KR20080060562A - Method of forming a metal wire in a semiconductor device - Google Patents

Method of forming a metal wire in a semiconductor device Download PDF

Info

Publication number
KR20080060562A
KR20080060562A KR1020060134826A KR20060134826A KR20080060562A KR 20080060562 A KR20080060562 A KR 20080060562A KR 1020060134826 A KR1020060134826 A KR 1020060134826A KR 20060134826 A KR20060134826 A KR 20060134826A KR 20080060562 A KR20080060562 A KR 20080060562A
Authority
KR
South Korea
Prior art keywords
forming
etching process
etching
trench
semiconductor device
Prior art date
Application number
KR1020060134826A
Other languages
Korean (ko)
Other versions
KR100941821B1 (en
Inventor
김은수
조직호
서영희
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020060134826A priority Critical patent/KR100941821B1/en
Publication of KR20080060562A publication Critical patent/KR20080060562A/en
Application granted granted Critical
Publication of KR100941821B1 publication Critical patent/KR100941821B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A method for forming a metal line of a semiconductor device is provided to minimize capacitance of a metal line by forming an etch-stop barrier layer on a second insulating layer and removing the etch-stop barrier layer while forming the metal line. A first insulating layer(101), an etch-stop barrier layer, and a second insulating layer(104) are formed above a semiconductor substrate(100). A part of the second insulating layer is etched by a first etching process. A trench for metal wiring(114) is formed by etching the etch-stop barrier layer and the first insulating layer by a second etching process. The trench is filled with conductive material.

Description

반도체 소자의 금속 배선 형성방법{Method of forming a metal wire in a semiconductor device}Method of forming a metal wire in a semiconductor device

도 1a 내지 도 1e는 본 발명의 일 실시 예에 따른 반도체 소자의 금속 배선 형성방법을 설명하기 위해 도시한 단면도이다.1A to 1E are cross-sectional views illustrating a method of forming metal wires in a semiconductor device according to an embodiment of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

100 : 반도체 기판 101 : 제1 절연막100 semiconductor substrate 101 first insulating film

102 : 드레인 콘택 플러그 104 : 제2 절연막102 drain contact plug 104 second insulating film

106 : 식각 정지막 108 : 제3 절연막106: etching stop film 108: third insulating film

110 : 트렌치 112 : 베리어 메탈막110: trench 112: barrier metal film

114 : 금속 배선 116 : 제4 절연막114: metal wiring 116: fourth insulating film

본 발명은 반도체 소자의 금속 배선 형성방법에 관한 것으로, 특히, 금속 배 선의 신뢰성(reliability)을 향상시키기 위한 반도체 소자의 금속 배선 형성방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming metal wirings in a semiconductor device, and more particularly, to a method for forming metal wirings in a semiconductor device for improving the reliability of metal wiring.

소자가 고집적화되어 감에 따라, 디자인 룰(Design rule)은 감소하지만 프로그램 속도 향상을 요구하고 있어 비저항이 낮은 금속 물질과 저유전 물질(low-k)을 이용하여 다마신(damascene) 공정으로 금속 배선을 형성하는 방법이 연구되고 있다.As devices become more integrated, design rules are reduced but the program speed is increased, and metal wiring is performed by damascene process using metal materials with low resistivity and low-k materials. How to form

일반적으로 다마신 공정을 이용하여 금속 배선을 형성할 경우 다음과 같은 문제점이 발생한다.In general, when the metal wiring is formed using the damascene process, the following problems occur.

첫째, 금속 배선의 피치(pitch)가 감소하면서 금속 배선의 저항값이 급격하게 증가하여 신뢰성 측면과 RC 딜레이 등과 같은 소자 특성 측면에 좋지 않은 영향을 준다. 이로 인하여 타임 딜레이(time delay)를 최소화하는 값이 요구된다.First, as the pitch of the metal wiring decreases, the resistance value of the metal wiring increases rapidly, which adversely affects reliability and device characteristics such as RC delay. This requires a value that minimizes time delay.

둘째, 텅스텐(W) 이용하여 금속 배선을 형성할 경우, 금속 배선을 형성하기 위한 트렌치 형성 공정시 식각 정지(etch stop)용 질화막이 필요하다. 이로 인해, 식각 정지용 질화막이 드레인 콘택 플러그 상부에 형성되고 트렌치 형성 공정시 식각 정지막이 제거되지 않아 금속 배선의 캐패시턴스(capacitance)가 증가하게 된다. Second, when the metal wiring is formed using tungsten (W), a nitride film for etch stop is required in the trench forming process for forming the metal wiring. As a result, an etch stop nitride film is formed on the drain contact plug and the etch stop film is not removed during the trench forming process, thereby increasing capacitance of the metal wiring.

셋째, 금속 배선을 형성하기 위한 트렌치 형성 공정시 식각 공정에 의해 콘택 플러그가 손상된다. Third, the contact plug is damaged by the etching process in the trench formation process for forming the metal wiring.

본 발명은 다마신(damascene) 공정으로 금속 배선을 형성하는 과정에서 트렌치를 2번의 식각 공정으로 형성하기 때문에 하부의 콘택 플러그가 손상되는 것을 최소화할 수 있다. In the present invention, since the trench is formed by the etching process twice in the process of forming the metal wiring by the damascene process, damage to the lower contact plug may be minimized.

본 발명의 일 실시 예에 따른 반도체 소자의 금속 배선 형성방법은, 반도체 기판 상부에 제1 절연막, 식각 정지막 및 제2 절연막을 형성한다. 제1 식각 공정으로 제2 절연막의 일부를 식각한다. 제2 식각 공정으로 식각 정지막 및 제1 절연막을 식각하여 금속 배선용 트렌치를 형성한다. 트렌치를 도전 물질로 채운다.In the method of forming a metal wire of a semiconductor device according to an embodiment of the present disclosure, a first insulating film, an etch stop film, and a second insulating film are formed on the semiconductor substrate. A portion of the second insulating layer is etched by the first etching process. In the second etching process, the etch stop layer and the first insulating layer are etched to form a trench for metal wiring. Fill the trench with a conductive material.

상기에서, 제1 및 제2 절연막은 산화물로 형성하되, 서로 동일한 높이로 형성한다. 식각 정지막은 물리기상 증착 방법(Physical Vapor Deposition; PVD)을 이용하여 티타늄 질화막(TiN)을 150Å 내지 200Å의 두께로 형성한다. 제1 식각 공정시 식각 정지막은 50Å 내지 100Å의 두께 정도 식각된다. 제2 식각 공정은 블랭킷(blanket) 식각 공정으로 실시된다. 제2 식각 공정시 제2 절연막은 제거되고, 식각 정지막은 50Å 내지 100Å 정도 제거된다.In the above description, the first and second insulating layers are formed of an oxide and formed at the same height as each other. The etch stop layer forms a titanium nitride layer (TiN) with a thickness of 150 kPa to 200 kPa using a physical vapor deposition method (PVD). In the first etching process, the etch stop layer is etched to a thickness of 50 kPa to 100 kPa. The second etching process is performed by a blanket etching process. In the second etching process, the second insulating layer is removed, and the etch stop layer is removed by about 50 kPa to about 100 kPa.

본 발명의 일 실시 예에 따른 반도체 소자의 금속 배선 형성방법은, 콘택 플러그가 형성된 반도체 기판을 제공된다. 반도체 기판 상부에 제1 절연막, 식각 정지막 및 제2 절연막을 형성한다. 식각 공정으로 제2 절연막의 일부를 식각한다. 패 터닝된 제2 절연막을 마스크로 식각 정지막 및 제1 절연막을 식각하여 금속 배선용 트렌치를 형성한다. 트렌치를 도전 물질로 채워 금속 배선을 형성한다.According to one or more exemplary embodiments, a metal wire forming method of a semiconductor device may include a semiconductor substrate on which contact plugs are formed. A first insulating film, an etch stop film, and a second insulating film are formed on the semiconductor substrate. A portion of the second insulating film is etched by the etching process. The etch stop layer and the first insulating layer are etched using the patterned second insulating layer as a mask to form a metal wiring trench. The trench is filled with a conductive material to form metal wiring.

상기에서, 콘택 플러그는 폴리실리콘막으로 형성된다. 제1 및 제2 절연막은 산화물로 형성하되, 서로 동일한 높이로 형성한다. 식각 정지막은 물리기상 증착 방법(PVD)을 이용하여 티타늄 질화막(TiN)을 150Å 내지 200Å의 두께로 형성한다. 제2 절연막 식각 공정시 식각 정지막은 50Å 내지 100Å의 두께 정도 식각된다. 트렌치를 형성하기 위한 식각 공정은 블랭킷(blanket) 식각 공정으로 실시된다. 트렌치를 형성하기 위한 식각 공정시 제2 절연막은 제거되고, 식각 정지막은 50Å 내지 100Å 정도 제거된다. 트렌치를 도전 물질로 채우기 전에, 트렌치를 포함한 반도체 기판 상부에 베리어 메탈막을 라이너(liner) 형태로 형성한다. 베리어 메탈막은 스퍼터링(sputtering) 방법으로 티타늄(Ti) 및 티타늄 질화막(TiN)을 증착하여 형성한다.In the above, the contact plug is formed of a polysilicon film. The first and second insulating layers are formed of oxides, but are formed at the same height as each other. The etch stop film forms a titanium nitride film (TiN) with a thickness of 150 kPa to 200 kPa using a physical vapor deposition method (PVD). In the second insulating layer etching process, the etch stop layer is etched to a thickness of about 50 kPa to about 100 kPa. The etching process for forming the trench is performed by a blanket etching process. In the etching process for forming the trench, the second insulating film is removed, and the etch stop film is removed by about 50 kPa to about 100 kPa. Before filling the trench with a conductive material, a barrier metal film is formed on the semiconductor substrate including the trench in the form of a liner. The barrier metal film is formed by depositing titanium (Ti) and titanium nitride film (TiN) by sputtering.

이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1a 내지 도 1e는 본 발명의 일 실시 예에 따른 반도체 소자의 금속 배선 형성방법을 설명하기 위해 순차적으로 도시한 소자의 단면도이다.1A through 1E are cross-sectional views of devices sequentially illustrated to explain a method for forming metal wires of a semiconductor device according to an embodiment of the present invention.

도 1a를 참조하면, 트랜지스터 또는 플래시 메모리 셀과 같은 반도체 소자(미도시)가 형성된 반도체 기판(100) 상부에 제1 절연막(101)을 형성한다. 이어서, 반도체 기판(100)에 형성된 접합 영역(미도시)의 일부가 노출되도록 제1 절연 막(101)의 일부를 제거한 후 제1 절연막(101)이 제거된 영역을 전도성 물질로 채워 콘택 플러그(102)를 형성한다. 콘택 플러그(102)가 형성된 반도체 기판(100) 상부에는 제2 절연막(104), 식각 정지막(106) 및 제3 절연막(108)을 순차적으로 형성한다. 이때, 제2 절연막(104)과 제3 절연막(108)은 산화물로 형성하되, 서로 동일한 높이로 형성하고, 식각 정지막(106)은 물리기상 증착 방법(Physical Vapor Deposition; PVD)을 이용하여 티타늄 질화막(TiN)을 150Å 내지 200Å의 두께로 형성한다. Referring to FIG. 1A, a first insulating layer 101 is formed on a semiconductor substrate 100 on which a semiconductor device (not shown) such as a transistor or a flash memory cell is formed. Subsequently, a portion of the first insulating film 101 is removed to expose a portion of the junction region (not shown) formed on the semiconductor substrate 100, and then the contact plug (filled with a conductive material is filled with a region where the first insulating film 101 is removed). 102). The second insulating layer 104, the etch stop layer 106, and the third insulating layer 108 are sequentially formed on the semiconductor substrate 100 on which the contact plug 102 is formed. In this case, the second insulating film 104 and the third insulating film 108 are formed of an oxide, and are formed at the same height, and the etch stop film 106 is formed of titanium using physical vapor deposition (PVD). The nitride film TiN is formed to a thickness of 150 kPa to 200 kPa.

도 1b를 참조하면, 노광 및 현상 공정으로 제3 절연막(108) 상부에 포토레지스트 패턴(미도시)을 형성한 후 포토레지스트 패턴을 마스크로 제3 절연막(108)을 식각한다. 이때, 제3 절연막(108) 식각 공정시 식각 정지막(106)에서 식각이 멈추고, 식각 정지막(106)은 50Å 내지 100Å의 두께 정도 식각된다. 그런 다음, 포토레지스트 패턴을 제거한다. Referring to FIG. 1B, after forming a photoresist pattern (not shown) on the third insulating layer 108 through an exposure and development process, the third insulating layer 108 is etched using the photoresist pattern as a mask. In this case, during the etching process of the third insulating layer 108, the etching stops at the etch stop layer 106, and the etch stop layer 106 is etched to a thickness of about 50 μm to about 100 μm. Then, the photoresist pattern is removed.

도 1c를 참조하면, 블랭킷(blanket) 식각 공정으로 식각 정지막(106)과 제2 절연막(104)을 식각하여 트렌치(110)를 형성한다. 이때, 트렌치(110)를 형성하기 위한 식각 공정시 제3 절연막(108)은 제거되고, 식각 정지막(106)은 50Å 내지 100Å 정도 제거된다. 트렌치(110)가 형성되면서 하부의 콘택 플러그(102)가 노출된다.Referring to FIG. 1C, the trench 110 is formed by etching the etch stop layer 106 and the second insulating layer 104 by a blanket etching process. In this case, during the etching process for forming the trench 110, the third insulating layer 108 is removed and the etch stop layer 106 is removed by about 50 kV to about 100 kPa. While the trench 110 is formed, the lower contact plug 102 is exposed.

도 1d를 참조하면, 트렌치(110)를 포함한 반도체 기판(100) 상부에 베리어 메탈막(112)을 라이너(liner) 형태로 형성한다. 이때, 베리어 메탈막(112)은 스퍼터링(sputtering) 방법으로 티타늄(Ti) 및 티타늄 질화막(TiN)을 증착하여 형성할 수 있다. Referring to FIG. 1D, a barrier metal layer 112 is formed in a liner shape on the semiconductor substrate 100 including the trench 110. In this case, the barrier metal layer 112 may be formed by depositing titanium (Ti) and titanium nitride layer (TiN) by a sputtering method.

도 1e를 참조하면, 트렌치(110)가 채워지도록 베리어 메탈막(도 1d의 112)을 포함한 반도체 기판(100) 상부에 도전 물질을 형성한다. 이때, 도전 물질은 텅스텐(W)으로 형성한다. Referring to FIG. 1E, a conductive material is formed on the semiconductor substrate 100 including the barrier metal layer (112 of FIG. 1D) to fill the trench 110. At this time, the conductive material is formed of tungsten (W).

그런 다음, 트렌치(110) 내에만 도전 물질이 잔류하도록 화학적 기계적 연마(Chemical Mechanical Polishing; CMP) 공정을 실시하여 금속 배선(114)을 형성한다. 이때, 금속 배선(114)을 형성하기 위한 연마 공정시 제2 절연막(104) 상부에 형성된 식각 정지막(106)과 베리어 메탈막(도 1d의 112)도 함께 제거된다. 제2 절연막(104)과 금속 배선(114)을 포함한 반도체 기판(100) 상부에 제4 절연막(116)을 형성한다. 이때, 제4 절연막(116)은 산화물로 형성한다. Then, a chemical mechanical polishing (CMP) process is performed such that the conductive material remains only in the trench 110 to form the metal interconnect 114. At this time, during the polishing process for forming the metal wiring 114, the etch stop film 106 and the barrier metal film (112 of FIG. 1D) formed on the second insulating film 104 are also removed. The fourth insulating layer 116 is formed on the semiconductor substrate 100 including the second insulating layer 104 and the metal wiring 114. In this case, the fourth insulating film 116 is formed of an oxide.

상기와 같이, 트렌치(110)를 형성하기 위해 제3 절연막(108)을 1차로 식각한 후 제2 절연막(104)을 2차로 식각 공정을 실시할 때, 제2 절연막(104)이 식각되는 양만큼 식각 정지막(106) 상부에 패터닝된 제3 절연막(108)이 식각되게 되어 제2 절연막(104) 식각 공정시 드레인 콘택 플러그(102)가 식각되는 과도 식각이 이루어지지 않는다. 이로 인하여 드레인 콘택 플러그(102)의 물질로 사용되는 폴리실리콘막의 손실을 최소화시킬 수 있다. As described above, when the third insulating film 108 is primarily etched to form the trench 110 and then the second insulating film 104 is etched secondly, the amount of the second insulating film 104 is etched. As a result, the third insulating layer 108 patterned on the etch stop layer 106 is etched so that the excessive etching of the drain contact plug 102 is not performed during the etching process of the second insulating layer 104. This may minimize the loss of the polysilicon film used as the material of the drain contact plug 102.

또한, 기존에는 식각 정지용 질화막이 드레인 콘택 플러그 상부에 형성되어 있어 트렌치 형성 공정시 제거되지 않았지만, 본 발명에서는 식각 정지막(106)을 제2 절연막(104) 상부에 형성함으로써 금속 배선(114) 형성 공정시 식각 정지막(106)을 제거할 수 있어 금속 배선(114)의 캐패시턴스(capacitance)를 최소화할 수 있다. 이로 인하여 메모리 소자의 금속 배선 형성과정에서 문제시되는 RC 딜레이를 줄여줌으로써 소자의 동작 속도를 향상시키고, 파워 소비(power consumption)를 줄이며, 소자의 신뢰성(reliability)을 확보할 수 있다. In addition, although the etch stop nitride film is previously formed on the drain contact plug and was not removed during the trench formation process, the metal interconnect 114 is formed by forming the etch stop film 106 on the second insulating film 104. During the process, the etch stop layer 106 may be removed, thereby minimizing the capacitance of the metal wire 114. As a result, by reducing the RC delay which is a problem in the process of forming the metal wiring of the memory device, it is possible to improve the operation speed of the device, reduce power consumption, and ensure device reliability.

또한, 금속 배선의 신뢰성을 향상시켜 TDDB(Time Dependent Dielectric Breakdown) 특성을 향상시킴으로써 소자의 축소화가 가능하다. In addition, it is possible to reduce the size of the device by improving the reliability of the metal wiring to improve the time dependent dielectric breakdown (TDDB) characteristics.

본 발명의 기술 사상은 상기 바람직한 실시 예에 따라 구체적으로 기술되었으나, 상기한 실시 예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주지하여야 한다. 또한, 본 발명의 기술 분야에서 통상의 전문가라면 본 발명의 기술 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.Although the technical spirit of the present invention has been described in detail according to the above-described preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.

상술한 바와 같이 본 발명의 효과는 다음과 같다.As described above, the effects of the present invention are as follows.

첫째, 텅스텐(W) 다마신을 이용하여 금속 배선을 형성하기 위한 트렌치 형성 공정시 2번에 걸쳐 식각 공정을 실시하기 때문에 드레인 콘택 플러그의 물질로 사용되는 폴리실리콘막의 손실을 최소화시킬 수 있다. First, since the etching process is performed twice in the trench formation process for forming the metal wiring using tungsten (W) damascene, the loss of the polysilicon film used as the material of the drain contact plug can be minimized.

둘째, 식각 정지막을 제2 절연막 상부에 형성함으로써 금속 배선 형성 공정시 식각 정지막을 제거할 수 있어 금속 배선의 캐패시턴스(capacitance)를 최소화할 수 있다. Second, the etch stop layer may be formed on the second insulating layer to remove the etch stop layer during the metal line forming process, thereby minimizing the capacitance of the metal line.

셋째, 금속 배선의 캐패시턴스를 최소화하여 메모리 소자의 금속 배선 형성 과정에서 문제시되는 RC 딜레이를 줄여줌으로써 소자의 동작 속도를 향상시키고, 파워 소비(power consumption)를 줄이며, 소자의 신뢰성(reliability)을 확보할 수 있다. Third, by minimizing the capacitance of the metal wiring, the RC delay, which is a problem in the formation of the metal wiring of the memory device, can be reduced, thereby improving the operation speed of the device, reducing power consumption, and securing device reliability. Can be.

넷째, 금속 배선의 신뢰성을 향상시켜 TDDB(Time Dependent Dielectric Breakdown) 특성을 향상시킴으로써 소자의 축소화가 가능하다. Fourth, it is possible to reduce the size of the device by improving the reliability of the metal wiring to improve the time dependent dielectric breakdown (TDDB) characteristics.

Claims (19)

반도체 기판 상부에 제1 절연막, 식각 정지막 및 제2 절연막을 형성하는 단계;Forming a first insulating film, an etch stop film, and a second insulating film on the semiconductor substrate; 제1 식각 공정으로 상기 제2 절연막의 일부를 식각하는 단계;Etching a portion of the second insulating layer by a first etching process; 제2 식각 공정으로 상기 식각 정지막 및 제1 절연막을 식각하여 금속 배선용 트렌치를 형성하는 단계; 및Forming a trench for metal wiring by etching the etch stop layer and the first insulating layer by a second etching process; And 상기 트렌치를 도전 물질로 채우는 단계를 포함하는 반도체 소자의 금속 배선 형성방법.And filling the trench with a conductive material. 제1항에 있어서, The method of claim 1, 상기 제1 및 제2 절연막은 산화물로 형성하되, 서로 동일한 높이로 형성하는 반도체 소자의 금속 배선 형성방법.The first and the second insulating film is formed of an oxide, the metal wire forming method of the semiconductor device to the same height to each other. 제1항에 있어서,The method of claim 1, 상기 식각 정지막은 물리기상 증착 방법(Physical Vapor Deposition; PVD)을 이용하여 티타늄 질화막(TiN)으로 형성하는 반도체 소자의 금속 배선 형성방법.The etch stop layer is formed of a titanium nitride film (TiN) by using a physical vapor deposition method (Physical Vapor Deposition; PVD). 제1항에 있어서, The method of claim 1, 상기 식각 정지막은 150Å 내지 200Å의 두께로 형성하는 반도체 소자의 금속 배선 형성방법.The etching stop layer is a metal wiring forming method of a semiconductor device to form a thickness of 150 ~ 200Å. 제1항에 있어서, The method of claim 1, 상기 제1 식각 공정시 상기 식각 정지막은 50Å 내지 100Å의 두께 정도 식각되는 반도체 소자의 금속 배선 형성방법.The metallization method of claim 1, wherein the etch stop layer is etched to a thickness of about 50 kPa to about 100 kPa during the first etching process. 제1항에 있어서,The method of claim 1, 상기 제2 식각 공정은 블랭킷(blanket) 식각 공정으로 식각하는 반도체 소자의 금속 배선 형성방법.The second etching process is a metal wire forming method of the semiconductor device to be etched by a blanket (blanket) etching process. 제1항에 있어서, The method of claim 1, 상기 제2 식각 공정시 상기 제2 절연막은 제거되는 반도체 소자의 금속 배선 형성방법.And removing the second insulating layer during the second etching process. 제1항에 있어서, The method of claim 1, 상기 제2 식각 공정시 상기 식각 정지막은 50Å 내지 100Å 정도 제거되는 반도체 소자의 금속 배선 형성방법.The method of claim 2, wherein the etching stop layer is removed by about 50 kV to about 100 kPa during the second etching process. 콘택 플러그가 형성된 반도체 기판을 제공하는 단계;Providing a semiconductor substrate having a contact plug formed thereon; 상기 반도체 기판 상부에 제1 절연막, 식각 정지막 및 제2 절연막을 형성하는 단계;Forming a first insulating film, an etch stop film, and a second insulating film on the semiconductor substrate; 식각 공정으로 상기 제2 절연막의 일부를 식각하는 단계;Etching a portion of the second insulating film by an etching process; 패터닝된 상기 제2 절연막을 마스크로 상기 식각 정지막 및 제1 절연막을 식각하여 금속 배선용 트렌치를 형성하는 단계; 및Etching the etch stop layer and the first insulating layer using the patterned second insulating layer as a mask to form a trench for metal wiring; And 상기 트렌치를 도전 물질로 채워 금속 배선을 형성하는 단계를 포함하는 반도체 소자의 금속 배선 형성방법.And forming a metal wiring by filling the trench with a conductive material. 제9항에 있어서, The method of claim 9, 상기 콘택 플러그는 폴리실리콘막으로 형성되는 반도체 소자의 금속 배선 형성방법.And the contact plug is formed of a polysilicon film. 제9항에 있어서, The method of claim 9, 상기 제1 및 제2 절연막은 산화물로 형성하되, 서로 동일한 높이로 형성하는 반도체 소자의 금속 배선 형성방법.The first and the second insulating film is formed of an oxide, the metal wire forming method of the semiconductor device to the same height to each other. 제9항에 있어서, The method of claim 9, 상기 식각 정지막은 물리기상 증착 방법(PVD)을 이용하여 티타늄 질화막(TiN)으로 형성하는 반도체 소자의 금속 배선 형성방법.The etch stop layer is formed of a titanium nitride film (TiN) by using a physical vapor deposition method (PVD) metal wiring forming method of a semiconductor device. 제9항에 있어서,The method of claim 9, 상기 식각 정지막은 150Å 내지 200Å의 두께로 형성하는 반도체 소자의 금속 배선 형성방법.The etching stop layer is a metal wiring forming method of a semiconductor device to form a thickness of 150 ~ 200Å. 제9항에 있어서, The method of claim 9, 상기 제2 절연막 식각 공정시 상기 식각 정지막은 50Å 내지 100Å의 두께 정도 식각되는 반도체 소자의 금속 배선 형성방법.The etching stop layer is etched to a thickness of about 50 ~ 100 Å in the second insulating layer etching process metal wiring forming method of a semiconductor device. 제9항에 있어서, The method of claim 9, 상기 트렌치를 형성하기 위한 식각 공정은 블랭킷(blanket) 식각 공정으로 실시되는 반도체 소자의 금속 배선 형성방법.The etching process for forming the trench is a metal wiring forming method of a semiconductor device is performed by a blanket (etching) etching process. 제9항에 있어서,The method of claim 9, 상기 트렌치를 형성하기 위한 식각 공정시 상기 제2 절연막은 제거되는 반도체 소자의 금속 배선 형성방법.And the second insulating layer is removed during the etching process for forming the trench. 제9항에 있어서,The method of claim 9, 상기 트렌치를 형성하기 위한 식각 공정시 상기 식각 정지막은 50Å 내지 100Å 정도 제거되는 반도체 소자의 금속 배선 형성방법.The etching stop layer is removed from the etching process for forming the trench about 50kW to 100kW metal wiring forming method of a semiconductor device. 제9항에 있어서,The method of claim 9, 상기 트렌치를 도전 물질로 채우기 전에,Before filling the trench with a conductive material, 상기 트렌치를 포함한 상기 반도체 기판 상부에 베리어 메탈막을 라이너(liner) 형태로 형성하는 단계를 더 포함하는 반도체 소자의 금속 배선 형성방 법.And forming a barrier metal layer in a liner shape on the semiconductor substrate including the trench. 제18항에 있어서, The method of claim 18, 상기 베리어 메탈막은 스퍼터링(sputtering) 방법으로 티타늄(Ti) 및 티타늄 질화막(TiN)을 증착하여 형성하는 반도체 소자의 금속 배선 형성방법.The barrier metal film is formed by depositing titanium (Ti) and titanium nitride film (TiN) by the sputtering method (Metal wiring formation method of a semiconductor device).
KR1020060134826A 2006-12-27 2006-12-27 Method of forming a metal wire in a semiconductor device KR100941821B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060134826A KR100941821B1 (en) 2006-12-27 2006-12-27 Method of forming a metal wire in a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060134826A KR100941821B1 (en) 2006-12-27 2006-12-27 Method of forming a metal wire in a semiconductor device

Publications (2)

Publication Number Publication Date
KR20080060562A true KR20080060562A (en) 2008-07-02
KR100941821B1 KR100941821B1 (en) 2010-02-11

Family

ID=39813071

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060134826A KR100941821B1 (en) 2006-12-27 2006-12-27 Method of forming a metal wire in a semiconductor device

Country Status (1)

Country Link
KR (1) KR100941821B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001308179A (en) 2000-04-25 2001-11-02 Sharp Corp Method of manufacturing semiconductor device
KR100366625B1 (en) 2000-07-25 2003-01-09 삼성전자 주식회사 Semiconductor device having dual damascen pattern structure and fabricating method thereof
US6908846B2 (en) 2002-10-24 2005-06-21 Lam Research Corporation Method and apparatus for detecting endpoint during plasma etching of thin films
KR20050033110A (en) * 2003-10-04 2005-04-12 삼성전자주식회사 Method for fabricating metallization of semiconductor device

Also Published As

Publication number Publication date
KR100941821B1 (en) 2010-02-11

Similar Documents

Publication Publication Date Title
KR100640662B1 (en) Semiconductor device having a barrier metal spacer and method of fabricating the same
KR100880312B1 (en) Method for forming metal line of semiconductor memory device
US12080596B2 (en) Semiconductor structure and forming method thereof
KR100941821B1 (en) Method of forming a metal wire in a semiconductor device
KR100471409B1 (en) Method for fabrication of semiconductor device
KR101168507B1 (en) Semiconductor device and method for forming the same
TWI512894B (en) Metal interconnect structure and process thereof
CN111463169B (en) Method for manufacturing semiconductor device
KR20080061168A (en) Method of manufacturing a metal line in semiconductor device
CN113539948B (en) Semiconductor structure and forming method thereof
KR100784074B1 (en) Method of manufacturing bit line in a semiconductor device
JPH11186274A (en) Dual damascene technique
KR100800823B1 (en) Method for forming via hole of semiconductor device with mim type capacitor
KR20090080281A (en) Manufacturing method of semiconductor device
KR20030043201A (en) Method for forming contact plug of semiconductor device
US20110248402A1 (en) Semiconductor device and method for manufacturing the same
KR100447970B1 (en) Method of making metal wiring in semiconductor device
KR100770533B1 (en) Semiconductor device and method for manufacturing the semiconductor device
KR100808369B1 (en) Method of manufacturing a semiconductor device
KR100641484B1 (en) Method for forming a metal line of semiconductor device
CN111900126A (en) Semiconductor manufacturing method and semiconductor
CN114256143A (en) Semiconductor manufacturing method and semiconductor structure
KR100899566B1 (en) Method for forming bitline in semiconductor device
TWI304244B (en)
JP2001156169A (en) Manufacturing method for semiconductor integrated circuit device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee