KR20080104616A - 신규한 유기염료 및 이의 제조방법 - Google Patents

신규한 유기염료 및 이의 제조방법 Download PDF

Info

Publication number
KR20080104616A
KR20080104616A KR1020070051619A KR20070051619A KR20080104616A KR 20080104616 A KR20080104616 A KR 20080104616A KR 1020070051619 A KR1020070051619 A KR 1020070051619A KR 20070051619 A KR20070051619 A KR 20070051619A KR 20080104616 A KR20080104616 A KR 20080104616A
Authority
KR
South Korea
Prior art keywords
formula
dye
compound
photoelectric conversion
titanium oxide
Prior art date
Application number
KR1020070051619A
Other languages
English (en)
Other versions
KR101008226B1 (ko
Inventor
배호기
이종찬
고재중
최현봉
Original Assignee
주식회사 동진쎄미켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동진쎄미켐 filed Critical 주식회사 동진쎄미켐
Priority to KR1020070051619A priority Critical patent/KR101008226B1/ko
Priority to EP12156667.3A priority patent/EP2457958B1/en
Priority to PCT/KR2008/002804 priority patent/WO2008147070A2/en
Priority to JP2010510200A priority patent/JP2010529226A/ja
Priority to EP08753600A priority patent/EP2148903A4/en
Priority to CN2008800178488A priority patent/CN101679762B/zh
Priority to EP11181281.4A priority patent/EP2418257B1/en
Priority to TW097119503A priority patent/TWI458786B/zh
Publication of KR20080104616A publication Critical patent/KR20080104616A/ko
Application granted granted Critical
Publication of KR101008226B1 publication Critical patent/KR101008226B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B49/00Sulfur dyes
    • C09B49/06Sulfur dyes from azines, oxazines, thiazines or thiazoles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • C09B23/005Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof
    • C09B23/0058Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof the substituent being CN
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/105The polymethine chain containing an even number of >CH- groups two >CH- groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

본 발명은 신규한 유기염료 및 이의 제조방법에 관한 것으로, 특히 첨가제를 사용하지 않고 긴 알킬 사슬기를 도입하여 염료 자체적으로 π-π stacking 현상을 막아줌으로써 높은 발생 전류를 얻고, 첨가제로 인한 소자의 불안정성을 해소할 수 있으며, 기존의 유기염료보다 높은 광전변환효율을 나타내어 태양전지의 효율을 크게 향상시킬 수 있는 유기염료에 관한 것이다.
태양전지, 염료감응, 염료, 광전변환소자

Description

신규한 유기염료 및 이의 제조방법{NOVEL ORGANIC DYE AND PREPARATION THEREOF}
도 1은 화합물 1b-2에 DCA를 첨가한 경우와 첨가하지 않은 경우에 대한 20㎚ 크기 TiO2의 두께별(8 ㎛와 20 ㎛) 전류(Jsc) 그래프이고,
도 2는 화합물 1b-2에 DCA를 첨가한 경우와 첨가하지 않은 경우에 대한 20㎚ 크기 TiO2의 두께별(8 ㎛와 20 ㎛) 광전변환효율(η) 그래프이다.
본 발명은 유기염료에 관한 것으로, 특히 첨가제를 사용하지 않고 긴 알킬 사슬기를 도입하여 염료 자체적으로 π-π stacking 현상을 막아줌으로써 높은 발생 전류를 얻고, 첨가제로 인한 소자의 불안정성을 해소할 수 있으며, 기존의 유기염료보다 높은 광전변환효율을 나타내어 태양전지의 효율을 크게 향상시킬 수 있는 유기염료 및 이의 제조방법에 관한 것이다.
태양전지는 내부의 반도체가 빛을 흡수하여 전자와 정공이 발생되는 광기전 효과를 이용하여 전류를 흐르게 하는 전지를 말한다. 종래 태양전지의 반도체로는 실리콘이나 갈륨 아세나이드(GaAs)와 같은 무기물을 n-p 접합하여 다이오드 형태로 한 반도체가 주로 사용되었다. 그러나 상기의 무기물 반도체는 에너지변환효율이 높은 반면 제조비용이 높아 태양전지분야에서 그 활용 실적이 충분하지 못하였다. 상기와 같은 무기물 반도체의 문제점을 극복하기 위하여 상기 무기물 반도체를 유기염료로 대체하는 기술이 제안되었다.
통상적으로, 염료는 주로 가시광선대역의 빛을 잘 흡수함으로써 색을 갖는 것인데, 이를 이용한 태양전지는 유기염료가 빛을 흡수할 때, 전자와 정공으로 분리 된 후 다시 결합하는 소위 redox 반응을 통하여 전류를 생성시키는 것이다. 이러한 유형의 태양전지를 염료감응형 태양전지(Dye-sensitized solar cell)라 한다.
1991년도 스위스 국립 로잔 고등기술원(EPFL)의 마이클 그라첼(Michael Gratzel) 연구팀에 의해 염료감응 나노입자 산화티타늄 태양전지가 개발된 이후 이 분야에 관한 많은 연구가 진행되고 있다. 기존의 실리콘 태양전지와 달리 염료감응태양전지는 가시광선을 흡수하여 전자-홀(hole) 쌍을 생성할 수 있는 염료분자와 생성된 전자를 전달하는 전이금속 산화물을 주 구성 재료로 하는 광전기화학적 태양전지이다.
이러한 염료감응 태양전지는 기존의 실리콘계 태양전지에 비해 효율이 높고 제조단가가 현저히 낮기 때문에 기존의 비정질 실리콘 태양전지를 대체할 수 있는 가능성을 가지고 있으나, 에너지 변환 효율(energy conversion efficiency)이 낮아서 실제 적용하는데 있어 제한이 있는 실정이다.
태양전지에 있어 에너지 변환 효율 즉, 광전변환효율은 태양빛의 흡수에 의 해 생성된 전자의 양에 비례하는데, 이 효율을 증가시키기 위해서는 태양빛의 흡수를 증가시키거나 염료의 흡착량을 높여 전자의 생성량을 늘릴 수도 있고, 또는 생성된 여기전자가 전자-홀 재결합에 의해 소멸되는 것을 막아줄 수도 있다.
이러한 이유로 단위면적당 염료의 흡착량을 늘리기 위해, 산화물 반도체의 입자를 나노 수준으로 제조하는 방법 등이 개발되어 있고, 태양광의 흡수를 높이기 위해 백금전극의 반사율을 높이거나, 수 마이크로 크기의 반도체 산화물 광산란자를 섞어서 제조하는 방법 등이 개발되어 있다.
또한 분자 간 π-π stacking이 거의 불가능한 Octahedral 구조의 Gratzel 시스템의 유기금속염료(Ru 염료)와는 달리 문헌 CHEM. COMMUN. 2003년 252p와 Langmuir 2004년 20권 4205p에서와 같이 거의 평면에 가까운 유기염료는 분자 간 인력이 작용하게 되는데 이런 분자 간 π-π stacking 현상은 광흡수된 염료의 LUMO 전자들이 TiO2의 conduction band로 전자가 원활히 이동하는 것을 방해하게 되고 이런 전달되지 않은 전자들은 전해질로 누설되는 전자(dark-current)들로 인한 셀의 효율을 저하시키는 원인을 제공하게 된다. 이런 현상은 DCA(Deoxychololic acid) 또는TBP(4-tert-butylpyridine) 같은 첨가제를 넣어줌으로써 이런 문제들은 상당히 개선되었다. 그러나 이런 첨가제들은 염료들이 TiO2 표면에 흡착되는 양을 줄여줌으로써 전류(Jsc)값을 낮추는 문제점이 발생하였다.
따라서, 본 발명은 첨가제를 사용하지 않고 긴 알킬 사슬기를 도입하여 염료 자체적으로 π-π stacking 현상을 막아줌으로써 높은 발생 전류를 얻고, 첨가제로 인한 소자의 불안정성을 해소할 수 있으며, 기존의 유기염료보다 높은 광전변환효율을 나타내어 태양전지의 효율을 크게 향상시킬 수 있는 유기염료 및 이의 제조방법을 제공하는 것을 목적으로 한다.
또한 본 발명은 상기 염료를 포함하여 현저히 향상된 광전기 변환효율을 나타내며, 첨가제로 인한 소자의 불안정성을 해소할 수 있으며, Jsc(단회로 광전류 밀도, short circuit photocurrent density)와 몰흡광계수가 우수한 염료증감 광전변환소자 및 효율이 현저히 향상된 태양전지를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 유기염료를 제공한다.
[화학식 1]
Figure 112007038962717-PAT00001
상기 식에서, R은 치환되거나 치환되지 않은
Figure 112007038962717-PAT00002
,
Figure 112007038962717-PAT00003
, 또는
Figure 112007038962717-PAT00004
이고, A는 각각 독립적으로 치환되거나 치환되지 않은 C1 내지 C12의 알 킬이 고, n은 1 내지 4 사이의 정수이다.
또한 본 발명은
(1) 하기 화학식 2의 화합물을 1,2-다이메톡시에탄 중에서 화학식 3의 화합물과 반응시켜 하기 화학식 4의 화합물을 제조하고,
(2) 화학식 4의 화합물을 다이메틸포름아마이드 중에서 포스포러스 옥시클로라이드와 반응시켜 하기 화학식 5의 화합물을 제조하고,
(3) 화학식 5의 화합물을 아세토나이트릴 중에서 피페리딘 존재 하에서 시아노아세트산과 반응시키는 것을 포함하는
상기 화학식 1로 표시되는 유기염료의 제조방법을 제공한다.
[화학식 2]
Figure 112007038962717-PAT00005
[화학식 3]
Figure 112007038962717-PAT00006
[화학식 4]
Figure 112007038962717-PAT00007
[화학식 5]
Figure 112007038962717-PAT00008
상기 식에서, R, A 및 n은 상기에서 정의한 바와 같다.
또한 본 발명은 상기 화학식 1로 표시되는 화합물을 담지시킨 산화물 반도체 미립자를 포함하는 것을 특징으로 하는 염료증감 광전변환소자를 제공한다.
또한 본 발명은 상기 염료증감 광전변환소자를 포함하는 것을 특징으로 하는 염료감응태양전지를 제공한다.
이하 본 발명을 상세하게 설명한다.
본 발명자들은 첨가제를 사용하지 않고 긴 알킬 사슬기를 도입하여 염료 자 체적으로 π-π stacking 현상을 막아주는 화학식 1로 표시되는 화합물을 산화물 반도체 미립자에 담지시켜 염료감응태양전지를 제조할 경우 광전기 변환효율, Jsc(단회로 광전류 밀도) 및 몰흡광계수가 높아 기존 염료감응태양전지보다 우수한 효율을 나타냄을 확인하고 본 발명을 완성하게 되었다.
본 발명의 유기염료는 하기 화학식 1로 표시되는 것을 특징으로 하며, 바람직하게는 하기 화학식 1a-1, 1a-2, 1b-1, 1b-2, 1c-1 또는 1c-2의 구조를 갖는다.
[화학식 1]
Figure 112007038962717-PAT00009
상기 식에서, R, A 및 n은 상기에서 정의한 바와 같다.
[화학식 1a-1]
Figure 112007038962717-PAT00010
[화학식 1a-2]
Figure 112007038962717-PAT00011
[화학식 1b-1]
Figure 112007038962717-PAT00012
[화학식 1b-2]
Figure 112007038962717-PAT00013
[화학식 1c-1]
Figure 112007038962717-PAT00014
[화학식 1c-2]
Figure 112007038962717-PAT00015
또한 본 발명은 상기 화학식 1로 표시되는 염료의 제조방법을 제공하는 바, 화학식 1로 표시되는 염료는 (1) 상기 화학식 2의 화합물을 1,2-다이메톡시에탄 중에서 화학식 3의 화합물과 반응시켜 상기 화학식 4의 화합물을 제조하고, (2) 화학식 4의 화합물을 다이메틸포름아마이드 중에서 포스포러스 옥시클로라이드와 반응시켜 상기 화학식 5의 화합물을 제조하고, (3) 화학식 5의 화합물을 아세토나이트릴 중에서 피페리딘 존재 하에서 시아노아세트산과 반응시킴으로써 제조될 수 있다. 이를 반응모식도로 나타내면 하기 반응식 1과 같을 수 있다.
[반응식 1]
Figure 112007038962717-PAT00016
상기 식에서 R, A 및 n은 상기에서 정의한 바와 같다.
또한 본 발명은 염료증감 광전변환소자를 제공하는 바, 상기 염료증감 광전변환소자는 산화물 반도체 미립자에 상기 화학식 1로 표시되는 염료를 담지시킨 것 을 특징으로 한다. 본 발명은 염료증감 광전변환소자는 상기 화학식 1로 표시되는 염료를 사용하는 것 이외에 종래 염료를 이용하여 태양전지용 염료증감 광전변환소자를 제조하는 방법들이 적용될 수 있음은 물론이며, 바람직하게는 본 발명의 염료증감 광전변환소자는 산화물 반도체 미립자를 이용해서 기판 상에 산화물 반도체의 박막을 제조하고, 이어서 상기 박막에 본 발명의 염료를 담지시킨 것이 좋다.
본 발명에서 산화물 반도체의 박막을 설치하는 기판으로서는 그 표면이 도전성인 것이 바람직하며, 시중에서 판매되는 것을 사용할 수도 있다. 구체적인 일예로 글라스의 표면 또는 폴리에틸렌테레프탈레이트 혹은 폴리에테르설폰 등의 투명성이 있는 고분자 재료의 표면에 인듐, 불소, 안티몬을 도포한 산화주석 등의 도전성 금속산화물이나 강, 은, 금 등의 금속 박막을 형성한 것을 이용할 수 있다. 이때 도전성은 보통 1000 Ω 이하가 바람직하며, 특히 100 Ω 이하의 것이 바람직하다.
또한 산화물 반도체의 미립자로서는 금속산화물이 바람직하다. 구체적인 예로서는 티탄, 주석, 아연, 텅스텐, 지르코늄, 갈륨, 인듐, 이트륨, 니오브, 탄탈, 바나듐 등의 산화물을 사용할 수 있다. 이들 중 티탄, 주석, 아연, 니오브, 인듐 등의 산화물이 바람직하고, 이들 중 산화티탄, 산화아연, 산화주석이 더욱 바람직하며, 산화티탄이 가장 바람직하다. 상기 산화물 반도체는 단독으로 사용할 수도 있지만, 혼합하거나 반도체의 표면에 코팅시켜서 사용할 수도 있다.
또한 상기 산화물 반도체의 미립자의 입경은 평균 입경으로서 1 ∼ 500 nm인 것이 좋으며, 더욱 바람직하게는 1 ∼ 100 nm인 것이 좋다. 또한 이 산화물 반도 체의 미립자는 큰 입경의 것과 작은 입경의 것을 혼합하거나, 다층으로 하여 이용할 수도 있다.
상기 산화물 반도체 박막은 산화물 반도체 미립자를 스프레이 분무 등으로 직접 기판 상에 박막으로 형성하는 방법, 기판을 전극으로 하여 전기적으로 반도체 미립자 박막을 석출시키는 방법, 반도체 미립자의 슬러리 또는 반도체 알콕사이드 등의 반도체 미립자의 전구체를 가수분해함으로써 얻을 수 있은 미립자를 함유하는 페이스트를 기판 상에 도포한 후, 건조, 경화 혹은 소성하는 방법 등에 의해 제조할 수 있으며, 페이스트를 기판 상에 도포하는 방법이 바람직하다. 이 방법의 경우, 슬러리는 2차 응집하고 있는 산화물 반도체 미립자를 통상의 방법에 의해 분산매 중에 평균 1차 입경이 1 ∼ 200 nm가 되도록 분산시킴으로써 얻을 수 있다.
슬러리를 분산시키는 분산매로서는 반도체 미립자를 분산시킬 수 있는 것이면 특별히 제한 없이 사용할 수 있으며, 물, 에탄올 등의 알코올, 아세톤, 아세틸아세톤 등의 케톤 또는 헥산 등의 탄화수소를 이용할 수 있고, 이것들은 혼합해서 사용할 수 있고, 이 중 물을 이용하는 것이 슬러리의 점도변화를 적게 한다는 점에서 바람직하다. 또한 산화물 반도체 미립자의 분산 상태를 안정화시킬 목적으로 분산 안정제를 사용할 수 있다. 사용할 수 있는 분산 안정제의 구체적인 예로는 초산, 염산, 질산 등의 산, 또는 아세틸아세톤, 아크릴산, 폴리에틸렌글리콜, 폴리비닐알코올 등을 들 수 있다.
슬러리를 도포한 기판은 소성할 수 있고, 그 소성온도는 100 ℃ 이상, 바람직하게는 200 ℃ 이상이고, 또 상한은 대체로 기재의 융점(연화점) 이하로서 통상 상한은 900 ℃이며, 바람직하게는 600 ℃ 이하이다. 본 발명에서 소성시간은 특별하게 한정되지 않지만, 대체로 4시간 이내가 바람직하다.
본 발명에서 기판상의 박막의 두께는 1 ∼ 200 ㎛인 것이 적합하며, 바람직하게는 1 ∼ 50 ㎛이다. 소성을 실시하는 경우 산화물 반도체 미립자의 박층이 일부 용착하지만, 그러한 용착은 본 발명을 위해서는 특별하게 지장은 없다.
또한 상기 산화물 반도체 박막에 2차 처리를 실시할 수도 있다. 일 예로 반도체와 동일한 금속의 알콕사이드, 염화물, 질소화물, 황화물 등의 용액에 직접, 기판별로 박막을 침적시켜서 건조 혹은 재소성함으로써 반도체 박막의 성능을 향상시킬 수도 있다. 금속 알콕사이드로서는 티탄에톡사이드, 티탄니움이소프로에폭사이드, 티탄 t-부톡사이드, n-디부틸-디아세틸 주석 등을 들 수 있고, 그것들의 알코올 용액을 이용할 수 있다. 염화물로서는 예를 들면 사염화티탄, 사염화주석, 염화아연 등을 들 수 있고, 그 수용액을 이용할 수 있다. 이렇게 하여 수득된 산화물 반도체 박막은 산화물 반도체의 미립자로 이루어져 있다.
또한 본 발명에서 박막 상으로 형성된 산화물 반도체 미립자에 염료를 담지시키는 방법은 특별히 한정되지 않으며, 구체적인 예로서 상기 화학식 1로 표시되는 염료를 용해할 수 있는 용매로 용해해서 얻은 용액, 또는 염료를 분산시켜서 얻은 분산액에 상기 산화물 반도체 박막이 설치된 기판을 침지시키는 방법을 들 수 있다. 용액 또는 분산액 중의 농도는 염료에 의해 적당하게 결정할 수 있다. 침적시간은 대체로 상온에서 용매의 비점까지이고, 또 침적시간은 1분에서 48시간 정도이다. 염료를 용해시키는데 사용할 수 있는 용매의 구체적인 예로는 메탄올, 에 탄올, 아세토니트릴, 디메틸설폭사이드, 디메틸포름아미드, 아세톤, t-부탄올 등을 들 수 있다. 용액의 염료 농도는 보통 1× 10-6 M ∼ 1 M이 적합하고, 바람직하게는 1× 10-5 M ∼ 1× 10-1 M 일 수 있다. 이렇게 해서 염료로 증감된 박막 상의 산화물 반도체 미립자를 가진 본 발명의 광전변환소자를 얻을 수 있다.
본 발명에서 담지하는 화학식 1의 표시되는 염료는 1종류일 수도 있고, 2종 이상 혼합하여 사용할 수도 있다. 또한 혼합하는 경우에는 본 발명의 염료와 함께 다른 염료나 금속 착체 염료를 혼합할 수 있다. 혼합할 수 있는 금속 착체 염료의 예는 특별하게 제한되지 않지만, 루테늄 착체나 그 4급염, 프탈로시아닌, 포르피린 등이 바람직하고, 혼합 이용하는 유기염료로는 무금속의 프탈로시아닌, 포르피린이나 시아닌, 메로시아닌, 옥소놀, 트리페닐메탄계, WO2002/011213호에 제시되는 아크릴산계 염료 등의 메틴계 염료나, 크산텐계, 아조계, 안트라퀴논계, 페릴렌계 등의 염료를 들 수 있다(문헌[M.K.Nazeeruddin, A.Kay, I.Rodicio, R.Humphry-Baker, E.Muller, P.Liska, N.Vlachopoulos, M.Gratzel, J. Am. Chem. Soc., 제115권, 6382쪽(1993년)] 참조). 염료를 2종 이상 이용하는 경우에는 염료를 반도체 박막에 차례로 흡착시킬 수도, 혼합 용해해서 흡착시킬 수도 있다.
또한 본 발명에서 산화물 반도체 미립자의 박막에 염료를 담지할 때, 염료끼리의 결합을 방지하기 위해서 포섭 화합물의 존재 하에서 염료를 담지하는 것이 좋다. 상기 포섭화합물로서는 데옥시콜산, 데히드로데옥시콜산, 케노데옥시콜산, 콜산메틸에스테르, 콜산나트륨 등의 콜산류, 폴리에틸렌옥사이드, 콜산 등의 스테로 이드계 화합물, 크라운에테르, 사이클로덱스트린, 캘릭스아렌, 폴리에틸렌옥사이드 등을 사용할 수 있다.
또한, 염료를 담지시킨 후, 4-t-부틸 피리딘 등의 아민 화합물이나 초산, 프로피온산 등의 산성기를 가지는 화합물 등으로 반도체 전극표면을 처리할 수 있다. 처리방법은 예를 들면 아민의 에탄올 용액에 염료를 담지한 반도체 미립자 박막이 설치된 기판을 담그는 방법 등이 사용될 수 있다.
또한 본 발명은 상기 염료감응 광전변환소자를 포함하는 것을 특징으로 하는 염료감응태양전지를 제공하는 바, 상기 화학식 1로 표시되는 염료를 담지시킨 산화물 반도체 미립자를 이용한 염료증감 광전변환소자를 사용하는 것 이외에 종래 광전변환소자를 사용하여 태양전지를 제조하는 통상의 방법들이 적용될 수 있음은 물론이며, 구체적인 예로 상기 산화물 반도체 미립자에 화학식 1로 표시되는 염료를 담지시킨 광전변환소자 전극(음극), 대전극(양극), 산화환원 전해질, 정공수송 재료 또는 p형 반도체 등으로 구성될 수 있다.
바람직하게는, 본 발명의 염료감응태양전지의 구체적인 제조방법의 일예로는 전도성 투명 기판 위에 산화티타늄 페이스트를 코팅하는 단계, 페이스트가 코팅된 기판을 소성하여 산화티타늄 박막을 형성하는 단계, 산화티타늄 박막이 형성된 기판을 화학식 1로 표시되는 염료가 용해된 혼합용액에 함침시켜 염료가 흡착된 산화티타늄 필름 전극을 형성하는 단계, 그 상부에 대전극이 형성된 제2의 유리기판을 구비하는 단계, 제2 유리기판 및 대전극을 관통하는 홀(hole)을 형성하는 단계, 상기 대전극 및 상기 염료가 흡착된 산화티타늄 필름 전극 사이에 열가소성 고분자 필름을 두고, 가열 압착 공정을 실시하여 상기 대전극 및 산화티타늄 필름전극을 접합시키는 단계, 상기 홀을 통하여 대전극과 산화티타늄 필름 전극 사이의 열가소성 고분자 필름에 전해질을 주입하는 단계 및 상기 열가소성 고분자를 실링하는 단계를 통하여 제조될 수 있다.
산화환원 전해질, 정공수송 재료, p형 반도체 등의 형태는 액체, 응고체(겔 및 겔상), 고체 등 일 수 있다. 액상의 것으로서는 산화환원 전해질, 용해염, 정공수송재료, p형 반도체 등을 각각 용매에 용해시킨 것이나 상온 용해염 등이, 응고체(겔 및 겔상)의 경우에는 이것들을 폴리머 매트릭스나 저분자 겔화제 등에 함유시킨 것 등을 각각 들 수 있다. 고체의 것으로서는 산화환원 전해질, 용해염, 정공수송재료, p형 반도체 등을 사용할 수 있다.
정공수송 재료로서는 아민 유도체나 폴리아세티틸렌, 폴리아닐린, 폴리티오펜 등의 도전성 고분자, 트리페닐렌계 화합물 등의 디스코테크 액정상을 이용하는 물건 등을 사용할 수 있다. 또한 p형 반도체로서는 CuI, CuSCN 등을 사용할 수 있다. 대전극으로는 도전성을 가지고 있으며, 산화환원 전해질의 환원 반응을 촉매적으로 작용하는 것이 바람직하다. 예를 들면, 글라스 또는 고분자 필름에 백금, 카본, 로듐, 루테늄 등을 증착하거나, 도전성 미립자를 도포한 것을 사용할 수 있다.
본 발명의 태양전지에 이용하는 산화환원 전해질로서는 할로겐 이온을 대이온으로 하는 할로겐 화합물 및 할로겐 분자로 구성되는 할로겐 산화환원계 전해질, 페로시안산염이나 페로센-페리시늄 이온, 코발트 착체 등의 금속착체 등의 금속 산 화환원계 전해질, 알킬티올-알킬디설피드, 비올로겐 염료, 하이드로퀴논-퀴논 등의 유기산화 환원계 전해질 등을 사용할 수 있으며, 할로겐 산화환원계 전해질이 바람직하다. 할로겐 화합물-할로겐 분자로 구성되는 할로겐 산화환원계 전해질에 있어서의 할로겐 분자로서는 요오드 분자가 바람직하다. 또한 할로겐 이온을 대이온으로 하는 할로겐 화합물로서는 LiI, NaI, KI, CaI2, MgI2, CuI 등의 할로겐화 금속염, 또는 테트라알킬암모늄요오드, 이미다졸리움요오드, 피리디움요오드 등의 할로겐의 유기 암모늄염, 또는 I2를 사용할 수 있다.
또한 산화환원 전해질은 이를 포함하는 용액의 형태로 구성되어 있는 경우, 그 용매로는 전기 화학적으로 불활성인 것을 사용할 수 있다. 구체적인 예로서 아세토니트릴, 프로필렌카보네이트, 에틸렌카보네이트, 3-메톡시프로피오니트릴, 메톡시아세토니트릴, 에틸렌글리콜, 프로필렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 부틸로락톤, 디메톡시에탄, 디메틸카보네이트, 1,3-디옥소란, 메틸포르메이트, 2-메틸테트라하이드로퓨란, 3-메톡시-옥사졸리딘-2-온, 설포란, 테트라하이드로퓨란, 물 등을 들 수 있으며, 특히 아세토니트릴, 프로필렌카보네이트, 에틸렌카보네이트, 3-메톡시프로피오니트릴, 에틸렌글리콜, 3-메톡시-옥사졸리딘-2-온, 부틸로락톤 등이 바람직하다. 상기 용매들은 1종 또는 혼합해서 사용할 수 있다. 겔상 양전해질의 경우에는 올리고머 및 폴리머 등의 매트릭스에 전해질 또는 전해질 용액을 함유시킨 것이나, 전분자 겔화제 등에 동일하게 전해질 또는 전해질 용액을 함유시킨 것을 사용할 수 있다. 산화환원 전해질의 농도는 0.01 - 99 중량% 인 것이 좋으며, 0.1 - 30 중량%인 것이 더욱 바람직하다.
본 발명의 태양전지는 기판상의 산화물 반도체 미립자에 염료를 담지한 광전변환소자(음극)에 그것과 대치하도록 대전극(양극)을 배치하고 그 사이에 산화환원 전해질을 함유하는 용액을 충전하는 것에 의하여 얻어질 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.
[실시예]
[실시예 1] 염료의 합성
Ⅰ) N,N-비스(9,9-다이메틸플루오렌-2-닐)-4-(3',4-다이헥실-2,2'-바이사이오펜-5-일)아닐린 (화합물 3, n=1)
N,N-비스(9,9-다이메틸플루오렌-2-닐)-4-브로모아닐린(0.302 g, 0.542 m㏖), 2-(3',4-다이헥실-2,2'-바이사이오펜-5-일)-4,4,5,5-테트라메틸-1,3,2-다이옥사보로레인(0.3 g, 0.651 m㏖) 수용액(Na
Figure 112007038962717-PAT00017
CO
Figure 112007038962717-PAT00018
) (2 M, 1.626 m㏖) 및 테트라키스 트라이페닐 포스피노팔라듐(0.031 g, 0.027 m㏖)을 1,2-다이메톡시에탄(50 ml) 중에서 90 ℃에서 15시간 혼합하였다. 이 혼합용액을 냉각한 후 모든 용매를 제거하였다. 이를 크로마토그래피 전개제(다이클로로메탄: 헥산 = 1: 3)로 분리하여, 옅은 노란색의 표제 화합물을 얻었다.
Ⅱ) N,N-비스(9,9-다이메틸플루오렌-2-닐)-4-(3',4,3''-트라이헥실-2,2':5',2''-터사이오펜-5-일)아닐린 (화합물 3, n=2)
N,N-비스(9,9-다이메틸플루오렌-2-닐)-4-브로모아닐린(0.22 g, 0.398 m㏖), 2-(3',4,3''-트라이헥실-2,2':5',2''-터사이오펜-5-일)-4,4,5,5-테트라메틸-1,3,2-다이옥사보로레인 (0.3 g, 0.478 m㏖) 수용액 (Na
Figure 112007038962717-PAT00019
CO
Figure 112007038962717-PAT00020
)(2 M, 1.19 m㏖), 테트라키스 트라이페닐 포스피노팔라듐(0.023 g, 0.0199 m㏖) 및 크로마토그래피 전개제(다이클로로메탄: 헥산 = 1: 5)를 사용하는 것을 제외하고는 상기 단계 Ⅰ)과 동일한 공정을 수행하여 옅은 노란색의 표제 화합물을 얻었다.
Ⅲ) N,N-비스(9,9-다이메틸플루오렌-2-닐)-4-(3',4-다이헥실-5'-포밀-2,2'-바이사이오펜-5-일)아닐린 (화합물 4, n=1)
상기 단계 Ⅰ)에서 제조된 화합물 3(n=1) (0.8 g, 0.987 m㏖ )에 다이메틸포름아마이드(용매) (30 ml)를 넣은 후 0 ℃에서 포스포러스 옥시클로라이드 (0.302g, 1.974 m㏖)를 서서히 가한 후, 상온으로 유지시켰다. 30분 반응 시킨 후 디스틸하여 모든 용매를 제거한 후, 크로마토그래피 전개제(다이클로로메탄 : 헥산 =1:1)로 분리하여, 붉은색 고체상의 표제 화합물을 얻었다.(수율 65%)
Mp: 194℃. 1H NMR (CDCl3): δ 9.82 (s, 1H), 7.65-7.59 (m, 4H), 7.49-7.21 (m, 14H), 7.18 (s, 1H), 7.09 (s, 1H), 2,84 (t, J=7.7 Hz, 2H), 2.71 (t, J=7.7 Hz, 2H),1.72-1.58 (m, 4H), 1.43 (s, 12H), 1.40-1.24(m, 12H), 0.93 (t, J=6.6 Hz, 3H), 0.87 (t, J=6.6 Hz, 3H).
Ⅳ) N,N-비스(9,9-다이메틸플루오렌-2-닐)-4-(3',4,3''-트라이헥실-5''-포밀-2,2':5',2''-터사이오펜-5-일)아닐린 (화합물 4, n=2)
상기 단계 Ⅱ)에서 제조된 화합물 3(n=2) (0.2 g, 0.204 m㏖), 포스포러스 옥시클로라이드(0.062 g, 0.408 m㏖) 및 크로마토그래피 전개제(에틸아세테이트 : 헥산 =1:10)를 사용한 것을 제외하고는 상기 단계 Ⅲ)과 동일한 공정을 수행하여 붉은색 고체상의 표제 화합물을 얻었다.(수율 70%)
Mp: 198℃. 1H NMR (CDCl3): δ 9.82 (s, 1H), 7.64-7.59 (m, 4H), 7.38-7.19 (m, 14H), 7.16 (s, 1H), 7.12 (s, 1H), 7.04 (s, 1H), 2,82-2.74 (m, 4H), 2.70 (t, J=7.7 Hz, 2H),1.68-1.51 (m, 6H), 1.42 (s, 12H), 1.38-1.14(m, 18H), 0.88 (t, J=6.6 Hz, 6H), 0.79 (t, J=6.6 Hz, 3H).
Ⅴ) JK-48 (화학식 1a-1, n=1)
상기 단계 Ⅲ)에서 제조된 화합물 4(n=1)에 시아노아세틱엑시드(0.047 g, 0.548 m㏖)에 아세토나이트릴(용매)(30 ml)을 넣은 후 피페리딘(0.023g, 0.274 m㏖)을 첨가시킨 후 12시간동안 가열한 후 모든 용매를 제거하였다. 다이클로로메탄에 녹인 후 물로 세척하였다. 다이클로로메탄 유기용매만 추출한 후 건조제 마그네슘설페이트(MgSO₄)를 이용해서 건조시켰다. 다음은 크로마토그래피(EA:HX = 1:1, Methanol)를 사용하여 순수한 표제 화합물을 얻었다.(수율 54%)
Mp: 210℃. 1H NMR (DMSO-d 6 ): δ 8.14 (s, 1H), 7.68-7.59 (m, 4H), 7.49-7.21 (m, 15H), 7.20 (s, 1H), 2,89 (t, J=7.7 Hz, 2H), 2.74 (t, J=7.7 Hz, 2H), 1.74-1.56 (m, 4H), 1.42 (s, 12H), 1.39-1.24(m, 12H), 0.92 (t, J=6.6 Hz, 3H), 0.88 (t, J=6.6 Hz, 3H).
Ⅵ) JK-45 (화합물 1a-2, n=2)
상기 단계 Ⅳ)에서 제조된 화합물 4(n=2) (0.12 g, 0.119 m㏖), 시아노아세틱엑시드(0.020 g, 0.238 m㏖) 및 피페리딘(0.01g. 0.119 m㏖)을 사용하는 것을 제외하고는 상기 단계 Ⅴ)와 동일한 공정을 수행하여 순수한 표제 화합물을 얻었다.(수율 56%)
Mp: 198℃. 1H NMR (CDCl3): δ 8.17 (s, 1H), 7.83-7.67 (m, 4H),7.40 (s, 1H), 7.38-7.24 (m, 15H), 7.21 (s, 1H), 2,82-2.74 (m, 4H), 2.70 (br, 2H),1.72-1.54 (m, 6H), 1.42 (s, 12H), 1.38-1.14(m, 18H), 0.88 (m, 6H), 0.80 (t, J=6.6 Hz, 3H).
Ⅶ) 6-(비스(9,9-다이메틸플루오렌-2-일)아미노)-2-(3',4-다이헥실-2,2'-바이사이오펜-5-일)벤조[비]사이오펜 (화합물 5, n=1)
6-(비스9,9-다이메틸플루오렌-2-일)아미노)-2-브로모벤조[비]사이오펜(0.332 g, 0.543 m㏖)을 사용하는 것을 제외하고는 단계Ⅰ)과 동일한 공정을 수행하여 옅은 노란색 고체상의 표제화합물을 얻었다.
Ⅷ) 6-(비스(9,9-다이메틸플루오렌-2-일)아미노)-2-(3',4,3''-트라이헥실-2,2':5',2''-터사이오펜-5-일)벤조[비]사이오펜 (화합물 5, n=2)
6-(비스9,9-다이메틸플루오렌-2-일)아미노)-2-브로모벤조[비]사이오 펜(0.24g, 0.398 m㏖) 및 크로마토그래피 전개제(다이클로로메탄: 헥산 = 1: 5)를 사용하는 것을 제외하고는 단계 Ⅰ)과 동일한 공정을 수행하여 옅은 노란색 고체상의 표제 화합물을 얻었다.
Ⅸ) 6-(비스(9,9-다이메틸플루오렌-2-일)아미노)-2-(3',4-다이헥실-5'-포밀-2,2'-바이사이오펜-5-일)벤조[비]사이오펜 (화합물 6, n=1)
상기 단계Ⅶ)에서 제조한 화합물 5(n=1) (0.4 g , 0.461 m㏖) 및 포스포러스 옥시클로라이드(0.141 g, 0.923 m㏖)를 사용하는 것을 제외하고는 단계 Ⅲ)과 동일한 공정을 수행하여 붉은색 고체상의 표제화합물을 얻었다.(수율 62%)
Mp: 192℃. 1H NMR (CDCl3): δ 10.01 (s, 1H), 7.66-7.57 (m, 3H), 7.40-7.24 (m, 13H), 7.14-7.10 (m, 2H), 7.02 (s, 1H), 6.97 (s, 1H), 6.93 (s, 1H), 2,94 (t, J=7.7 Hz, 2H), 2.81 (t, J=7.7 Hz, 2H),1.69-1.65 (m, 4H), 1.41 (s, 12H), 1.40-1.24(m, 12H), 0.89 (m, 6H).
Ⅹ) 6-(비스(9,9-다이메틸플루오렌-2-일)아미노)-2-(3',4,3''-트라이헥실-5''-포밀-2,2':5',2''-터사이오펜-5-일)벤조[비]사이오펜 (화합물 6, n=2)
상기 단계 Ⅷ)에서 제조한 화합물 5(n=2), 포스포러스 옥시클로라이드 (0.074 g, 0.484 m㏖) 및 크로마토그래피 전개제(에틸아세테이트 : 헥산 =1:10)를 사용하는 것을 제외하고는 단계 Ⅲ)과 동일한 공정을 수행하여 붉은색 고체상의 표제화합물을 얻었다.(수율 70%)
Mp: 198℃. 1H NMR (CDCl3): δ 9.82 (s, 1H), 7.68-7.59 (m, 3H), 7.40-7.25 (m, 13H), 7.12-7.09 (m, 2H), 7.05 (s, 1H), 7.02 (s, 1H), 7.00 (s, 1H), 2,82-2.78 (m, 6H), 1.69-1.58 (m, 6H), 1.41 (s, 12H), 1.38-1.14(m, 18H), 0.88 (t, J=6.6 Hz, 6H), 0.82 (br, 3H).
ⅩⅠ) JK -49 (화합물 1b-1, n=1)
상기 단계 Ⅸ)에서 제조한 화합물 6(n=1) (0.1 g, 0.111 m㏖), 시아노아세틱 엑시드(0.019 g, 0.223 m㏖) 및 피페리딘(0.009 g, 0.111 m㏖)을 사용하는 것을 제외하고는 상기 단계 Ⅴ)와 동일한 공정을 수행하여 순수한 표제 화합물을 얻었다. (수율 56%)
Mp: 198℃. 1H NMR (CDCl3): δ 8.23 (s, 1H), 7.88-7.72 (m, 3H), 7.60-7.47 (m, 14H), 7.42 (s, 1H), 7.27-7.22 (m, 2H), 7.14 (s, 1H), 2,91 (t, J=7.7 Hz, 2H), 2.79 (t, J=7.7 Hz, 2H),1.69-1.65 (m, 4H), 1.41 (s, 12H), 1.40-1.24(m, 12H), 0.89 (m, 6H).
ⅩⅡ) JK -46 (화합물 1b-2, n=2)
상기 단계 Ⅹ)에서 제조한 화합물 6(n=2) (0.13 g, 0.123 m㏖), 시아노아세틱엑시드(0.020 g, 0.245 m㏖) 및 피페리딘(0.01 g, 0.122 m㏖)을 사용하는 것을 제외하고는 상기 단계 Ⅴ)와 동일한 공정을 수행하여 순수한 표제 화합물을 얻었다.(수율 59%)
Mp: 193℃. 1H NMR (CDCl3): δ 8.26 (s, 1H), 7.89-7.74 (m, 3H), 7.60-7.45 (m, 14H), 7.39 (s, 1H), 7.28-7.19 (m, 3H), 2,82-2.78 (m, 6H), 1.69-1.58 (m, 6H), 1.41 (s, 12H), 1.38-1.14(m, 18H), 0.88 (t, J=6.6 Hz, 6H), 0.82 (br, 3H).
ⅩⅢ) 4-(9,9-다이메틸플루오렌-2-일)-7-(3',4-다이헥실-2,2'-바이사이오펜-5-일)-1,2,3,3a,4,8b-헥사하이드로사이클로펜타[비]인돌 (화합물 7, n=1)
4-(9,9-다이메틸플루오렌-2-일)-1,2,3,3a,4,8b-헥사하이드로사이클로펜타[비]인돌(0.336 g, 0.781 m㏖), 2-(3',4-다이헥실-2,2'-바이사이오펜-5-일)-4,4,5,5-테트라메틸-1,3,2-다이옥사보로레인(0.54 g, 1.172 m㏖)수용액(Na
Figure 112007038962717-PAT00021
CO
Figure 112007038962717-PAT00022
) (2 M, 2.343 m㏖) 및 테트라키스 트라이페닐 포스피노팔라듐(0.045 g, 0.027 m㏖)을 사용하는 것을 제외하고는 단계Ⅰ)과 동일한 공정을 수행하여 옅은 노란색 고체상의 표제화합물을 얻었다.
ⅩⅣ) 4-(9,9-다이메틸플루오렌-2-일)-7-(3',4,3''-트라이헥실-2,2':5',2''-터사이오펜-5-일)-1,2,3,3a,4,8b-헥사하이드로사이클로펜타[비]인돌 (화합물 7, n=2)
4-(9,9-다이메틸플루오렌-2-일)-1,2,3,3a,4,8b-헥사하이드로사이클로펜타[비]인돌(0.228 g, 0.531 m㏖), 2-(3',4,3''-트라이헥실-2,2':5',2''-터사이오펜-5-일)-4,4,5,5-테트라메틸-1,3,2-다이옥사보로레인 (0.4 g, 0.638 m㏖) 수용액(Na
Figure 112007038962717-PAT00023
CO
Figure 112007038962717-PAT00024
) (2 M, 1.59 m㏖), 테트라키스 트라이페닐 포스피노팔라듐(0.03 g, 0.0265 m㏖) 및 크로마토그래피 전개제(다이클로로메탄: 헥산 = 1: 5)를 사용하는 것을 제외하고는 단계 Ⅰ)과 동일한 공정을 수행하여 옅은 노란색 고체상의 표제화합물을 얻었다.
ⅩⅤ) 4-(9,9-다이메틸플루오렌-2-일)-7-(3',4-다이헥실-5'-포밀-2,2'-바이사이오펜-5-일)-1,2,3,3a,4,8b-헥사하이드로사이클로펜타[비]인돌 (화합물 8, n=1)
상기 단계 ⅩⅢ)에서 제조한 화합물 7(n=1) (0.22 g, 0.321 m㏖) 및 포스포러스 옥시클로라이드(0.098 g, 0.643 m㏖)를 사용하는 것을 제외하고는 단계 Ⅲ)과 동일한 공정을 수행하여 붉은색 고체상의 표제화합물을 얻었다.(수율 57%)
Mp: 189℃. 1H NMR (CDCl3): δ 9.82 (s, 1H), 7.67-7.63 (m, 3H), 7.41-7.22 (m, 7H),7.14 (s, 1H), 7.02 (s, 1H), 4.82 (t, J= 6.0 Hz, 1H), 3.87 (t, J= 6.0 Hz, 1H), 2,94 (t, J=7.7 Hz, 2H), 2.81 (t, J=7.7 Hz, 2H),2.11-1.95(m, 4H), 1.85-1.70(m, 2H), 1.69-1.65 (m, 4H), 1.41 (s, 12H), 1.40-1.24(m, 12H), 0.89 (m, 6H).
ⅩⅥ) 4-(9,9-다이메틸플루오렌-2-일)-7-(3',4,3''-트라이헥실-5''-포밀-2,2':5',2''-터사이오펜-5-일)-1,2,3,3a,4,8b-헥사하이드로사이클로펜타[비]인돌 (화합물 8, n=2)
상기 단계 ⅩⅣ)에서 제조한 화합물 7(n=2) (0.54 g, 0.635 m㏖), 포스포러스 옥시클로라이드(0.194 g, 1.27 m㏖) 및 크로마토그래피 전개제(에틸아세테이트 : 헥산 =1:10)를 사용하는 것을 제외하고는 단계 Ⅲ)과 동일한 공정을 수행하여 붉은색 고체상의 표제화합물을 얻었다.(수율 59%)
Mp: 191℃. 1H NMR (CDCl3): δ 9.83 (s, 1H), 7.67-7.63 (m, 3H), 7.41-7.22 (m, 7H), 7.14 (s, 1H), 7.09 (s, 1H), 7.04 (s, 1H), 4.82 (t, J= 6.0 Hz, 1H), 3.87 (t, J= 6.0 Hz, 1H), 2,82-2.78 (m, 6H), 2.11-1.95(m, 4H), 1.85-1.70(m, 2H), 1.69-1.58 (m, 6H), 1.41 (s, 12H), 1.38-1.14(m, 18H), 0.88 (t, J=6.6 Hz, 6H), 0.82 (br, 3H).
ⅩⅦ) JK-50 (화합물 1c-1, n=1)
상기 단계 ⅩⅤ)에서 제조한 화합물 8(n=1) (0.2 g, 0.28 m㏖)을 사용하는 것을 제외하고는 단계 Ⅴ)와 동일한 공정을 수행하여 순수한 표제 화합물을 얻었다.(수율 56%)
Mp: 187℃. 1H NMR (CDCl3): δ 8.27 (s, 1H), 7.87-7.78 (m, 3H), 7.61-7.42 (m, 7H),7.41 (s, 1H), 7.22 (s, 1H), 4.82 (t, J= 6.0 Hz, 1H), 3.87 (t, J= 6.0 Hz, 1H), 2,94 (t, J=7.7 Hz, 2H), 2.81 (t, J=7.7 Hz, 2H),2.11-1.95(m, 4H), 1.85-1.70(m, 2H), 1.69-1.65 (m, 4H), 1.41 (s, 12H), 1.40-1.24(m, 12H), 0.89 (m, 6H).
ⅩⅧ) JK-47 (화합물 1c-2, n=2)
상기 단계 ⅩⅥ)에서 제조한 화합물 8(n=2) (0.2 g, 0.228 m㏖), 시아노아세틱엑시드(0.038 g, 0.455 m㏖) 및 피페리딘(0.019 g, 0.228 m㏖)을 사용하는 것을 제외하고는 단계 Ⅴ)와 동일한 공정을 수행하여 순수한 표제 화합물을 얻었다.(수율 53%)
Mp: 189℃. 1H NMR (CDCl3): δ 8.17 (s, 1H), 7.79-7.63 (m, 3H), 7.61-7.52 (m, 8H), 7.44 (s, 1H), 7.39 (s, 1H), 4.82 (t, J= 6.0 Hz, 1H), 3.87 (t, J= 6.0 Hz, 1H), 2,82-2.78 (m, 6H), 2.11-1.95(m, 4H), 1.85-1.70(m, 2H), 1.69-1.58 (m, 6H), 1.41 (s, 12H), 1.38-1.14(m, 18H), 0.88 (t, J=6.6 Hz, 6H), 0.82 (br, 3H).
[실시예 2] 염료감응태양전지의 제조
염료 화합물의 전류-전압 특성을 평가하기 위해, 20+4 ㎛ TiO2 투명층을 이용하여 태양전지를 제조하였다. 전극은 TiO2 페이스트(Solaronix, 13nm 아나타제)를 스크린 프린팅하여 20 ㎛ 두께의 제1 TiO2 층을 제조하고, 광산란을 위해 다른 페이스트(CCIC, HWP-400)로 4 ㎛ 두께의 제2 TiO2 산란층을 제조하였다. 상기 TiO2 전극 위에 상기 실시예 1의 단계 Ⅳ),Ⅴ), ⅩⅠ), ⅩⅡ), ⅩⅦ) 및 ⅩⅧ)에서 제조된 본 발명의 염료 화합물 1a-1, 1a-2, 1b-1, 1b-2, 1c-1 및 1c-2를 담지시켜 태양전지를 제조하였다. 사용된 전해질은 0.6 M 1-헥실-2,3-다이메틸이미다졸륨 아이오다이드, 0.05 M 아이오딘, 0.1 M 리튬아이오다이드, 0.5 M 터셔리-부틸피리딘을 아세토나이트릴 용매에 혼합하여 사용하였다.
[실시예 3] 염료감응태양전지의 물성 측정
상기 단계 Ⅳ),Ⅴ), ⅩⅠ), ⅩⅡ), ⅩⅦ) 및 ⅩⅧ)에서 제조된 본 발명의 염료 화합물 1a-1, 1a-2, 1b-1, 1b-2, 1c-1 및 1c-2 각각의 염료 화합물을 사용하여 제조된 태양전지의 광전자화학특성(photoelectrochemical characteristics) 을 측 정하여 하기 표 1에 나타내었다. 태양전지의 광전자화학특성은 Keithley M 236 소스 측정 장치를 이용하여 측정하였으며, 광원으로는 AM 1.5 필터(Oriel)가 구비된 300 W Xe 램프를 이용하였고, 전극크기는 0.4 × 0.4 cm2, 빛의 세기는 1 sun(100 mW/cm2)으로 하였다. 빛의 세기는 Si 태양전지를 이용하여 조정하였다.
[표 1]
Dye J
Figure 112007038962717-PAT00025
(㎃/㎠)
V
Figure 112007038962717-PAT00026
(V)
F.F η
1a-2 16.13 0.641 71.8 7.42
1b-1 11.26 0.579 74.7 4.87
1b-2 17.45 0.664 74.2 8.60
1c-1 6.25 0.553 76.1 2.63
1c-2 12.05 0.648 76.5 5.98
N719 18.39 0.741 76.5 10.42
상기 표 1에서 N719는 종래 염료감응태양전지에 사용되는 루테늄계 촉매로 하기와 같은 구조를 갖는다.
Figure 112007038962717-PAT00027
또한 상기 단계 Ⅳ),Ⅴ), ⅩⅠ), ⅩⅡ), ⅩⅦ) 및 ⅩⅧ)에서 제조된 본 발명의 염료 화합물 1a-1, 1a-2, 1b-1, 1b-2, 1c-1 및 1c-2 각각의 염료 화합물에 10 mM의 DCA를 첨가하여 제조된 태양전지의 광전자화학특성(photoelectrochemical characteristics) 을 측정하여 하기 표 2에 나타내었다.
[표 2]
Dye J
Figure 112007038962717-PAT00028
(㎃/㎠)
V
Figure 112007038962717-PAT00029
(V)
F.F η
1a-1 8.27 0.687 80.5 4.57
1a-2 10.94 0.660 76.1 5.49
1b-1 6.42 0.610 77.5 3.03
1b-2 12.45 0.669 77.0 6.41
1c-1 3.91 0.575 79.3 1.78
1c-2 7.59 0.638 78.5 3.80
상기 표 1 및 표 2에서, Jsc는 단회로 광전류 밀도(short-circuit photocurrent density), Voc는 오픈 회로 광전압(open circuit photovoltage), ff는 충전 인자(fill factor), η는 전체 광전변환효율을 나타낸다.
상기 표 1 및 표 2 에 나타난 바와 같이 본 발명의 염료 화합물은 우수한 태양전지 염료의 특성을 나타내며, 특히 DCA를 첨가한 경우보다 첨가하지 않은 경우의 Jsc, Voc, ff 및 η 값이 더 높게 나타나며, 화합물 1b-2의 Jsc 값이 N719와 유사한 높은 Jsc 값을 가지며, 전체 변환효율 또한 높음을 알 수 있었다.
따라서 상기에서 Jsc 값이 가장 높게 나타난 화합물 1b-2에 DCA를 첨가한 경우와 첨가하지 않은 경우에 대한 20㎚ 크기 TiO2의 두께별(8 ㎛와 20 ㎛) 전류(Jsc) 및 광전변환효율(η) 값을 도 1과 도 2에 나타내었다. 상기 도 1 및 도2에 나타난 바왁 같이 첨가제 DCA를 사용하지 않은 본 발명의 화합물인 1b-2의 전류(Jsc) 및 광전변환효율(η)이 DCA를 사용한 경우보다 우수함을 확인할 수 있었다.
본 발명의 신규한 유기염료는 종래의 금속 착체 염료보다 향상된 몰흡광계수, Jsc(단회로 광전류 밀도) 및 광전기 변환효율을 나타내어 태양전지의 효율을 크게 향상시킬 수 있고, 첨가제를 사용하지 않고도 염료 자체적으로 π-π stacking 현상을 막아줌으로써 높은 발생 전류를 얻고 기존의 유기염료보다 높은 광전변환효율이 가능하다.

Claims (9)

  1. 하기 화학식 1로 표시되는 유기염료:
    [화학식 1]
    Figure 112007038962717-PAT00030
    상기 식에서, R은 치환되거나 치환되지 않은
    Figure 112007038962717-PAT00031
    ,
    Figure 112007038962717-PAT00032
    , 또는
    Figure 112007038962717-PAT00033
    이고, A는 각각 독립적으로 치환되거나 치환되지 않은 C1 내지 C12의 알킬이 고, n은 1 내지 4 사이의 정수이다.
  2. 제1항에 있어서,
    상기 염료가 하기 화학식 1a-1, 1a-2, 1b-1, 1b-2, 1c-1 또는 1c-2로 표시되는 것을 특징으로 하는 유기염료:
    [화학식 1a-1]
    Figure 112007038962717-PAT00034
    [화학식 1a-2]
    Figure 112007038962717-PAT00035
    [화학식 1b-1]
    Figure 112007038962717-PAT00036
    [화학식 1b-2]
    Figure 112007038962717-PAT00037
    [화학식 1c-1]
    Figure 112007038962717-PAT00038
    [화학식 1c-2]
    Figure 112007038962717-PAT00039
  3. (1) 하기 화학식 2의 화합물을 1,2-다이메톡시에탄 중에서 화학식 3의 화합물과 반응시켜 하기 화학식 4의 화합물을 제조하고,
    (2) 화학식 4의 화합물을 다이메틸포름아마이드 중에서 포스포러스 옥시클로라이드와 반응시켜 하기 화학식 5의 화합물을 제조하고,
    (3) 화학식 5의 화합물을 아세토나이트릴 중에서 피페리딘 존재 하에서 시아노아세트산과 반응시키는 것을 포함하는
    상기 화학식 1로 표시되는 유기염료의 제조방법:
    [화학식 2]
    Figure 112007038962717-PAT00040
    [화학식 3]
    Figure 112007038962717-PAT00041
    [화학식 4]
    Figure 112007038962717-PAT00042
    [화학식 5]
    Figure 112007038962717-PAT00043
    상기 식에서, R은 치환되거나 치환되지 않은
    Figure 112007038962717-PAT00044
    ,
    Figure 112007038962717-PAT00045
    , 또는
    Figure 112007038962717-PAT00046
    이고, A는 각각 독립적으로 치환되거나 치환되지 않은 C1 내지 C12의 알킬이 고, n은 1 내지 4 사이의 정수이다.
  4. 제1항의 유기염료를 담지시킨 산화물 반도체 미립자를 포함하는 것을 특징으로 하는 염료증감 광전변환소자.
  5. 제 4항에 있어서,
    포섭화합물의 존재 하에서, 상기 산화물 반도체 미립자에 상기 유기염료를 담지시킨 것을 특징으로 하는 염료증감 광전변환소자.
  6. 제 4항에 있어서,
    상기 산화물 반도체 미립자가 이산화티탄을 필수성분으로 포함하는 것을 특징으로 하는 염료증감 광전변환소자.
  7. 제 4항에 있어서,
    상기 산화물 반도체 미립자가 평균 입경이 1 ∼ 500 nm인 것을 특징으로 하는 염료증감 광전변환소자.
  8. 제4항의 염료증감 광전변환소자를 전극으로서 포함하는 것을 특징으로 하는 염료감응태양전지.
  9. 제8항에 있어서,
    상기 염료감응태양전지가, 전도성 투명 기판 위에 산화티타늄 페이스트를 코팅하는 단계, 페이스트가 코팅된 기판을 소성하여 산화티타늄 박막을 형성하는 단계, 산화티타늄 박막이 형성된 기판을 화학식 1로 표시되는 염료가 용해된 혼합용액에 함침시켜 염료가 흡착된 산화티타늄 필름 전극을 형성하는 단계, 그 상부에 대전극이 형성된 제2의 유리기판을 구비하는 단계, 제2 유리기판 및 대전극을 관통하는 홀(hole)을 형성하는 단계, 상기 대전극 및 상기 염료가 흡착된 산화티타늄 필름 전극 사이에 열가소성 고분자 필름을 두고, 가열 압착 공정을 실시하여 상기 대전극 및 산화티타늄 필름 전극을 접합시키는 단계, 상기 홀을 통하여 대전극과 산화티타늄 필름 전극 사이의 열가소성 고분자 필름에 전해질을 주입하는 단계, 및 상기 열가소성 고분자를 실링하는 단계를 통하여 제조되는 것을 특징으로 하는 염료감응태양전지.
KR1020070051619A 2007-05-28 2007-05-28 신규한 유기염료 및 이의 제조방법 KR101008226B1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020070051619A KR101008226B1 (ko) 2007-05-28 2007-05-28 신규한 유기염료 및 이의 제조방법
EP12156667.3A EP2457958B1 (en) 2007-05-28 2008-05-20 Novel organic dye and method of preparing the same
PCT/KR2008/002804 WO2008147070A2 (en) 2007-05-28 2008-05-20 Novel organic dye and method of preparing the same
JP2010510200A JP2010529226A (ja) 2007-05-28 2008-05-20 新規な有機染料及びその製造方法
EP08753600A EP2148903A4 (en) 2007-05-28 2008-05-20 NEW ORGANIC DYE AND METHOD OF MANUFACTURING THEREOF
CN2008800178488A CN101679762B (zh) 2007-05-28 2008-05-20 新型有机染料及其制备方法
EP11181281.4A EP2418257B1 (en) 2007-05-28 2008-05-20 Novel organic dye and method of preparing the same
TW097119503A TWI458786B (zh) 2007-05-28 2008-05-27 新穎有機染料及其製備方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070051619A KR101008226B1 (ko) 2007-05-28 2007-05-28 신규한 유기염료 및 이의 제조방법

Publications (2)

Publication Number Publication Date
KR20080104616A true KR20080104616A (ko) 2008-12-03
KR101008226B1 KR101008226B1 (ko) 2011-01-17

Family

ID=40075651

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070051619A KR101008226B1 (ko) 2007-05-28 2007-05-28 신규한 유기염료 및 이의 제조방법

Country Status (6)

Country Link
EP (3) EP2457958B1 (ko)
JP (1) JP2010529226A (ko)
KR (1) KR101008226B1 (ko)
CN (1) CN101679762B (ko)
TW (1) TWI458786B (ko)
WO (1) WO2008147070A2 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013324A (zh) * 2009-09-08 2011-04-13 乐金显示有限公司 染料敏化太阳能电池及其制造方法
KR101109548B1 (ko) * 2009-05-26 2012-03-05 고려대학교 산학협력단 신규의 퓨즈드-트리아릴아민을 함유하는 화합물, 이의 제조 방법, 및 이를 포함하는 염료를 이용한 염료감응 태양전지
KR101137941B1 (ko) * 2010-07-16 2012-05-09 포항공과대학교 산학협력단 가시광선에 감응하는 유기염료/이산화티타늄 광촉매, 이의 제조방법 및 이를 이용한 폐수 처리방법
KR20190057057A (ko) * 2016-09-27 2019-05-27 호도가야 가가쿠 고교 가부시키가이샤 증감 색소, 광전 변환용 증감 색소 및 그것을 사용한 광전 변환 소자 그리고 색소 증감 태양 전지
CN113200957A (zh) * 2021-04-09 2021-08-03 西安工业大学 一种酸/碱染料共敏体系及其制备方法和应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100066158A (ko) * 2008-12-09 2010-06-17 주식회사 동진쎄미켐 트리알콕시실릴기 함유 신규 유기염료 및 이의 제조방법
TWI458787B (zh) 2009-05-15 2014-11-01 Ind Tech Res Inst 有機染料及包含其之光電轉換裝置
JP5722579B2 (ja) * 2010-09-14 2015-05-20 山本化成株式会社 ジテトラアザポルフィリン系化合物、該化合物を用いた色素増感太陽電池
WO2012063753A1 (ja) * 2010-11-08 2012-05-18 日本電気株式会社 インドール系化合物、並びにこれを用いた光電変換用色素、半導体電極、光電変換素子および光電気化学電池
CN102250484B (zh) * 2011-05-20 2013-10-30 常州有则科技有限公司 用于染料敏化太阳能电池的咔唑基有机染料的制备方法
CN103450700B (zh) * 2013-08-23 2015-12-02 中山大学 一种基于咔唑或三苯胺衍生物的树状有机染料及其在制备染料敏化太阳能电池中的应用
CN103834190B (zh) * 2013-12-09 2015-07-22 中国科学院长春应用化学研究所 含苯并噻二唑-氰基苯丙烯酸受体的有机染料及在染料敏化太阳电池中的应用
JP2017078091A (ja) * 2014-03-12 2017-04-27 日本化薬株式会社 メチン系色素及びそれを用いた色素増感光電変換素子
ITUA20163451A1 (it) * 2016-05-16 2017-11-16 Eni Spa Colorante organico per una cella solare sensibilizzata da colorante
JP7055292B2 (ja) * 2017-09-26 2022-04-18 保土谷化学工業株式会社 増感色素、光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1311001B1 (en) 2000-07-27 2009-12-09 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric transducer
US8227690B2 (en) * 2003-03-14 2012-07-24 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
JP5106381B2 (ja) * 2006-03-02 2012-12-26 日本化薬株式会社 色素増感光電変換素子

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101109548B1 (ko) * 2009-05-26 2012-03-05 고려대학교 산학협력단 신규의 퓨즈드-트리아릴아민을 함유하는 화합물, 이의 제조 방법, 및 이를 포함하는 염료를 이용한 염료감응 태양전지
CN102013324A (zh) * 2009-09-08 2011-04-13 乐金显示有限公司 染料敏化太阳能电池及其制造方法
CN102013324B (zh) * 2009-09-08 2013-01-16 乐金显示有限公司 染料敏化太阳能电池及其制造方法
KR101137941B1 (ko) * 2010-07-16 2012-05-09 포항공과대학교 산학협력단 가시광선에 감응하는 유기염료/이산화티타늄 광촉매, 이의 제조방법 및 이를 이용한 폐수 처리방법
KR20190057057A (ko) * 2016-09-27 2019-05-27 호도가야 가가쿠 고교 가부시키가이샤 증감 색소, 광전 변환용 증감 색소 및 그것을 사용한 광전 변환 소자 그리고 색소 증감 태양 전지
CN113200957A (zh) * 2021-04-09 2021-08-03 西安工业大学 一种酸/碱染料共敏体系及其制备方法和应用
CN113200957B (zh) * 2021-04-09 2022-02-22 西安工业大学 一种酸/碱染料共敏体系及其制备方法和应用

Also Published As

Publication number Publication date
CN101679762A (zh) 2010-03-24
WO2008147070A3 (en) 2009-01-15
JP2010529226A (ja) 2010-08-26
TW200909526A (en) 2009-03-01
WO2008147070A2 (en) 2008-12-04
CN101679762B (zh) 2013-06-05
EP2148903A2 (en) 2010-02-03
EP2418257B1 (en) 2013-12-18
KR101008226B1 (ko) 2011-01-17
TWI458786B (zh) 2014-11-01
EP2457958A2 (en) 2012-05-30
EP2418257A3 (en) 2012-03-14
EP2457958A3 (en) 2012-09-12
EP2148903A4 (en) 2010-12-22
EP2418257A2 (en) 2012-02-15
EP2457958B1 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
KR101008226B1 (ko) 신규한 유기염료 및 이의 제조방법
KR101352024B1 (ko) 신규한 티오펜계 염료 및 이의 제조방법
KR100969675B1 (ko) 신규한 엔-아릴카바졸 잔기-함유 유기염료 및 이의제조방법
EP1628356B1 (en) Dye-sensitized photoelectric conversion device
KR101320999B1 (ko) 신규한 유기염료 및 이의 제조방법
US20090293951A1 (en) Dye for dye-sensitized solar cell and dye-sensitized solar cell including the same
KR101250403B1 (ko) 벤조티아다이아졸 발색부-함유 신규 유기염료 및 이의 제조방법
KR20090071426A (ko) 신규한 루테늄계 염료 및 이의 제조방법
TWI472512B (zh) 貴金屬釕類感光劑及其製備方法
KR20100136931A (ko) 신규한 유기염료 및 이의 제조방법
KR100969676B1 (ko) 신규한 줄로리딘계 염료 및 이의 제조방법
KR101173248B1 (ko) 염료감응 태양전지용 루테늄계 염료
KR100996236B1 (ko) 신규한 루테늄계 염료 및 이의 제조방법
KR101267658B1 (ko) 염료감응 태양전지용 염료, 이의 제조방법 및 이를 포함하는 염료 감응태양 전지
KR20100066158A (ko) 트리알콕시실릴기 함유 신규 유기염료 및 이의 제조방법
KR101597863B1 (ko) 플루오렌 유도체 및 그의 염
KR20100128096A (ko) 신규한 루테늄계 염료 및 이의 제조방법
KR20100128094A (ko) 신규한 줄로리딘계 염료 및 이의 제조방법
KR20100128258A (ko) 신규한 루테늄계 염료 및 이의 제조방법
KR20090083863A (ko) 신규한 유기 염료 및 이의 제조방법
KR101173658B1 (ko) 염료감응 태양전지용 스쿠아레인계 염료
WO2018047494A1 (ja) 光電変換素子、色素増感太陽電池及びジピロメテン錯体化合物
KR20100128255A (ko) 신규한 스파이로바이플루오렌계 염료 및 이의 제조방법
KR101940491B1 (ko) 신규한 루테늄계 염료 및 이의 제조방법
KR101633150B1 (ko) 플루오렌 유도체 및 그의 염

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131206

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151208

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20161205

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20171204

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20181211

Year of fee payment: 9