KR20080105367A - 플라즈마 화학기상증착과 물리기상증착을 복합한 박막코팅방법 및 그 제품 - Google Patents

플라즈마 화학기상증착과 물리기상증착을 복합한 박막코팅방법 및 그 제품 Download PDF

Info

Publication number
KR20080105367A
KR20080105367A KR1020070052864A KR20070052864A KR20080105367A KR 20080105367 A KR20080105367 A KR 20080105367A KR 1020070052864 A KR1020070052864 A KR 1020070052864A KR 20070052864 A KR20070052864 A KR 20070052864A KR 20080105367 A KR20080105367 A KR 20080105367A
Authority
KR
South Korea
Prior art keywords
vapor deposition
substrate
thin film
coating
chemical vapor
Prior art date
Application number
KR1020070052864A
Other languages
English (en)
Other versions
KR100897323B1 (ko
Inventor
김성완
김상권
조용기
장우순
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020070052864A priority Critical patent/KR100897323B1/ko
Publication of KR20080105367A publication Critical patent/KR20080105367A/ko
Application granted granted Critical
Publication of KR100897323B1 publication Critical patent/KR100897323B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process

Abstract

본 발명은 PECVD법과 아크방전법을 접목하여 내식성과 전기전도도 특성을 확보할 수 있도록 한 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법 및 그 제품에 관한 것이다.
이를 위해, 기재 표면을 활성화하고 잔류 유기물을 제거하기 위한 비활성가스를 챔버 내부에 투입하여 기재 표면을 전처리하고, 상기 챔버 내부에 아크방전을 유도하기 위한 반응가스를 투입하여 타겟의 아크방전을 수행하는 동시에 아크방전으로 유도된 타겟의 전자를 애노드에 포집하여 상기 반응가스의 분해를 촉진하며, 기재에 바이어스 전압을 인가하여 분해된 반응가스를 상기 기재 표면에 흡착시킴과 아울러, 이 과정에서 타겟으로부터 유입되는 금속이온을 함유시켜 기재에 전도성과 내식성의 박막을 형성시켜 기재에 박막을 코팅하는 것을 특징으로 한다.
상기한 구성에 따라, 아크방전법과 PECVD법에 의해 기재에 박막을 코팅하므로 전기전도도와 내부식성을 향상시켜 연료전지 분리판 제품 제조에 탁월한 효과가 있고, 또한 기재 표면에 코팅되는 중간층을 통해 기재와 코팅층간의 밀착성을 향상시킬 수 있는 효과도 있다.
플라즈마 화학기상증착, 아크방전, 연료전지, 분리판, Me-C:H층.

Description

플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법 및 그 제품{Material coating thin film and method for coating thin film on material by Plasma-enhanced chemical vapor deposition and physical vapor deposition}
도 1은 일반적으로 사용되고 있는 흑연분리판을 예시한 사진,
도 2는 일반적으로 사용되고 있는 금속분리판을 예시한 사진,
도 3은 본 출원인에 의해 선출원 발명된 플라즈마 화학기상증착에 사용되는 코팅장치를 개략적으로 도시한 모식도,
도 4는 도 3의 코팅장치를 통해 기재에 DLC층이 코팅된 구조를 개략적으로 도시한 사시도,
도 5는 본 발명에 의한 플라즈마 화학기상증착법과 아크방전법에 의해 기재에 박막을 코팅하는 코팅장치를 개략적으로 도시한 모식도,
도 6은 본 발명에 의한 코팅방법의 일실시예를 순차적으로 나열한 블록도,
도 7은 도 6의 코팅방법을 통해 기재에 Me-C:H층이 코팅된 구조를 개략적으로 도시한 사시도,
도 8은 본 발명에 의한 코팅방법의 다른 일실시예를 순차적으로 나열한 블록도,
도 9는 도 8의 코팅방법을 통해 기재에 중간층과 Me-C:H층이 코팅된 구조를 개략적으로 도시한 사시도,
도 10은 본 발명의 코팅방법을 이용한 코팅층과 PECVD법을 이용한 코팅층을 서로 비교한 결합구조 및 표면사진,
도 11a는 본 발명의 코팅방법을 통해 코팅되는 코팅층의 특성을 나타낸 표,
도 11b는 본 발명에 의해 중간층을 형성한 코팅층과 중간층을 형성하지 않은 코팅층의 특성을 서로 비교한 표,
도 12는 본 발명에 의한 Me-C:H층이 형성된 제품의 표면 및 단면사진과 실제 응용한 제품 사진,
도 13은 본 발명에 의해 코팅된 코팅층과 PECVD법을 이용한 코팅층의 내부식 특성을 서로 비교한 그래프선도 및 표.
*도면중 주요 부호에 대한 설명*
100 : 기재 110 : 기판
200 : 중간층 300 : Me-C:H층
400 : 챔버 410 : 진공펌프
420 : 가스 인입장치부 430 : 아크건
435 : 차폐막 440 : 애노드
P100 : 플라즈마 전처리공정 P200 : 아크방전공정
P200' : 중간층 코팅공정 P300 : 코팅공정
본 발명은 기재에 박막을 코팅하기 위한 방법 및 그 제품에 관한 것으로, 보다 상세하게는 플라즈마 화학기상증착법(PECVD)에 의한 DLC막에 아크방전을 이용한 코팅기술을 접목하여 내식성과 함께 높은 전기전도 특성을 확보할 수 있도록 한 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법 및 그 제품에 관한 것이다.
일반적으로 연료전지는 연료의 산화에 의해서 생기는 화학에너지를 직접 전기에너지로 변환시키는 것으로, 최근 지구온난화 방지를 위한 CO2 배출규제와 화석연료의 대체 에너지원으로 집중 연구되고 있다.
이러한, 연료전지의 부품 중 특히, 분리판은 막전극 집합체와 함께 연료전지의 중요 핵심부품으로 우수한 전지전도성 및 열전도성 그리고 가스밀폐성 및 내식특성이 요구되며, 제조에 있어서 낮은 공정단가와 소형화 및 경량화가 요구되는 품목 중 하나이다.
이에, 기존의 분리판으로는 도 1에 도시된 바와 같이 흑연을 기계 가공하거나 흑연 및 복합재료의 성형으로 제조한 흑연분리판을 사용하였고, 전기전도성과 열전도성 및 화학적 안정성이 우수하여 최근까지 자동차 및 가정용 연료전지에 주로 이용되고 있는 실정에 있다.
그러나, 상기한 흑연분리판 중 기계 가공에 의한 흑연분리판은 분리판을 기계 가공하여 제조하는 특성상 높은 제조단가가 문제시되는 단점이 있었다. 이에, 흑연/수지 복합재료의 압출/사출 성형을 통해 분리판 제조시 고비용이 소요되는 문제점을 일부 해소하기는 하였으나, 카본계를 포함하는 복합재료의 재질 특성으로 인해 분리판의 강도가 낮아지는 치명적인 문제점이 발생하였다.
도 2는 상기한 바와 같은 문제점을 해결하기 위한 금속분리판의 일례로, 우수한 강도와 연성을 가진 금속소재의 특성으로 인해 금속소재를 이용한 금속분리판의 개발이 활발하게 이루어지고 있는 실정에 있다. 특히, 낮은 제조단가와 낮은 수소투과율로 0.2mm 이하의 박판을 사용할 수 있는 장점이 있는 스테인레스 스틸과 티타늄합금을 이용한 금속분리판의 개발이 부각되고 있다.
그러나, 상기한 금속분리판은 연료전지 반응에 의한 전지내부의 물과 전해질 내에 존재하는 SO3 -와 F-의 용해가 함께 진행되고, 연료전지 운전온도가 약 80℃의 높은 온도에서 작동됨으로써, 매우 심각한 부식환경을 만드는 폐단이 있다.
더욱이, 부식에 의한 금속의 용해가 전해질을 오염시키고, 금속표면 부동태 피막의 지속적인 성장으로 피막이 부도체화되기 때문에 접촉저항의 증가로 연료전지의 성능을 저하시키는 요인이 되는 문제점도 발생하였다.
이에, 금속분리판에 우수한 전기전도성과 내식성을 동시에 확보할 수 있는 코팅기술이 개발 및 적용되어 실시되고 있으며, 아래의 표 1에서는 금속분리판에 적용가능한 코팅물질의 예와, 그 코팅기술의 특징 및 단점 등을 기술하였다.
코팅 물질 특 징 비 고(단점)
◆ 귀금속 - Au, Pt 등 - 우수한 내식성 - 우수한 전기 전도성 : 산화 부동태 피막 생성 억제 - 높은 원재료 가격
◆ 금속 화합물 - nitride - carbide - boride - 금속과 비교시 우수한 내식성 나타냄 - 산화물과 비교시 우수한 전기 전도성 나타냄 - 우수한 기계적 표면 물성 동시 확보 가능 - 건식방법에 한정 - 양산성 확보에 어려움. - 낮은 밀착력
◆ Carbon/Graphite - 우수한 내식성, 열전도성. 화학적 안정성 - 우수한 전기전도성
◆ 고분자 코팅 - 고분자를 이용한 내식성 확보 - 고분자 코팅층 내 탄소(흑연)계 입자의 분산을 통한 전도성 확보 - 탄소계 입자 분산의 어려움으로 인한 전도성 저하
즉, 코팅물질로는 귀금속, 금속화합물, 카본/그라파이트, 고분자 등이 적용되고, 이러한, 코팅물질의 증착 방법으로는 습식방법과 스퍼터링법에 의하여 대부분 실시되고 있다. 그러나, 귀금속은 고가인 단점이 있고, 금속화합물과 카본계 막은 양산성 확보가 어려운 문제점이 있으며, 고분자코팅은 탄소계 입자 분산의 어려움으로 인해 전도성이 저하되는 폐단이 있다.
한편, 도 3은 본 출원인이 2006. 9. 4자로 특허 출원한 특허 출원번호 제2006-84713호 "플라즈마 화학기상증착에 의한 박막 코팅방법 및 그 제품"에 대한 것으로, 기재(10) 표면을 활성화하고 잔류 유기물을 제거하기 위한 반응가스를 챔버(40) 내부에 투입하여 기재(10) 표면을 전처리하고, 상기 챔버(40) 내부에 DLC층(30)과의 밀착성 향상을 위한 반응가스를 투입하여 상기 기재(10) 표면에 중간층(20)을 코팅하며, 상기 챔버(40) 내부에 내식성과 이형성 및 윤활성 향상을 위한 반응가스를 투입하여 상기 중간층(20) 표면에 DLC(Diamond Like Carbon)층을 코팅한다.
즉, 상기한 바와 같은 플라즈마 화학기상증착법(PECVD)에 의해 금속소재 표면에 코팅되는 a-C:H(DLC, Diamond Like Carbon)층은 탄화수소가스를 사용하여 코팅막 내에 다량의 수소를 함유하고 있다. 이러한, DLC층은 금속화합물과 비교하여 연료전지 전해질에 존재하는 SO3 -와 F-에 대한 우수한 내식성을 갖으며, 또한 DLC층의 내산화온도가 400℃ 이하이므로 80℃의 온도에서 운전하는 연료전지에서도 화학적 안정성을 확보할 수 있게 된다.
그러나, SP3 및 SP2의 혼재와 탄소 클러스터간의 크로스링킹이 많아 DLC막의 전기적 특성이 절연체의 특성을 보이는 문제점이 있다.
본 발명은 전술한 바와 같은 종래의 문제점을 해결하기 위하여 안출한 것으로, 플라즈마 화학기상증착법(PECVD)에 의한 DLC층에 아크방전을 이용한 코팅기술을 접목하여 내식성과 함께 높은 전기전도 특성을 확보할 수 있도록 한 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법 및 그 제품을 제공하는 데 있다.
본 발명의 다른 목적은 금속소재의 전도성 및 내식성 향상을 위한 표면 코팅을 PECVD법과 아크방전법을 통해 간편하게 수행하므로, 저비용의 코팅공정을 가능하게 하고, 제품 대량 생산이 가능하도록 한 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법 및 그 제품을 제공하는 데 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 박막 코팅방법은, 기재 표면을 활성화하고 잔류 유기물을 제거하기 위한 비활성가스를 챔버 내부에 투입하여 기재 표면을 전처리하는 플라즈마 전처리공정과; 상기 챔버 내부에 아크방전을 유도하기 위한 반응가스를 투입하여 타겟의 아크방전을 수행하는 동시에 아크방전으로 유도된 타겟의 전자를 애노드에 포집하여 상기 반응가스의 분해를 촉진하는 아크방전공정과; 기재에 바이어스 전압을 인가하여 분해된 반응가스를 상기 기재 표면에 흡착시킴과 아울러, 이 과정에서 타겟으로부터 유입되는 금속이온을 함유시켜 기재에 전도성과 내식성의 박막을 형성시키는 코팅공정을 포함하는 것을 특징으로 한다.
한편, 본 발명의 박막 코팅방법에 의해 제조되는 박막 코팅기재는, 플라즈마 전처리에 의해 표면이 활성화되고 잔류 유기물이 제거된 기재와; 상기 기재 표면에 전도성 및 내식성 향상을 위해 타겟을 이용한 아크방전법과 반응가스를 이용한 화학기상증착법으로 코팅한 Me-C:H층을 포함하는 것을 특징으로 한다.
또한, 본 발명의 박막 코팅방법에 의해 제조되는 다른 박막 코팅기재는, 플라즈마 전처리에 의해 표면이 활성화되고 잔류 유기물이 제거된 기재와; 상기 기재 표면에 전도성 및 Me-C:H층과의 밀착성 향상을 위해 타겟을 이용한 아크방전법으로 코팅한 중간층과; 상기 중간층 표면에 전도성 및 내식성 향상을 위해 타겟을 이용한 아크방전법과 반응가스를 이용한 화학기상증착법으로 코팅한 Me-C:H층을 포함하는 것을 특징으로 한다.
이하, 본 발명의 바람직한 실시예를 첨부된 도면에 의하여 상세히 설명하면 다음과 같다.
본 발명의 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법 은, 플라즈마 전처리공정(P100)과, 아크방전공정(P200)과, 코팅공정(P300)으로 이루어진다.
먼저 플라즈마 전처리공정(P100)에서는 기재(100) 표면을 활성화하고 잔류 유기물을 제거하기 위한 반응가스를 챔버(400) 내부에 투입하여 기재(100) 표면을 전처리하게 된다.
도 5 내지 도 7을 통해 보다 상세하게 설명하면, 챔버(400) 내부에 기재(100)를 장입한 후, 진공펌프(410)를 이용하여 챔버(400) 내부의 압력을 진공 상태로 유지시키고, 가스 인입장치부(420)를 통해 상기 챔버(400) 내부에 Ar과 H2와 같은 비활성가스를 투입한다. 여기서, 상기 반응가스로 Ar과 H2와 함께 N2를 더 첨가하여 기재(100) 표면을 전처리할 수 있고, 또한 경우에 따라서는 N2 또는 He을 사용하여 플라즈마 전처리를 수행할 수도 있다.
그리고, 상기 기재(100)에는 전원장치를 통해 펄스형 바이어스 전압을 인가하여 플라즈마를 생성 유지함으로써, 상기 플라즈마 내에서 화학적 반응을 일으켜 기재(100) 표면을 활성화(에칭)하는 동시에 유기세정에 의해 처리하지 못한 기재(100) 표면의 잔류 유기물을 제거(크리닝)하게 된다.
또한, 상기 기재(100) 표면을 전처리하기 위한 다른 방법으로 타겟의 아크방전을 통해 방전되는 방전입자 중 금속이온을 기재(100) 표면에 도달시켜 전처리할 수도 있다.
아크방전공정(P200)에서는, 챔버(400) 내부에 아크방전을 유도하기 위한 반 응가스를 투입하여 타겟의 아크방전을 수행하는 동시에 아크방전으로 유도된 타겟의 전자를 애노드(440)에 포집하여 상기 반응가스의 분해를 촉진한다.
상기 아크방전공정(P200)에 대해 보다 구체적으로 설명하면, 챔버(400) 내부에 탄소화합물과 같은 반응가스를 투입한다. 그리고, 아크건(430)에 음극전원을 인가하여 아크건(430)에 설치된 타겟을 아크방전시켜 전자를 인출하는 동시에 애노드(440)에 양극전원을 인가하여 아크방전으로 유도된 타겟의 전자를 애노드(440)에 포집한다. 이때, 상기 챔버(400) 내부로 전자를 계속해서 유도시켜 전자밀도 및 전자온도를 향상시키고, 이에 따라 챔버(400) 내부에서 상기 탄소화합물의 분해를 촉진시킬 수 있게 된다.
여기서, 상기 탄소화합물로는 프로판(C3H8), 아세틸렌(C2H2), 메탄(CH4) 과 같은 반응가스가 사용되는 것이 적절하고, 상기한 반응가스 이 외에 탄화수소를 포함한 다른 가스가 사용될 수 있음은 본 발명을 구성함에 있어 자명한 사항에 해당된다.
그리고, 상기 아크방전에 사용되는 타겟은 전이금속류 중 어느 하나가 사용될 수 있으나, Ti을 사용하는 것이 적절하다. 또한, 상기 아크방전공정(P200)을 통해 분해되는 반응가스는 탄소화합물이 사용되는 특성상 중성 탄화수소와 탄소이온으로 나뉘어진다.
계속해서, 코팅공정(P300)에서는 기재(100)에 바이어스 전압을 인가하여 분해된 탄화수소와 탄소이온을 상기 기재(100) 표면에 흡착시킴과 아울러, 이 과정에 서 타겟으로부터 유입되는 금속이온을 기재(100) 표면에 함유시켜 기재(100)에 전도성과 내식성의 박막을 형성한다.
이때, 전술한 아크방전공정(P200)과 코팅공정(P300) 중에는 기판(110)을 회전시키게 됨으로써, 기재(100)에 코팅되는 막의 균일성을 확보하도록 한다. 이와 같은, 코팅공정(P300)을 통해 기재(100) 표면에는 Me-C:H층(300)이 형성된다. 그리고, 상기 기재(100)에 인가되는 바이어스 전위를 증가시켜 상기 Me-C:H층(300)의 전기전도도를 향상시킬 수 있게 된다.
한편, 본 발명의 플라즈마 전처리 공정 이 후, 아크방전공정(P200) 실시 이 전에, 기재(100)와 박막의 밀착성을 향상시키고 최종 박막의 전도성을 향상시키기 위해 기재(100) 표면에 아크방전법을 통해 중간층(200)을 형성하는 중간층 코팅공정(P200')을 포함할 수 있다.
도 5 및 도 8, 도 9를 통해 상기한 중간층 코팅공정(P200')의 일실시예에 대한 방법을 설명하면, 기재(100) 표면의 전처리 이 후, 아크건(430)에 Ti을 설치하고, 상기 아크건(430)에 아크전원을 인가하여 아크방전시켜 상기 기재(100) 표면에 Ti을 함유한 중간층(200)을 코팅한다.
또한, 상기한 중간층 코팅공정(P200')의 다른 일실시예에 대한 방법을 설명하면, 기재(100) 표면의 전처리 이 후, 아크건(430)에 Cr을 설치하고, 상기 아크건(430)에 아크전원을 인가하여 아크방전시켜 상기 기재(100) 표면에 Cr을 함유한 중간층(200)을 코팅한다.
여기서, 상기 중간층(200) 코팅을 위해 사용되는 금속재질로 본 발명에서 Ti, Cr을 예시하였으나, 이에 한정되는 것이 아니고 밀착성 향상에 적합한 금속물질이라면 본 발명에 중간층(200) 형성에 적용 가능한 것이다.
한편, 전술한 바와 같은 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법에 의해 코팅되는 코팅기재의 바람직한 일실시예로는 기재(100) 표면에 Me-C:H층(300)이 증착 구성된다.
도 7을 통해 설명하면, 본 발명의 기재(100)는 대표적으로 연료전지에 사용되는 연료전지 분리판 등에 적용되는 것으로, 연료전지의 금속소재로 활용할 수 있는 스테인리스 스틸, 티타늄 합금, 알루미늄 합금 등과 같이 경량화 및 제조단가를 낮출 수 있는 소재로 적용된다.
이러한, 상기 기재(100)는 플라즈마 전처리에 의해 표면이 활성화되어 소정의 식각 깊이가 조성되고, 잔류 유기물이 제거된 상태가 된다. 그리고, 상기 기재(100) 표면에는 타겟을 이용한 아크방전법과 반응가스를 이용한 화학기상증착법으로 Me-C:H층(300)을 코팅하여 내식성과 함께 전도성을 향상시킨다.
계속해서, 본 발명의 코팅기재의 다른 일실시예로는 기재(100) 표면에 중간층(200)이 코팅되고, 상기 중간층(200) 표면에 Me-C:H층(300)이 증착 구성된다.
도 9를 통해 설명하면, 상기 기재(100)는 플라즈마 전처리에 의해 표면이 활성화되어 소정의 식각 깊이가 조성되고, 잔류 유기물이 제거된 상태가 된다. 그리고, 상기 기재(100) 표면에는 타겟을 이용한 아크방전법으로 중간층(200)을 코팅하여 기재(100)의 전도성을 향상시킴과 아울러 Me-C:H층(300)과의 밀착성을 향상시킨다. 그리고, 상기 중간층(200) 표면에는 타겟을 이용한 아크방전법과 반응가스를 이용한 화학기상증착법으로 Me-C:H층(300)을 코팅하여 내식성과 함께 전도성을 향상시킨다.
상기와 같이 기재(100)에 Me-C:H층(300)을 코팅하기 위해 사용되는 코팅장치는 도 5에 도시한 바와 같은 바, 이에 대한 구성을 간단하게 살펴보면 챔버(400) 상단 일부에 내부와 관통되어 비활성가스 및 반응가스를 투입하는 가스 인입장치부(420)가 설치되고, 상기 챔버(400) 하단 중앙에는 기판(110)이 설치되며, 상기 기판(110) 상면에는 코팅 처리하고자 하는 기재(100)가 올려지고, 상기 챔버(400) 하단 일부에는 진공펌프(410)가 설치된다.
그리고, 상기 챔버(400) 일측에는 아크방전을 위한 아크장치가 설치되고, 상기 챔버(400) 타측에는 전자 포집을 위한 애노드장치가 설치되며, 상기 아크장치와 기재(100) 사이에는 차폐막(435)이 설치된다. 여기서, 상기 차폐막(435)은 챔버(400) 상단 중앙에 고정되어 상, 하로 이송되거나, 좌, 우로 회전 가능하게 구성된다.
또한, 상기 아크장치의 아크건(430)과 애노드장치의 애노드(440)에 전력을 공급하는 전원장치가 각각 연결 설치되고, 상기 기판(110)에 바이어스 전력을 인가하는 전원장치가 연결 설치된다.
이와 같이 구성된 본 발명의 작용 및 효과를 상세하게 설명하면 다음과 같다.
본 발명의 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법을 이용하여 연료전지 부품 중 연료전지 분리판과 같은 기재(100)에 Me-C:H층(300)을 코팅하기 위해서는, 먼저 챔버(400) 내부에 플라즈마 전처리를 위한 반응가스를 투입하여 기재(100) 표면을 활성화(에칭)시키고, 세정(유기세정)에 의해 처리하지 못한 기재(100) 표면의 잔류 유기물을 제거한다.
상기한 전처리 이 후, 상기 챔버(400) 내부에 아크방전을 위한 반응가스를 투입하여 아크방전을 유도한다. 이때, 아크방전이 이루어지는 아크건(430)과 기재(100) 사이에는 플라즈마 차폐막(435)이 설치되므로, 아크방전에 의해 방전되어 인출되는 방전입자가 기재(100)에 도달하지 못하도록 하는 것이 적절하나, 경우에 따라 상기 플라즈마 차폐막(435)을 개방한 상태로 아크방전을 수행할 수도 있다.
다만, 차폐막(435)을 폐쇄한 상태라 하더라도 아크방전에 의해 방전되는 방전입자 중 이온의 경우 부분적으로 차폐막(435)을 넘어 기재(100)에 도달할 수 있으므로, 상기한 특성을 통해 플라즈마 전처리 대신 세정의 다른 방법으로 아크방전을 실시할 수 있다.
계속해서, 전도성 및 내식성 향상을 위한 전술한 아크방전이 개시되면, 반대편의 애노드(440)에 전류를 인가하여 아크방전으로 유도된 전자를 포집하게 된다. 이때, 애노드(440) 지역에서 전자의 포집이 이루어지면 전기적으로 중성상태인 플라즈마 상태를 유지하기 위해 아크소스로부터 반응기의 기상으로 전자의 유입이 계속 이루어지게 된다. 이렇게 유입된 전자에 의해 기존의 단일 아크방전법이나 PECVD법에 비하여 매우 높은 전자밀도 및 전자온도를 유지할 수 있어 챔버(400) 내부에서 반응가스인 탄화수소류의 분해를 촉진할 수 있다.
이 후, 피처리물에 음의 전압인 바이어스를 인가하게 되면 분해된 중성 탄화 수소(라디칼)와 탄소이온의 흡착으로 막이 형성되며, 막이 형성되는 과정에서 기상으로부터 이온화된 비활성기체의 이온충격으로 탄소의 클러스터링이 억제되어 나노화된 그라파이트 클러스터를 형성하게 되고, 바이어스에 의한 아크소스로부터 유입되는 금속이온의 충격과 피막내의 함유를 통해 기재(100) 표면에 Me-C:H층(300)이 형성된다.
이처럼, 금속이 함유되고 나노화된 그라파이트 막은 탄소 클러스터간의 크로스링킹의 억제와 금속함유 특성를 통하여 절연막에서 전도성 막으로 합성되어 지고, 아크소스에 의한 금속이온의 충돌과 탄소이온 등에 의하여 밀착력이 우수한 막이 형성된다.
다만, 상기와 같은 Me-C:H층(300)의 코팅 이 전에 중간층(200)을 더 형성하여, 기재(100)와 Me-C:H층(300) 사이의 보다 우수한 밀착력을 기대할 수 있고, 중간층(200)의 코팅을 통해 전기전도도 역시 더욱 향상시킬 수 있다.
도 10은 기존의 PECVD법에 의한 DLC층과 본 발명의 코팅방법에 의한 Me-C:H층(300)의 내부 탄소결합구조를 Raman 분석법을 통해 비교한 것으로, 본 발명은 Ti을 아크방전 타겟으로 하여 실험을 실시하였다.
이 결과, 본 발명의 Me-C:H층(300)과 기존의 DLC층은 그 탄소 결합구조가 확연히 달라지는 것을 확인할 수 있는 바, 이에 대해 보다 구체적으로 설명하면 본 발명의 Me-C:H층(300)과 기존의 DLC층의 구조에서는 각각 D피크와 G피크가 나타나는데 기존의 DLC층의 경우 G피크가 우세하고 D피크가 다소 약하게 나타난다.
여기서, G(Graphite)피크는 "탄소고리를 갖는 흑연구조" 로서 막 내부에 흑 연구조의 탄소결합이 있다는 증거이고, D(Disorder)피크는 "완성되지 않은 탄소고리 및 부분적으로 끊어진 탄소결합" 으로서 탄소고리가 미완성된 결합상태를 의미하는 것으로써, 이들의 세기와 위치에 따라서 탄소결합상태를 알 수 있게 된다.
이에, 상기한 실험결과를 살펴보면, 본 발명의 Me-C:H층(300) 구조에서는 G피크의 장파장으로의 위치이동을 통해 탄소결합의 흑연화 및 클러스터의 증가를 확인할 수 있고, D피크의 세기의 증가와 세기의 비의 증가를 통해 미완성 탄소고리의 증가와 탄소클러스터의 증가를 확인할 수 있다.
따라서, 본 발명을 통해 성막된 Me-C:H층(300)의 구조는 일반 DLC층보다 좀더 흑연화되고 있다는 것을 표면사진을 통해 알 수 있고, 매우 미세한 탄소클러스터들의 집합을 이루는 형태로 성장되어 기존의 DLC층보다 더욱 평활하고 미려한 막이 형성됨을 확인할 수 있는 것이다.
그리고, 부가적으로 본 발명의 코팅공정(P300)에서는 아크소스의 전류에 대비하여 보다 낮은 애노드 전류를 인가함으로써, 기재(100)에 Me-C:H층(300)을 형성할 수 있었는데, 전자포집을 위한 애노드 전류의 증가를 통해 전기전도도를 점차적으로 향상시킬 수 있음을 확인하였다.
도 11a는 Ti을 함유한 Me-C:H층(300)의 특성과 전기전도도와의 관계를 설명하기 위한 실험결과이고, 도 11b는 중간층(200) 형성에 따른 Me-C:H층(300)의 특성과 전기전도도와의 관계를 설명하기 위한 실험결과이다.
상기한 실험결과를 통해 알 수 있듯이, 본 발명의 Me-C:H층(300)은 PECVD법에 의한 DLC층과 비교하여 우수한 전기전도도를 나타냄을 확인할 수 있고, 특히 스 테인리스와 같은 금속판에 Me-C:H층(300)을 코팅하는 경우 면저항값이 거의 7mΩ/㎠로 측정되어 전기전도도가 매우 우수하게 나타남을 확인할 수 있으며, 또 중간층(200)을 형성한 Me-C:H층(300)과 중간층(200)을 형성하지 않은 Me-C:H층(300)을 비교하였을 때, 중간층(200)을 형성한 Me-C:H층(300)이 더욱 우수한 밀착력과 전기전도도를 갖게 됨을 확인할 수 있다.
도 12는 상기한 바와 같은 Me-C:H층(300)을 성막한 실리콘 및 스테인리스 판의 표면과 단면사진으로써, 추가적으로 금속판에 합성한 실제사진을 함께 첨부하였다.
도 13은 기재(100)에 코팅된 Me-C:H층(300)의 내부식 특성을 확인하기 위한 실험결과로써, 기존의 PECVD법에 의한 DLC층 코팅보다 더욱 우수한 내부식 특성을 보이는 것을 확인할 수 있었다.
한편, 본 발명은 상기한 구체적인 예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.
이상에서와 같이 본 발명은 플라즈마 전처리를 실시한 기재 표면에 아크방전법과 플라즈마 화학기상증착법(PECVD)에 의해 Me-C:H층을 코팅하여 기재의 전기전도도와 내부식성을 가일층 향상시킬 수 있게 된다. 따라서, 연료전지 분리판과 같이 우수한 전기전도도와 내부식성을 필요로 하는 부품에 최적의 코팅방법으로 사용 되어 연료전지의 성능을 향상시킬 수 있는 효과가 있다.
더욱이, 기재 표면에 Me-C:H층을 코팅하기에 앞서, 밀착력 향상을 위한 중간층을 코팅함으로써, 전기전도도 뿐만 아니라 기재와 Me-C:H층과의 밀착성 역시 향상시키게 된다. 따라서, 기재 표면에 Me-C:H층을 보다 견고하게 코팅할 수 있어 코팅층의 박리를 원천적으로 차단할 수 있는 효과도 있다.
또한, 상기와 같이 아크방전법과 플라즈마 화학기상증착법(PECVD)을 접목하여 연료전지 분리판과 같은 기재에 Me-C:H층을 간편하게 코팅하므로, 기존의 스퍼터링 공정과 같은 코팅공정보다 더욱 많은 기재를 장입하여 한번에 코팅이 이루어지게 된다. 따라서, 단위 시간당 코팅 제조되는 부품의 수를 증가시켜 제품 양산화를 실현할 수 있고, 이와 같은 제품 양산화를 통해 제품 제조공정의 약 95% 이상을 차지하는 코팅비용을 절감시켜 제품의 가격경쟁력을 확보하여 제품 구매력을 증진시킬 수 있는 효과도 있다.

Claims (24)

  1. 기재(100) 표면을 활성화하고 잔류 유기물을 제거하기 위한 비활성가스를 챔버(400) 내부에 투입하여 기재(100) 표면을 전처리하는 플라즈마 전처리공정(P100)과;
    상기 챔버(400) 내부에 아크방전을 유도하기 위한 반응가스를 투입하여 타겟의 아크방전을 수행하는 동시에 아크방전으로 유도된 타겟의 전자를 애노드(440)에 포집하여 상기 반응가스의 분해를 촉진하는 아크방전공정(P200)과;
    기재(100)에 바이어스 전압을 인가하여 분해된 반응가스를 상기 기재(100) 표면에 흡착시킴과 아울러, 이 과정에서 타겟으로부터 유입되는 금속이온을 함유시켜 기재(100)에 전도성과 내식성의 박막을 형성시키는 코팅공정(P300)을 포함하는 것을 특징으로 하는 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법.
  2. 제 1항에 있어서, 상기 플라즈마 전처리공정(P100)은, 챔버(400) 내부의 압력을 진공 상태로 유지시키고, 상기 챔버(400) 내부에 Ar과 H2와 같은 비활성가스를 투입하되 기판(110)에 바이어스 전압을 인가하여 기재(100) 주위에 플라즈마를 생성 유지함으로써, 기재(100) 표면을 활성화하고 잔류 유기물을 제거하는 것을 특징으로 하는 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법.
  3. 제 2항에 있어서, 상기 플라즈마 전처리공정(P100)에서는, Ar과 H2와 함께 N2를 더 첨가하여 전처리가 가능한 것을 특징으로 하는 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법.
  4. 제 1항에 있어서, 상기 기재(100) 표면을 전처리하기 위한 방법으로 타겟의 아크방전을 통해 방전되는 방전입자 중 금속이온을 기재(100) 표면에 도달시켜 전처리할 수 있음을 특징으로 하는 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법.
  5. 제 1항에 있어서, 상기 아크방전공정(P200)에서는 챔버(400) 내부에 탄소화합물과 같은 반응가스를 투입하고, 아크건(430)에 음극전원을 인가하여 아크건(430)에 설치된 타겟을 아크방전시켜 전자를 인출하는 동시에 애노드(440)에 양극전원을 인가하여 아크방전으로 유도된 타겟의 전자를 애노드(440)에 포집하되, 상기 챔버(400) 내부로 전자를 계속해서 유도시켜 전자밀도 및 전자온도를 향상시키고, 이에 챔버(400) 내부에서 상기 탄소화합물의 분해를 촉진시키는 것을 특징으로 하는 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법.
  6. 제 5항에 있어서, 상기 탄소화합물은 프로판(C3H8), 아세틸렌(C2H2), 메 탄(CH4) 중 어느 하나임을 특징으로 하는 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법.
  7. 제 5항에 있어서, 상기 아크건(430)과 기재(100) 사이에는 차폐막(435)을 더 설치하여 아크방전된 타겟의 금속입자가 기재(100)에 직접적으로 도달하는 것을 방지함을 특징으로 하는 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법.
  8. 제 5항에 있어서, 상기 타겟은 전이금속류 중 어느 하나를 사용할 수 있음을 특징으로 하는 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법.
  9. 제 8항에 있어서, 상기 타겟은 Ti을 사용함을 특징으로 하는 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법.
  10. 제 1항 또는 제 5항에 있어서, 상기 아크방전공정(P200)을 통해 분해되는 반응가스는 중성 탄화수소와 탄소이온임을 특징으로 하는 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법.
  11. 제 1항 또는 제 5항에 있어서, 상기 아크방전공정(P200) 중 애노드(440)에 인가되는 전류의 증가를 통해 최종 코팅되는 박막의 전도성을 향상시킬 수 있음을 특징으로 하는 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법.
  12. 제 1항에 있어서, 상기 코팅공정(P300) 중 기재(100)에 인가되는 바이어스 전압의 증가를 통해 최종 코팅되는 박막의 전도성을 향상시킬 수 있음을 특징으로 하는 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법.
  13. 제 1항에 있어서, 상기 아크방전공정(P200)과 코팅공정(P300) 중 기재(100)에 코팅되는 막의 균일성을 확보하기 위해 기판(110)을 회전시키는 것을 특징으로 하는 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법.
  14. 제 1항에 있어서, 상기 코팅공정(P300)을 통해 형성되는 박막은 Me-C:H층(300)임을 특징으로 하는 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법.
  15. 제 1항에 있어서, 상기 아크방전공정(P200) 이전에 기재(100)와 박막의 밀착성을 향상시키고 최종 박막의 전도성을 향상시키기 위해 기재(100) 표면에 중간층(200)을 형성하는 중간층 코팅공정(P200')을 더 포함하는 것을 특징으로 하는 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법.
  16. 제 15항에 있어서, 상기 중간층 코팅공정(P200')은 기재(100) 표면의 전처리 이 후, 아크건(430)에 Ti을 설치하고, 상기 아크건(430)에 아크전원을 인가하여 아크방전시켜 상기 기재(100) 표면에 Ti을 함유한 중간층(200)을 코팅하는 것을 특징으로 하는 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법.
  17. 제 15항에 있어서, 상기 중간층 코팅공정(P200')은 기재(100) 표면의 전처리 이 후, 아크건(430)에 Cr을 설치하고, 상기 아크건(430)에 아크전원을 인가하여 아크방전시켜 상기 기재(100) 표면에 Cr을 함유한 중간층(200)을 코팅하는 것을 특징으로 하는 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법.
  18. 플라즈마 전처리에 의해 표면이 활성화되고 잔류 유기물이 제거된 기재(100)와;
    상기 기재(100) 표면에 전도성 및 내식성 향상을 위해 타겟을 이용한 아크방전법과 반응가스를 이용한 화학기상증착법으로 코팅한 Me-C:H층(300)을 포함하는 것을 특징으로 하는 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅기재.
  19. 플라즈마 전처리에 의해 표면이 활성화되고 잔류 유기물이 제거된 기재(100)와;
    상기 기재(100) 표면에 전도성 및 Me-C:H층(300)과의 밀착성 향상을 위해 타 겟을 이용한 아크방전법으로 코팅한 중간층(200)과;
    상기 중간층(200) 표면에 전도성 및 내식성 향상을 위해 타겟을 이용한 아크방전법과 반응가스를 이용한 화학기상증착법으로 코팅한 Me-C:H층(300)을 포함하는 것을 특징으로 하는 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅기재.
  20. 제 18항 또는 제 19항에 있어서, 상기 Me-C:H층(300)을 코팅하기 위해 사용되는 타겟은 전이금속류 중 어느 하나임을 특징으로 하는 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅기재.
  21. 제 20항에 있어서, 상기 타겟은 Ti인 것을 특징으로 하는 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅기재.
  22. 제 18항 또는 제 19항에 있어서, 상기 Me-C:H층(300)을 코팅하기 위해 사용되는 반응가스는 프로판(C3H8), 아세틸렌(C2H2), 메탄(CH4)과 같은 탄소화합물인 것을 특징으로 하는 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅기재.
  23. 제 19항에 있어서, 상기 중간층(200)을 코팅하기 위해 사용되는 타겟은 Ti과 Cr 중 어느 하나임을 특징으로 하는 플라즈마 화학기상증착과 물리기상증착을 복합 한 박막 코팅기재.
  24. 제 1항의 방법에 의하여 제조되는 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅기재.
KR1020070052864A 2007-05-30 2007-05-30 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법 KR100897323B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070052864A KR100897323B1 (ko) 2007-05-30 2007-05-30 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070052864A KR100897323B1 (ko) 2007-05-30 2007-05-30 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법

Publications (2)

Publication Number Publication Date
KR20080105367A true KR20080105367A (ko) 2008-12-04
KR100897323B1 KR100897323B1 (ko) 2009-05-14

Family

ID=40366669

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070052864A KR100897323B1 (ko) 2007-05-30 2007-05-30 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법

Country Status (1)

Country Link
KR (1) KR100897323B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160021988A (ko) 2014-08-19 2016-02-29 현대자동차주식회사 플라즈마 화학기상증착법을 이용한 카본 복합 코팅 박막의 형성방법
US20180301716A1 (en) * 2015-02-23 2018-10-18 Hyundai Motor Company Coating method of separator for fuel cell and separator for fuel cell

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101085181B1 (ko) 2010-12-21 2011-11-18 한국기계연구원 플라즈마 표면 처리장치 및 그 처리방법
KR101324763B1 (ko) * 2011-09-02 2013-11-05 이도형 반도체 제조장비용 부품의 코팅장치 및 그 코팅방법
US8759788B1 (en) * 2013-03-11 2014-06-24 Varian Semiconductor Equipment Associates, Inc. Ion source

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10018143C5 (de) * 2000-04-12 2012-09-06 Oerlikon Trading Ag, Trübbach DLC-Schichtsystem sowie Verfahren und Vorrichtung zur Herstellung eines derartigen Schichtsystems
KR100639982B1 (ko) * 2004-12-22 2006-11-01 학교법인 성균관대학 다이아몬드상 카본코팅 박막 및 그 제조방법
DE502006005651D1 (de) * 2005-09-10 2010-01-28 Ixetic Hueckeswagen Gmbh Verschleißfeste Beschichtung und Verfahren zur Herstellung derselben

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160021988A (ko) 2014-08-19 2016-02-29 현대자동차주식회사 플라즈마 화학기상증착법을 이용한 카본 복합 코팅 박막의 형성방법
US20180301716A1 (en) * 2015-02-23 2018-10-18 Hyundai Motor Company Coating method of separator for fuel cell and separator for fuel cell
US11233248B2 (en) 2015-02-23 2022-01-25 Hyundai Motor Company Coating method of separator for fuel cell and separator for fuel cell

Also Published As

Publication number Publication date
KR100897323B1 (ko) 2009-05-14

Similar Documents

Publication Publication Date Title
JP5378552B2 (ja) 非晶質炭素膜、非晶質炭素膜の形成方法、非晶質炭素膜を備えた導電性部材および燃料電池用セパレータ
US20160138171A1 (en) Method for manufacturing corrosion resistant and conductive nano carbon coating layer and fuel cell bipolar plate thereby using stainless steel substrate
JP7156648B2 (ja) カーボンナノ構造化材料及びカーボンナノ構造化材料の形成方法
KR101446411B1 (ko) 스테인레스스틸을 모재로 한 내식성 및 전도성 나노 카본 코팅 방법 및 그에 따른 연료전지분리판
KR100897323B1 (ko) 플라즈마 화학기상증착과 물리기상증착을 복합한 박막 코팅방법
US20130341204A1 (en) Carbon Electrode Devices for Use with Liquids and Associated Methods
KR101811104B1 (ko) 연료 전지용 세퍼레이터의 제조 방법
JP6014807B2 (ja) 燃料電池用セパレータ又は燃料電池用集電部材、及びその製造方法
KR101209791B1 (ko) 연료전지용 금속분리판 및 이의 표면처리방법
CN111155302A (zh) 一种石墨烯复合碳纤维及其pecvd制备方法
JP4150789B2 (ja) 非晶質窒化炭素膜及びその製造方法
KR20140122114A (ko) 연료전지용 금속분리판 및 이의 제조방법
CN103266306A (zh) 一种用pvd技术制备石墨烯或超薄碳膜的方法
JP4134315B2 (ja) 炭素薄膜及びその製造方法
CN101768011A (zh) 抗腐蚀类金刚石薄膜的制备方法
JP2012089460A (ja) 燃料電池用セパレータ及びそのプラズマ処理装置
KR20100088346A (ko) 연료전지 금속분리판용 크롬질화물 탄화수소박막 제조방법 및 그 제품
KR101396009B1 (ko) 수송용 연료전지 분리판 및 그 제조방법
JP2012146616A (ja) 燃料電池用セパレータ及びその製造方法
KR20150115381A (ko) 연료전지용 스테인리스 분리판의 표면처리 방법 및 장치
CN113072063B (zh) 基于氢储运设备内表面的阻氢涂层及制备方法
CN113529047A (zh) 一种MXene/C复合材料的制备方法
CN108269957B (zh) 具有高浸润性、高热稳定性的锂电池隔膜及其制备方法
JP2013004511A (ja) 燃料電池用セパレータ及びその製造方法
KR102518584B1 (ko) 연료 전지용 분리판의 코팅 방법 및 이에 의해 제조된 연료 전지용 분리판

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120508

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20130410

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141016

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150713

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160328

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170327

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190402

Year of fee payment: 11