)에서 영상은 다운샘플링되고 단계(218)에서 저감된 해상도로 메모리 회로(104)에 저장될 수 있다. 때때로, 풀해상도로 재구성된 영상은 단계(206)에서 메모리 회로(104)에 이미 존재할 수 있다. 따라서, 재구성된 영상은 단계(208)에서 메모리 회로(104)로부터 읽혀지고, 단계(216)에서 다운샘플링되고, 단계(218)에서 메모리 회로(104)에 다시 쓰여질 수 있다. 메모리 회로(104)에 동일한 기준 영상의 두개의 복사본을 동시에 갖는 것을 회피하기 위해, 풀해상도 영상에 의해 이전에 점유되는 영역은 단계(220)에서 해제될 수 있다. 이 해제는 저감된 해상도 영상이 쓰여지기 전 또는 후에 일어날 수 있다. 단계(220)에서, 저감된 해상도 재구성된 영상은 (쓰기 순서와 다를 수 있는) 디스플레이 순서로 메모리 회로(104)로부터 읽혀질 수 있다. 저감된 영상의 업샘플링이 단계(224)에서 수행되어 단계(210)에서 디스플레이하기 위한 풀해상도로 영상을 복원할 수 있다.
다른 실시예로, 디코딩은 영상의 재구성 및 다운샘플링을 동시에 수행하도록 구성될 수 있다. 단계(226)에서, 재구성된 영상은 저감된 해상도(예를 들면, 블록 필터링의 일부로서 다운샘플링됨)로 직접 생성될 수 있다. 그리고, 저감된 해상도 영상은 단계(216)에서 저장되고, 단계(222)에서 읽혀지고, 단계(224)에서 업샘플링 되고, 단계(210)에서 디스플레이될 수 있다.
도 19는 DPB(Decoded Picture Buffer)에서의 샘플 쓰기 및 해제를 나타낸 도면이다. 제1 영상(예를 들면, P0 FULL)은 DPB에서 영역(230)에 저장될 수 있다. 영역(232)의 DPB의 나머지는 비어있고 이용가능할 수 있다. DPB내의 이용가능한 공간을 증대시키기 위해, 영상 P0는 반수평 해상도(예를 들면, P0 HHR)로 다운샘플링되고 영역(230)의 제1 1/2에 저장될 수 있다(예를 들면, 영역(234)에 저장). 저감된 영상 P0 HHR이 원래의 영상 P0 FULL과 겹치지 않는 영역(230)의 제2 1/2(예를 들면, 영역236)은 이후의 사용을 위해 해제될 수 있다.
제2 풀해상도 영상(예를 들면, P1 FULL)은 영역(238)의 DPB에 저장될 수 있다. 영역(238)은 영상 P0 FULL이 저감된 경우에 이용가능한 비사용 영역(236)과 중복될 수 있다. P1 FULL은 DPB로부터 이후에 읽혀지고, 다운샘플링되고 저감된 버전(예를 들면, P1 HHR)은 영역(240)의 DPB에 쓰여진다. DPB에서 이용가능한 영상 P1 HHR로, 영상 P1 FULL을 유지하는 영역(238)은 추가 이용을 위해 해제(이용가능한)될 수 있다. 제3 풀해상도 영상(예를 들면, P3 FULL)은 해제(개방) 영역(238)에 저장되거나 (도시한 바와 같이) DPB의 다른 영역(242)에 저장될 수 있다.
일정 시간 후에, 영상 P0 HHR은 폐기되어 새로운 영상을 위해 공간(234)이 자유로워진다. 다른 새로운 영상(예를 들면, P3 FULL)은 오랜 공간(234)과 공간(238)의 제1 1/2을 포함하는 공간(244)에 DPB에 저장될 수 있다. 개방 공간(238)의 제2 1/2(예를 들면, 공간(246)은 비사용으로 유지될 수 있다. 영상 P3 FULL은 공간(246) 또는 (도시한 바와 같이) DPB의 다른 영역(예를 들면, 영역248)에 저감 된 해상도(예를 들면, P3 HHR)로 DPB에 저장될 수 있다.
도 20은 저감된 해상도 기준 데이터를 처리하는 방법(250)의 흐름도이다. 이 방법(또는 처리)(250)는 일반적으로 단계(또는 블록)(252), 단계(또는 블록)(254), 단계(또는 블록)(256), 단계(또는 블록)(258), 단계(또는 블록)(260), 단계(또는 블록)(262), 및 단계(또는 블록)(264)를 포함한다. 이 방법(250)은 도 18에 도시된 디코드 단계(204 및/또는 226)내에서 서브 단계를 이룰 수 있다.
잔여 매크로블록이 재구성되면, 관련 저감 해상도 기준 매크로블록은 단계(252)에서 메모리 회로(104)로부터 읽혀질 수 있다. 단계(254)에서, 저감된 해상도 기준 매크로블록은 풀해상도로 업샘플링될 수 있다. 모션 보상(예를 들면, 서브-픽셀 인터폴레이션)은 단계(256)에서 풀해상도 기준 매크로블록으로 수행될 수 있다. 그리고, 모션 보상 기준 매크로블록은 단계(258)에서 재구성 매크로블록을 생성하기 위해 잔여 매크로블록에 추가될 수 있다. 재구성 매크로블록은 단계(260)에서 필터링되고 저장 및/또는 디스플레이되는 블록일 수 있다.
일실시예로, 하나 이상의 기준 영상은 디코딩(예를 들면, 단계262)에서 이용되기 전에 메모리 회로(104)로부터 해제될 수 있다. 누락 기준 영상을 보상하기 위해, 누락 기준 매크로블록을 위한 적절한 대체를 만들기 위해 에러 은닉 기술이 단계(264)에서 이용될 수 있다. 에러 은닉 기술은 누락 기준 영상을 위한 대체 기준 영상에서 데이터의 대용 및 다른 영상으로부터 공간적인 예상에 의한 누락 기준 영상의 재작성을 포함하지만 거기에 한정되지는 않는다. 특정 응용의 기준을 충족하기 위해 다른 에러 은닉 기술이 구현될 수 있다.
도 21은 예시적인 영상 시퀀스를 나타낸 도면이다. 예시적인 시퀀스는 일반적으로 P0 B1 B2 B3 B4 B5 B6 B7 P8을 포함한다. 영상 P0는 영상 B1, B2, B4를 위한 기준 영상으로 이용될 수 있다. 영상 P8은 영상 B7, B6, B4를 위한 기준 영상으로 이용될 수 있다. 영상 B4는 영상 B3 및 B5를 위한 기준 영상으로 이용될 수 있다. 영상 B2는 영상 B1 및 B3를 위한 기준일 수 있다. 영상 B6는 영상 B5 및 B7을 위한 기준일 수 있다.
DPB의 이용을 최소화하기 위해, 기준 영상의 일부는 다운샘플링(다운사이즈)될 수 있다. 일실시예로, 가장 오래된 기준 영상은 미리 다운사이즈될 수 있다. "가장 오래된"은 하나 이상의 다음 기준 (ⅰ) H.264 영상 오더 카운트, (ⅱ) 타임 스탬프, (ⅲ) 디스플레이 오더, (ⅳ) 디코딩 오더, (ⅴ) H.264 프레임수(예를 들면, frame_num), (ⅵ) H.264 리스트 0 영상수(예를 들면, picNumL0), (ⅶ) H.264 리스트 1 영상수(예를 들면, picNumL1), 및 (ⅷ) 영상이 "쇼트-텀" 기준 영상 또는 "롱-텀" 기준 영상인지를 이용하여 결정될 수 있다. 쇼트-텀 기준 영상의 예는 일시적으로 인접한 영상 B2에만 사용되는 영상 B1일 수 있다. 롱-텀 기준 영상의 예는 일시적으로 먼 영상 P4을 디코딩하는데 이용되는 영상 P0일 수 있다.
다른 실시예로, 기준 영상의 다운사이징은 사전에 쇼트 일시적인 영향에 기초하여 수행될 수 있다. 예를 들면, 수개/한쌍의 인접 프레임 이상에 의해 간접적으로라도 예상에 이용되지 않는 기준 B-영상이 다운샘플링될 수 있다. 다른 예로, 수개/한쌍의 인접 프레임을 간접적으로라도 참조하는데에만 이용되는 Br-프레임에 의해서만 이용되는 P-영상이 다운샘플링될 수 있다.
디스플레이 재배열(재배열 지연)을 위해 재구성 영상이 버퍼링되면 DSP에 공간을 유지하기 위해 해상도 저감이 이용될 수 있다. 예를 들면, 재배열 지연될 일부 또는 모든 비기준 영상은 저감된 해상도로 DPB에 저장될 수 있다. 그리고, 영상은 디스플레이되기 바로 이전에 풀해상도로 업샘플링될 수 있다. "저감"은 일반적으로 표준 디코딩 해상도/처리(예를 들면, 특정 비트스트림 신택스를 위한 H.264 표준 디코딩 처리)와 관련된다. 일반적으로 재배열 지연 목적만을 위하여 저장된 비기준 영상은 서브샘플링(저감)되면 다른 영상으로 드리프트를 전파하지 않을 것이다.
다운샘플링은 다양한 조건하에서 기준 영상에 적용될 수 있다. 예를 들면, 드리프트/에러 쇼트 일시적인 거리를 전파하는데 알려진 기준 영상은 저감 해상도 저장을 위해 우선순위를 결정할 수 있다. 특히, 블루레이 스트림의 기준 B-프레임은 디코딩 순서에서 후행하고 디코딩 순서에서 다음 I-프레임 또는 P-프레임을 선행하는 B-프레임 이상으로 드리프트를 전파하지 않을 수 있다. 구체적으로, 기껏해야 2개의 추가 프레임이 블루레이 스트림의 기준 영상 다운샘플링으로 인해 다운샘플링된 기준 B-프레임으로 드리프트할 수 있다.
다른 예로, 다른 영상의 예상에 적게 제공하기 위해 (포워드 스트림 분석과 같은 프로세스에 의해) 알려질 수 있는 기준 영상이 다운샘플링될 수 있다. 또한, 해상도가 저감되면 적은 왜곡(예를 들면, 이미 상대적으로 불명료하거나 다른 영상에서 다른 픽셀에 의한 예상을 위해 참조되지 않음)을 도입할 수 있는 특정 기준 영상은 저감된 해상도 저장을 위해 우선순위를 결정할 수 있다.
도 18 및 도 20의 도면에 의해 수행된 기능은 관련 기술분야의 당업자에게 명백한 본 발명의 기술에 따라 프로그램된 종래의 일반적인 목적의 디지털 컴퓨터를 이용하여 구현될 수 있다. 관련 기술분야의 당업자에 의해 명백한 본 발명의 기술을 기초하여 숙련된 프로그래머에 의해 적절한 소프트웨어 코딩이 용이하게 준비될 수 있다.
본 발명은 여기에 기재되고 이 기술분야의 당업자에 의해 용이하게 변형가능한 ASIC, FPGA의 준비 또는 종래 부품 회로의 적절한 네트워크를 상호연결에 의해 구현될 수 있다.
따라서 본 발명은 본 발명에 따라 프로세스를 수행하도록 컴퓨터를 프로그램하는데 사용될 수 있는 명령을 포함하는 저장매체일 수 있는 컴퓨터 제품을 포함할 수 있다. 저장매체는 플로피 디스크를 포함하는 모든 디스크 타입, 광 디스크, CD-ROM, 자기-광 디스크, ROM, RAM, EPROM, EEPROM, 플래시 메모리, 자기 또는 광 카드, 또는 전자 명령을 저장하기에 적합한 모든 타입의 매체를 포함하지만 거기에 한정되지는 않는다. 여기에 이용된 바와 같이, 용어 "동시에"는 동일한 시간을 공유하는 이벤트를 설명하도록 의미되지만 이 용어는 시간적으로 동일점에서의 시작, 시간적으로 동일점에서 종료, 또는 동일한 시간을 갖는 이벤트에 한정되도록 의미하지는 않는다.
본 발명이 바람직한 실시예를 참조하여 특별히 도시되고 설명되었지만, 본 발명의 범위를 일탈하지 않고 형태와 세부사항에 있어 다양하게 변형될 수 있다는 것을 이 기술분야의 당업자는 이해할 것이다.
Claims (22)
- 비디오 디코딩 방법에 있어서,(A) 제1 해상도를 갖는 제1 영상을 비트스트림으로부터 디코딩하는 단계;(B) 상기 제1 해상도의 상기 제1 영상을 메모리에 저장하는 단계; 및(C) 제2 해상도의 상기 제1 영상을 상기 메모리에 저장하는 단계를 포함하고,상기 제2 해상도는 상기 제1 해상도 보다 낮은 것을 특징으로 하는 비디오 디코딩 방법.
- 제1항에 있어서,상기 제1 해상도의 상기 제1 영상을 저장한 상기 메모리의 영역을 해제하는 단계; 및이전에 상기 제1 해상도의 상기 제1 영상을 저장한 상기 메모리의 영역의 일부를 이용하여 상기 메모리에 제2 영상을 저장하는 단계를 더 포함하고,상기 메모리 영역의 일부는 (i) 상기 제1 해상도의 상기 제1 영상과 (ⅱ) 상기 제2 해상도의 상기 제1 영상 사이의 차이를 포함하는 것을 특징으로 하는 비디오 디코딩 방법.
- 제1항에 있어서,상기 메모리에 저장된 복수의 기준 영상 중 가장 오래된 기준 영상인 상기 제1 영상에 응답하여 상기 제1 해상도의 상기 제1 영상을 저장한 상기 메모리의 영역을 해제하는 단계를 더 포함하고,상기 가장 오래된 기준 영상은 (ⅰ) 영상 오더 카운트, (ⅱ) 타임 스탬프, (ⅲ) 디스플레이 오더, (ⅳ) 디코드 오더, (ⅴ) 프레임수, (ⅵ) 리스트 0 영상수, (ⅶ) 리스트 1 영상수, 및 (ⅷ) 디코딩될 현재 영상으로부터의 시간적 거리 중 적어도 하나를 기초로 하여 결정되는 것을 특징으로 하는 비디오 디코딩 방법.
- 제1항에 있어서,(i) 비기준 영상인 상기 제1 영상과 (ii) 재배열 지연에 종속하는 상기 제1 영상에 따라 상기 제1 해상도의 상기 제1 영상을 저장한 상기 메모리의 영역을 해제하는 단계를 더 포함하는 것을 특징으로 하는 비디오 디코딩 방법.
- 제1항에 있어서,(i) 상기 메모리에 저장된 복수의 기준 영상 중 하나를 포함하는 상기 제1 영상과 (ii) 긴 시간적인 거리에 걸쳐 디코딩에 영향을 주지 않는 상기 제1 영상에 응답하여 상기 제1 해상도의 상기 제1 영상을 저장한 상기 메모리의 영역을 해제하는 단계를 더 포함하는 것을 특징으로 하는 비디오 디코딩 방법.
- 제1항에 있어서,(i) 상기 비트스트림의 디코딩 및 (ii) 상기 제1 해상도의 상기 제1 영상의 다운샘플링 중 하나에 의해 상기 제2 해상도의 상기 제1 영상을 생성하는 단계를 더 포함하는 것을 특징으로 하는 비디오 디코딩 방법.
- 제1항에 있어서,상기 비트스트림으로부터 제2 영상을 디코딩하는 단계를 더 포함하고,상기 제2 해상도의 상기 제1 영상은 상기 제2 영상이 디코딩된 후에 상기 메모리에 저장되는 것을 특징으로 하는 비디오 디코딩 방법.
- 제1항에 있어서,(ⅰ) 상기 디코딩은 H.264 표준 디코딩을 포함하고,(ⅱ) 상기 메모리는 DRAM을 포함하고,(ⅲ) 상기 제1 해상도는 풀해상도를 포함하고,(ⅳ) 상기 제2 해상도는 반수평 해상도를 포함하는 것을 특징으로 하는 비디오 디코딩 방법.
- 제1항에 있어서,상기 비트스트림으로부터 제2 영상을 디코딩하는 단계; 및상기 제2 영상을 상기 제2 해상도로 상기 메모리에 저장하는 단계를 더 포함하는 것을 특징으로 하는 비디오 디코딩 방법.
- 제9항에 있어서,상기 제2 영상을 상기 제2 해상도에서 상기 제1 해상도로 업샘플링하는 단계; 및상기 디코딩에서 기준 영상으로서 상기 제1 해상도의 상기 제2 영상을 이용하여 상기 비트스트림으로부터 제3 영상을 디코딩하는 단계를 더 포함하는 것을 특징으로 하는 비디오 디코딩 방법.
- 제9항에 있어서,(i) 상기 메모리에 저장되지 않은 상기 제1 해상도의 상기 제2 영상과 (ii) 상기 메모리에 저장된 상기 제1 해상도의 상기 제2 영상중 하나를 (a) 상기 메모리를 위해 이용가능한 메모리 대역폭, (b) 이용가능한 다운샘플링 사이클, 및 (c) 상기 메모리내의 이용가능한 저장 면적중 적어도 하나에 기초하여 다운샘플링함으로써 상기 제2 해상도의 상기 제2 영상을 생성하는 단계를 더 포함하는 것을 특징으로 하는 비디오 디코딩 방법.
- 비디오 디코딩 방법에 있어서,(A) 비트스트림으로부터 복수의 기준 영상을 디코딩하는 단계;(B) 상기 기준 영상의 서브셋을 메모리에 저장하는 단계; 및(C) 상기 비트스트림으로부터 특정 영상을 디코딩하는 단계를 포함하고,상기 특정 영상을 인코딩하는데 이용되는 상기 기준 영상중 적어도 하나는 상기 특정 영상이 디코딩되는 동안에 상기 메모리에 저장되지 않는 것을 특징으로 하는 비디오 디코딩 방법.
- 제12항에 있어서,상기 단계 (C)는 적어도 하나의 에러 은닉 기술을 이용하여 상기 특정 영상을 디코딩하는 단계를 포함하는 것을 특징으로 하는 비디오 디코딩 방법.
- 제12항에 있어서,상기 기준 영상중 가장 오래된 기준 영상을 상기 메모리에서 폐기하는 단계를 더 포함하고,상기 가장 오래된 기준 영상은 (ⅰ) 영상 오더 카운트, (ⅱ) 타임 스탬프, (ⅲ) 디스플레이 오더, (ⅳ) 디코드 오더, (ⅴ) 프레임수, (ⅵ) 리스트 0 영상수, (ⅶ) 리스트 1 영상수, 및 (ⅷ) 디코딩될 현재 영상으로부터의 시간적 거리 중 적어도 하나를 기초로 하여 결정되는 것을 특징으로 하는 비디오 디코딩 방법.
- 비디오 디코딩 방법에 있어서,(A) 각각이 제1 해상도를 갖는 복수의 제1 영상을 비트스트림으로부터 디코딩하는 단계;(B) 각각이 상기 제1 해상도보다 낮은 제2 해상도를 갖는 복수의 제2 영상을 상기 제1 영상의 서브셋을 다운샘플링함으로써 생성하는 단계;(C) 상기 제2 영상을 메모리에 저장하는 단계; 및(D) 디스플레이 이전에 상기 제2 영상의 시퀀스를 재배열하는 단계를 포함하는 것을 특징으로 하는 비디오 디코딩 방법.
- 제15항에 있어서,상기 비트스트림으로부터 복수의 기준 영상을 디코딩하는 단계;상기 기준 영상을 다운샘플링함으로써 복수의 저감된 기준영상을 생성하는 단계;상기 저감된 기준 영상을 상기 메모리에 저장하는 단계; 및상기 제1 영상의 디코딩에 이용하기 위한 상기 저감된 기준 영상을 업샘플링하는 단계를 더 포함하는 것을 특징으로 하는 비디오 디코딩 방법.
- 비디오 디코딩 방법에 있어서,(A) 복수의 제1 영상 및 복수의 제2 영상을 포함하는 복수의 재구성된 영상들을 비트스트림으로부터 디코딩하는 단계;(B) 상기 제2 영상을 다운샘플링함으로써 복수의 제3 영상을 생성하는 단계; 및(C) (i)상기 제1 영상 및 (ii)상기 제3 영상을 메모리에 저장하는 단계를 포함하는 것을 특징으로 하는 비디오 디코딩 방법.
- 제17항에 있어서,상기 제2 영상은 재배열 지연에 종속하는 복수의 비기준 영상을 포함하는 것을 특징으로 하는 비디오 디코딩 방법.
- 제17항에 있어서,상기 제2 영상은 긴 시간적인 거리에 걸쳐 디코딩에 영향을 주지 않는 기준 영상을 포함하는 것을 특징으로 하는 비디오 디코딩 방법.
- 제17항에 있어서,상기 제2 영상은 (i) 상기 재구성된 영상들의 소수를 디코딩하는데 이용되거나 (ii) 상기 재구성된 영상들의 디코딩에서 적은 왜곡을 도입하는 기준 영상을 포함하는 것을 특징으로 하는 비디오 디코딩 방법.
- 제17항에 있어서,상기 제2 영상은, 재배열 지연에 종속하는 복수의 비기준 영상, 및 상기 비기준 영상의 디코딩에 이용되는 기준 영상을 포함하는 것을 특징으로 하는 비디오 디코딩 방법.
- 제17항에 있어서,상기 재구성된 영상은 복수의 기준 영상을 더 포함하고,상기 제2 영상중 적어도 하나를 상기 메모리에 저장하는 단계;상기 기준 영상의 서브셋을 상기 메모리에 저장하는 단계; 및디스플레이 이전에 상기 제3 영상의 시퀀스를 재배열하는 단계를 포함하고,상기 제3 영상은 상기 적어도 하나의 제2 영상보다 낮은 해상도를 가지며,상기 재구성된 영상중 특정 영상을 인코딩하는데 사용되는 상기 기준 영상중 적어도 하나는 상기 특정 영상이 디코딩되는 동안에 상기 메모리에 저장되지 않는 것을 특징으로 하는 비디오 디코딩 방법.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/494,105 | 2006-07-27 | ||
US11/494,105 US7801223B2 (en) | 2006-07-27 | 2006-07-27 | Method for video decoder memory reduction |
PCT/US2007/016628 WO2008013802A2 (en) | 2006-07-27 | 2007-07-24 | Method for video decoder memory reduction |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20090046807A true KR20090046807A (ko) | 2009-05-11 |
KR101176584B1 KR101176584B1 (ko) | 2012-08-23 |
Family
ID=38982022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020097001801A KR101176584B1 (ko) | 2006-07-27 | 2007-07-24 | 비디오 디코더 메모리 저감 방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US7801223B2 (ko) |
EP (1) | EP2055104A4 (ko) |
JP (1) | JP5059860B2 (ko) |
KR (1) | KR101176584B1 (ko) |
CN (1) | CN101513064B (ko) |
WO (1) | WO2008013802A2 (ko) |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100846512B1 (ko) * | 2006-12-28 | 2008-07-17 | 삼성전자주식회사 | 영상의 부호화, 복호화 방법 및 장치 |
CN101321284B (zh) * | 2007-06-10 | 2012-01-04 | 华为技术有限公司 | 一种编解码方法、设备及系统 |
US8861598B2 (en) * | 2008-03-19 | 2014-10-14 | Cisco Technology, Inc. | Video compression using search techniques of long-term reference memory |
JPWO2010092740A1 (ja) * | 2009-02-10 | 2012-08-16 | パナソニック株式会社 | 画像処理装置、画像処理方法、プログラムおよび集積回路 |
CN101895764B (zh) * | 2010-08-09 | 2012-07-11 | 北京海尔集成电路设计有限公司 | 一种节省存储空间的视频解码方法 |
US20140169449A1 (en) * | 2011-07-05 | 2014-06-19 | Telefonaktiebolaget L M Ericsson (Publ) | Reference picture management for layered video |
US9106927B2 (en) | 2011-09-23 | 2015-08-11 | Qualcomm Incorporated | Video coding with subsets of a reference picture set |
US9264717B2 (en) | 2011-10-31 | 2016-02-16 | Qualcomm Incorporated | Random access with advanced decoded picture buffer (DPB) management in video coding |
JP5898924B2 (ja) * | 2011-11-10 | 2016-04-06 | 株式会社Nttドコモ | 動画像予測符号化方法、動画像予測符号化装置、動画像予測符号化プログラム、動画像予測復号方法、動画像予測復号装置および動画像予測復号プログラム |
CN102647558A (zh) * | 2012-04-18 | 2012-08-22 | 深圳市联祥瑞实业有限公司 | 监控视频记录方法及设备 |
US20160311386A1 (en) * | 2013-12-19 | 2016-10-27 | Hutchinson | Element of an engine compartment of a motor vehicle and method of protecting the element against chemical attacks from a metal halide |
GB2539241B (en) | 2015-06-11 | 2019-10-23 | Advanced Risc Mach Ltd | Video processing system |
JP6679290B2 (ja) | 2015-11-30 | 2020-04-15 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
CN105915784A (zh) * | 2016-04-01 | 2016-08-31 | 纳恩博(北京)科技有限公司 | 信息处理方法和装置 |
WO2020156540A1 (en) | 2019-02-02 | 2020-08-06 | Beijing Bytedance Network Technology Co., Ltd. | Buffer management for intra block copy in video coding |
KR20210123300A (ko) | 2019-02-02 | 2021-10-13 | 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 | 비디오 코딩에서 인트라 블록 복사를 위한 버퍼 관리 |
CN109831599B (zh) * | 2019-02-21 | 2021-09-14 | 苏州天准科技股份有限公司 | 一种基于fpga的针对3d测量中图像存储的压缩方法 |
KR102688366B1 (ko) * | 2019-03-01 | 2024-07-24 | 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 | 비디오 코딩에서 인트라 블록 복사를 위한 방향 기반 예측 |
WO2020177662A1 (en) | 2019-03-01 | 2020-09-10 | Beijing Bytedance Network Technology Co., Ltd. | Implementation aspects in intra block copy in video coding |
KR20210125506A (ko) | 2019-03-04 | 2021-10-18 | 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 | 비디오 코딩에서 인트라 블록 복사를 위한 버퍼 관리 |
CN111754387B (zh) * | 2019-03-28 | 2023-08-04 | 杭州海康威视数字技术股份有限公司 | 一种图像处理方法及设备 |
CN117294841A (zh) | 2019-07-06 | 2023-12-26 | 北京字节跳动网络技术有限公司 | 用于视频编解码中的帧内块复制的虚拟预测缓冲 |
JP7359934B2 (ja) | 2019-07-10 | 2023-10-11 | 北京字節跳動網絡技術有限公司 | 映像符号化におけるイントラブロックコピーのためのサンプル識別 |
EP3981146A4 (en) | 2019-07-11 | 2022-08-03 | Beijing Bytedance Network Technology Co., Ltd. | BITSTREAM CONFORMITY RESTRICTIONS FOR INTRA-BLOCK COPY IN VIDEO ENCODING |
CN115022670B (zh) * | 2022-05-31 | 2023-09-05 | 咪咕文化科技有限公司 | 视频文件存储方法、还原方法、装置、设备及存储介质 |
CN117979062B (zh) * | 2024-03-05 | 2024-07-12 | 北京瑞祺皓迪技术股份有限公司 | 一种基于编码流引用计数的实时视频流传输方法及装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2296618B (en) * | 1994-12-30 | 2003-03-26 | Winbond Electronics Corp | System and method for digital video decoding |
US5724475A (en) * | 1995-05-18 | 1998-03-03 | Kirsten; Jeff P. | Compressed digital video reload and playback system |
JPH09121358A (ja) * | 1995-10-25 | 1997-05-06 | Matsushita Electric Ind Co Ltd | 画像符号化及び復号化装置と方法 |
US5818530A (en) * | 1996-06-19 | 1998-10-06 | Thomson Consumer Electronics, Inc. | MPEG compatible decoder including a dual stage data reduction network |
US5825424A (en) * | 1996-06-19 | 1998-10-20 | Thomson Consumer Electronics, Inc. | MPEG system which decompresses and recompresses image data before storing image data in a memory and in accordance with a resolution of a display device |
KR100282307B1 (ko) * | 1998-02-20 | 2001-02-15 | 구자홍 | 디지탈 티브이 수신 디코더 장치 |
US6222944B1 (en) * | 1998-05-07 | 2001-04-24 | Sarnoff Corporation | Down-sampling MPEG image decoder |
JP2000004442A (ja) * | 1998-06-15 | 2000-01-07 | Hitachi Ltd | ディジタル符号化画像データの復号・表示装置 |
JP4051841B2 (ja) * | 1999-12-01 | 2008-02-27 | ソニー株式会社 | 画像記録装置および方法 |
US6983017B2 (en) * | 2001-08-20 | 2006-01-03 | Broadcom Corporation | Method and apparatus for implementing reduced memory mode for high-definition television |
JP3822821B2 (ja) * | 2001-12-11 | 2006-09-20 | 株式会社日立製作所 | 画像再生表示装置 |
JP2003289544A (ja) * | 2002-03-27 | 2003-10-10 | Sony Corp | 画像情報符号化装置及び方法、画像情報復号装置及び方法、並びにプログラム |
JP4562999B2 (ja) * | 2002-07-11 | 2010-10-13 | パナソニック株式会社 | 画像復号化方法および画像復号化装置 |
US20040199740A1 (en) * | 2003-04-07 | 2004-10-07 | Nokia Corporation | Adaptive and recursive compression of lossily compressible files |
JP3938368B2 (ja) * | 2003-09-02 | 2007-06-27 | ソニー株式会社 | 動画像データの編集装置および動画像データの編集方法 |
-
2006
- 2006-07-27 US US11/494,105 patent/US7801223B2/en active Active
-
2007
- 2007-07-24 WO PCT/US2007/016628 patent/WO2008013802A2/en active Application Filing
- 2007-07-24 EP EP20070836216 patent/EP2055104A4/en not_active Ceased
- 2007-07-24 CN CN2007800321161A patent/CN101513064B/zh active Active
- 2007-07-24 JP JP2009521801A patent/JP5059860B2/ja not_active Expired - Fee Related
- 2007-07-24 KR KR1020097001801A patent/KR101176584B1/ko not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
US7801223B2 (en) | 2010-09-21 |
EP2055104A4 (en) | 2011-09-14 |
US20080025407A1 (en) | 2008-01-31 |
JP5059860B2 (ja) | 2012-10-31 |
WO2008013802A2 (en) | 2008-01-31 |
CN101513064A (zh) | 2009-08-19 |
KR101176584B1 (ko) | 2012-08-23 |
JP2009545234A (ja) | 2009-12-17 |
EP2055104A2 (en) | 2009-05-06 |
WO2008013802A3 (en) | 2008-11-27 |
CN101513064B (zh) | 2013-08-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101176584B1 (ko) | 비디오 디코더 메모리 저감 방법 | |
US20120076208A1 (en) | Memory reduced h264/mpeg-4 avc codec | |
US7333545B2 (en) | Digital video decoding, buffering and frame-rate converting method and apparatus | |
JP5400888B2 (ja) | 並列処理を用いた復号システムおよび方法 | |
US8428126B2 (en) | Image decoding device with parallel processors | |
US8050328B2 (en) | Image decoding method | |
US8170107B2 (en) | Flexible reduced bandwidth compressed video decoder | |
US20080267295A1 (en) | Video decompression, de-interlacing and frame rate conversion with frame buffer compression | |
US6028612A (en) | Picture memory mapping to minimize memory bandwidth in compression and decompression of data sequences | |
JPH08265766A (ja) | デジタルビデオ減圧プロセッサ及びそのためのdramマッピング方法 | |
US8184700B2 (en) | Image decoder | |
JP2000224591A (ja) | 統合ビデオ復号化システム、フレ―ム・バッファ、符号化ストリ―ム処理方法、フレ―ム・バッファ割当て方法及び記憶媒体 | |
GB2336267A (en) | Image processor controlling B-picture memory | |
KR20000053636A (ko) | 디지털 비디오 데이터를 처리하기 위한 방법 및 장치 | |
US20080260021A1 (en) | Method of digital video decompression, deinterlacing and frame rate conversion | |
US20090022229A1 (en) | Efficient image transmission between TV chipset and display device | |
US8204122B2 (en) | Compressed non-reference picture reconstruction from post-processed reference pictures | |
KR100535296B1 (ko) | 디지털방식으로코딩된비디오필름의원래의데이터를재생하는방법및그방법을수행하는장치 | |
WO2000059218A1 (en) | Digital video decoding, buffering and frame-rate converting method and apparatus | |
JPH11205739A (ja) | 画像再生方法及び装置 | |
KR100252810B1 (ko) | 엠펙디코더 | |
JP2000324484A (ja) | 画像データ処理装置 | |
JPH0993540A (ja) | Vodシステムにおける特殊再生方式 | |
TW567722B (en) | Image reproducing method, image processing method, image reproducing device, image processing device, and television receiver capable of using the methods | |
JP2000224545A (ja) | 動画像記録装置および動画像再生装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160801 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20170811 Year of fee payment: 6 |
|
LAPS | Lapse due to unpaid annual fee |