KR20080066702A - 최적화된 내부 트레이 디자인을 가진 반응기 - Google Patents

최적화된 내부 트레이 디자인을 가진 반응기 Download PDF

Info

Publication number
KR20080066702A
KR20080066702A KR1020087009974A KR20087009974A KR20080066702A KR 20080066702 A KR20080066702 A KR 20080066702A KR 1020087009974 A KR1020087009974 A KR 1020087009974A KR 20087009974 A KR20087009974 A KR 20087009974A KR 20080066702 A KR20080066702 A KR 20080066702A
Authority
KR
South Korea
Prior art keywords
tray
reactor
trays
unidirectional
reaction medium
Prior art date
Application number
KR1020087009974A
Other languages
English (en)
Other versions
KR101362570B1 (ko
Inventor
토마스 로이드 욘트
래리 케이트스 윈드스
브루스 로저 드브런
Original Assignee
이스트만 케미칼 컴파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이스트만 케미칼 컴파니 filed Critical 이스트만 케미칼 컴파니
Publication of KR20080066702A publication Critical patent/KR20080066702A/ko
Application granted granted Critical
Publication of KR101362570B1 publication Critical patent/KR101362570B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/245Stationary reactors without moving elements inside placed in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/16Fractionating columns in which vapour bubbles through liquid
    • B01D3/24Fractionating columns in which vapour bubbles through liquid with sloping plates or elements mounted stepwise
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/32Packing elements in the form of grids or built-up elements for forming a unit or module inside the apparatus for mass or heat transfer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/785Preparation processes characterised by the apparatus used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/0077Baffles attached to the reactor wall inclined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/0077Baffles attached to the reactor wall inclined
    • B01J2219/00774Baffles attached to the reactor wall inclined in the form of cones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00777Baffles attached to the reactor wall horizontal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/185Details relating to the spatial orientation of the reactor vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/19Details relating to the geometry of the reactor
    • B01J2219/194Details relating to the geometry of the reactor round
    • B01J2219/1941Details relating to the geometry of the reactor round circular or disk-shaped
    • B01J2219/1943Details relating to the geometry of the reactor round circular or disk-shaped cylindrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32206Flat sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32213Plurality of essentially parallel sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32224Sheets characterised by the orientation of the sheet
    • B01J2219/32231Horizontal orientation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/322Basic shape of the elements
    • B01J2219/32203Sheets
    • B01J2219/32224Sheets characterised by the orientation of the sheet
    • B01J2219/32234Inclined orientation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

본 발명은 반응 매질을 시트 상태로 유지하면서 다량의 반응 매질을 처리하기 위한 시스템에 관한 것이다. 이러한 시스템은 반응 조건을 유지하면서 그 위로 반응 매질이 흐르는 다수의 수직방향-이격된 아래방향-경사 트레이를 가진 반응기를 포함한다. 트레이의 기울기는 반응 매질이 반응기를 통하여 아래방향으로 흐르는 동안 증가된 반응 매질의 점도에 순응하도록 아래방향으로 증가한다. 트레이의 상부는 단일방향 배열을 갖는 반면, 트레이의 하부는 양방향 배열을 갖는다. 또한, 단일방향 트레이를 가로지르는 흐름의 배향은 반응 매질이 단일방향 트레이의 아래쪽으로 흘러감에 따라 하나 이상의 위치에서 90도 회전된다.

Description

최적화된 내부 트레이 디자인을 가진 반응기{REACTOR WITH OPTIMIZED INTERNAL TRAY DESIGN}
본 발명은 일반적으로 매질이 반응기를 통하여 흘러감에 따라 증가하는 점도를 갖는 반응 매질을 처리하기 위한 반응기에 관한 것이다. 또 다른 양태에서, 본 발명은 반응 매질의 중합도를 증가시키면서 그 위로 중합 반응 매질이 흐르는 다수의 수직방향-이격된 내부 트레이(vertically-spaced internal tray)를 가진 중합 반응기에 관한 것이다.
본 출원은 그의 개시내용이 본원에서 참고로 인용된, 2005년 10월 28일자 출원된 미국 가특허출원 제 60/731,390 호의 우선권주장 출원이다.
특정의 화학 처리 공정에서, 화학 반응은 하나 이상의 비교적 얇은 시트 상태로 흐르는 반응 매질내에서 일어나는 것이 바람직하다. 이러한 처리 공정에서, 반응은 반응 매질의 시트가 필수 반응 조건에 노출되는 연장된 기간에 걸쳐 진행한다. 이러한 타입의 공정은 기상 반응 부산물을 생성하는 화학 반응에 특히 유리하며, 반응 매질로부터 이러한 부산물을 신속하고 완전하게 제거하는 것이 바람직하 다. 예를 들면, 기상 부산물을 생성하는 화학 반응이 가역적인 경우, 부산물을 적절히 제거하지 못하여 목적하는 반응이 방해받을 수 있었다. 반응 매질이 하나 이상의 비교적 얇은 시트 상태로 흐르는 경우, 기상 반응 부산물이 반응 매질을 신속하게 이탈할 수 있다. 또한, 반응 매질이 하나 이상의 비교적 얇은 시트 상태로 흐르는 경우, 반응 매질의 저부상에서의 낮은 유체정력학적 압력은 비교적 깊은 반응 매질을 사용하여 반응을 실시할 때에 나타날 수 있는 비등 억제를 최소화시킨다.
반응 매질의 비교적 얇은 시트 상태에서 반응을 실시하는 것이 많은 이점이 있기는 하지만, 이러한 타입의 공정은 또한 많은 난관에 봉착한다. 예를 들면, 반응 매질의 얇은 시트는 다량의 표면적을 필요로 하기 때문에, 상업적 품질의 반응 생성물을 생성시키기 위해서는 아주 대형이고/이거나 많은 수의 반응기를 필요로 한다. 또한, 반응 매질의 얇은 시트를 사용하는 많은 공정에서, 반응 매질의 점도는 반응이 진행함에 따라 변한다. 따라서, 최종 생성물의 점도는 초기 반응 매질의 점도보다 훨씬 더 크거나 또는 훨씬 더 낮을 수 있다. 이러한 반응 매질의 점도 변화는 유량 및/또는 반응 매질의 깊이에 있어서의 상당한 변화가 바람직하지 않을 수 있기 때문에 많은 디자인 문제에 봉착하게 된다.
반응 매질의 하나 이상의 비교적 얇은 시트 상태에서 화학 반응을 실시하는 것이 바람직한 보편적인 상업 공정의 한 가지 예는 폴리에틸렌 테레프탈레이트(PET) 생산 공정의 "마무리(finishing)" 단계이다. PET 마무리 단계도중, 중축합은 반응 매질의 중합도를 상당히 증가시키며, 또한 반응 부산물로서 에틸렌 글라 이콜, 아세트알데하이드 및 물을 생성한다. 전형적으로, 마무리 반응기/대역내로 도입되는 반응 매질의 중합도는 20 내지 60인 반면, 마무리 반응 대역을 이탈하는 반응 매질/생성물의 중합도는 80 내지 200이다. 마무리 단계중의 반응 매질의 중합도에 있어서의 이러한 증가는 반응 매질의 점도를 상당히 증가시킨다. 또한, PET 마무리 처리와 연관된 중축합 반응은 가역적이기 때문에, 에틸렌 글라이콜 반응 부산물을 가능한 한 신속하고 완전하게 반응 매질로부터 제거하는 것이 바람직하다.
따라서, 연장된 기간동안 비교적 얇은 시트 상태에서의 다량의 반응 매질의 처리를 촉진시키는 보다 효과적이고 경제적인 반응기에 대한 필요성이 존재한다. 또한, 마무리 반응기를 통하여 비교적 균일한 얇은 시트 상태로 흐르는 다량의 반응 매질의 중축합을 촉진시키는 반면, 적절한 체류시간을 제공하여 필수적인 중합도를 달성하는 보다 효율적이고 효과적인 PET 마무리 반응기에 대한 필요성도 존재한다.
발명의 개요
본 발명의 한 가지 실시태양에 따르면, 다수의 수직방향-이격된 단일방향 경사 트레이(vertically-spaced uni-directional sloped tray)(여기서, 단일방향 트레이의 기울기는 아래방향으로 증가한다) 및 다수의 수직방향-이격된 양방향 경사 트레이(vertically-spaced bi-directional sloped tray)를 포함하는 반응기가 제공된다.
본 발명의 다른 실시태양에 따르면, 반응 매질을 처리하기 위한 반응기가 제공된다. 이러한 반응기는 다수의 수직방향-이격된 경사 트레이를 포함한다. 트레이의 적어도 일부는 바로 아래에 위치한 그 다음 트레이로 통과하도록 그 위로 반응 매질의 적어도 일부가 흐르는 윗방향으로 연장하는 위어(weir)를 포함한다.
본 발명의 또 다른 실시태양에 따르면, (a) 다수의 수직방향-이격된 경사 트레이를 포함하는 중합 반응기내로 반응 매질을 도입하는 단계; (b) 반응 매질을 중합 반응기내에서 수직방향-이격된 트레이상에서 아래방향으로 흐르게 하는 단계(여기서, 수직방향-이격된 경사 트레이상으로 흐르는 반응 매질의 평균 두께는 약 2.5 인치(in) 이상으로 유지된다); 및 (c) 반응 매질을 중합 반응기로부터 회수하는 단계(여기서, 중합 반응기로부터 회수된 반응 매질의 중합도는 중합 반응기내로 도입되는 반응 매질의 중합도보다 약 25% 이상 더 크다)를 포함하는 중합 방법이 제공된다.
본 발명의 또 다른 실시태양에 따르면, (a) 다수의 단일방향 경사 트레이 및 다수의 양방향 경사 트레이를 포함하는 반응기의 상부 구역내로 반응 매질을 도입하는 단계; (b) 반응 매질을 반응기내에서 단일방향 및 양방향 트레이상에서 아래방향으로 흐르게 하는 단계; 및 (c) 반응 매질을 반응기의 하부 구역으로부터 회수하는 단계를 포함하는 방법이 제공된다.
도 1은 특히 그 위에서 반응 매질이 유동하여 반응기를 통하여 아래방향으로 통과하는 다수의 수직방향-이격된 경사 트레이를 각각 수용하는 2개의 트레이 박스를 포함하는 반응기를 도시한, 그를 통하여 아래방향으로 흐르는 반응 매질을 처리하기 위한 반응기의 부분 정면도이다.
도 2a는 특히 상부 단일방향 트레이상에서의 반응 매질의 세로방향 흐름을 도시한, 도 1의 라인 2a-2a를 따라 절취한 반응기의 상단면도이다.
도 2b는 특히 도 2a에 도시된 트레이의 바로 아래에 위치한 단일방향 트레이상에서의 반응 매질의 세로방향 흐름을 도시한, 도 1의 라인 2b-2b를 따라 절취한 반응기의 상단면도이다.
도 3a는 특히 도 2a 및 2b에 도시된 세로방향 트레이의 아래에 위치한 단일방향 트레이상에서의 반응 매질의 가로방향 흐름을 도시한, 도 1의 라인 3a-3a를 따라 절취한 반응기의 상단면도이다.
도 3b는 특히 도 3a에 도시된 트레이의 바로 아래에 위치한 단일방향 트레이상에서의 반응 매질의 가로방향 흐름을 도시한, 도 1의 라인 3b-3b를 따라 절취한 반응기의 상단면도이다.
도 4a는 특히 단일방향 트레이의 아래에 위치한 아래방향-분기 양방향 루프 트레이(roof tray)상에서의 반응 매질의 흐름 방향을 도시한, 도 1의 라인 4a-4a를 따라 절취한 반응기의 상단면도이다.
도 4b는 특히 도 4a에 도시된 루프 트레이의 아래에 위치한 아래방향-분기되는 양방향 트로우 트레이(trough tray)상에서의 반응 매질의 흐름 방향을 도시한, 도 1의 라인 4b-4b를 따라 절취한 반응기의 상단면도이다.
도 5a는 도 1에서 가상선으로 한정되고 "5"로 표시된 한 쌍의 세로방향 단일방향 트레이의 확대 정면도이다.
도 5b는 도 5a에 도시된 세로방향 단일방향 트레이의 측면도이다.
도 6a는 도 1에서 가상선으로 한정되고 "6"으로 표시된 한 쌍의 가로방향 단일방향 트레이의 확대 정면도이다.
도 6b는 도 6a에 도시된 가로방향 단일방향 트레이의 측면도이다.
도 7a는 도 1에서 가상선으로 한정되고 "7"로 표시된 한 쌍의 양방향 트레이의 확대 정면도이다.
도 7b는 도 7a에 도시된 양방향 트레이의 측면도이다.
도 8a는 도 1에서 가상선으로 한정되고 "8"로 표시된 전이 어셈블리(transition assembly)의 확대 정면도이다.
도 8b는 도 8a에 도시된 전이 어셈블리의 상면도이다.
도 9는, 특히 반응기가 단지 그 안에 배치된 단일의 트레이 박스만을 가진 것을 도시한, 본 발명의 제 1 대용 실시태양에 따라 조립된 반응기의 부분 정면도이다.
도 10은, 특히 단일의 트레이 박스가 반응기내에 위치하는 방식을 도시한, 도 9의 라인 10-10을 따라 절취한 대용 반응기의 상단면도이다.
도 11은, 특히 반응기가 그 안에 배치된 3개의 트레이 박스를 가진 것을 도시한, 본 발명의 제 2 대용 실시태양에 따라 조립된 반응기의 부분 정면도이다.
도 12는, 특히 3개의 트레이 박스가 반응기내에 위치하는 방식을 도시한, 도 11의 라인 12-12를 따라 절취한 대용 반응기의 상단면도이다.
도 13은, 특히 반응기가 반응기내에 병렬로 위치한 6개의 트레이 박스를 가진 것을 도시한, 본 발명의 제 3 대용 실시태양에 따라 조립된 반응기의 상단면도이다.
도 14는, 특히 단일방향 트레이의 배면에 갭이 형성되어 반응 매질의 일부분이 하나의 트레이의 배면으로 범람하여 다음의 더 낮은 위치의 트레이로 하강할 수 있다는 것을 도시한, 본 발명의 대용 실시태양에 따라 조립된 일련의 단일방향 트레이의 측면도이다.
먼저 도 1을 참조하여 보면, 반응기(20)는 용기 외벽(22), 분배기(24), 및 2개의 트레이 박스(26a,b)를 포함하는 것으로 도시되어 있다. 용기 외벽(22)은 바람직하게는 긴, 일반적으로는 원통형 외형을 갖는다. 용기 외벽(22)의 길이-직경(L:D)비는 바람직하게는 적어도 약 1:1, 보다 바람직하게는 약 2:1 내지 약 30:1의 범위, 가장 바람직하게는 3:1 내지 10:1의 범위이다. 반응기(20)의 정상 동작시에, 용기 외벽(22)은 실질적으로 수직 상태로 유지된다.
용기 외벽(22)은 상부 유입구(28) 및 하부 유출구(30)를 한정한다. 분배기(24) 및 트레이 박스(26a,b)는 유입구(28)를 경유하여 반응기(20)로 유입되는 반응 매질이 분배기(24) 및 트레이 박스(26a,b)를 통하여 아래방향으로 흐른 다음, 유출구(30)를 경유하여 반응기(20)로부터 배출될 수 있도록 유입구(28)와 유출구(30) 사이에 수직으로 위치한다.
반응기(20)가 다수의 트레이 박스(26a,b)를 포함하는 경우, 분배기(24)는 각각의 트레이 박스(26a,b)가 실질적으로 동일한 양의 반응 매질을 수용하여 처리하도록 유입되는 반응 매질의 흐름을 분할하고 분배하는데 사용된다. 반응기(20)가 단지 하나의 트레이 박스만을 사용하였다면, 분배기는 반응 매질의 흐름을 분할하는 것이 아니라 아직도 트레이 박스의 유입구내로 반응 매질을 적절히 분배하도록 작용하게 된다.
도 1 내지 도 8에 도시된 실시태양에서, 반응기(20)는 2개의 실질적으로 동등한 트레이 박스(26a,b)를 포함한다. 이하에서는 모든 트레이 박스(26a,b)가 실질적으로 동일한 배열을 갖는다는 가정하에 단지 하나의 트레이 박스(26a)의 배열에 대해서만 기술할 것이다.
도 1 및 2a를 참조하여 보면, 트레이 박스(26a)는 일반적으로는 직사각형 내부 공간을 한정하는 다수의 직립 측벽(27a,b,c,d)을 포함한다. 트레이 박스(26a)는 또한 내부 공간내에 수용되고 측벽(27a,b,c,d)에 견고하게 결합된 다수의 수직방향-이격된 경사 트레이도 포함한다. 측벽(27a,b,c,d)에 의해 한정되는 내부 공간은 반응 매질이 트레이 박스(26a)의 상부로 유입되어 내부 공간을 통하여 경사 트레이상에서 아래방향으로 흘러서 트레이 박스(26a)의 저부로 배출되도록 상부 및 저부에서 개방된다. 바람직하게는, 트레이 박스(26a)는 약 10개 이상의 트레이, 보다 바람직하게는 약 20개 이상의 트레이, 가장 바람직하게는 30개 내지 100개의 트레이를 포함한다. 물론, 반응기(20)내에서 바람직한 트레이의 총수는 간단하게는 반응기(20)내의 많은 트레이 박스중에서 하나의 트레이 박스내의 트레이의 갯수이다. 트레이의 기울기는 반응 매질이 트레이상에서 아래방향으로 흘러감에 따라 증가하는 반응 매질의 점도에 순응하도록 일반적으로는 반응기(20)내에서 아래방향으로 증가한다.
다시 도 1을 참조하여 보면, 트레이 박스(26a)는 그를 통한 반응 매질의 흐름을 최적화하기 위하여 상이한 배열 및/또는 배향을 가진 트레이를 포함하는 것이 바람직하다. 바람직하게, 트레이 박스(26a)는 다수의 단일방향 트레이(32) 및 다수의 양방향 트레이(34)를 포함한다. 본원에서 사용된 바와 같은 "단일방향 트레이"란 용어는 그 트레이의 높은 부분에서 트레이 박스내로 흐르는 유체가 단지 일방향으로만 흐르도록 단지 일방향으로만 경사진 트레이를 의미한다. 본원에서 사용된 바와 같은 "양방향 트레이"란 용어는 그 트레이의 높은 부분에서 트레이 박스내로 흐르는 유체가 2개의 방향으로 흐르도록 2개 방향으로 경사진 트레이를 의미한다. 본 발명의 바람직한 실시태양에서, 단일방향 트레이(32)의 적어도 일부분은 양방향 트레이(34)의 적어도 일부분의 위쪽에 위치한다. 가장 바람직하게는, 모든 단일방향 트레이(32)가 모든 양방향 트레이(34)의 위쪽에 위치한다. 트레이 박스(26a)는 바람직하게는 약 5개 이상의 단일방향 트레이, 보다 바람직하게는 약 10개 이상의 단일방향 트레이, 가장 바람직하게는 15개 내지 50개 범위의 단일방향 트레이를 포함한다. 트레이 박스(26a)는 바람직하게는 약 5개 이상의 양방향 트레이, 보다 바람직하게는 약 10개 이상의 양방향 트레이, 가장 바람직하게는 15개 내지 50개 범위의 양방향 트레이를 포함한다. 바람직하게는, 트레이 박스(26a)내의 모든 트레이의 약 10% 이상이 단일방향 트레이이고, 보다 바람직하게는 약 20% 이상이 단일방향 트레이이며, 가장 바람직하게는 30% 내지 80%가 단일방향 트레이이다. 바람직하게는, 트레이 박스(26a)내의 모든 트레이의 약 10% 이상이 양방향 트레이이며, 보다 바람직하게는 약 20% 이상이 양방향 트레이이다.
도 1에 도시되어 있는 바와 같이, 트레이 박스(26a)는 단일방향 트레이(32)의 상부 세트(36) 및 하부 세트(38)를 포함한다. 단일방향 트레이(32)의 상부 세트(36)는 바람직하게는 다수의 세로방향 경사 트레이(40)를 포함한다. 단일방향 트레이(32)의 하부 세트(38)는 바람직하게는 다수의 가로방향 경사 트레이(42)를 포함한다. 도 2 및 도 3에 화살표로 도시되어 있는 바와 같이, 각각의 단일방향 트레이(32)는 세로방향 경사 트레이(40)(도 2)가 트레이 연장 방향으로 경사지는 반면, 가로방향 경사 트레이(42)(도 3)가 트레이 연장 방향에 직각 방향으로 경사지도록 연장되는 것이 바람직하다. 도 2 및 도 3에 도시되어 있는 바와 같이, 세로방향 경사 트레이(40) 및 가로방향 경사 트레이(42)의 기울기의 방향은 서로에 대해 실질적으로 직각이다.
도 1, 도 2 및 도 5에 도시되어 있는 바와 같이, 수직방향으로 인접한 가로방향 경사 트레이(40a,b)는 일반적으로는 반대 방향으로 경사짐으로써 반응 매질이 반응기(20)내에서 아래방향으로 진행함에 따라 반응 매질은 세로방향 경사 트레이(40)상에서 전후로 강제 유동된다. 도 2 및 도 5에 도시되어 있는 바와 같이, 각각의 세로방향 경사 트레이(40)는 실질적으로 편평하고 실질적으로 장방형의 메인 부재(main member)(44) 및 위어(46)를 포함한다. 도 1 내지 6에 도시된 실시태양에서, 메인 부재(44)의 3개의 측부는 바람직하게는 트레이 박스(26a)의 4개의 측벽(27)중 3개의 측벽을 따라 결합되어 밀봉되는 반면, 메인 부재(44)의 제 4 측부와 트레이 박스(26a)의 나머지 측벽(27) 사이에 갭(47)(도 2a, 2b 및 5b)이 형성된다. 갭(47)은 반응 매질이 그를 통하여 그 다음의 하부 세로방향 경사 트레이(40)상에서 아래방향으로 하강할 수 있는 통로를 제공한다. 메인 부재(44)는 반응 매질이 중력에 의해 위어(46)쪽으로 흐를 수 있도록 아래방향으로 경사진다. 메인 부재(44)의 아래방향 기울기는 바람직하게는 수평면으로부터 약 0.5도 내지 약 10도의 범위, 가장 바람직하게는 수평면으로부터 1도 내지 4도의 범위이다.
다시 도 2 및 도 5를 참조하여 보면, 메인 부재(44)는 일반적으로는 편평하고 윗방향-대향 상부 표면을 제공한다. 메인 부재(44)는 바람직하게는 그 내부에 실질적으로 개구를 전혀 갖지 않음으로써 트레이(40)상으로 흐르는 모든 액체가 위어(46)상으로/그를 통해 통과하여 트레이(40)를 이탈하여야 한다. 위어(46)는 메인 부재(44)의 최저 표고에 가장 근접한 메인 부재(44)의 상부 표면에서 윗방향으로 연장한다. 위어(46)는 바람직하게는 메인 부재(44)의 말단 에지로부터 약 6인치 미만, 보다 바람직하게는 약 3인치 미만, 가장 바람직하게는 2인치 미만 이격되어 있다. 위어(46)는 바람직하게는 측벽(27a)에서 측벽(27c)을 향하여 세로방향 경사 트레이(40)의 폭을 따라 모든 방향으로 연장한다. 위어(46)는 트레이(40)상에서 반응 매질의 실질적으로 균일한 시트를 유지시켜 준다. 바람직하게, 위어(46)는 약 2.5인치 이상의 높이를 갖는다. 보다 바람직하게, 위어(46)의 높이는 3 내지 12인치의 범위이다. 도 5a에 도시되어 있는 바와 같이, 다수의 비교적 작은 위어 개구(48)는 바람직하게는 메인 부재(44)에 인접한 위어(46)의 저부에 근접하여 형성된다. 위어 개구(48)는 반응기(20)의 정상적인 동작시에 비교적 소량의 반응 매질이 그를 통하여 흐르도록 해준다. 반응기(20)가 정지하여 있는 동안, 위어 개구(48)는 실질적으로 모든 반응 매질이 트레이(40)로부터 배수되도록 함으로써, 반응기(20)가 정지되었을 때 반응 매질의 풀(pool)에는 트랩핑된 후방 위어(46)가 잔류하지 않는다.
도 1, 도 3 및 도 6에 도시되어 있는 바와 같이, 수직방향으로 인접한 가로방향 경사 트레이(42a,b)는 일반적으로는 반대 방향으로 경사짐으로써 반응 매질이 반응기(20)내에서 아래방향으로 진행함에 따라 가로방향 경사 트레이(42)상에서 전후로 강제 유동된다. 도 3 및 도 6에 도시되어 있는 바와 같이, 각각의 가로방향 경사 트레이(42)는 실질적으로 편평하고 실질적으로 장방형의 메인 부재(50) 및 위어(52)를 포함한다. 메인 부재(44)의 3개의 측부는 바람직하게는 트레이 박스(26a)의 4개의 측벽(27)중 3개의 측벽을 따라 결합되어 밀봉되는 반면, 메인 부재(50)의 제 4 측부와 트레이 박스(26a)의 나머지 측벽(27)사이에 갭(53)(도 3a, 3b 및 6a)이 형성된다. 갭(53)은 반응 매질이 그 다음의 하부 가로방향 경사 트레이(42)상에서 아래방향으로 하강할 수 있는 통로를 제공한다. 메인 부재(50)는 반응 매질이 중력에 의해 위어(52)를 향하여 아래방향으로 흐를 수 있도록 경사진다. 가로방향 경사 트레이(42)의 아래방향 기울기는 반응기(20)내에서 아래방향으로 증가한다. 가로방향 경사 트레이(42)중의 최상층 트레이는 바람직하게는 수평면으로부터 약 0.5도 내지 약 10도의 범위, 가장 바람직하게는 수평면으로부터 1도 내지 4도 범위의 아래방향 기울기를 갖는다. 가로방향 경사 트레이(42)중의 최저층 트레이는 바람직하게는 수평면으로부터 약 2도 내지 약 20도의 범위, 가장 바람직하게는 수평면으로부터 4도 내지 10도 범위의 아래방향 기울기를 갖는다. 가로방향 경사 트레이(42)중의 최저층 트레이의 아래방향 기울기는 바람직하게는 가로방향 경사 트레이(42)중의 최상층 트레이의 아래방향 기울기보다 약 1도 이상, 보다 바람직하게는 가로방향 경사 트레이(42)중의 최상층 트레이의 아래방향 기울기보다 약 2도 이상. 가장 바람직하게는 가로방향 경사 트레이(42)중의 최상층 트레이의 아래방향 기울기보다 4도 내지 10도 범위만큼 더 크다.
다시 도 3 및 도 6을 참조하여 보면, 메인 부재(50)는 바람직하게는 그 내부에 실질적으로 개구를 전혀 갖지 않음으로써 트레이(42)상으로 흐르는 모든 액체가 위어(52)상으로/그를 통해 통과하여 트레이(42)를 이탈하여야 한다. 메인 부재(50)는 일반적으로는 윗방향-대향 상부 표면을 제공한다. 위어(52)는 메인 부재(50)의 최저 표고에 가장 근접한 메인 부재(50)의 상부 표면에서 위방향으로 연장한다. 위어(52)는 바람직하게는 메인 부재(50)의 말단 에지로부터 약 6인치 미만, 보다 바람직하게는 약 3인치 미만, 가장 바람직하게는 1인치 미만의 거리만큼 이격되어 있다. 위어(52)는 바람직하게는 측벽(27b)와 측벽(27d)사이에서 모든 방향으로 연장한다. 위어(52)는 트레이(42)상에서 반응 매질의 실질적으로 균일한 시트를 유지시켜 준다. 바람직하게, 위어(52)는 약 2.5인치 이상의 높이를 갖는다. 보다 바람직하게, 위어(52)의 높이는 3 내지 12인치의 범위이다. 도 6b에 도시되어 있는 바와 같이, 다수의 비교적 작은 위어 개구(54)는 바람직하게는 메인 부재(50)에 인접한 위어(52)의 저부에 근접하여 형성된다. 위어 개구(54)는 반응기(20)의 정상적인 동작시에 비교적 소량의 반응 매질이 그를 통하여 흐르도록 해준다. 반응기(20)가 정지하여 있는 동안, 위어 개구(54)는 실질적으로 모든 반응 매질이 트레이(42)로부터 배수되도록 함으로써, 반응기(20)가 정지되었을 때 반응 매질의 풀에는 트랩핑된 후방 위어(52)가 잔류하지 않는다.
본 발명의 하나의 실시태양에서, 5개 이상의 단일방향 트레이(32)가 위어를 구비하고 있으며, 보다 바람직하게는 적어도 10개의 단일방향 트레이(32)가 위어를 구비하고 있다. 바람직하게는, 트레이 박스(26a)내의 모든 단일방향 트레이(32)중의 10% 이상이 위어를 구비하고 있고, 보다 바람직하게는 모든 단일방향 트레이(32)중의 33% 이상이 위어를 구비하고 있으며, 가장 바람직하게는 모든 단일방향 트레이(32)중의 66% 이상이 위어를 구비하고 있다.
위어는 통상의 디자인에서 보다 본 발명의 반응기에서 더 많은 체류시간을 제공하는데 도움을 줄 수 있는 반면, 동등하거나 더 적은 반응기 부피, 트레이 및/또는 금속 표면을 필요로 한다. 더욱이, 위어는 통상의 PET 후처리기 디자인에서 보다 트레이상에서 반응 매질의 더 두꺼운 시트를 제공하는데 도움을 줄 수 있다. 또한, 본원에 기술된 실시태양은 유리하게는 트레이에서 트레이로 아래방향으로 하강하는 반응 매질의 더 얇은 시트 및 트레이상에서 반응 매질의 더 두꺼운 시트를 제공한다는 것을 알아야 한다.
도 1, 도 4 및 도 7에 도시되어 있는 바와 같이, 양방향 트레이(34)는 박스 트레이(26a)의 측벽(27b, d)사이에서 결합되어 연장한다. 양방향 트레이(34)는 루프 트레이(34a) 및 트로우 트레이(trough tray)(34b)를 교대로 포함한다. 아마도 도 4a 및 7a에 최선으로 도시되어 있는 바와 같이, 각각의 양방향 루프 트레이(34a)는 직립 분할 부재(upright divider member)(56) 및 일반적으로 상기 분할 부재(56)의 저부로부터 반대 방향으로 연장하는 한 쌍의 아래방향으로 경사진 루프 부재(58, 60)를 포함한다. 루프 부재(58, 60)는 그들이 분할 부재(56)로부터 아래방향 외측으로 연장함에 따라 서로 분기한다. 루프 부재(58)의 말단 에지와 측벽(27a) 사이에 제 1 갭(62)이 형성된다. 루프 부재(60)의 말단 에지와 측벽(27c) 사이에 제 2 갭(64)이 형성된다. 반응 매질은 갭(62, 64)을 통하여 아래방향으로 흘러서 바로 아래의 양방향 트로우 트레이(34b)에 도달한다.
이제부터 도 4b 및 도 7a를 참조하여 보면, 각각의 양방향 트로우 트레이(34b)는 트레이 박스(26a)의 측벽(27a,c)에 결합되어 그로부터 내측으로 연장하는 한 쌍의 아래방향으로 경사진 트로우 부재(66, 68)를 포함한다. 트로우 부재(66, 68)는 그들이 측벽(27a,c)으로부터 아래방향 내측으로 연장함에 따라 서로 수렴된다. 트로우 부재(66, 68)의 하부 말단 에지 사이에 갭(70)이 형성된다. 이러한 갭(70)은 반응 매질의 개개의 시트가 트로우 부재(66, 68)상으로 흘러 그들이 갭(70)을 통하여 그 다음의 하부 루프 트레이(34a)까지 하강함에 따라 분리되어 유지될 정도로 충분히 크다. 트로우 부재(66, 68)상으로 흐르는 반응 매질의 개개의 부분은 그 다음의 하부 루프 트레이(34a)의 분할 부재(56)의 반대측상의 갭(70)을 통하여 아래방향으로 하강한다.
본 발명의 바람직한 실시태양에서, 양방향 트레이(34)의 기울기는 반응기(20)내에서 아래방향으로 증가한다. 양방향 트레이(34)중의 최상층 트레이는 바람직하게는 수평면으로부터 약 0.5도 내지 약 10도 범위, 가장 바람직하게는 수평면으로부터 1도 내지 4도 범위의 아래방향 기울기(downward slope)를 갖는다. 양방향 트레이(34)중의 최저층 트레이는 바람직하게는 수평면으로부터 약 5도 내지 약 40도 범위, 가장 바람직하게는 수평면으로부터 10도 내지 25도 범위의 아래방향 기울기를 갖는다. 양방향 트레이(34)중의 최저층 트레이의 아래방향 기울기는 바람직하게는 양방향 트레이(34)중의 최상층 트레이의 아래방향 기울기보다 약 2도 이상, 보다 바람직하게는 양방향 트레이(34)중의 최상층 트레이의 아래방향 기울기보다 약 4도 이상, 가장 바람직하게는 양방향 트레이(34)중의 최상층 트레이의 아래방향 기울기보다 6도 내지 20도 정도 더 크다.
지금부터 도 1 내지 도 8을 참조하여 보면, 전이 부재(transition member)(72)는 반응 매질의 흐름을 단일방향 트레이(32)상의 단일 시트 흐름에서 양방향 트레이(34)상의 이중 시트 흐름으로 전이시키는데 사용된다. 전이 부재(74)는 트레이 박스(26a)의 측벽(27b, d) 사이에서 결합되어 연장한다. 전이 부재(74)는 상부 분배 빈(upper distribution bin)(76) 및 하부 분배 트레이(78)를 포함한다. 분배 빈(76)은 최저층 단일방향 트레이(32)로부터 반응 매질을 수용하여 반응 매질을 실질적으로 동등한 2개의 분획으로 분할하도록 동작한다. 반응 매질의 2개의 동등한 분획은 분배 빈(76)의 저부에서 분배 트레이(78)의 별개의 분기 구역(80a,b)상으로 배출된다. 이와 동일한 방식으로, 유사한 분배 박스를 사용하여 하류 양방향 트레이(downstream bi-directional tray)로부터 방출되는 흐름을 계속하여 분할할 수 있다. 이와 유사한 방식으로, 경우에 따라서는 점도, 유량 및 액체 깊이 표적에 의해 다수의 양방향 통로를 생성시킬 수도 있다.
분배 빈(76)은 아래방향에서 서로 수렴되는 한 쌍의 경사 측벽(82a,b)을 포함한다. 분할선(divider line)(84)은 측벽(82a,b)이 서로 연결되는 위치에서 한정된다. 다수의 제 1 개구(86a)는 분할선(84)에 근접한 측벽(82a)내에서 한정된다. 다수의 제 2 개구(86b)는 분할선(84)에 근접한 측벽(82b)내에서 한정된다. 바람직하게는, 전이 부재(78)는 전체적으로 약 10개 이상의 개구(86a,b)를 포함한다. 도 8b에 최선으로 도시되어 있는 바와 같이, 제 1 및 제 2 개구(86a,b)는 분할선(84)의 반대측상에 위치한다. 바람직하게는, 제 1 개구(86a)에 의해 한정된 누적 개구 면적(cumulative open area)은 제 2 개구(86b)에 의해 한정된 누적 개구 면적과 실질적으로 동등하므로, 따라서 동등한 양의 반응 매질이 제 1 및 제 2 개구(86a,b)를 통하여 자동적으로 흐른다. 제 1 개구(86a)는 분배 트레이(78)의 제 1 구역(80a)상에 정렬되는 반면, 제 2 개구(86b)는 분배 트레이(78)의 제 2 구역(80b)상에 정렬된다.
도 8a 및 8b에 도시되어 있는 바와 같이, 분배 트레이(78)의 제 1 및 제 2 경사 구역(80a,b)의 말단 에지가 측벽(27a,c)으로부터 이격되어 그들 사이에서 갭(88a,b)이 형성된다. 분배 빈(76)으로부터 방출된 반응 매질의 실질적으로 동등한 2개의 분획은 분배 트레이(78)의 아래방향으로 경사진 분기 구역(80a,b)상에서 갭(88a,b)쪽으로 흐른다. 이어서, 반응 매질의 개개의 분획은 분배 트레이(78)의 밖으로 갭(88a,b)을 통하여 최상층의 수렴되는 양방향 트레이(34b)상으로 하강한다. 상기에서 언급된 바와 같이, 이어서 반응 매질의 실질적으로 동등한 2개의 분획은 그들이 양방향 트레이(34)상에서 아래방향으로 흘러감에 따라 별개로 유지된다.
이제부터 도 9 및 도 10을 참조하여 보면, 제 1 대용 반응기 디자인이 도시되어 있다. 대용 반응기(100)는 단지 하나의 트레이 박스(102)만을 포함한다. 이러한 디자인은 다수의 트레이 박스중에서 공급물을 동등하게 분할할 필요가 없다는 이점을 가지고 있다. 따라서, 분배기(104)의 제작이 간단하다. 또한, 반응기(100)내에서의 트레이의 총 갯수, 상이한 타입의 트레이, 번호 또는 위어의 분포, 위어의 위치, 및 경사 트레이가 반응기(20)(도 1 내지 도 8)와 다르다. 이러한 차이는 반응기내에서 방법을 실시하는데 있어서 방법의 특정 요건을 충족시키기 위하여 반응기의 디자인을 변경하는 것이 바람직할 수 있다는 것을 예시하는 것이다. 그러나, 본원에 개시된 모든 디자인은 본 발명의 범주에 속한다.
도 11 및 도 12를 참조하여 보면, 제 2 대용 반응기 디자인이 도시되어 있다. 대용 반응기(200)는 3개의 트레이 박스(202a,b,c)를 포함한다.
도 13을 참조하여 보면, 제 3 대용 반응기 디자인이 도시되어 있다. 대용 반응기(300)는 6개의 트레이 박스(302)를 포함한다. 이러한 디자인은 반응 용기내에서 보다 많은 공간을 이용함으로써, 반응 용기의 크기가 감소될 수 있다는 이점이 있다.
도 14를 참조하여 보면, 다른 대용의 단일방향 트레이 디자인이 도시되어 있다. 도 14에 도시되어 있는 단일방향 트레이(400)는 도 5 및 도 6에 도시되어 있는 트레이와 유사하지만, 각각의 단일방향 트레이(400)의 배면(404)과 트레이 박스의 가장 근접한 측벽(406)사이에 갭(402)을 제공하도록 배열되어 있다. 측벽(406)은 트레이 박스의 벽체가 트레이(400)과 결합되지 않도록 하는데 필요한 것이라기 보다는, 차라리 측벽(406)이 또 다른 트레이 박스의 벽체 또는 반응기 용기의 벽체일 수 있다. 도 14에 도시되어 있는 바와 같이, 각각의 트레이(400)의 배면(404)과 최근접 측벽(406) 사이의 이러한 갭(402)은 처리된 반응 매질(408)의 일부분이 트레이(400)의 배면(404)을 범람하여 그 다음의 하부 트레이(400)를 향하여 아래방향으로 하강하도록 해준다. 범람하는 반응 매질(408)의 통로용으로 충분히 큰 개구를 제공하기 위하여, 트레이(400)의 배면(404)과 최근접 측벽(406) 사이의 갭(402)은 약 1인치 이상, 보다 바람직하게는 약 1.5 내지 약 12인치 범위, 가장 바람직하게는 2 내지 8인치 범위의 평균 너비를 갖는 것이 바람직하다.
도 14에 도시되어 있는 실시태양에서, 각각의 단일방향 트레이(400)의 배면(404)은 범람하는 반응 매질(408)이 그 다음의 최저층 트레이(400)의 적어도 일부분의 위쪽에 위치할 때까지 범람하는 반응 매질(408)을 상부 트레이(400)에 "클링(cling)"시켜 주는 라운드된(rounded) 하부 에지(410)를 포함하는 것이 바람직하다. 그 다음의 최저층 트레이(400)상에 위치하였을 때, 반응 매질(408)은 상부 트레이(400)로부터 하부 트레이(400)쪽으로 하강하며, 여기에서 반응 매질(408)이 상부 트레이(400)의 말단 에지(412)상으로 및 하부 트레이(400)상으로 흐르는 반응 매질(408)의 일부와 재결합된다. 범람하는 반응 매질이 하부 트레이(400)상에 위치될 때까지 상부 트레이(400)에 클링되도록 하기 위하여, 단일방향 트레이(400)의 라운드된 하부 에지(410)는 1인치 이상, 보다 바람직하게는 약 1.5 내지 약 12인치 범위, 가장 바람직하게는 2 내지 8인치 범위의 최소 곡률반경을 갖는 것이 바람직하다.
또한, 도 14에 도시되어 있는 실시태양이 위어가 없는 단일방향 트레이(400)를 사용한다는 사실에 주목해야 한다. 따라서, 도 14에 도시되어 있는 트레이(400)의 말단 에지(412)는 위어의 상부 에지에 의해 한정된다기 보다는 차라리 트레이(400)의 실질적으로 편평한 메인 부재(414)의 에지에 의해 한정된다. 그러나, 도 14에 도시되어 있는 배면-범람 디자인은 또한 위어를 가진 트레이와 함께 사용하는 데에도 적합한 것으로 생각된다.
도 1 내지 도 14에 도시되어 있는 반응기는 다양한 종류의 상이한 방법에 사용될 수 있다. 이러한 반응기는 반응 매질의 비교적 얇은 시트 상태에서 화학반응을 일으키는 것이 유익한 방법에서 특히 유용하다. 또한, 이러한 반응기는 처리도중에 반응 매질의 점도가 증가하는 상황에 순응하도록 설계된다. 본 발명의 바람직한 실시태양에서, 반응기로부터 배출되는 반응 매질의 (포이즈 단위로 측정된) 동점도(dynamic viscosity)가 반응기로 유입되는 반응 매질의 동점도보다 약 50% 이상, 보다 바람직하게는 반응기로 유입되는 반응 매질의 동점도보다 약 250% 이상, 가장 바람직하게는 반응기로 유입되는 반응 매질의 동점도보다 1,000% 이상이다. 바람직하게, 상술된 반응기는 반응 매질을 중합 처리하는데 사용되는 중합 반응기이다.
특히 바람직한 방법에서, 이들 반응기는 폴리에틸렌 테레프탈레이트(PET)를 제조하는 방법에 사용된다. 이러한 방법에서, 반응기로 유입되는 반응 매질은 바람직하게는 약 20 내지 약 75 범위, 보다 바람직하게는 약 35 내지 약 60 범위, 가장 바람직하게는 40 내지 55 범위의 중합도(degree of polymerization)(DP)를 갖는다. 본원에서 사용된 바와 같은 "중합도" 또는 "DP"란 용어는 중합체의 수평균분자량을 반복단위 분자량으로 나눈 값으로 정의되는 수평균 중합도를 의미한다. 반응 매질이 반응기를 통하여 아래방향으로 흘러감에 따라, 반응 매질의 DP는 중축합으로 인하여 증가한다. 반응기로부터 배출되는 반응 매질의 DP는 바람직하게는 반응기로 유입되는 반응 매질의 DP보다 약 25% 이상, 보다 바람직하게는 반응기로 유입되는 반응 매질의 DP보다 약 50 내지 약 500% 이상의 범위, 가장 바람직하게는 반응기로 유입되는 반응 매질의 DP보다 80 내지 400% 이상의 범위이다. 반응기로부터 배출되는 반응 매질은 바람직하게는 약 75 내지 약 200의 범위, 보다 바람직하게는 약 90 내지 약 180의 범위, 가장 바람직하게는 105 내지 165의 범위의 DP를 갖는다.
본 발명의 바람직한 실시태양에서, 반응기내의 반응조건은 약 250 내지 약 325℃ 범위의 온도 및 약 0.1 내지 약 4 토르(torr) 범위의 압력, 보다 바람직하게는 약 270 내지 약 310℃ 범위의 온도 및 약 0.2 내지 약 2 토르 범위의 압력, 가장 바람직하게는 275 내지 295℃ 범위의 온도 및 0.3 내지 1.5 토르 범위의 압력으로 유지된다. 반응기내에서의 반응 매질의 평균 체류시간은 바람직하게는 약 0.25 내지 약 5시간의 범위, 가장 바람직하게는 0.5 내지 2.5시간의 범위이다.
도 1 내지 도 14를 참고로 상술된 반응기 배열은 바람직하게는 트레이상에서 약 2.5인치 이상, 가장 바람직하게는 3 내지 12인치 범위의 반응 매질의 평균 깊이를 유지하도록 작동가능하다.
본 발명자들은 본원에서 제공된 모든 수치 범위의 경우 범위의 상한 및 하한이 서로 독립적일 수 있다고 언급하고 있다. 예를 들면, 10 내지 100의 수치 범위는 10 초과 및/또는 100 미만을 의미한다. 따라서, 10 내지 100의 범위는 (상한 경계치없이) 10 초과의 요청 한계, (하한 경계치없이) 100 미만의 요청 한계, 뿐만 아니라 (상한 및 하한 경계치를 모두 가진) 10 내지 100의 전체 범위에 대한 지지값을 제공한다.
지금까지 특정의 본 발명의 바람직한 실시태양을 참조하여 본 발명을 상세히 기술하였지만, 본 발명의 정신 및 범주내에서 다양한 변화 및 변경을 실시할 수 있음을 알 것이다.

Claims (64)

  1. 다수의 수직방향-이격된 단일방향 경사 트레이; 및
    다수의 수직방향-이격된 양방향 경사 트레이
    를 포함하되, 상기 단일방향 트레이의 기울기가 아래방향으로 증가하는 반응기.
  2. 제 1 항에 있어서,
    양방향 트레이의 기울기가 아래방향으로 증가하는 반응기.
  3. 제 1 항에 있어서,
    단일방향 트레이의 적어도 일부분이 양방향 트레이의 적어도 일부분의 위쪽에 위치하는 반응기.
  4. 제 1 항에 있어서,
    단일방향 트레이의 모든 부분이 양방향 트레이의 모든 부분의 위쪽에 위치하는 반응기.
  5. 제 1 항에 있어서,
    단일방향 트레이중의 인접한 트레이가 서로 반대방향으로 경사지는 반응기.
  6. 제 1 항에 있어서,
    양방향 트레이가 한 쌍의 아래방향-분기되는 루프 부재를 포함하는 루프 트레이(roof tray) 및 한 쌍의 아래방향-수렴되는 트로우 부재를 포함하는 트로우 트레이(trough tray)를 교대로 포함하는 반응기.
  7. 제 1 항에 있어서,
    다수의 단일방향 트레이가 제 1 방향에서 전후로 경사지는 단일방향 트레이의 상부 군 및 제 2 방향에서 전후로 경사지는 단일방향 트레이의 하부 군을 포함하되, 상기 제 1 및 제 2 방향이 실질적으로 서로 직각인 반응기.
  8. 제 1 항에 있어서,
    반응기내의 모든 트레이중의 10% 이상이 단일방향 트레이이고, 상기 반응기내의 모든 트레이중의 10% 이상이 양방향 트레이인 반응기.
  9. 제 1 항에 있어서,
    단일방향 트레이의 기울기가 약 2도 이상까지 변화하고, 양방향 트레이의 기울기가 약 4도 이상까지 변화하는 반응기.
  10. 제 1 항에 있어서,
    단일방향 트레이가 윗방향-대향된 경사 표면을 제공하는 실질적으로 편평한 메인 부재를 포함하되, 메인 부재가 실질적으로 그 안에 개구를 전혀 갖지 않는 반응기.
  11. 제 10 항에 있어서,
    단일방향 트레이의 적어도 일부분이 메인 부재에 결합되고 윗방향-대향된 경사 표면으로부터 윗방향으로 연장하는 위어(weir)를 포함하는 반응기.
  12. 제 11 항에 있어서,
    위어가 약 2.5인치 이상의 높이를 갖는 반응기.
  13. 제 11 항에 있어서,
    모든 단일방향 트레이중의 10% 이상이 위어를 구비하되, 상기 위어가 3 내지 12인치 범위의 높이를 갖는 반응기.
  14. 제 1 항에 있어서,
    단일방향 트레이의 하부 및 양방향 트레이의 상부에 배치되는 전이 부재를 포함하되, 상기 전이 부재가 분할선, 상기 분할선의 일측상에 위치하는 개구의 제 1 군, 및 상기 분할선의 다른 일측상에 위치하는 개구의 제 2 군을 한정하고, 상기 개구의 제 1 군에 의해 한정되는 누적 개구 면적이 상기 개구의 제 2 군에 의해 한 정되는 누적 개구 면적과 실질적으로 동일한 반응기.
  15. 제 14 항에 있어서,
    전이 부재가 분할선쪽으로 수렴되는 한 쌍의 아래방향-수렴 벽체를 포함하고, 개구의 제 1 및 제 2 군이 상기 아래방향-수렴 벽체의 저부에 근접하여 위치하는 반응기.
  16. 제 1 항에 있어서,
    단일방향 트레이의 적어도 일부분이 배면 단부 및 말단 단부를 제공하되, 상기 배면 단부 및 말단 단부가 단일방향 트레이의 범용 대향 단부상에 위치하고, 상기 트레이가 상기 배면 단부로부터 상기 말단 단부를 향하여 아래방향으로 경사지고, 상기 배면 단부에 인접하여 위치하는 배면 갭 및 상기 말단 단부에 인접하여 위치하는 말단 갭을 한정하는 반응기.
  17. 다수의 수직방향-이격된 경사 트레이를 포함하되, 상기 트레이중의 적어도 일부분이 그 위로 반응 매질의 적어도 일부분이 흘러서 바로 아래에 위치한 그 다음 트레이로 통과하도록 윗방향으로 연장하는 위어를 포함하는, 반응 매질을 처리하기 위한 반응기.
  18. 제 17 항에 있어서,
    위어가 약 2.5인치 이상의 높이를 갖는 반응기.
  19. 제 17 항에 있어서,
    위어가 3 내지 12인치 범위의 높이를 갖는 반응기.
  20. 제 17 항에 있어서,
    모든 트레이중의 10% 이상이 위어를 구비하는 반응기.
  21. 제 17 항에 있어서,
    트레이가 다수의 단일방향 트레이를 포함하는 반응기.
  22. 제 21 항에 있어서,
    단일방향 트레이중의 인접한 트레이가 서로 반대 방향으로 경사지는 반응기.
  23. 제 22 항에 있어서,
    단일방향 트레이의 기울기가 아래방향으로 증가하는 반응기.
  24. 제 21 항에 있어서,
    트레이가 다수의 양방향 트레이를 포함하는 반응기.
  25. 제 24 항에 있어서,
    양방향 트레이가 한 쌍의 아래방향-분기되는 루프 부재를 포함하는 루프 트레이 및 한 쌍의 아래방향-수렴되는 트로우 부재를 포함하는 트로우 트레이를 교대로 포함하는 반응기.
  26. 제 25 항에 있어서,
    양방향 트레이의 기울기가 아래방향으로 증가하는 반응기.
  27. 제 24 항에 있어서,
    양방향 트레이가 단일방향 트레이의 아래쪽에 위치하는 반응기.
  28. 제 24 항에 있어서,
    5개 이상의 단일방향 트레이 및 5개 이상의 양방향 트레이를 포함하는 반응기.
  29. 제 17 항에 있어서,
    경사 트레이의 적어도 일부분이 배면 단부를 제공하되, 상기 트레이가 상기 배면 단부로부터 위어를 향하여 아래방향으로 경사지고, 상기 배면 단부에 인접하여 위치하는 배면 갭을 한정하는 반응기로서, 반응 매질중의 적어도 일부분이 상기 배면 단부상에서 상기 배면 갭을 통하여 아래방향으로 흘러서 바로 아래에 위치한 그 다음 트레이로 통과하는 반응기.
  30. (a) 다수의 수직방향-이격된 경사 트레이를 포함하는 중합 반응기내로 반응 매질을 도입하는 단계;
    (b) 상기 반응 매질을 상기 중합 반응기내에서 상기 수직방향-이격된 트레이상에서 아래방향으로 흘려보내는 단계(이때, 상기 수직방향-이격된 트레이상으로 흐르는 상기 반응 매질의 평균 두께는 약 2.5인치 이상으로 유지된다); 및
    (c) 상기 중합 반응기로부터 상기 반응 매질을 회수하는 단계(이때, 상기 중합 반응기로부터 회수된 상기 반응 매질의 중합도(DP)는 상기 중합 반응기내로 도입되는 상기 반응 매질의 DP보다 약 25% 이상 더 크다)
    를 포함하는 중합 방법.
  31. 제 30 항에 있어서,
    수직방향-이격된 트레이상으로 흐르는 상기 반응 매질의 평균 두께가 3 내지 12인치 범위로 유지되는 중합 방법.
  32. 제 30 항에 있어서,
    중합 반응기내로 도입되는 반응 매질의 DP가 약 20 내지 약 75의 범위인 중합 방법.
  33. 제 30 항에 있어서,
    중합 반응기로부터 회수된 반응 매질이 폴리에틸렌 테레프탈레이트(PET)를 포함하는 중합 방법.
  34. 제 30 항에 있어서,
    반응 매질이 중합 반응기내에서 약 250 내지 약 325℃ 범위의 온도 및 약 0.1 내지 약 4 토르 범위의 압력으로 유지되는 중합 방법.
  35. 제 30 항에 있어서,
    트레이의 적어도 일부분이 그 위로 반응 매질의 적어도 일부분이 흘러서 바로 아래에 위치한 그 다음 트레이로 통과하도록 윗방향으로 연장하는 위어를 포함하는 중합 방법.
  36. 제 35 항에 있어서,
    위어가 약 2.5인치 이상의 높이를 갖는 중합 방법.
  37. 제 35 항에 있어서,
    모든 트레이의 10% 이상이 위어를 구비한 중합 방법.
  38. 제 30 항에 있어서,
    트레이가 다수의 단일방향 트레이를 포함하는 중합 방법.
  39. 제 38 항에 있어서,
    단일방향 트레이중의 인접한 트레이가 서로 반대 방향으로 경사지는 중합 방법.
  40. 제 39 항에 있어서,
    단일방향 트레이의 기울기가 아래방향으로 증가하는 중합 방법.
  41. 제 38 항에 있어서,
    트레이가 다수의 양방향 트레이를 포함하는 중합 방법.
  42. 제 41 항에 있어서,
    양방향 트레이가 한 쌍의 아래방향-분기되는 루프 부재를 포함하는 루프 트레이 및 한 쌍의 아래방향-수렴되는 트로우 부재를 포함하는 트로우 트레이를 교대로 포함하는 중합 방법.
  43. 제 42 항에 있어서,
    양방향 트레이의 기울기가 아래방향으로 증가하는 중합 방법.
  44. 제 41 항에 있어서,
    양방향 트레이가 단일방향 트레이의 아래쪽에 위치하는 중합 방법.
  45. 제 41 항에 있어서,
    반응기가 5개 이상의 단일방향 트레이 및 5개 이상의 양방향 트레이를 포함하는 중합 방법.
  46. 제 30 항에 있어서,
    트레이가 다수의 단일방향 트레이를 포함하고, 반응 매질의 적어도 일부분을 하나 이상의 상기 단일방향 트레이의 2개의 범용 대향 단부상으로 동시에 흘려보내는 단계를 더 포함하는 중합 방법.
  47. 제 46 항에 있어서,
    단일방향 트레이의 범용 대향 단부가 서로 다른 양각부에 위치하는 중합 방법.
  48. (a) 다수의 단일방향 경사 트레이 및 다수의 양방향 경사 트레이를 포함하는 반응기의 상부 구역내로 반응 매질을 도입하는 단계;
    (b) 상기 반응 매질을 상기 반응기내에서 상기 단일방향 트레이 및 양방향 트레이상에서 아래방향으로 흘려보내는 단계; 및
    (c) 상기 반응기의 하부 구역으로부터 상기 반응 매질을 회수하는 단계
    를 포함하는 방법.
  49. 제 48 항에 있어서,
    수직방향-이격된 트레이상으로 흐르는 반응 매질의 평균 두께가 약 2.5인치 이상인 방법.
  50. 제 48 항에 있어서,
    반응기로부터 회수되는 반응 매질의 동점도가 상기 반응기내로 도입되는 상기 반응 매질의 동점도보다 약 50% 이상 더 큰 방법.
  51. 제 48 항에 있어서,
    단일방향 트레이의 기울기가 아래방향으로 증가하는 방법.
  52. 제 51 항에 있어서,
    양방향 트레이의 기울기가 아래방향으로 증가하는 방법.
  53. 제 48 항에 있어서,
    단일방향 트레이의 적어도 일부분이 양방향 트레이의 적어도 일부분의 위쪽에 위치하는 방법.
  54. 제 53 항에 있어서,
    반응 매질이 양방향 트레이상으로 흐르기 전에 아래방향으로 흐르는 반응 매질을 2개의 실질적으로 동등한 분획으로 분할하는 단계를 포함하는 방법.
  55. 제 48 항에 있어서,
    양방향 트레이중의 인접한 트레이가 서로 반대 방향으로 경사지되, 상기 양방향 트레이가 한 쌍의 아래방향-분기되는 루프 부재를 포함하는 루프 트레이 및 한 쌍의 아래방향-수렴되는 트로우 부재를 포함하는 트로우 트레이를 교대로 포함하는 방법.
  56. 제 48 항에 있어서,
    다수의 단일방향 트레이가 단일방향 트레이의 상부 군 및 단일방향 트레이의 하부 군을 포함하고, 반응 매질이 제 1 방향에서 상기 단일방향 트레이의 상부 군상의 전후로 흐르고, 상기 반응 매질이 제 2 방향에서 상기 단일방향 트레이의 하부 군상의 전후로 흐르되, 상기 제 1 및 제 2 방향이 실질적으로 서로 직각인 방법.
  57. 제 48 항에 있어서,
    반응기내의 모든 트레이중의 10% 이상이 단일방향 트레이이고, 상기 반응기내의 모든 트레이중의 10% 이상이 양방향 트레이인 방법.
  58. 제 48 항에 있어서,
    단일방향 트레이의 적어도 일부분이 그 위로 반응 매질의 적어도 일부분이 흘러서 바로 아래에 위치한 그 다음 트레이로 통과하도록 윗방향으로 연장하는 위어를 포함하는 방법.
  59. 제 58 항에 있어서,
    위어가 약 2.5인치 이상의 높이를 갖는 방법.
  60. 제 48 항에 있어서,
    반응기내로 도입되는 반응 매질의 중합도(DP)가 약 20 내지 약 75의 범위이고, 상기 중합 반응기로부터 회수된 상기 반응 매질의 DP가 상기 반응기내로 도입되는 상기 반응 매질의 DP보다 약 50% 이상 더 큰 방법.
  61. 제 60 항에 있어서,
    반응기로부터 회수되는 반응 매질이 폴리에틸렌 테레프탈레이트(PET)를 포함 하는 방법.
  62. 제 48 항에 있어서,
    반응 매질이 반응기내에서 약 250 내지 약 325℃ 범위의 온도 및 약 0.1 내지 약 4 토르 범위의 압력으로 유지되는 방법.
  63. 제 44 항에 있어서,
    반응 매질의 적어도 일부분을 하나 이상의 단일방향 트레이의 2개의 범용 대향 단부상으로 동시에 흘려보내는 단계를 더 포함하는 방법.
  64. 제 63 항에 있어서,
    단일방향 트레이의 범용 대향 단부가 서로 다른 양각부에 위치하는 방법.
KR1020087009974A 2005-10-28 2006-10-19 최적화된 내부 트레이 디자인을 가진 반응기 KR101362570B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US73139005P 2005-10-28 2005-10-28
US60/731,390 2005-10-28
US11/496,835 2006-08-01
US11/496,835 US7718137B2 (en) 2005-10-28 2006-08-01 Reactor with optimized internal tray design
PCT/US2006/041169 WO2008060267A1 (en) 2005-10-28 2006-10-19 Reactor with optimized internal tray design

Publications (2)

Publication Number Publication Date
KR20080066702A true KR20080066702A (ko) 2008-07-16
KR101362570B1 KR101362570B1 (ko) 2014-02-13

Family

ID=37865825

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087009974A KR101362570B1 (ko) 2005-10-28 2006-10-19 최적화된 내부 트레이 디자인을 가진 반응기

Country Status (17)

Country Link
US (3) US7718137B2 (ko)
EP (3) EP1967262B1 (ko)
JP (4) JP5155178B2 (ko)
KR (1) KR101362570B1 (ko)
CN (1) CN101291728B (ko)
AR (1) AR057521A1 (ko)
AT (2) ATE444117T1 (ko)
BR (1) BRPI0617239A2 (ko)
DE (2) DE602006005512D1 (ko)
ES (3) ES2334174T3 (ko)
MY (1) MY148449A (ko)
PL (3) PL1967262T3 (ko)
RU (1) RU2429065C2 (ko)
SI (2) SI1967262T1 (ko)
TW (1) TWI468221B (ko)
UA (1) UA99590C2 (ko)
WO (1) WO2008060267A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7718137B2 (en) 2005-10-28 2010-05-18 Eastman Chemical Company Reactor with optimized internal tray design
CN101307140B (zh) * 2008-07-10 2011-05-11 北京德厚朴化工技术有限公司 分段式聚酯切片固相增粘反应器
US20150051367A1 (en) * 2011-06-10 2015-02-19 Clive Alexander Hamilton Variable pressure drop up flow-pre-polymerizer (ufpp) systems and methods
DE102015208009A1 (de) * 2015-04-30 2016-11-03 Hydrogenious Technologies Gmbh Reaktor-Vorrichtung zum Freisetzen eines Gases aus einem Edukt

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1513354A (en) * 1921-12-27 1924-10-28 James M Wadsworth Vapor separator
US1804554A (en) 1926-11-12 1931-05-12 Universal Oil Prod Co Method and apparatus for fractionation of hydrocarbons
US3017950A (en) 1960-12-30 1962-01-23 Henry F Koshoot Bubble-plate structure for rectification columns
US3250747A (en) 1961-12-07 1966-05-10 Eastman Kodak Co Polyesterification in two evacuated zones separated by a liquid seal
US3841836A (en) 1972-08-10 1974-10-15 Eastman Kodak Co Apparatus for the production of condensation polymers
DE2504258A1 (de) 1975-02-01 1976-08-05 Dynamit Nobel Ag Verfahren und apparatur zur herstellung von oligomeren alkylenterephthalaten
SE7813257L (sv) 1978-01-04 1979-07-05 Markfort Dieter Sett och anordning for rektifikation
US4196168A (en) 1978-05-05 1980-04-01 Eastman Kodak Company Sloped tray arrangement for polymerization reactor
US4582569A (en) 1981-01-22 1986-04-15 Distillation Technology Limited Mass transfer apparatus
US4361538A (en) 1981-03-17 1982-11-30 Davy International Ag Continuous moving bed reactor for manufacture of high molecular weight polyethylene terephthalate
JPS5995903A (ja) 1982-11-24 1984-06-02 Nippon Kayaku Co Ltd バツフル・トレイ塔
US4832915A (en) 1983-05-17 1989-05-23 Phillips Petroleum Company Vapor recovery from particles containing same
US4615770A (en) 1983-10-14 1986-10-07 Rakesh Govind Distillation column and process
US4568258A (en) 1983-11-29 1986-02-04 Phillips Petroleum Company Apparatus for particulating materials
US4604261A (en) 1984-06-29 1986-08-05 Mobil Oil Corporation Hydroprocessing reactor for catalytically dewaxing liquid petroleum feedstocks
IN165082B (ko) 1985-05-15 1989-08-12 Ammonia Casale Sa
US4657770A (en) * 1985-06-27 1987-04-14 General Foods Corporation Accelerated staling of starch based products
US4657638A (en) 1985-07-29 1987-04-14 University Of Florida Distillation column
US4988486A (en) 1985-08-02 1991-01-29 The Boeing Company Hydrogen generator
US4753779A (en) 1985-08-02 1988-06-28 The Boeing Company Sliding tray reactor
US4937051A (en) 1985-11-07 1990-06-26 Mobil Oil Corporation Catalytic reactor with liquid recycle
DE3546010A1 (de) 1985-12-24 1987-06-25 Karl Lohrberg Reaktor fuer die herstellung von chlordioxid
US5013407A (en) 1988-03-08 1991-05-07 Institut Francais Du Petrole Apparatus for reactive distillation
US5523061A (en) 1988-11-22 1996-06-04 China Petrochemical Corporation (Sinopec) Equipment for catalytic distillation
US5277847A (en) 1989-03-08 1994-01-11 Glitsch, Inc. Method and apparatus for catalyst-downcomer-tray operation
US5133942A (en) 1989-06-07 1992-07-28 Chemical Research & Licensing Company Distillation column reactor with catalyst replacement apparatus
US5593548A (en) 1990-02-06 1997-01-14 Koch Engineering Company, Inc. Method for concurrent reaction with distillation
US5130102A (en) 1990-06-11 1992-07-14 Chemical Research & Licensing Company Catalytic distillation reactor
US5091060A (en) 1990-09-10 1992-02-25 Phillips Petroleum Company Fractional distillation column and method for its use
US5308592A (en) 1990-12-03 1994-05-03 China Petrochemical Corporation (Sinopec) Equipment for mixed phase reaction distillation
US5310955A (en) 1991-01-18 1994-05-10 The Dow Chemical Company Vertical continuous reactor and process for liquid epoxy resin
US5230839A (en) 1991-08-15 1993-07-27 Atlantic Richfield Company Fractionator feed section
US5338517A (en) 1992-05-18 1994-08-16 Chemical Research & Licensing Company Catalytic distillation column reactor and tray
US5601797A (en) 1992-08-10 1997-02-11 Glitsch, Inc. Liquid-phase catalyst-assembly for chemical process tower
HUT71029A (en) 1994-03-04 1995-11-28 Glitsch Chemical process tower, catalytic unit and method for locating of contact substance
US5466419A (en) 1994-05-02 1995-11-14 Yount; Thomas L. Split flow reactor trays for vertical staged polycondensation reactors
US5464590A (en) 1994-05-02 1995-11-07 Yount; Thomas L. Reactor trays for a vertical staged polycondensation reactor
US5531884A (en) 1994-08-03 1996-07-02 Mobil Oil Corporation FCC catalyst stripper
CH689284A5 (de) 1995-02-16 1999-01-29 Buehler Ag Schachtreaktor zur Behandlung von Schuettgut.
US5755933A (en) 1995-07-24 1998-05-26 The M. W. Kellogg Company Partitioned distillation column
WO1997021754A1 (en) 1995-12-14 1997-06-19 E.I. Du Pont De Nemours And Company Process of making polyester prepolymer
FI105818B (fi) 1996-03-13 2000-10-13 Borealis Tech Oy Prosessi olefiinimonomeerien polymeroimiseksi
JPH10174862A (ja) * 1996-12-17 1998-06-30 Hitachi Ltd 連続反応装置
US6299146B1 (en) 1997-04-03 2001-10-09 China Petro-Chemical Corp. Retangular suspending downcomer directing tray
BR9808781A (pt) 1997-05-12 2000-08-01 Koch Glitsch Inc Bandeja de contato de vapor-lìquido, coluna de transferência de massa, e, processo de intermisturar correntes de vapor e lìquido em uma coluna de transferência de massa
CA2300960A1 (en) 1997-09-10 1999-03-18 Zhongliang L. Fan Downcomers for vapor-liquid contact trays
US6287367B1 (en) 1998-05-19 2001-09-11 Mobil Oil Corporation High-capacity vapor/liquid contacting device
US6527258B2 (en) 1999-03-19 2003-03-04 Sulzer Chemtech Ag Apparatus for the collection and distribution of liquid in a column
DE19915705C2 (de) 1999-04-08 2002-09-12 Ticona Gmbh Verfahren zur Abtrennung von Feststoffen aus Polymerlösungen
JP4089141B2 (ja) * 2000-08-07 2008-05-28 三菱化学株式会社 段塔式反応装置及びそれを用いたポリアルキレンエーテルグリコールの製造方法
US6588736B1 (en) 2000-12-14 2003-07-08 Karl T. Chuang Gas/liquid contacting, perforated tray assembly
DE60115404T2 (de) 2001-01-04 2006-08-03 Plastic Technologies, Inc., Holland Verfahren zum kühlen von postreaktor polyethylenterephthalat
US7087204B2 (en) 2001-01-29 2006-08-08 Toyo Engineering Corporation Reaction unit
EP1373360B1 (de) 2001-02-26 2008-10-15 Bühler AG Verfahren und vorrichtung zur kontinuierlichen polykondensation von polyestermaterial in fester phase
CA2439544A1 (en) 2001-03-01 2002-09-12 Shell Internationale Research Maatschappij B.V. Self-supporting reactor internal
US6722639B2 (en) 2001-04-10 2004-04-20 Koch-Glitsch, Lp Liquid distributor in mass transfer column and method of installation and use
US6458916B1 (en) 2001-08-29 2002-10-01 Hitachi, Ltd. Production process and production apparatus for polybutylene terephthalate
DE10155419B4 (de) 2001-11-12 2005-06-16 Inventa-Fischer Gmbh & Co. Kg Verfahren zur kontinuierlichen Herstellung von hochmolekularem Polyester sowie Vorrichtung zur Durchführung des Verfahrens
KR100507698B1 (ko) 2002-05-31 2005-08-11 주식회사 효성 뱃치식 폴리에스터 중합장치
CN1191111C (zh) * 2002-09-28 2005-03-02 中国石油化工股份有限公司 一种塔盘式催化裂化汽提器内构件
US7329723B2 (en) * 2003-09-18 2008-02-12 Eastman Chemical Company Thermal crystallization of polyester pellets in liquid
CA2482056A1 (en) * 2003-10-10 2005-04-10 Eastman Chemical Company Thermal crystallization of a molten polyester polymer in a fluid
US7358322B2 (en) * 2004-03-09 2008-04-15 Eastman Chemical Company High IV melt phase polyester polymer catalyzed with antimony containing compounds
US7935399B2 (en) * 2004-09-02 2011-05-03 Grupo Petrotemex, S.A. De C.V. Low melting polyester polymers
US7718137B2 (en) 2005-10-28 2010-05-18 Eastman Chemical Company Reactor with optimized internal tray design

Also Published As

Publication number Publication date
BRPI0617239A2 (pt) 2011-07-19
US8309677B2 (en) 2012-11-13
EP1945346B1 (en) 2009-03-04
US7683143B2 (en) 2010-03-23
US20100121001A1 (en) 2010-05-13
ATE424251T1 (de) 2009-03-15
ES2321765T3 (es) 2009-06-10
US7718137B2 (en) 2010-05-18
EP2138226B1 (en) 2012-10-10
UA99590C2 (uk) 2012-09-10
PL2138226T3 (pl) 2013-03-29
SI2138226T1 (sl) 2013-01-31
KR101362570B1 (ko) 2014-02-13
ATE444117T1 (de) 2009-10-15
JP5155178B2 (ja) 2013-02-27
US20070100094A1 (en) 2007-05-03
SI1967262T1 (sl) 2010-01-29
ES2334174T3 (es) 2010-03-05
WO2008060267A1 (en) 2008-05-22
TW200719957A (en) 2007-06-01
AR057521A1 (es) 2007-12-05
RU2008121267A (ru) 2009-12-10
DE602006009561D1 (de) 2009-11-12
EP1967262B1 (en) 2009-09-30
TWI468221B (zh) 2015-01-11
US20090111967A1 (en) 2009-04-30
JP2013040354A (ja) 2013-02-28
DE602006005512D1 (de) 2009-04-16
PL1945346T3 (pl) 2009-07-31
MY148449A (en) 2013-04-30
CN101291728B (zh) 2011-09-14
ES2397306T3 (es) 2013-03-06
JP2012232303A (ja) 2012-11-29
EP1967262A1 (en) 2008-09-10
CN101291728A (zh) 2008-10-22
EP1945346A1 (en) 2008-07-23
EP2138226A1 (en) 2009-12-30
PL1967262T3 (pl) 2010-01-29
JP2009513349A (ja) 2009-04-02
RU2429065C2 (ru) 2011-09-20
JP2011173121A (ja) 2011-09-08

Similar Documents

Publication Publication Date Title
CN101171074B (zh) 用于垂直分级的聚合反应器的导流板组件模块
EP1901840B1 (en) Vertical staged polymerization reactor
EP2475688B1 (en) Process for recycling product streams separated from a hydrocarbon-containing feed stream
KR101362570B1 (ko) 최적화된 내부 트레이 디자인을 가진 반응기
CA2017980A1 (en) Distillation column reactor
AU7382498A (en) Vapor-liquid contact tray with two-stage downcomer
US8308939B2 (en) Efficient arrangement of membrane bioreactors
RU2690288C2 (ru) Реактор с наклонным слоем, позволяющий применять небольшое количество катализатора
JP2004533315A (ja) 気体/液体反応用又は気体/液体/固体反応用の反応器
US7244806B2 (en) Method and device for the continuous production of polyesters
CN107107018A (zh) 用于限制三相流化床的出口处的固体颗粒挟带的工艺和装置
CA2625449A1 (en) Reactor with optimized internal tray design
JP2009513349A5 (ko)
MX2008004283A (es) Reactor con diseño de charola interna optimizado

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161229

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171228

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181227

Year of fee payment: 6