KR20080007861A - 유류 분해능을 갖는 신규 미생물 및 유류 오염 토양의생물학적 복원 방법 - Google Patents

유류 분해능을 갖는 신규 미생물 및 유류 오염 토양의생물학적 복원 방법 Download PDF

Info

Publication number
KR20080007861A
KR20080007861A KR1020060067042A KR20060067042A KR20080007861A KR 20080007861 A KR20080007861 A KR 20080007861A KR 1020060067042 A KR1020060067042 A KR 1020060067042A KR 20060067042 A KR20060067042 A KR 20060067042A KR 20080007861 A KR20080007861 A KR 20080007861A
Authority
KR
South Korea
Prior art keywords
oil
acinetobacter
rhodococcus
hydroxy
reaction
Prior art date
Application number
KR1020060067042A
Other languages
English (en)
Inventor
박병덕
이명진
권미정
곽형섭
김명겸
김윤
Original Assignee
(주)네오팜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)네오팜 filed Critical (주)네오팜
Priority to KR1020060067042A priority Critical patent/KR20080007861A/ko
Priority to US11/544,900 priority patent/US20080020947A1/en
Publication of KR20080007861A publication Critical patent/KR20080007861A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/26Processes using, or culture media containing, hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Soil Sciences (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

본 발명은 우수한 유류 분해능을 갖는 신규 미생물 및 유류 오염 토양의 생물학적 복원 방법에 관한 것으로서, 본 발명에 따른 신규 미생물은 로도코코스 바이코뉴렌시스 EN3 KCTC19082(Rhodococcus baikoneurensis EN3 KCTC19082), 아씨네토박터 존스니 EN67 KCTC12360(Acinetobacter johnsonii EN67 KCTC12360) 및, 아씨네토박터 헤모리티쿠스 EN96 KCTC12361(Acinetobacter haemolyticus EN96 KCTC12361)로 특정되며, 본 발명에 따른 복원 방법은 위의 신규 미생물 외에도, 유류 오염 토양에서 분리된 유류 분해능을 갖는 노카디아 속, 고르도니아 속, 로도코코스 속, 아시네토박터 속의 다양한 미생물들이 사용될 수 있으며, 더욱이 생계면활성제의 일종인 2-알킬-3-히드록시산 및 그 유도체를 첨가하는 것에 의해 이들 균주의 유류 분해 활성도를 증가시킬 수가 있고, 본 발명에 따르면 종래의 오염 토양복원 방법에 비하여, 효과적이고 경제적이며 환경친화적으로 오염 환경을 정화 할 수가 있는 유용한 발명이다.
유류, 오염, 토양, 복원, 미생물, 생계면활성제, 생분해

Description

유류 분해능을 갖는 신규 미생물 및 유류 오염 토양의 생물학적 복원 방법{Novel microorganisms having biodegradation ability for oil and bioremediation method for oil-contaminated sites}
도 1은 본 발명의 신규 미생물 균주 로도코코스 바이코뉴렌시스 EN3 (Rhodococcus baikoneurensis EN3)의 계통수(系統樹: phylogenetic tree)이다.
도 2는 본 발명의 신규 미생물 균주 아씨네토박터 존스니 EN67 (Acinetobacter johnsonii EN67)과 아씨네토박터 헤모리티쿠스 EN96(Acinetobacter haemolyticus EN96)의 계통수이다.
도 3은 신규 미생물 균주 EN3의 주사전자현미경 사진이다.
도 4는 신규 미생물 균주 EN96의 주사전자현미경 사진이다.
도 5a 내지 도 5d는 각각 실시예 25에서의 신규 미생물 균주 EN3에 의한 초기 디젤 오일 농도 1,000ppm, 5,000ppm, 10,000ppm 및, 20,000ppm에서 일자별 생분해 정도를 나타내는 그래프도이다.
도 6a 내지 도 6d는 각각 실시예 26에서의 신규 미생물 균주 EN67에 의한 초기 디젤 오일 농도 1,000ppm, 5,000ppm, 10,000ppm 및, 20,000ppm에서 일자별 생분해 정도를 나타내는 그래프도이다.
도 7a 내지 도 7d는 각각 실시예 27에서의 신규 미생물 균주 EN96에 의한 초 기 디젤 오일 농도 1,000ppm, 5,000ppm, 10,000ppm 및, 20,000ppm에서 일자별 생분해(biodegradation) 정도를 나타내는 그래프도이다.
도 8은 실시예 29에서의 고르도니아 니티다(Gordonia nitida) NP1에 의한 초기 디젤 오일 농도 1,000ppm, 5,000ppm, 10,000ppm 및, 20,000ppm에서 일자별 생분해 정도를 나타내는 그래프도이다.
도 9는 실시예 30에서 합성 생계면활성제 2-헥실-3-히드록시-데카노익산의 첨가에 의한 초기 디젤 농도 20,000 ppm에서의 신규 미생물 균주 EN3에 의한 디젤 오일 생분해율 증가 결과를 나타내는 그래프도이다.
도 10은 실시예 31에서 합성 생계면활성제 2-헥실-3-히드록시-데카노익산의 첨가에 의한 초기 디젤 농도 15,000 ppm에서의 NP1에 의한 디젤 오일 생분해율 증가 결과를 나타내는 그래프도이다.
도 11은 실시예 32에서 합성 생계면활성제 2-헥실-3-히드록시-데카노익산의 첨가에 의한 초기 디젤 농도 20,000 ppm에서의 NP1에 의한 디젤 오일 생분해율 증가 결과를 나타내는 그래프도이다.
도 12는 합성 생계면활성제 2-헥실-3-히드록시-데카노익산의 농도 10, 100, 1,000 ppm에서의 노말테트라데칸과 씨클로헥산에 대한 유화력 비교 평가 결과를 나타낸 그래프도이다.
본 발명은 우수한 유류 분해능을 갖는 신규 미생물 및 유류 오염 토양의 생물학적 복원 방법에 관한 것이며, 더욱 상세하게는, 우수한 유류 분해능을 갖는 신규 미생물과, 이를 포함하는 다양한 미생물 및 특정한 생계면활성제를 이용한 경제적이고 효과적이며 환경친화적인 유류 오염 토양의 생물학적 복원 방법에 관한 것이다.
일반적으로, 토양오염복원기술이 적용되는 대상은 공장 등에서 사용된 유류나 화학물질 등으로 오염된 토양, 유류사고 등으로 오염된 해안, 소수성 오염물질이 함유된 슬러지(sludge), 주유소 또는 유류저유소 근방의 토양 등이 이에 해당된다.
상기에 언급된 오염 토양에서 소수성 오염 물질을 제거하는 방법으로서는 토양증기추출법(Soil Vapor Extraction, SVE), 토양세정(Soil Flushing), 토양세척기법(Soil Washing), 소각, 저온열탈착법(Low Temperature Thermal Desorption, LTTD), 바이오벤팅법(Bioventing), 생물학적 증가법(Bioaugmentation), 토양경작법(Land Farming), 바이오파일(Biopile), 생물학적 반응기법(Bioreactor) 등과 같은 기술을 들 수 있으며, 이러한 방법들에 대해 간략히 기술하면 다음과 같다.
토양증기추출법은 토양을 진공상태로 만들어 줌으로써 토양으로부터 휘발성, 준휘발성 오염물질을 제거하는 기술이다. 이 경우 토양에서 뽑아낸 휘발성 물질, 즉 VOC (volatile organic coumpound)의 회수 및 처리가 2차 처리 문제로 대두 되고 있다.
토양세정법은 계면활성제, 등과 같은 첨가제를 함유한 물 또는 순수한 물을 오염된 토양 및 지하수에 주입하고 다시 오염토양 지역 내에서 추출한 다음 오염원을 처리 및 정제한 처리수를 다시 오염 지역에 투입하는 기술이다.
토양세척기법은 적절한 세척제를 사용하여 토양입자에 결합되어 있는 유기오염물질 및 중금속을 분리시켜 처리하는 기법으로 적용하는 방식에 따라 원 장소(in-situ) 토양세정기법(soil flushing)과 다른 장소(ex-situ) 토양세척기법(soil washing)으로 대별 할 수 있다.
토양세정법과 토양세척기법에서 과거에는 비이온계 계면활성제와 같은 합성 계면활성제를 사용해 왔으나, 합성 계면활성제의 토양 흡착 및 잔존에 따른 토양의 2차 오염 유발이 우려 되어 왔다. 특히 생분해도가 낮은 합성 계면활성제의 경우는 계면활성제 그 자체가 오염원이므로 토양세정법에 적용하기 곤란한 문제점이 있다. 따라서 최근 람노리피드(rhamnolipid) 및 에멀산(emulsian)과 같은 생계면활성제의 사용예가 보고 되어 있기는 하나 토양세정법과 같이 대량의 계면활성제 사용을 필요로 하는 경우 현재까지는 가격적인 측면에서 경제적이지 못하므로 합성 계면활성제에 비해 매우 불리하다.
소각은 산소를 공급하여 유기물질을 연소시켜 분해하는 열적 파기 공정이다.
저온열탈착법은 저온 열휘발법(Low temeperature thermal volatilzation method)이라고도 하는데 굴착된 토양으로부터 석유계 탄화수소를 물리적으로 분해하기 위해 열(90 ~ 320℃)을 사용하는 다른 장소(ex situ) 처리기법이다.
바이오벤팅법은 생물촉진법(biostimulation method)으로도 불리며 오염된 토양에서의 분해 미생물의 활성화를 촉진시키기 위해 공기, 습기 및 영양 물질 등을 주입시키는 방법이다. 이 경우, 오염지 토양내의 분해 미생물의 활성도를 얼마만큼 증강시키느냐가 중요하며, 최근 보고에 따르면 미생물들이 디젤오일과 같은 미생물학적 영양원을 분해할 경우 유류 오염물과 미생물 간의 표면 접촉이 수반되어야 하는데 이 경우 생계면활성제가 상호간의 계면장력을 낮추어 줌으로써 미생물의 유류 오염원에 대한 생물학적 이용도(bioavailability)를 증가시켜 준다. 따라서 생계면활성제는 생물촉진법에 있어 중요한 인자가 될 수 있다. 그러나 독성이 강한 합성 계면활성제의 경우에는 미생물을 활성화하기 보다는 오히려 미생물의 생육을 저해할 수가 있으므로 그 사용은 제한적이다.
생물학적 증가법은 오염된 토양에 대상으로 하는 오염원을 분해하는 미생물의 증식이 원활히 일어나지 않을 경우, 외부에서 따로 배양한 미생물을 도입하여 미생물학적 정화가 일어나도록 하는 방법이다.
토양경작법은 오염된 토양을 굴착하여 지표면에 깔아 놓고 정기적으로 뒤집어 줌으로써, 토양의 공기 접촉면적을 넓혀 토양 내에 서식하는 유류 분해 미생물의 활성화를 촉진 시키는 방법이다.
바이오파일은 오염원 처리장으로 사용하는 부지 면적이 좁을 경우, 오염된 토양을 굴착하여 지상에 야적하여 처리하는 방법으로 공기 주입 등이 가능한 토양 정화 장치를 통해 영양분과 미생물을 주입시켜 정화하는 방법이다.
생물학적 반응기는 굴착된 오염 토양을 적절한 첨가제와 함께 물과 섞어 반응기에 투입하고, 교반하여 미생물을 활성화시킴으로써 유류분해를 촉진 시키는 방법이다.
그러나 상기의 방법들은 각각의 장점을 가지고는 있으나, 여러 종류의 유류에 의해 복합적으로 오염되어 있거나, 토양의 종류, 형상 및 함수율 등에 따라 다양한 토양층을 거의 완전하게 정화하기에는 여러모로 적합하지 않다는 단점이 있다.
한편, 종래의 미생물을 이용하는 방법에 있어서는, 오염된 토양은 대부분 한 종류의 유류에 의해서가 아니라, 다양한 종류의 유류에 의해 복합적으로 오염되어 있기 때문에 바람직하게는 각각의 유류에 대해 높은 효율을 가지고 선택적으로 분해할 수 있는 능력을 지닌 미생물들을 함께 조합해서 사용하여야 오염된 토양을 효과적으로 정화할 수 있게 된다. 그러나 현재까지 동정된 미생물 중 많은 종류의 미생물이 유류분해능력을 가지고는 있으나, 각 미생물의 특성에 따라 분해 능력이 낮거나, 유류의 종류에 따라 선택적인 분해력을 나타내고, 더욱이 고농도의 유류오염 지역에서는 오염물질에 의해 증식이 저해되는 등의 많은 문제점이 제기되고 있어 유류 오염 토양의 복원방법으로서 충분히 만족스러운 것은 못 되었다.
한편, 20세기초부터 공업화된 합성계면활성제는 지속적인 성장을 거쳐 현재 의약품, 화장품, 농약, 세제 등 산업전반에 폭넓게 이용되고 있다. 그러나 이들 합성계면활성제는 환경오염 문제를 유발시키기 때문에 천연유래의 환경 친화적인 계면활성제로의 대체가 시도되고 있다. 특히 화장품, 음료, 의약품 등에서는 생체시스템과의 친화성, 마일드성이 매우 중요한 요소가 되기 때문에 생계면활성제는 크게 주목받고 있다.
넓은 의미에서 생계면활성제는 생물체의 세포내외에서 생성되는 계면활성 물 질로 정의되는 것으로, 독특한 화학구조와 여러 가지의 관능기를 가지며 생분해성 및 안전성이 뛰어나다는 특징을 가지고 있다. 생계면활성제는 친수기와 소수기를 갖는 양친매성 물질로 미생물, 동물 또는 식물 세포에 존재하거나 또는 미생물이 분비하는 계면활성 물질로 정의된다. 생계면활성제를 분비하는 미생물은 특히 유류 오염지와 같은 극소수성 물질이 존재하는 자연계에서 자주 발견되며, 이러한 생계면활성제의 생산에 대한 해석은 소수성 물질을 탄소원/에너지원으로서 사용하기위해 소수성 물질과 미생물 표면 간에 표면 또는 계면장력을 낮게 만들어 줌으로써 미생물이 소수성 물질을 미생물 내부로 흡수하는 과정을 원활하게 함으로서 미생물 성장에 도움을 준다. 또한 비운동성 미생물의 경우 영역 확보나 이동시 슬라이딩(sliding)을 위해 생계면활성제를 생산 분비하기도 하는 것으로 알려져 있다.
70년대 중반 이후부터 탄화수소 발효공정의 연구 중에 미생물에 의해 생성되는 혼합물 형태의 계면활성작용을 하는 물질이 많이 알려지게 되었다. 이들이 갖는 친수기의 종류에 따라 당지질계(glycolipid), 아실펩타이드계(lipoproteins or lipopeptide), 인지질계(phospholipid), 지방산계(fatty acid), 고분자계(polymeric biosurfactant)로 분류된다.
생계면활성제는 일반적으로 표면(계면)장력을 저하시키고, 유화, 분산력이 우수하며 낮은 임계미셀농도(critical micelle concentration)를 갖는다. 그러나 이러한 장점에도 불구하고 현재까지 실용화된 생계면활성제는 극히 적었다.
그 이유는 제조공정의 최적화와 생성되는 부산물의 정제 및 분리 등의 기술적 문제에 따른 저생산수율 및 고비용 때문이었다.
따라서 소량으로 효과를 볼 수 있는 경우가 아닌 광범위한 영역의 해양 또는 토양오염 등을 정화시키거나, 또는 산업적 목적으로 다량 사용하는 것은 거의 불가능한 실정이다.
이런 이유로, 이미 반합성 또는 전합성을 통해 그 구조가 규명되어 있으며, 비교적 정제방법이 용이하고 수율이 높아 경제성이 있는 생계면활성제 또는 그 유도체나 동족체를 얻고자 하는 시도들이 활발히 진행되어 왔다.
지방산계의 생계면활성제인 2-알킬-3-히드록시지방산은 자연계에서 다양한 미생물에 의해 생성되며, 생성균주의 명칭에 따라 코리노미콜산(corynomycolic acid), 노카르도미콜산(nocardomycolic acid), 미콜산(mycolic acid) 등으로 불리우고 있다. 이들은 대개 총탄소수가 22~90이고 알킬기의 탄소수가 6~24의 분포를 가지고 있다.
2-알킬-3-히드록시지방산내에 존재하는 알킬기는 히드록시(hydroxy), 메톡시(methoxy), 케토(keto), 카보닐(carbonyl), 카복시(carboxyl), 에폭시 에스터(epoxy ester), 또는 시클로프로판링(cyclopropane ring)을 포함하는 직쇄형의 다양한 길이로 존재하며, 시스(cis) 또는 트랜스(trans) 이중결합이 존재하거나 여기에 다른 분기쇄(分岐鎖) 지방산(branch-chain fatty acid) 이 존재하기도 한다.
이들 중 코리노미콜산에 대해서는 많은 연구 보고가 있는데 총탄소수가 22~39, 분지알킬기의 탄소수가 6~14이며, 단순 지방산이나 고급 알코올류에 비해 매우 낮은 계면장력을 나타내고, 그 효과는 pH 2~10의 넓은 범위에 걸쳐 유지된다. 또한 섬유에 대해 강한 침투력을 보이며, 난용성 고체 미립자에 대한 분산력도 우 수하다. 이러한 특성들을 갖는 것은 구조상으로 2개의 알킬기를 가지며, 3-히드록시기가 카르복시기의 카르보닐기와 6각형 고리형태의 수소결합을 형성하는 것과 관련이 있는 것으로 알려져 있다.
코리노미콜산은 생합성을 통해 트레할로오스디에스테르(trehalose diester) 형태로 미코박테리움(Mycobacterium)속균 등에 의해 생산되고 [D. Cooper, et al., Appl. Environ. Microbiol., 37, 4('79)], 또한 탄화수소 발효과정에서 아트로박터(Arthrobacter), 노카르디아(Norcardia), 코리네박테리움(Corynebacterium), 로도코쿠스(Rhodococcus), 고도니아(Gordonia), 박테리오네마(Bacterionema), 미코폴리스포라(Micropolyspora), 브레비박테리움 (Brevibacterium) 속균 등에 의해 유리산(free acid) 형태로 생성된다[D. Cooper, et al., J. Amer. Oil. Chem. Soc., 58, 77('81)]. 그러나 그 수율은 배양액 1ℓ당 1g 미만으로 매우 낮고, 여러 가지 동족체 혼합물도 함께 얻어지기 때문에 원하는 성분만을 얻기 위해서는 별도의 복잡한 정제과정을 거쳐야만 하였다.
원래, 2-알킬-3-히드록시지방산은 미생물 세포벽의 중요한 구성성분으로 아라비노갈락탄-펩티도글리칸메트릭스(arabinogalactan-peptidoglycan matrix)와 결합된 상태로 존재한다. 또한 상기 미생물이 분비하는 트레할로스(trehalose)의 히드록시기에 에스터 결합된 당지질계(glycolipid) 생계면활성제 형태로 분비되기도 한다.
M.Utaka 등은 메틸 3-옥소에스테르로부터 베이커 이스트(Baker's Yeast)를 사용한 선택적 환원반응을 통해 4단계에 걸쳐 전체 수율이 15% 내외인 광학활성을 띠는 총탄소수 32개의 2-테트라데실-3-히드록시옥타데칸산을 제조하고 있다[J. Chem. Soc. Chem. Commun., 1368('87)]. 이 방법에 의한 제조 수율은 생합성보다는 향상되었으나 여전히 충분히 만족스럽지 못하며 합성에 사용된 시약이 비교적 고가이기 때문에 산업적인 측면에서는 개선의 여지가 있었다.
한편, Y.Ishigami 등은 지방산에스테르를 클라이젠 축합 반응시켜 2-알킬-3-옥소에스테르를 얻고 환원제를 사용하여 3-옥소기를 3-히드록시기로 치환한 뒤 염기 조건하에서 가수분해한 후, 산처리를 하여 총탄소수 16과 24인 2-알킬-3-히드록시지방산을 전체 수율 40% 내외로 합성하였다[J. Jpn. Oil Chem. Soc., 38, 1001('89)].
T.Fujii 등은 전기의 방법을 약간 변형시켜 총탄소수가 12, 16, 20, 24, 28인 2-알킬-3-히드록시지방산 및 그 염을 합성하였다. 이 방법은 기존에 발표된 방법들에 비하여 수율이나 제조방법이 개선된 것이었으나, 총탄소수가 증가할수록 수율이 크게 감소하여 24, 28인 경우는 10~16%로 발표하고 있다[J. Jpn. Oil Chem. Soc., 44, 3('95)].
전기의 방법은 지방산 에스테르로부터 출발하여 옥소에스테르를 얻는 제1단계, 생성된 옥소에스테르의 환원반응인 제2단계, 이후 가수분해 반응인 제3단계의 다단계 반응으로 구성되어 있다. 제1단계 반응인 클라이젠 축합반응에 사용되는 염기로서는 통상 소듐히드리드가 사용되는데 이는 수분과 격렬히 반응하며 화재 위험성이 있기 때문에 통상 오일분산계(dispersion) 상태로 사용하게 된다. 반응 후 축합반응의 출발물질과 생성물질이 모두 에스테르이기 때문에 오일상으로부터 분리 및 정제가 곤란하다는 점과 알킬기가 증가될수록 수율이 감소된다는 것이 단점으로 지적된다. 이후 환원반응과 가수분해 반응에 따른 반응 단계별 수율저하, 분리정제에 필요한 제반 유틸리티 사용에 따른 경제성 저하 등이 단점으로 지적되고 있다.
또한 상기한 단점을 개선하기 위한 종래의 방법으로서, 상업적으로 쉽게 구할 수 있는 알킬케텐 다이머를 출발물질로 하여, 2-알킬-3-히드록시지방산을 얻는 방법이 개시되어 있다. 이 종래의 방법의 제1단계는 염기와 알킬케텐다이머와의 반응에 의한 고리열림으로 2-알킬-3-옥소지방산염이 생성되는 반응이고, 제2단계는 환원제를 사용하여 상기의 제1단계에서 수득된 2-알킬-3-옥소지방산염을 2-알킬-3-히드록시지방산염으로 환원시키는 반응이다. 이 종래의 방법은 염기의 조건하에서 진행되므로 이후에 첨가된 환원제의 활성이 유지되어 과량의 환원제를 사용하지 아니하고도 반응을 수행할 수 있으며, 반응단계가 2단계로 간단하다는 장점이 있음과 아울러, 동일 반응기내에서 반응시약을 순차적으로 첨가하여 반응을 수행할 수 있으므로 각 단계별 분리공정이 필요 없기 때문에 매우 경제적으로 합성할 수 있다. 그러나 상기한 종래의 방법은 반응에 있어 조건이 가혹할 경우 개환반응에 의해 생성된 2-알킬-3-옥소지방산염이 디카르복시화반응에 의해 이산화탄소 형태로 이탈되어 케톤을 형성하게 되어 반응수율이 감소될 수 있으며, 당이나 새로운 생계면활성제 유도체로 만들기 위해서는 제조된 2-알킬-3-옥소지방산의 카르복실기를 활성화하여야 새로운 유도체의 제조가 가능하다는 단점이 있다.
본 발명에 따른 유류 오염 토양의 생물학적 복원 방법에 있어서는, 신규 미생물을 포함한 다양한 종류의 우수한 유류 분해능을 갖는 미생물을 효과적으로 이 용함과 아울러, 효과적이고도 경제적인 방법으로 제조되는 전술한 생계면활성제인 2-알킬-3-히드록시산 및 그 유도체가 상기한 미생물의 유류 분해 활성도를 증가시킬 수 있는 활성화제로서 적용된다.
부연하면, 상기한 생계면활성제인 2-알킬-3-히드록시산 및 그 유도체는 바이오벤팅법(Bioventing), 생물학적 증가법(Bioaugmentation), 토양경작법(Land Farming), 바이오파일(Biopile), 생물학적 반응기법(Bioreactor)과 같은 토양오염복원기술에서 유류 오염 토양의 오염물을 효과적으로 분해하여 제거할 수 있는 미생물의 분해 활성도를 증가시킬 수 있는 활성화제로서 효과적으로 적용될 수 있음은 물론, 디젤오일, 벙커씨유, 제트유 등과 같은 유류로 오염되어 있는 토양에 대한 토양세정(soil flushing) 및 토양세척기법(soil washing)과 같은 토양오염복원기술에서의 토양세척제로서도 효과적으로 적용될 수 있다.
본 발명의 첫 번째 목적은 광범위한 오염 유류원 스펙트럼을 가짐과 동시에, 우수한 유류 분해능을 갖는 신규 미생물을 제공하기 위한 것이다.
본 발명의 두 번째 목적은 상기한 첫 번째 목적에 따른 신규 미생물을 포함한, 우수한 유류 분해능을 갖는 미생물을 이용한 유류오염 토양의 생물학적 복원방법을 제공하기 위한 것이다.
본 발명의 세 번째 목적은 상기한 두 번째 목적에 따른 복원방법에 있어서, 상기 미생물이 상대적으로 고농도의 유류 오염 상태에서도 오염물질에 의한 증식에 지장을 받지 않으면서 오염물질을 분해할 수 있는 분해능은 증가시킬 있도록 하는, 환경친화적이고 2차 환경오염을 유발할 염려가 없는 생계면활성제로서의 활성화제를 적용시키는 유류오염 토양의 생물학적 복원방법을 제공하기 위한 것이다.
본 발명의 네 번째 목적은 상기한 세 번째 목적에 따른 활성화제의 효과적이고 경제적인 제조방법을 제공하기 위한 것이다.
본 발명에 따른 신규 균주 로도코코스 바이코뉴렌시스 EN3(Rhodococcus baikoneurensis EN3), 아씨네토박터 존스니 EN67(Acinetobacter johnsonii EN67), 아씨네토박터 헤모리티쿠스 EN96(Acinetobacter haemolyticus EN96)은 경기도 일대에서 오랜 기간 동안 다양한 유류로 오염된 토양으로부터 분리되었으며, 신규 균주 로도코코스 바이코뉴렌시스 EN3(Rhodococcus baikoneurensis EN3)는 그램 양성이고 구균 또는 간균이며, 아씨네토박터 존스니 EN67(Acinetobacter johnsonii EN67) 및 아씨네토박터 헤모리티쿠스 EN96(Acinetobacter haemolyticus EN96)은 그램 음성의 구균으로서, 이들은 다양한 스펙트럼의 유류에 대한 우수한 생분해능을 가진다.
분리된 본 발명에 따른 신규 균주 로도코코스 바이코뉴렌시스 EN3(Rhodococcus baikoneurensis EN3), 아씨네토박터 존스니 EN67(Acinetobacter johnsonii EN67), 아씨네토박터 헤모리티쿠스 EN96(Acinetobacter haemolyticus EN96)의 동정 분류를 위한 16S rRNA 유전자의 염기서열을 각각 본 명세서에 첨부된 염기서열목록 1 내지 3에 나타내며, 각각 로도코코스 바이코뉴렌시스 DSM44587T(Rhodococcus baikoneurensis DSM44587T), 아씨네토박터 존스니 ATCC17909T(Acinetobacter johnsonii ATCC 17909T), 아씨네토박터 헤모리티쿠스 ATCC17906T(Acinetobacter haemolyticus ATCC17906T)와 99% 유사성을 나타냈다.
새로이 분류된 본 발명에 따른 상기 균주를 각각 로도코코스 바이코뉴렌시스 EN3(Rhodococcus baikoneurensis EN3), 아씨네토박터 존스니 EN67(Acinetobacter johnsonii EN67), 아씨네토박터 헤모리티쿠스 EN96(Acinetobacter haemolyticus EN96) 균주라 명명함과 아울러, 상기한 미생물들을 KCTC(Korea Collection for Type Cultures)에 2004.12.08일자로 기탁하였으며, 기탁번호는 각각 KCTC19082, KCTC12360, KCTC12361이다.
따라서 본 발명에 따른 신규 균주는 로도코코스 바이코뉴렌시스 EN3 KCTC19082(Rhodococcus baikoneurensis EN3 KCTC19082), 아씨네토박터 존스니 EN67 KCTC12360(Acinetobacter johnsonii EN67 KCTC12360), 아씨네토박터 헤모리티쿠스 EN96 KCTC12361(Acinetobacter haemolyticus EN96 KCTC12361)로 특정된다.
본 발명에 따른 로도코코스 바이코뉴렌시스 EN3 KCTC19082(Rhodococcus baikoneurensis EN3 KCTC19082)의 형태학적 및 생리, 생화학적 특성을 하기의 표 1에 나타낸다.
로도코코스 바이코뉴렌시스 EN3 KCTC3483의 형태학적 및 생리생화학적 특성
형태 및 생리, 생화학적 특성 로도코코스 속 EN3 KCTC3483
그람 염색 +
형태 (Morphology) 막대/구균(rod/cocci)
최적 성장 온도 (˚C) 30
질산염 환원 (Nitrate reduction) -
인돌 생성 (Production of Indole) -
효소 활성
N-Acetyl-β-glucosaminidase -
Acid phosphatase +
Alkaline phosphatase +
α-Chymotrypsin +
Esterase (C4) +
Esterase Lipase (C8) +
α-Fucosidase -
α-Galactosidase -
α-Glucosidase (starch hydrolysis) +
β-Galactosidase (PNPG) -
β-Glucosidase (esculin hydrolysis) +
Lipase (C14) +
Protease (gelatin hydrolysis) -
Trypsin +
Urease +
Assimilation
2-Ketogluconate -
3-Hydroxybenzoate -
3-Hydroxybutyrate +
Acetate +
Adipate +
Caprate -
Citrate +
Gluconate +
Malate +
D-Glucose -
Maltose -
D-Ribose +
D-Sucrose +
L-Histidine +
N-Acetylglucosamine +
Glycogen -
+ : 양성 반응, - : 음성반응.
본 발명에 따른 아씨네토박터 존스니 EN67 KCTC12360과 아씨네토박터 헤모리티쿠스 EN96 KCTC12361의 형태학적 및 생리, 생화학적 특성을 하기의 표 2에 나타낸다.
아씨네토박터 존스니 EN67 KCTC12360과 아씨네토박터 헤모리티쿠스 EN96 KCTC12361의 형태학적 및 생리생화학적 특성
형태 및 생리, 생화학적 특성 아씨네토박터 속 EN67 KCTC12360 아씨네토박터 속 EN96 KCTC12361
그람 염색 - -
형태(Morphology) 구균(cocci) 구균(cocci)
최적 성장 온도 (˚C) 30 30
질산염 환원(Nitrate reduction) - -
인돌 생성 (Production of Indole) - -
효소 활성
NAcetyl-β-glucosaminidase - -
Acid phosphatase + +
Alkaline phosphatase + -
α-Chymotrypsin - -
Esterase (C4) + +
Esterase Lipase (C8) + +
Valine arylamidase - -
α-Fucosidase - -
α-Galactosidase - -
α-Glucosidase (starch hydrolysis) - -
β-Galactosidase (PNPG) - -
β-Glucosidase (esculin hydrolysis) - -
Lipase (C14) + -
Protease (gelatin hydrolysis) + +
Trypsin - -
Urease - -
Assimilation
4-Hydroxybenzoate - +
5-Ketogluconate - -
Acetate - +
Propionate - +
Valerate - +
Adipate - -
Caprate - +
Citrate - +
Malate - +
L-Alanine - +
L-Histidine - +
L-proline - +
N-Acetylglucosamine - -
Glycogen - -
+ : 양성 반응, - : 음성반응.
본 발명에 따른 신규 균주는 로도코코스 바이코뉴렌시스 EN3 KCTC19082(Rhodococcus baikoneurensis EN3 KCTC19082)의 계통수를 도 1에, 아씨네토박터 존스니 EN67 KCTC12360(Acinetobacter johnsonii EN67 KCTC12360) 및 아씨네토박터 헤모리티쿠스 EN96 KCTC12361(Acinetobacter haemolyticus EN96 KCTC12361)의 계통수를 도 2에 나타내며, 로도코코스 바이코뉴렌시스 EN3 KCTC19082(Rhodococcus baikoneurensis EN3 KCTC19082) 균주의 주사전자현미경 사진을 도 3에, 아씨네토박터 헤모리티쿠스 EN96 KCTC12361(Acinetobacter haemolyticus EN96 KCTC12361) 균주의 주사전자현미경 사진을 도 4에 나타낸다.
본 발명에 따른 유류 오염 토양의 생물학적 복원 방법에 사용할 수 있는 미생물은 상기한 본 발명에 따른 신규 미생물에 한정되는 것은 아니며, 우수한 유류 분해능을 갖는 미생물이라면 특별한 제한 없이 사용될 수 있음은 물론이다.
이러한 미생물로서는 오랜 기간 동안 유류에 오염되었던 토양으로부터 분리된 다양한 유류 오염원에 대한 생분해 능력을 갖는 것들이라면, 이에 특별한 제한은 없다.
보다 구체적으로는 노카디아 속, 고도니아 속, 로도코코스 속, 아시네토박터 속 미생물들이 사용될 수 있으며, 이들 속에 속하는 미생물은 일반적으로 다양한 난분해성 물질 즉, 디젤오일, 벙커씨유, 고비점 방향족화합물, 염소계 화합물 등에 우수한 분해능을 가지며, 이러한 미생물은 자연계에 널리 존재하며 다양한 오염원을 탄소원 및 에너지원으로 사용하여 분해한다.
본 발명자들에 의하여 유류 오염 토양의 생물학적 복원 방법에 이용될 수 있는 것으로 확인된 균주의 구체적인 예로서는, 로도코코스 바이코뉴렌시스 EN3(Rhodococcus baikoneurensis EN3), 아씨네토박터 존스니 EN67(Acinetobacter johnsonii EN67), 아씨네토박터 헤모리티쿠스 EN96(Acinetobacter haemolyticus EN96)가 있으며, 본 균주들뿐만 아니라 노카디아 트랜스발렌시스(Nocardia transvalensis DSM43405T: 이하, 보존기관 및 보존번호임), 노카디아 아스테로이데스(Nocardia asteroides ATCC19247T), 고도니아 스푸티(Gordonia sputi DSM43896T), 고도니아 리조스페라(Gordonia rhizosphera IFO16068T), 고도니아 니티다(Gordonia nitida LE31T), 고도니아 히르수타(Gordonia hirsuta DSM44140T), 고도니아 브론치알리스(Gordonia bronchialis CIP1780.88T), 고도니아 아마라에(Gordonia amarae DSM43392T), 고도니아 디설푸리칸스(Gordonia desulfuricans NCIMB40816T), 고도니아 좁피(Rhodococcus zopfii ATCC51349T), 로도코코스 란티슬라비엔시스(Rhodococcus wratislaviensis NCIMB13082T), 로도코코스 투키사무엔시스(Rhodococcus tukisamuensis Mb8T), 로도코코스 루베르(Rhodococcus ruber DSM43338T), 로도코코스 로도코우스(Rhodococcus rhodochrous CIP1759.88T), 로도코코스 로드니(Rhodococcus rhodnii DSM43336T), 로도코코스 피리디노란스(Rhodococcus pyridinovorans KCTC0647BPT), 로도코코스 퍼콜라투스(Rhodococcus percolatus MBS1T), 로도코코스 오파쿠스(Rhodococcus opacus DSM43205T), 로도코코스 마리노나센스(Rhodococcus marinonascens DSM43752T), 로도코코스 코랜시스(Rhodococcus koreensis DNP505T type2), 로도코코스 조스티(Rhodococcus jostii IFO16295T), 로도코코스 글로버룰러스(Rhodococcus globerulus DSM43954T), 로도코코스 파시안스(Rhodococcus fascians DSM20669T), 로도코코스 에리스로폴리스(Rhodococcus erythropolis ATCC4277T), 로도코코스 에리스루스(Rhodococcus erythreus DSM43066T), 로도코코스 에퀴(Rhodococcus equi DSM20307T), 로도코코스 코프로필루스(Rhodococcus coprophilus ATCC29080T), 로도코코스 바이코뉴렌시스(Rhodococcus baikonurensis GTC 1041T), 아씨네토박터 타우네리(Acinetobacter towneri AB1110T), 아씨네토박터 베일리(Acinetobacter baylyi B2T), 아씨네톡박터 칼코아세티쿠스(Acinetobacter calcoaceticus DSM30006T), 아씨네토박터 그리몬티(Acinetobacter grimontii 17A04T), 아씨네토박터 이오피(Acinetobacter lwoffii DSM2403T), 아씨네토박터 래디오레시스텐스(Acinetobacter radioresistens ATCC17909T), 아씨네토박터 탄도이(Acinetobacter tandoii 4N13T), 아씨네토박터 타운네리(Acinetobacter towneri AB1110T), 아씨네토박터 바우만니(Acinetobacter baumannii ATCC19606T), 아씨네토박터 바우베티(Acinetobacter bouvetii 4B02T), 아씨네토박터 저너리(Acinetobacter gerneri 9A01T), 아씨네토박터 주니 (Acinetobacter junii ATCC17908T), 아씨네토박터 파르부스(Acinetobacter parvus LUH4616T), 아씨네토박터 쉰들러리(Acinetobacter schindleri NIPH1034T), 아씨네토박터 티전베르지아에(Acinetobacter tjernbergiae 7N16T), 아씨네토박터 우르싱기(Acinetobacter ursingii NIPH137T)이며, 이들 균주는 단독으로 사용될 수도 있으나, 필요에 따라(즉, 오염 유류의 종류에 따른 효과적인 처리 등) 적절히 임의로 조합하여 사용될 수 있으며, 이것이 보다 바람직할 수 있다.
본 발명에 따른 유류 오염 토양의 생물학적 복원 방법은 상기한 균주 중 적어도 1종의 균주를 유류 오염 토양에 접종하고 증식시킴으로써 유류를 생분해하여 제거하는 것으로 구성된다.
상기한 균주들은 디젤 오일 농도 1,000ppm에서는 모두 100% 분해율을 나타내며, 심지어 20,000ppm 농도에서도 90% 이상의 분해율을 나타내기도 한다(후술하는 표 3 참조).
본 발명에 따른 유류 오염 토양의 생물학적 복원 방법에 이용될 수 있는 상기한 미생물들의 접종량은 배지 중량 포함으로 0.001~8%(v/v 또는 v/w) 정도, 바람직하게는 0.1~3%(v/v 또는 v/w) 정도이나 제한적인 것은 아니다.
또한, 본 발명에 따른 유류 오염 토양의 생물학적 복원 방법에 있어서는 하기의 화학식 1로 표시되는 생계면활성제인 2-알킬-3-히드록시산 및 그 유도체의 첨가에 의해 유류 생분해율을 20~70% 정도 현저히 상승시킬 수가 있다.
Figure 112006051035194-PAT00001
(상기 식 중, R1, R2는 각각 탄소수 4~50의 히드록시, 메톡시, 케토, 카보닐, 카복시, 에폭시 에스터, 또는 시클로프로판링을 포함하는 직쇄 혹은 분지형 알킬기 ; R3는 -OR4 [여기서 R4는 수소, 나트륨, 칼륨, 마그네슘, 칼슘, 암모늄, 또는 트리에탄올아민], 모노에탄올아민, 디에탄올아민, D-글루코사민, 글루카민, N-메틸글루카민, 글루코오스, 람노스, 만노스, 갈락토스, 락토스, 슈크로스, 말토스, 아라비노스, 셀로바이오스, 또는 이와 같은 단당 및 이당류를 포함하는 다당류이다.)
이하, 본 발명의 유류 오염 토양의 복원 방법에 효과적으로 사용될 수 있는 2-알킬-3-히드록시산 및 그 유도체에 대해 상세히 설명한다.
상기한 화합물은 하기의 반응식에 기재된 반응경로를 통해 합성할 수 있다. 본 발명에 따른 합성반응은 수소 분위기에서 5% Pd/C, 10% Pd/C, 0.5% Pd/A12O3 촉매 조건하의 알킬케텐다이머의 수소화 반응에 따른 β-락톤의 형성과, 개환반응에 의한 2-알킬-3-히드록시산의 제조 혹은 글루코스와 친핵체의 반응에 따른 2-알킬-히드록시산의 유도체를 형성하는 2단계 과정으로 이루어진다.
상기 알킬케텐다이머는 제지공업에서, 종이속으로 침투되는 액체를 선택적으로 차단하는 사이즈제로 종래로부터 널리 사용되고 있는 것으로 상용의 화합물, 예를 들어, BASF사, 일본유지사, 허큘리스사 등의 제품을 사용할 수 있으며, 원하는 알킬기 또는 알케닐기를 갖는 아실클로라이드와 트리에틸아민으로 합성하여 사용할 수도 있다. 알킬케텐다이머의 합성에 관해서는 여러 논문에 자세히 언급되어 있다[J.Amer. Chem. Soc., 87, 5191('65)/ibid., 72, 1461('50)/ibid., 69, 2444('47)].
상기한 바와 같이 얻은 알킬케텐다이머는 수소 분위기에서 5% Pd/C, 10% Pd/C, 0.5% Pd/A12O3 촉매와 반응하여 β-락톤이 되고, 이후 개환반응이나 당류와의 반응에 의해 2-알킬-3-히드록시 지방산 및 그 유도체로서 생성된다.
이하, 상기한 2-알킬-3-히드록시 지방산 및 그 유도체의 제조 과정을 하기의 반응식 1에 자세히 설명하기로 한다.
Figure 112006051035194-PAT00002
상기 반응식 1에서 제1 단계의 반응은 알킬케텐다이머를 수소 분위기에서 5% Pd/C, 10% Pd/C, 0.5% Pd/A12O3 촉매 반응에 의해 수소화 반응으로 β-락톤이 생성되는 반응이고, 제2 단계의 반응은 알카리에 의한 개환반응이거나, 또는 당을 갖는 친핵체와의 반응에 의해, 2-알킬-3-히드록시 지방산 또는 그 유도체를 만드는 반응 단계이다.
본 발명에 따른 상기 반응의 제1 단계에서의 수소화 반응을 위해서는 통상 수소화 반응에 효과적으로 알려진 여러 가지 촉매의 사용이 가능하다. 이러한 촉매로는 예를 들면, 팔라듐 알루미나 착물 (Pd/Al2O3), 염화 루테늄(II)-2,2'-비스(디페닐포스피노)-1,1'-비나프틸 착물 {RuCl(2,2'-bis(diphenylphosphino)-1,1'-binaphthyl)}, 레니 니켈(Raney-Ni), 로듐 알루미늄옥사이드 착물(Rh/Al2O3), 팔라듐 착물(Pd/BaSO4, Pd/C)등을 들 수 있다. 상기 반응 촉매 중에서 분리 정제가 용이 한 5% Pd/C, 10% Pd/C, 0.5% Pd/A12O3 촉매가 바람직할 수 있다. 또한, 사용되는 촉매의 양은 알킬케텐다이머에 대해 0.01%~4% 중량비이다. 바람직한 촉매의 사용 양으로서는 5% Pd/C는 0.05~1.0%, 10% Pd/C는0.025~0.5%, 0.5% Pd/A12O3는 0.5~2% 중량비이다. 상기 제1 단계 반응의 수소화 반응은 고압에서도 수행할 수 있으나, 바람직하기로는, 1~50 기압 정도, 바람직하게는 2~40기압에서 수행한다. 또한 0.5% Pd/A12O3는 담지체 형태로 성상이 일반 촉매들과 달리 분말상이 아닌 펠렛상이어서 반응 후 분리가 용이하며, 10회 이상 재생 사용하여도 고수율로 2-알킬-3-히드록시-알카노익 β-락톤을 얻을 수 있는 장점을 가진다.
그러나 반응 시간이나 사용하는 용매, 반응 온도의 변수에 따라 알킬케텐다이머의 개환 반응에 의해 발생하는 2-알킬 지방산의 형성으로 반응 수율이 감소 될 수 있다. 이러한 부반응은 NMR에 의해서 확인이 가능하며, 실제 C8 알킬케텐다이머와 C16알킬케텐다이머 등으로부터 2-옥틸-옥타노익산, 2-펜타데실-펜타데카노익산이 형성되는 것을 확인 할 수 있다[1H-NMR CDCl3,δ] 0.87(t,6H), 1.25 ~ 1.64(m), 2.23 ~ 2.38(m,1H)]. 따라서 상기와 같이 바람직하지 못한 부반응을 억제하기 위해서 반응 조건을 적정하게 유지하는 것이 중요하다. 이를 위해서는 반응 온도를 실온 내지 50℃에서 수행하고, 반응 시간은 박막크로마토그라피법(TLC)을 이용해서 확인하여 알킬케텐다이머가 소멸되면 즉시 종료함이 바람직하다. 특히, 반응용매는 알킬케텐다이머의 탄수 수에 따라 적절한 혼합용매를 사용하면 부반응이 일어나지 않으며, 특별한 정제 과정 없이 고수율로 2-알킬-3-히드록시-알카노익 β-락톤을 얻을 수 있다.
상기 제1 단계인 환원반응에서 사용되는 용매로는 메탄올, 에탄올, 에틸아세테이트, n-프로판올, n-부탄올, 이소프로판올, 테트라히드로푸란, 디메틸포름아미드, 디메틸설폭시드 등을 들 수 있으며, 바람직하게는 메탄올, 에탄올, 에틸아세테이트 및 이들의 혼합용매 등을 들 수 있다. 가장 바람직한 제1 단계 반응의 용매로서는 에틸 아세테이트와 에틸알코올을 5%:95%~95%:5%의 체적 비율로 혼합하여 사용하는 것이다.
상기 제2 단계의 개환반응은 염기와 반응시켜 개환을 하게 되며, 이에 의해 2-알킬-3-히드록시산염을 얻을 수 있다. 또 얻어진 염을 유기용매 하에서 분리한 후 산성화시켜 추출하면 고순도의 2-알킬-3-히드록시산을 얻을 수 있다.
상기 제1 단계의 반응으로 생성된 β-락톤은 친핵체와 반응하여 새로운 유도체를 제조하는 것이 가능하다. 2-알킬-3-히드록시산의 경우, 친수기로서 당이 치환될 경우 친수성이 증가되고 다양한 계면활성 능력이 기대된다. 또한 당으로서 가장 많은 빈도를 보이는 글루코스, 람노스, 만노스, 갈락토스, 락토스, 슈크로스, 말토스, 아라비노스, 셀로바이오스 또는 이와 같은 단당 및 이당류를 포함하는 다당류와 아민이 함유된 당으로서 D-글루코사민, 글루카민, N-메틸글루카민, 그리고 모노에탄올아민, 디에탄올아민을 사용하여 새로운 유도체를 제조할 수 있다.
상기한 2-알킬-3-히드록시 지방산 또는 그 유도체는 계면활성작용이 우수하고 2차 오염성이 낮은 환경친화적인 특성 때문에 유출유 처리제로도 활용될 수 잇 을 뿐만 아니라, 화학구조가 비교적 간단하여 합성이 용이고 또한 경제적이다.
본 발명에 따른 유류 오염 토양의 생물학적 복원 방법은 유류에 의해서 오염된 토양을 채취하여 유류분해 균주를 순수 분리한 다음, 상기 분리된 수 백 여종의 균주를 분리하여 배양한 후 그 중 오일 분해능이 우수한 균주를 1차 스크리닝하여 분리한 다음, 상기한 2-알킬-3-히드록시산 및 그 유도체와 같은 생계면활성제에 의해 고농도의 오일 오염원의 분해가 증가되는 균주를 2차 스크린인하여 분리 동정하는 과정을 포함할 수 있다.
여기서, 생계면활성제는 미생물이 분비하는 2-알킬-3-히드록시 지방산 및 그 유도체로서, 아세트마이탈계 미생물의 세포벽에 존재하며, 기능은 고농도로 존재하는 유류 지역에서 미생물이 유류를 탄소원으로 사용하여 성장할 수 있도록, 미생물과 유류 탄소원 간의 계면장력 (Interfacial Tension)을 낮추어, 미생물이 유류를 원활히 이용 할 수 있도록 도와주는 기능을 한다. 본 발명의 복원 방법에 있어서 상기한 생계면활성제는 동정 분리된 상기 미생물의 유류오염원 분해능의 활성도를 증가시키게 된다.
상기한 생계면활성제인 2-알킬-3-히드록시산 및 그 유도체는 균체와 배지를 포함한 전 중량에 대하여 0.0001~10중량%, 바람직하게는 0.001~10중량%로 포함된다.
이하, 본 발명을 실시예 및 비교예를 통하여 상기 균주의 동정, 분리 및 분류와, 생계면활성제인 2-알킬-3-히드록시 지방산 및 그 유도체의 제조방법, 그리고 유류 생분해율에 관하여 설명하기로 한다. 그러나 이들 실시예는 본 발명을 예시적으로 증명하기 위한 것뿐으로서 본 발명의 영역이 이들 실시예에 의해 한정되는 것은 아니다.
실시예 1
유류 분해활성을 갖는 미생물의 분리
경기도 일대에서 오랫동안 다양한 유류로 오염된 토양을 접종 시료로 사용하였다. 유류 오염지 토양을 지하 0~2 미터 부위에서 선발한 후 즉시 공구병에 투입하고 4℃ 에서 냉장 보관 하였다. 구체적인 채취 상황은 다음 표 1에 기재한 바와 같다.
채취 일자 채취장소 시료수 오염원
2002년 10월 15일 경기 인천지역 오일 저유소 2 디젤, 케로센, 벙커C유
2002년 11월 15일 경기 인천지역 오일 저유소 2 디젤, 케로센, 벙커C유
2002년 12월 15일 경기 인천지역 오일 저유소 2 디젤, 케로센, 벙커C유
2002년 10월 17일 경기 시화호 폐수 1 오일 슬러지
유류의 분해능이 우수한 미생물을 선별하기 위해, 우선적으로 LB(Luria-Bertani) 아가 배지나 트립틱 소이 아가(Tryptic Soy Agar) 배지로 조성된 평판 배지에 도말하고 30℃ 에서 48시간 동안 배양하였다. 일정시간 동안 배양한 이후, 형성된 균주 단일 콜로니(single colony)를 현미경으로 관찰하여 구균과 간균 500개를 선발하여 새로운 상기의 평판 배지에 다시 도말하여 분리(isolation)한 다음, 삼각 플라스크에 1,000 ppm, 5,000 ppm, 10,000 ppm, 20,000 ppm의 디젤과 미네랄 성분(NH4NO3, 1g/L; MgSO4, 0.2g/L; CaCl2, 0.02g/L; FeCl2, 0.05g/L; KH2PO4, 1g/L; K2HPO4, 1g/L; pH 7.0)을 주입한 액체 배지 성분에 분리된 균주를 접종한 이후, 30℃ 에서 7일간 배양하였다.
분리된 미생물의 동정
상기 실험에서 디젤과 미네랄 성분의 액체 배지 성분에서 성장이 가장 우수한 3가지 균주를 골라내어 미생물 동정을 진행 하였다. 분리된 균주들을 동정을 위하여, 16S rRNA 유전자 염기서열을 분석하였다. 우선 균주들을 MRS 브로쓰(broth)(Difco)에서 30℃에서 150 rpm으로 진탕하면서 7일간 배양하였다. 배양액으로부터 균체를 얻기 위해 6,000 rpm에서 20분간 원심분리 한 후, 하층부의 균체를 획득하였다. 이후, DNeasy Tissue Kit(Qiagen)을 사용하여 크로모좀 DNA(chromosomal DNA)를 추출 정제하였다. 다시 크로모좀 DNA를 주형(template)으로 16S rRNA 유전자를 PCR 방법을 사용하여 증폭하였다.
이어서 분리된 EN3, EN67 그리고 EN96 균주의 계통학적(Phylogenetic) 위치를 확인하였다. 계통 분석(Phylogenetic analysis)을 위해서, 분리된 염색체 DNA(chromosomal DNA)로부터 증폭된 16S rDNA를 SeqMan 소프트웨어, BioEdit 프로그램, 그리고 CLUSTAL X 프로그램을 사용하여 EN3, EN67 그리고 EN96 균주의 16S rRNA 유전자 전체 서열(gene full sequences)을 확인한 다음, BLAST 조사 프로그램을 사용하여 유전자은행 데이터베이스(GenBank database)로부터 관계되는 균주들의 연관 서열(related sequences)를 확인한 이후, BioEdit 프로그램을 사용하여 그들 간의 간격 매트릭스(distance matrix)를 확인하고, Mega2 프로그램을 사용하여 인접 연관법(neighbor-joining method)을 사용하여 EN-3에 대한 계통수를 완성하였다.
신규 미생물 균주 EN3의 16S rRNA 유전자의 염기서열을 염기서열목록 1에, 그리고 신규 미생물 균주 EN67 및 EN96의 16S rRNA 유전자의 염기서열을 염기서열목록 2 및 3에 각각 나타낸다.
아울러, 도 1에는 신규 미생물 균주 EN3의 계통수를, 그리고 도 2에는 신규 미생물 균주 EN67 그리고 EN96의 계통수를 나타낸다.
증폭된 유전자의 염기서열을 분석한 이후, MEGA version 2.1 프로그램을 사용하여 새로이 분리된 균주의 분류를 분석한 결과, 신규 미생물로 동정되었으며, 그 형태학적 및 생리, 생화학적 특성을 규명하였고, 그 결과를 전술한 표 1 및 표 2에 기재한 바 있다.
또한, 신규 균주 EN3 및 EN96의 형태학적 관찰을 위한 TSA 배지에서 증식시킨 대수기(exponential-growth phase)에서의 주사전자현미경(scanning electron microscopy(SEM, X10,000)) 관찰 사진을 각각 도 3 및 도 4에 나타낸다.
실시예 2~12 및 비교예 1~6
분리된 미생물의 유류오염 분해 활성도 측정
본 실험을 위해 사용된 디젤오일의 공급처는 GS-Caltex 정유사(대전, 한국)로부터 입수하였으며, 알칸(alkanes) 42.7%, 시클로알칸(cycloalkanes) 33.4%, 그리고 방향족화합물(aromatics) 23.9%로서 GS-Caltex 정유사에서 입수한 기술자료(technical data sheet)에 명시된 수치를 기록하였다.
실험방법은 500ml 플라스크에 100ml의 탄소 및 에너지원을 포함하지 않는 미네랄 배지 성분(NH4NO3, 1g/L; MgSO4, 0.2g/L; CaCl2, 0.02g/L; FeCl2, 0.05g/L; K2HPO4, 1g/L; KH2PO4, 1g/L; pH 7.0)을 첨가한 이후, 100, 500, 1000, 1500 그리고 2000mg의 디젤오일을 첨가한 이후 트립프틱 소이 한천 배지(tryptic soy agar medium)(Difco)에서 배양한 각각의 균주들을 주입한 이후 폴리테트라플루오로에틸렌 씰(polytetrafluoroethylene seals)로 봉입하였다. 여기서 접종 균주의 농도는 6 x 106 cfu/ml이며 최종농도비로 1% (v/v)로 접종하였으며, 이후 pH는 6.9 ~ 7.1로 조정되었다. 따라서 디젤오일이 유일한 탄소 및 에너지원으로 결국 미생물이 성장 할 경우 디젤오일을 분해시키게 된다. 또한 본 실험에서는 비교군으로 균주가 접종되지 않은 디젤오일이 첨가된 미네랄 솔트 배지를 같이 배양하여 TPH를 측정하였는데, 이것은 디젤오일은 다양한 종류의 화합물을 포함하고 있어 시간 경과에 따라 비점이 낮은 화합물은 휘발이 되어 디젤농도가 낮아짐으로 이러한 값을 보정하기 위한 것 이다. 또한 측정의 오차를 방지하기 위해 각각 3샘플을 측정하여 평균값으로 기록하였으며, 플라스크에 부착되어 측정되지 않은 디젤 오일의 오차를 최대한 방지하기 위해 각각의 샘플링에서 플라스크 전체를 100ml의 노말헥산으로 추출하여 측정 하였다. 배양은 30도에서 300 rpm으로 7일간 진행하였으며, 1일 간격으로 샘플링하여 가스크로마토그라피로 디젤 분해율을 측정 하였다.
우선 디젤오일 분석은 FID detector가 장착되어 있는 가스크로마토그라피(HP 5890 series II, Hewlett-Packard, USA)와 HP-1 컬럼(30 m x 0.32 mm x 1 μm, J&W Scientific, USA)을 사용하였고, 헬륨을 담지 기체(carrier gas)로서 그리고 주입기(injector)와 검출기(detector) 온도는 각각 280도와 300도로 세팅하였다. 컬럼 온도는 2분간 40도로 유지한 이후 분당 10도의 속도로 300도까지 올렸으며 이후 15분간 300도로 유지하였다. 본 실험에서는 2㎕의 샘플을 주입하였으며, 가스크로마토그램(gas chromatogram)의 모든 피크면적들의 합산 값 즉, TPH(Total Petroleum Hydrocarbon)으로 남아있는 디젤오일의 량을 측정하였다. 남은 유류오염원에 대한 추출은 N-헥산 추출법을 사용하였고 분해율(%)의 계산은 다음의 수학식 1과 같다.
Figure 112006051035194-PAT00003
본 발명자들이 분리 및 확보한 다양한 미생물 균주들에 대한 배양 7일째의 유류분해능 실험 결과를 하기의 표 4에 나타낸다.
Figure 112006051035194-PAT00004
본 발명에서 비교예 1의 Pseudomonas aeruginosa; 비교예 2의 Klebsiella pneumonia; 비교예 3의 Bacillus subtilis; 비교예 4의 Streptomyces speibonae; 비교예 5의 Bacillus pumilus; 비교예 6의 Bacillus licheniformis의 경우, 1000 및 5000 ppm의 디젤 초기농도에서 평균 50 ~ 60%의 유류분해 효과를 나타내었고, 초기농도 10,000 ppm의 경우 평균 10 ~ 20%의 유류분해 효과를 나타내었으며, 초기농도 20,000 ppm에서는 디젤분해가 일어나지 않았다. 특히 비교예 6의 Bacillus licheniformis는 1000 및 5000 ppm의 디젤 초기농도에서 평균 10%의 분해율을 보여 유류분해능력이 매우 낮음을 알 수 있었다.
한편, 본 발명에 따른 실시예 2의 Rodococcus baikoneurensis EN3; 실시예 3의 Acinetobacter johnsonii EN67; 실시예 4의 Acinetobacter haemolyticus EN96; 실시예 5의 Acinetobacter junii EN105; 실시예 6의 Gordonia nitida NP1; 실시예 7의 Gordonia amicalis NP2; 실시예 8의 Gordonia desulfuricans NP3; 실시예 9의 Gordonia SPR2 NP4; 실시예 10의 Gordonia westfalica NP6; 실시예 11의 Gordonia namibiensis NP-7의 경우, 1,000 ppm와 5,000 ppm의 디젤 농도에서 82% 이상 100%의 우수한 분해 능력을 가지나, 10,000 ppm과 20,000 ppm에서는 상대적으로 유류 분해 능력이 감소됨을 확인하였다. 그러나 실시예 12 에서는 실시예 2, 실시예 6 그리고 실시예 7의 균주를 혼합 배양하여 측정한 결과는 개별적 균주에 비하여 초기디젤농도 10,000 및 20,000 ppm에서 디젤오일 분해능력이 증가 되었다.
Rodococcus baikoneurensis EN3의 접종 배지와 미접종 배지에 대한 초기 디젤 농도 각각 1000, 5000, 10,000, 그리고 20,000 ppm에서의 디젤오일 분해 결과를 도 5a 내지 도 5d에 각각 나타낸다.
도 5a 내지 도 5d에서 Rhodococcus baikonurensis EN3의 초기 접종수는 6 x 104 cfu/ml이며, ● 표시는 미생물 미접종군(대조군)을, ○ 표시는 미생물 접종군을 나타낸다.
Rhodococcus baikonurensis EN3의 접종군에서는 접종 7일째 1000 ppm의 디젤초기농도에서 100%의 분해율을 보였고, 5000와 10,000 ppm에서 64.9 %과 60.7%로 분해율이 감속되었다. 20,000 ppm에서는 30.5%의 낮은 분해율을 보여주었다. 디젤오일의 분해는 주로 3일째까지 진행 되었으며, 이후 4일부터 7일째까지는 분해속도가 감소되는 경향을 보였다.
이어서, Acinetobacter johnsonii EN67의 접종 배지와 미접종 배지에 대한 초기 디젤 농도 각각 1000, 5000, 10,000, 그리고 20,000 ppm에서의 디젤오일 분해 결과를 도 6a 내지 도 6d에 각각 나타낸다.
도 6a 내지 도 6d에서 Acinetobacter johnsonii EN67의 초기 접종수는 6 x 104 cfu/ml이며, ● 표시는 미생물 미접종군(대조군)을, ○ 표시는 미생물 접종군을 나타낸다.
Acinetobacter johnsonii EN67의 접종군에서는 접종 7일째 1000 ppm의 디젤초기농도에서 100%의 분해율을 보였고, 5000, 10,000 및 20,000 ppm에서도 각각 94.5%, 94.6%과 93.6%로 높은 분해율을 보여주었다. 디젤오일의 분해는 주로 3일째까지 진행 되었으며, 이후 4일부터 7일째까지는 분해속도가 감소되는 경향을 보였다.
또한, Acinetobacter haemolyticus EN96의 접종 배지와 미접종 배지에 대한 초기 디젤 농도 각각 1000, 5000, 10,000, 그리고 20,000 ppm에서의 디젤오일 분해 결과를 도 7a 내지 도 7d에 각각 나타낸다.
도 7a 내지 도 7d에서 Acinetobacter haemolyticus EN96의 초기 접종수는 6 x 104 cfu/ml이며, ● 표시는 미생물 미접종군(대조군)을, ○ 표시는 미생물 접종군을 나타낸다.
Acinetobacter johnsonii EN96의 접종군에서는 접종 7일째 1000 ppm의 디젤초기농도에서 100%의 분해율을 보였고, 5000, 10,000 및 20,000 ppm에서도 각각 97.7%, 90.8%과 91.4%로 높은 분해율을 보여주었다. 디젤오일의 분해는 주로 3일째까지 진행 되었으며, 이후 4일부터 7일째까지는 분해속도가 감소되는 경향을 보였다.
이어서, Gordonia nitida NP1의 접종 배지와 미접종 배지에 대한 초기 디젤 농도 각각 1000, 5000, 10,000, 15,000 그리고 20,000 ppm에서의 디젤오일 분해 결과를 도 8에 나타낸다.
도 8에서 Gordonia nitida NP1의 초기 접종수는 6 x 104 cfu/ml이고, 미생물 미접종군의 디젤초기농도는 ○ 1000, ▽ 5000, □ 10,000, ◇ 15,000 그리고 △ 20,000 ppm으로 나타내며, 미생물 접종군의 디젤초기농도는 ● 1000, ▼ 5000, ■ 10,000, ◆ 15,000 그리고 ▲ 20,000 ppm을 나타낸다.
Gordonia nitida NP1의 접종군에서는 접종 7일째 1000 ppm의 디젤초기농도에서 100%의 분해율을 보였고, 5000, 10,000 및 15,000 ppm에서도 각각 90.7%, 75.9%과 56.8%의 분해율을 보여주었다. 20,000 ppm에서는 분해율이 20%이하로 현저하게 낮아졌다. 디젤오일의 분해는 주로 3일째까지 진행 되었으며, 이후 4일부터 7일째까지는 분해속도가 감소되는 경향을 보였다.
실시예 13~15
생물 계면활성제에 의한 미생물의 유류 분해 활성도 증가능 측정
실시예 3의 Acinetobacter johnsonii EN67, 실시예 4의 Acinetobacter haemolyticus EN96, 실시예 9의 Gordonia SPR2 NP4를 제외하고, 실시예 2의 Rodococcus baikoneurensis EN3, 실시예 5의 Acinetobacter junii EN105, 실시예 6의 Gordonia nitida NP1, 실시예 7의 Gordonia amicalis NP2, 실시예 8의 Gordonia desulfuricans NP3, 실시예 10의 Gordonia westfalica NP6, 그리고 실시예 11의 Gordonia namibiensis NP7에서는 10,000 ppm 이상의 고농도 디젤에서 미생물의 분해능이 감소되는 경향을 나타내었다.
따라서 본 발명에 적용되는 탄소수 16개의 2-헥실-3-히드록시-데카노익산을 10,000 및 20,000 ppm의 디젤과 미네랄 배지 성분(NH4NO3, 1g/L; MgSO4, 0.2g/L; CaCl2, 0.02g/L; FeCl2, 0.05g/L; KH2PO4, 1g/L; K2HPO4, 1g/L; pH 7.0)을 주입한 액체 배지 성분에 첨가한 다음, 상기의 실시예 2의 Rodococcus baikoneurensis EN3와 실시예 6의 Gordonia nitida NP1를 각각 접종하여 30℃에서 7일간 배양한 후, 가스 크로마토그라피를 사용하여 유류 분해능의 증가정도를 측정 하였다.
실시예 13
도 9는 초기 디젤 농도 20,000 ppm에서 합성 생계면활성제 2-헥실-3-히드록시-데카노익산에 의한 Rodococcus baikoneurensis EN3의 디젤오일 분해증가 결과를 나타내는 그래프도로서, Rodococcus baikoneurensis EN3의 초기 접종수는 6 x 104 cfu/ml이고, 디젤초기농도는 20,000 ppm이다. 또한 2-헥실-3-히드록시-데카노익산의 초기농도는 ○ 10 ppm, □ 50 ppm, △ 100 ppm이고, ● 표시는 미생물 미접종군(대비군 1)을, ■ 표시는 미생물 접종군이지만 2-헥실-3-히드록시-데카노익산 미주입군(대비군 2)을 나타낸다.
2-헥실-3-히드록시-데카노익산의 cmc(critical micelle concentration)은 37.1 ppm이며, 첨가된 2-헥실-3-히드록시-데카노익산의 농도는 각각 10, 50 그리고 100 ppm이였다. 각각의 농도 모두에 있어 약 70% 분해율을 나타내며, 이것은 2-헥실-3-히드록시-데카노익산이 첨가되지 않은 경우의 분해효율인 약 30%보다 증가된 수치를 보여 주고 있다. 또한, 2-헥실-3-히드록시-데카노익산의 농도 변화에 상관없이 디젤오일의 분해되는 최대치는 대략 동일하였다.
실시예 14
도 10은 초기 디젤 농도 15,000 ppm에서 합성 생계면활성제 2-헥실-3-히드록시-데카노익산에 의한 Gordonia nitida NP1의 디젤오일 분해증가 결과를 나타내는 그래프도로서, Rodococcus baikoneurensis EN3의 초기 접종수는 6 x 104 cfu/ml이고, 디젤초기농도는 15,000ppm이다. 또한 2-헥실-3-히드록시-데카노익산의 초기농도는 ▼ 9 ppm, ▽ 90 ppm, ■ 900 ppm이고, ● 표시는 미생물 미접종군(대비군 1)을, ○ 표시는 미생물 접종군이지만 2-헥실-3-히드록시-데카노익산 미주입군(대비군 2)을 나타낸다.
실시예 15
도 11은 초기 디젤 농도 20,000 ppm에서 합성 생계면활성제 2-헥실-3-히드록시-데카노익산에 의한 Gordonia nitida NP1의 디젤오일 분해증가 결과를 나타내는 그래프도로서, Rodococcus baikoneurensis EN3의 초기 접종수는 6 x 104 cfu/ml이고, 디젤초기농도는 20,000ppm이다. 또한 2-헥실-3-히드록시-데카노익산의 초기농도는 ▼ 9 ppm, ▽ 90 ppm, ■ 900 ppm이고, ● 표시는 미생물 미접종군(대비군 1)을, ○ 표시는 미생물 접종군이지만 2-헥실-3-히드록시-데카노익산 미주입군(대비군 2)을 나타낸다.
첨가된 2-헥실-3-히드록시-데카노익산의 농도는 각각 9, 90 그리고 900 ppm이였다. 각각의 농도 모두에 있어 크게 증가된 분해율을 나타내었으나, 디젤오일 초기농도 20,000 ppm에서 2-헥실-3-히드록시-데카노익산의 농도 9 ppm에서는 분해율의 증가가 보이지 않았다. 그러나 2-헥실-3-히드록시-데카노익산 90 ppm 및 900 ppm농도에서는 농도 변화에 상관없이 디젤오일이 분해되는 최대치는 대략 동일하였다.
실시예 16 및 17과 비교예 7~10
생계면활성제 2-헥실-3-히드록시-데카노익산의 미생물 성장 촉진
본 실시예는 유류 오염 분해능을 가진 미생물들이 생계면활성제 2-헥실-3-히드록시-데카노익산를 첨가하는 것에 의해 성장이 촉진되는지를 확인하는 실험에 관한 것이다.
실험방법으로는 Tryptic soy broth(TSB)에 실시예 2, 6, 7의 혼합 배양 균주를 접종한 후 12시간동안 배양 하였다. 배양은 초기 균주 농도 4.9 x 106 cfu/ml의 균주를 100ml 플라스크에 작업 부피 10ml로 하였고, 접종량은 1%(w/v) 즉, 0.1ml로 하였다.
각각의 배지는 표 5에 나타낸 바와 같이, 포도당, 효모추출물(yeast extract), 맥아추출물(malt extract), Na2HPO4, KH2PO4, K2HPO4, MgSO4, CaCl2, FeSO4, CoCl2, ZnSO4, CuSO4, MnSO4를 적절히 혼합한 것을 사용하였으며, 실시예 16 및 17에는 생계면활성제인 2-헥실-3-히드록시-데카노익산을 포함시켰다.
비교예 7~10과 실시예 16 및 17에 명기된 혼합비의 배지(10 g/L)에서 24시간 동안 30℃에서 배양한 다음, cfu/ml를 측정하여 미생물의 증식 정도를 확인하였다.
구체적으로는 비교예 7, 비교예 8, 비교예 9 및, 비교예 10에서 사용된 조성물은 포도당(glucose), 효모추출물(yeast extract), 맥아추출물(malt extract), Na2HPO4, KH2PO4, K2HPO4, MgSO4, CaCl2, FeSO4, CoCl2, ZnSO4, CuSO4, MnSO4로 구성되며, 실시예 16 및 실시예 17은 포도당, 효모추출물, 맥아추출물, Na2HPO4, KH2PO4, K2HPO4, MgSO4, CaCl2, FeSO4, CoCl2, ZnSO4, CuSO4, MnSO4에 생계면활성제인 2-헥실-3-히드록시-데카노익산이 첨가된 조성물로 구성하였다.
이하, 본 발명을 바람직한 실시형태를 들어 보다 구체적으로 설명하면 다음과 같다.
조성물 성분 비교예 7 비교예 8 비교예 9 비교예 10 실시예 16 실시예 17
포도당 52.6 42.5 54.0 42.5 54.0 42.5
효모추출물 15.8 14.9 29.7 29.8 29.7 29.8
맥아 추출물 15.8 29.8 14.9 14.9
Na2HPO4 9.5 7.7 7.7 7.7
KH2PO4 4.7 3.8 4.9 3.8 4.9 3.8
K2HPO4 9.7 9.7
MgSO4 1.6 1.3 1.6 1.3 1.6 1.3
CaCl2 0.1 0.1 0.1 0.1 0.1 0.1
FeSO4 0.003 0.002 0.003 0.002 0.003 0.002
CoCl2 0.003 0.002 0.003 0.002 0.003 0.002
ZnSO4 0.003 0.002 0.003 0.002 0.003 0.002
CuSO4 0.003 0.002 0.003 0.002 0.003 0.002
MnSO4 0.003 0.002 0.003 0.002 0.003 0.002
2-헥실-3-히드록시-데카노익산 0.1 0.1
사용량 (g/L) 10 10 10 10 10 10
초기 미생물 접종량 (cfu/ml) 4.9x106 4.9x106 4.9x106 4.9x106 4.9x106 4.9x106
배양후 미생물 총균수 (cfu/ml) 1.1x108 2.8x108 1.2x109 2.2x109 1.7x1011 3.1x1011
상기에서 비교예 7, 비교예 8, 비교예 9, 비교예 10은 2-헥실-3-히드록시-데카노익산이 첨가되지 않은 경우로서 1.1 x 108에서 2.2x109 cfu/ml의 총균수를 나타냈으나, 2-헥실-3-히드록시-데카노익산이 첨가된 실시예 16 및 실시예 17에서의 총균수는 각각 1.7x1011 cfu/ml 및 3.1x1011 cfu/ml으로 2-헥실-3-히드록시-데카노익산이 첨가된 경우 미생물의 성장이 촉진됨을 확인할 수 있었다.
실시예 18~39와 비교예 11 및 12
합성 생계면활성제의 제조
이하의 실시예에서는 탄소수가 8, 12, 또는 16~18인 알킬케텐다이머로부터의 합성예를 들고 있으나, 본 발명은 이에 한정되는 것은 아니다.
실시예 18
제1 단계 : C8 알킬케텐다이머 100g(0.39mol)에 EA:EtOH=3:1 800ml를 넣고 잘 교반하였다. 여기에 10% Pd/C 0.1g(0.1wt %)을 넣고 잘 밀봉하고 H2 압력을 2기압 환경에서 3~4시간 잘 교반하였다. 반응 종료 후, 반응물을 셀라이트(celite)를 이용해서 여과하고 용매를 감압 건조하여 연노랑 액체 2-헥실-3-히드록시-데카노익 β-락톤 96g(수율 95%)을 얻었다.
Rf (EA:Hex=1:20) :0.58
1H NMR (CDCl3) δ 0.87(t, 6H, CH3), 1.12~1.91(br, 22H, CH2), 3.60 (m, 1H, CH2 CHCO), 4.51(m, 1H, CHCH-O)
제2 단계 : EtOH:H2O=3:1 600ml에 NaOH 12g(0.3mol 1.5eq)을 용해하여 2-헥실-3-히드록시-데카노익 β-락톤 50g(0.20mol)에 넣고 잘 교반하였다. 3~4시간 교반 후 6N HCl로 산성화시켰다. 반응물을 MC로 추출하고 MC층을 Na2SO4로 건조하고 여과한 후 용매를 감압 건조하였다. 칼럼 크로마토그라피(MC:EtOH=45:1)로 분리하고 용매를 감압 건조하여 연노랑 시럽형의 2-헥실-3-히드록시-데칸산 51g(수율 95%)를 얻었다.
Rf (MC:EtOH=45:1) : 0.48
1H NMR (CDCl3) δ 0.87(t, 6H, CH3), 1.12~1.91(br, 22H, CH2), 2.45(m, 1H, CHCHCO), 3.76(m, 1H, CH2 CH(OH)CH)
실시예 19
제1 단계 : C8 알킬케텐다이머 100g(0.39mol)에 EA:EtOH=3:1 800ml를 넣고 잘 교반하였다. 여기에 10% Pd/C 0.1g(0.1wt %)을 넣고 잘 밀봉하고 H2 압력을 15기압 환경에서 3~4시간 잘 교반하였다. 반응 종료 후, 반응물을 셀라이트(celite)를 이용해서 여과하고 용매를 감압 건조하여 연노랑 액체 2-헥실-3-히드록시-데카노익 β-락톤 98g(수율 97%)을 얻었다.
Rf (EA:Hex=1:20) :0.58
1H NMR (CDCl3) δ 0.87(t, 6H, CH3), 1.12~1.91(br, 22H, CH2), 3.60 (m, 1H, CH2 CHCO), 4.51(m, 1H, CHCH-O)
제2 단계 : EtOH:H2O=3:1 600ml에 NaOH 12g(0.3mol 1.5eq)을 용해하여 2-헥실-3-히드록시-데카노익 β-락톤 50g(0.20mol)에 넣고 잘 교반하였다. 3~4시간 교반 후 6N HCl로 산성화시켰다. 반응물은 MC로 추출하고 MC층을 Na2SO4로 건조하고 여과한 후 용매를 감압 건조하였다. 칼럼 크로마토그라피(MC:EtOH=45:1)로 분리하고 용매를 감압 건조하여 연노랑 시럽형의 2-헥실-3-히드록시-데칸산 51g(수율 95%)를 얻었다.
Rf (MC:EtOH=45:1) : 0.48
1H NMR (CDCl3) δ 0.87(t, 6H, CH3), 1.12~1.91(br, 22H, CH2), 2.45(m, 1H, CHCHCO), 3.76(m, 1H, CH2 CH(OH)CH)
실시예 20
제1 단계 : C8 알킬케텐다이머 100g(0.39mol)에 EtOH 800ml를 넣고 잘 교반하였다. 여기에 10% Pd/C 0.1g(0.1w %)을 넣고 잘 밀봉하고 H2 압력을 30기압 환경에서 3~4시간 잘 교반하였다. 반응 종료 후, 반응물을 셀라이트(celite)를 이용해서 여과하고 용매를 감압 건조하였다. 칼럼 크로마토그라피(EA:Hex=1:20)로 분리하여 용매를 감압 건조하여 연노랑 액체 2-헥실-3-히드록시-데카노익 β-락톤 91g(수율 90%)을 얻었다.
Rf (EA:Hex=1:20) :0.58
1H NMR (CDCl3) δ 0.87(t, 6H, CH3), 1.12~1.91(br, 22H, CH2), 3.60 (m, 1H, CH2 CHCO), 4.51(m, 1H, CHCH-O)
제2 단계 : EtOH:H2O=3:1 600ml에 NaOH 12g(0.3mol 1.5eq)을 용해하여 2-헥실-3-히드록시-데카노익 β-락톤 50g(0.20mol)에 넣고 잘 교반하였다. 3~4시간 교반 후 6N HCl로 산성화시켰다. 반응물은 MC로 추출하고 MC층을 Na2SO4로 건조하고 여과한 후 용매를 감압 건조하였다. 칼럼 크로마토그라피(MC:EtOH=45:1)로 분리하고 용매를 감압 건조하여 연노랑 시럽형의 2-헥실-3-히드록시-데칸산 51g(수율 95%)를 얻었다.
Rf (MC:EtOH=45:1) : 0.48
1H NMR (CDCl3) δ 0.87(t, 6H, CH3), 1.12~1.91(br, 22H, CH2), 2.45(m, 1H, CHCHCO), 3.76(m, 1H, CH2 CH(OH)CH)
실시예 21
제1 단계 : C8 알킬케텐다이머 100g(0.39mol)에 EA:EtOH=3:1 800ml를 넣고 잘 교반하였다. 여기에 5% Pd/C 0.2g(0.2wt %)을 넣고 잘 밀봉하고 H2 압력을 2기압 환경에서 4~5시간 잘 교반하였다. 반응 종료 후, 반응물을 셀라이트(celite)를 이용해서 여과하고 용매를 감압 건조하여 연노랑 액체 2-헥실-3-히드록시-데카노익 β-락톤 96g(수율 95%)을 얻었다.
Rf (EA:Hex=1:20) :0.58
1H NMR (CDCl3) δ 0.87(t, 6H, CH3), 1.12~1.91(br, 22H, CH2), 3.60 (m, 1H, CH2 CHCO), 4.51(m, 1H, CHCH-O)
제2 단계 : EtOH:H2O=3:1 600ml에 NaOH 12g(0.3mol 1.5eq)을 용해하여 2-헥실-3-히드록시-데카노익 β-락톤 50g(0.20mol)에 넣고 잘 교반하였다. 3~4시간 교반 후 6N HCl로 산성시켰다. 반응물은 MC로 추출하고 MC층을 Na2SO4로 건조하고 여과한 후 용매를 감압 건조하였다. 칼럼 크로마토그라피(MC:EtOH=45:1)로 분리하고 용매를 감압 건조하여 연노랑 시럽형의 2-헥실-3-히드록시-데칸산 51g(수율 95%)를 얻었다.
Rf (MC:EtOH=45:1) : 0.48
1H NMR (CDCl3) δ 0.87(t, 6H, CH3), 1.12~1.91(br, 22H, CH2), 2.45(m, 1H, CHCHCO), 3.76(m, 1H, CH2 CH(OH)CH)
실시예 22
제1 단계 : C8 알킬케텐다이머 100g(0.39mol)에 EA:EtOH=2:1 900ml를 넣고 잘 교반하였다. 여기에 5% Pd/C 0.2g(0.2wt %)을 넣고 잘 밀봉하고 H2 압력을 15기압 환경에서 4~5시간 잘 교반하였다. 반응 종료 후, 반응물을 셀라이트(celite)를 이용해서 여과하고 용매를 감압 건조하여 연노랑 액체 2-헥실-3-히드록시-데카노익 β-락톤 96g(수율 95%)을 얻었다.
Rf (EA:Hex=1:20) :0.58
1H NMR (CDCl3) δ 0.87(t, 6H, CH3), 1.12~1.91(br, 22H, CH2), 3.60 (m, 1H, CH2 CHCO), 4.51(m, 1H, CHCH-O)
제2 단계 : EtOH:H2O=3:1 600ml에 NaOH 12g(0.3mol 1.5eq)을 용해하여 2-헥실-3-히드록시-데카노익 β-락톤 50g(0.20mol)에 넣고 잘 교반하였다. 3~4시간 교반 후 6N HCl로 산성시켰다. 반응물을 MC로 추출하고 MC층을 Na2SO4로 건조하고 여과한 후 용매를 감압 건조하였다. 칼럼 크로마토그라피(MC:EtOH=45:1)로 분리하고 용매를 감압 건조하여 연노랑 시럽형의 2-헥실-3-히드록시-데칸산 51g(수율 95%)를 얻었다.
Rf (MC:EtOH=45:1) : 0.48
1H NMR (CDCl3) δ 0.87(t, 6H, CH3), 1.12~1.91(br, 22H, CH2), 2.45(m, 1H, CHCHCO), 3.76(m, 1H, CH2 CH(OH)CH)
실시예 23
제1 단계 : C8 알킬케텐다이머 100g(0.39mol)에 EtOH 800ml를 넣고 잘 교반하였다. 여기에 5% Pd/C 0.2g(0.2wt %)을 넣고 잘 밀봉하고 H2 압력을 40기압 환경에서 4~5시간 잘 교반하였다. 반응 종료 후, 반응물을 셀라이트(celite)를 이용해서 여과하고 용매를 감압 건조하였다. 칼럼 크로마토그라피(EA:Hex=1:20)로 분리하여 용매를 감압 건조하여 연노랑 액체 2-헥실-3-히드록시-데카노익 β-락톤 90g(수율 89%)을 얻었다.
Rf (EA:Hex=1:20) :0.58
1H NMR (CDCl3) δ 0.87(t, 6H, CH3), 1.12~1.91(br, 22H, CH2), 3.60 (m, 1H, CH2 CHCO), 4.51(m, 1H, CHCH-O)
제2 단계 : EtOH:H2O=3:1 600ml에 NaOH 12g(0.3mol 1.5eq)을 용해하여 2-헥실-3-히드록시-데카노익 β-락톤 50g(0.20mol)에 넣고 잘 교반하였다. 3~4시간 교반 후 6N HCl로 산성화시켰다. 반응물을 MC로 추출하고 MC층을 Na2SO4로 건조하고 여과한 후 용매를 감압 건조하였다. 칼럼 크로마토그라피(MC:EtOH=45:1)로 분리하고 용매를 감압 건조하여 연노랑 시럽형의 2-헥실-3-히드록시-데칸산 51g(수율 95%)를 얻었다.
Rf (MC:EtOH=45:1) : 0.48
1H NMR (CDCl3) δ 0.87(t, 6H, CH3), 1.12~1.91(br, 22H, CH2), 2.45(m, 1H, CHCHCO), 3.76(m, 1H, CH2 CH(OH)CH)
실시예 24
제1 단계 : C8 알킬케텐다이머 100g(0.39mol)에 EA:EtOH=3:1 800ml를 넣고 잘 교반하였다. 여기에 0.5% Pd/A12O3 2g(2wt %)을 넣고 잘 밀봉하고 H2 압력을 2기압 환경에서 4~5시간 잘 교반하였다. 반응 종료 후, 반응물을 0.5% Pd/A12O3를 이용하여 여과하고 용매를 감압 건조하여 연노랑 액체 2-헥실-3-히드록시-데카노익 β-락톤 96g(수율 95%)을 얻었다.
Rf (EA:Hex=1:20) :0.58
1H NMR (CDCl3) δ 0.87(t, 6H, CH3), 1.12~1.91(br, 22H, CH2), 3.60 (m, 1H, CH2 CHCO), 4.51(m, 1H, CHCH-O)
제2 단계 : EtOH:H2O=3:1 600ml에 NaOH 12g(0.3mol 1.5eq)을 용해하여 2-헥실-3-히드록시-데카노익 β-락톤 50g(0.20mol)에 넣고 잘 교반하였다. 3~4시간 교반 후 6N HCl로 산성화시켰다. 반응물을 MC로 추출하고 MC층을 Na2SO4로 건조하고 여과한 후 용매를 감압 건조하였다. 칼럼 크로마토그라피(MC:EtOH=45:1)로 분리하고 용매를 감압 건조하여 연노랑 시럽형의 2-헥실-3-히드록시-데칸산 51g(수율 95%)를 얻었다.
Rf (MC:EtOH=45:1) : 0.48
1H NMR (CDCl3) δ 0.87(t, 6H, CH3), 1.12~1.91(br, 22H, CH2), 2.45(m, 1H, CHCHCO), 3.76(m, 1H, CH2 CH(OH)CH)
실시예 25
제1 단계 : C8 알킬케텐다이머 100g(0.39mol)에 EA:EtOH=1:1 800ml를 넣고 잘 교반하였다. 여기에 1회 재생한 0.5% Pd/A12O3 2g(2wt %)을 넣고 잘 밀봉하고 H2 압력을 15기압 환경에서 4~5시간 잘 교반하였다. 반응 종료 후, 반응물을 0.5% Pd/A12O3를 이용하여 여과하고 용매를 감압 건조하여 연노랑 액체 2-헥실-3-히드록시-데카노익 β-락톤 95g(수율 94%)을 얻었다.
Rf (EA:Hex=1:20) :0.58
1H NMR (CDCl3) δ 0.87(t, 6H, CH3), 1.12~1.91(br, 22H, CH2), 3.60 (m, 1H, CH2 CHCO), 4.51(m, 1H, CHCH-O)
제2 단계 : EtOH:H2O=3:1 600ml에 NaOH 12g(0.3mol 1.5eq)을 용해하여 2-헥실-3-히드록시-데카노익 β-락톤 50g(0.20mol)에 넣고 잘 교반하였다. 3~4시간 교반 후 6N HCl로 산성화시켰다. 반응물은 MC로 추출하고 MC층을 Na2SO4로 건조하고 여과한 후 용매를 감압 건조하였다. 칼럼 크로마토그라피(MC:EtOH=45:1)로 분리하고 용매를 감압 건조하여 연노랑 시럽형의 2-헥실-3-히드록시-데칸산 51g(수율 95%)를 얻었다.
Rf (MC:EtOH=45:1) : 0.48
1H NMR (CDCl3) δ 0.87(t, 6H, CH3), 1.12~1.91(br, 22H, CH2), 2.45(m, 1H, CHCHCO), 3.76(m, 1H, CH2 CH(OH)CH)
실시예 26
제1 단계 : C8 알킬케텐다이머 100g(0.39mol)에 EtOH 800ml를 넣고 잘 교반하였다. 여기에 2회 재생한 0.5% Pd/A12O3 2g(2wt %)을 넣고 잘 밀봉하고 H2 압력을 50기압 환경에서 4~5시간 잘 교반하였다. 반응 종료 후, 반응물을 0.5% Pd/A12O3를 이용하여 여과하고 용매를 감압 건조하였다. 칼럼 크로마토그라피(EA:Hex=1:20)로 분리하여 용매를 감압 건조하여 연노랑 액체 2-헥실-3-히드록시-데카노익 β-락톤 89g(수율 88%)을 얻었다.
Rf (EA:Hex=1:20) :0.58
1H NMR (CDCl3) δ 0.87(t, 6H, CH3), 1.12~1.91(br, 22H, CH2), 3.60 (m, 1H, CH2 CHCO), 4.51(m, 1H, CHCH-O)
제2 단계 : EtOH:H2O=3:1 600ml에 NaOH 12g(0.3mol 1.5eq)을 용해하여 2-헥실-3-히드록시-데카노익 β-락톤 50g(0.20mol)에 넣고 잘 교반하였다. 3~4시간 교반 후 6N HCl로 산성화시켰다. 반응물을 MC로 추출하고 MC층을 Na2SO4로 건조하고 여과한 후 용매를 감압 건조하였다. 칼럼 크로마토그라피(MC:EtOH=45:1)로 분리하고 용매를 감압 건조하여 연노랑 시럽형의 2-헥실-3-히드록시-데칸산 51g(수율 95%)를 얻었다.
Rf (MC:EtOH=45:1) : 0.48
1H NMR (CDCl3) δ 0.87(t, 6H, CH3), 1.12~1.91(br, 22H, CH2), 2.45(m, 1H, CHCHCO), 3.76(m, 1H, CH2 CH(OH)CH)
실시예 27
제1 단계 : C12 알킬케텐다이머 100g(0.27mol)에 EA:EtOH=2:1 900ml를 넣고 잘 교반하였다. 여기에 10% Pd/C 0.1g(0.1wt %)을 넣고 잘 밀봉하고 H2 압력을 2기압 환경에서 3~4시간 잘 교반하였다. 반응 종료 후, 반응물을 셀라이트를 이용해서 여과하고 용매를 감압 건조하여 흰색 고체 2-데실-3-히드록시-테트라데카노익 β-락톤 94g(수율 94%)을 얻었다.
Rf (EA:Hex=1:20) : 0.58 mp : 35.97℃
1H NMR (CDCl3) δ 0.88(t, 6H, CH3), 1.12~1.91(br, 38H, CH2), 3.60 (m, 1H, CH2 CHCO), 4.56(m, 1H, CHCH-O)
제2 단계 : EtOH:H2O=3:1 600ml에 NaOH 3.2g(0.075mol 1.5eq)을 용해하여 2-데실-3-히드록시-테트라데카노익 β-락톤 20g(0.05mol)에 넣고 잘 교반하였다. 3~4시간 교반 후 6N HCl로 산성화시켰다. 반응물을 MC로 추출하고 MC층을 Na2SO4로 건조하고 여과한 후 용매를 감압 건조하였다. 칼럼 크로마토그라피(MC:EtOH=45:1)로 분리하고 용매를 감압 건조하여 흰색 고체형태의 2-데실-3-히드록시-테트라데칸산 19.9g(수율 95%)을 얻었다.
Rf (MC:EtOH=45:1) : 0.49
1H NMR (CDCl3) δ 0.88(t, 6H, CH3), 1.12~1.91(br, 38H, CH2), 2.48(m, 1H, CHCHCO), 3.85(m, 1H, CH2 CH(OH)CH)
실시예 28
제1 단계 : C12 알킬케텐다이머 100g(0.27mol)에 EA:EtOH=2:1 900ml를 넣고 잘 교반하였다. 여기에 10% Pd/C 0.1g(0.1wt %)을 넣고 잘 밀봉하고 H2 압력을 15기압 환경에서 3~4시간 잘 교반하였다. 반응 종료 후, 반응물을 셀라이트를 이용해서 여과하고 용매를 감압 건조하여 흰색 고체 2-데실-3-히드록시-테트라데카노익 β-락톤 96g(수율 96%)을 얻었다.
Rf (EA:Hex=1:20) : 0.58 mp : 35.97℃
1H NMR (CDCl3) δ 0.88(t, 6H, CH3), 1.12~1.91(br, 38H, CH2), 3.60 (m, 1H, CH2 CHCO), 4.56(m, 1H, CHCH-O)
제2 단계 : EtOH:H2O=3:1 600ml에 NaOH 3.2g(0.075mol 1.5eq)을 용해하여 2-데실-3-히드록시-테트라데카노익 β-락톤 20g(0.05mol)에 넣고 잘 교반하였다. 3~4시간 교반 후 6N HCl로 산성화시켰다. 반응물을 MC로 추출하고 MC층을 Na2SO4로 건조하고 여과한 후 용매를 감압 건조하였다. 칼럼 크로마토그라피(MC:EtOH=45:1)로 분리하고 용매를 감압 건조하여 흰색 고체형태의 2-데실-3-히드록시-테트라데칸산 19.9g(수율 95%)을 얻었다.
Rf (MC:EtOH=45:1) : 0.49
1H NMR (CDCl3) δ 0.88(t, 6H, CH3), 1.12~1.91(br, 38H, CH2), 2.48(m, 1H, CHCHCO), 3.85(m, 1H, CH2 CH(OH)CH)
실시예 29
제1 단계 : C12 알킬케텐다이머 100g(0.27mol)에 EA:EtOH=1:1 800ml를 넣고 잘 교반하였다. 여기에 5% Pd/C 0.2g(0.2wt %)을 넣고 잘 밀봉하고 H2 압력을 15기압 환경에서 4~5시간 잘 교반하였다. 반응 종료 후, 반응물을 셀라이트를 이용해서 여과하고 용매를 감압 건조하여 흰색 고체 2-데실-3-히드록시-테트라데카노익 β-락톤 93g(수율 93%)을 얻었다.
Rf (EA:Hex=1:20) : 0.58 mp : 35.97℃
1H NMR (CDCl3) δ 0.88(t, 6H, CH3), 1.12~1.91(br, 38H, CH2), 3.60 (m, 1H, CH2CHCO), 4.56(m, 1H, CHCH-O)
제2 단계 : EtOH:H2O=3:1 600ml에 NaOH 3.2g(0.075mol 1.5eq)을 용해하여 2-데실-3-히드록시-테트라데카노익 β-락톤 20g(0.05mol)에 넣고 잘 교반하였다. 3~4시간 교반 후 6N HCl로 산성화시켰다. 반응물을 MC로 추출하고 MC층을 Na2SO4로 건조하고 여과한 후 용매를 감압 건조하였다. 칼럼 크로마토그라피(MC:EtOH=45:1)로 분리하고 용매를 감압 건조하여 흰색 고체형태의 2-데실-3-히드록시-테트라데칸산 19.9g(수율 95%)을 얻었다.
Rf (MC:EtOH=45:1) : 0.49
1H NMR (CDCl3) δ 0.88(t, 6H, CH3), 1.12~1.91(br, 38H, CH2), 2.48(m, 1H, CHCHCO), 3.85(m, 1H, CH2 CH(OH)CH)
실시예 30
제1 단계 : C12 알킬케텐다이머 100g(0.27mol)에 EA:EtOH=1:2 900ml를 넣고 잘 교반하였다. 여기에 5회 재생한 0.5% Pd/A12O3 2g(2wt %)을 넣고 잘 밀봉하고 H2 압력을 15기압 환경에서 4~5시간 잘 교반하였다. 반응 종료 후, 반응물을 0.5% Pd/A12O3를 여과하고 용매를 감압 건조하였다. 칼럼 크로마토그라피(EA:Hex=1:20)로 분리하고 용매를 감압 건조하여 흰색 고체 2-데실-3-히드록시-테트라데카노익 β-락톤 89g(수율 89%)을 얻었다.
Rf (EA:Hex=1:20) : 0.58 mp : 35.97℃
1H NMR (CDCl3) δ 0.88(t, 6H, CH3), 1.12~1.91(br, 38H, CH2), 3.60 (m, 1H, CH2 CHCO), 4.56(m, 1H, CHCH-O)
제2 단계 : EtOH:H2O=3:1 600ml에 NaOH 3.2g(0.075mol 1.5eq)을 용해하여 2-데실-3-히드록시-테트라데카노익 β-락톤 20g(0.05mol)에 넣고 잘 교반하였다. 3~4시간 교반 후 6N HCl로 산성화시켰다. 반응물을 MC로 추출하고 MC층을 Na2SO4로 건조하고 여과한 후 용매를 감압 건조하였다. 칼럼 크로마토그라피(MC:EtOH=45:1)로 분리하고 용매를 감압 건조하여 흰색 고체형태의 2-데실-3-히드록시-테트라데칸산 19.9g(수율 95%)을 얻었다.
Rf (MC:EtOH=45:1) : 0.49
1H NMR (CDCl3) δ 0.88(t, 6H, CH3), 1.12~1.91(br, 38H, CH2), 2.48(m, 1H, CHCHCO), 3.85(m, 1H, CH2CH(OH)CH)
실시예 31
제1 단계 : C12 알킬케텐다이머 100g(0.27mol)에 EtOH 800ml를 넣고 잘 교반하였다. 여기에 5% Pd/C 0.2g(0.2wt %)을 넣고 잘 밀봉하고 H2 압력을 40기압 환경에서 4~5시간 잘 교반하였다. 반응 종료 후, 반응물을 셀라이트를 이용해서 여과하고 용매를 감압 건조하여 흰색 고체 2-데실-3-히드록시-테트라데카노익 β-락톤 90g(수율 90%)을 얻었다.
Rf (EA:Hex=1:20) : 0.58 mp : 35.97℃
1H NMR (CDCl3) δ 0.88(t, 6H, CH3), 1.12~1.91(br, 38H, CH2), 3.60 (m, 1H, CH2CHCO), 4.56(m, 1H, CHCH-O)
제2 단계 : EtOH:H2O=3:1 600ml에 NaOH 3.2g(0.075mol 1.5eq)을 용해하여 2-데실-3-히드록시-테트라데카노익 β-락톤 20g(0.05mol)에 넣고 잘 교반하였다. 3~4시간 교반 후 6N HCl로 산성화시켰다. 반응물을 MC로 추출하고 MC층을 Na2SO4로 건조하고 여과한 후 용매를 감압 건조하였다. 칼럼 크로마토그라피(MC:EtOH=45:1)로 분리하고 용매를 감압 건조하여 흰색 고체형태의 2-데실-3-히드록시-테트라데칸산 19.9g(수율 95%)을 얻었다.
Rf (MC:EtOH=45:1) : 0.49
1H NMR (CDCl3) δ 0.88(t, 6H, CH3), 1.12~1.91(br, 38H, CH2), 2.48(m, 1H, CHCHCO), 3.85(m, 1H, CH2 CH(OH)CH)
실시예 32
제1 단계 : C16~18 알킬케텐다이머 100g(0.19mol)에 EA:EtOH=1:1 800ml를 첨가하고 가열하여 완전히 녹여 잘 교반하였다. 여기에 10% Pd/C 0.1g(0.1wt %)을 넣고 잘 밀봉하고 H2 압력을 2기압 환경에서 3~4시간 잘 교반하였다. 반응 종료 후, 반응물을 셀라이트를 이용해서 여과하고 용매를 감압 건조하였다. EtOH로 재결정하여 흰색 고체 2-헥사데실/테트라데실-3-히드록시-에이코사노익/옥타데카노익 β-락톤 92g(수율 92%)을 얻었다.
Rf (EA:Hex=1:20) : 0.58 mp : 60.89℃
1H NMR (CDCl3) δ 0.88(t, 6H, CH3), 1.12~1.91(br, 62H, CH2), 3.59 (m, 1H, CH2 CHCO), 4.56(m, 1H, CHCH-O)
제2 단계 : EtOH:H2O=3:1 600ml에 NaOH 5.6g(0.14mol 1.5eq)을 용해하여 2-Hexadecyl /Tetradecyl-3-히드록시-eicosanoic/octa데카노익 β-락톤 50g(0.09mol)에 넣고 잘 교반하였다. 3~4시간 교반 후 6N HCl로 산성화시켰다. 반응물을 MC로 추출하고 MC층을 Na2SO4로 건조하고 여과한 후 용매를 감압 건조하였다. EtOH로 재결정하여 흰색 고체 2-헥사데실/테트라데실-3-히드록시-에이코사노익/옥타데칸산 49g(수율 95%)을 얻었다.
Rf (MC:EtOH=45:1) : 0.49
1H NMR (CDCl3) δ 0.86(t, 6H, CH3), 1.12~1.91(br, 62H, CH2), 2.46(m, 1H, CHCHCO), 3.85(m, 1H, CH2 CH(OH)CH)
실시예 33
제1 단계 : C16~18 알킬케텐다이머 100g(0.19mol)에 EtOH 800ml를 첨가하고 가열하여 완전히 녹여 잘 교반하였다. 여기에 10% Pd/C 0.1g(0.1wt %)을 넣고 잘 밀봉하고 H2 압력을 2기압 환경에서 3~4시간 잘 교반하였다. 반응 종료 후, 반응물을 셀라이트를 이용해서 여과하고 용매를 감압 건조하였다. EtOH로 재결정하여 흰색 고체 2-헥사데실/테트라데실-3-히드록시-에이코사노익/옥타데카노익 β-락톤 94g(수율 94%)을 얻었다.
Rf (EA:Hex=1:20) : 0.58 mp : 60.89℃
1H NMR (CDCl3) δ 0.88(t, 6H, CH3), 1.12~1.91(br, 62H, CH2), 3.59 (m, 1H, CH2 CHCO), 4.56(m, 1H, CHCH-O)
제2 단계 : EtOH:H2O=3:1 600ml에 NaOH 5.6g(0.14mol 1.5eq)을 용해하여 2-Hexadecyl /Tetradecyl-3-히드록시-eicosanoic/octa데카노익 β-락톤 50g(0.09mol)에 넣고 잘 교반하였다. 3~4시간 교반 후 6N HCl로 산성화시켰다. 반응물을 MC로 추출하고 MC층을 Na2SO4로 건조하고 여과한 후 용매를 감압 건조하였다. EtOH로 재결정하여 흰색 고체 2-헥사데실/테트라데실-3-히드록시-에이코사노익/옥타데칸산 49g(수율 95%)을 얻었다.
Rf (MC:EtOH=45:1) : 0.49
1H NMR (CDCl3) δ 0.86(t, 6H, CH3), 1.12~1.91(br, 62H, CH2), 2.46(m, 1H, CHCHCO), 3.85(m, 1H, CH2 CH(OH)CH)
실시예 34
제1 단계 : C16~18 알킬케텐다이머 100g(0.19mol)에 EtOH 800ml를 첨가하고 가열하여 완전히 녹여 잘 교반하였다. 여기에 5% Pd/C 0.2g(0.2w %)을 넣고 잘 밀봉하고 H2 압력을 30기압 환경에서 4~5시간 잘 교반하였다. 반응 종료 후, 반응물을 셀라이트를 이용해서 여과하고 용매를 감압 건조하였다. EtOH로 재결정하여 흰색 고체 2-헥사데실/테트라데실-3-히드록시-에이코사노익/옥타데카노익 β-락톤 94g(수율 94%)을 얻었다.
Rf (EA:Hex=1:20) : 0.58 mp : 60.89℃
1H NMR (CDCl3) δ 0.88(t, 6H, CH3), 1.12~1.91(br, 62H, CH2), 3.59 (m, 1H, CH2 CHCO), 4.56(m, 1H, CHCH-O)
제2 단계 : EtOH:H2O=3:1 600ml에 NaOH 5.6g(0.14mol 1.5eq)을 용해하여 2-Hexadecyl /Tetradecyl-3-히드록시-eicosanoic/octa데카노익 β-락톤 50g(0.09mol)에 넣고 잘 교반하였다. 3~4시간 교반 후 6N HCl로 산성화시켰다. 반응물을 MC로 추출하고 MC층을 Na2SO4로 건조하고 여과한 후 용매를 감압 건조하였다. EtOH로 재결정하여 흰색 고체 2-헥사데실/테트라데실-3-히드록시-에이코사노익/옥타데칸산 49g(수율 95%)을 얻었다.
Rf (MC:EtOH=45:1) : 0.49
1H NMR (CDCl3) δ 0.86(t, 6H, CH3), 1.12~1.91(br, 62H, CH2), 2.46(m, 1H, CHCHCO), 3.85(m, 1H, CH2 CH(OH)CH)
실시예 35
제1 단계 : C16~18 알킬케텐다이머 100g(0.19mol)에 EtOH 800ml를 첨가하고 가열하여 완전히 녹여 잘 교반하였다. 여기에 10회 재생한 0.5% Pd/A12O3 2g(2w %)을 넣고 잘 밀봉하고 H2 압력을 50기압 환경에서 4~5시간 잘 교반하였다. 반응 종료 후, 반응물을 0.5% Pd/A12O3를 여과하고 용매를 감압 건조하였다. EtOH로 재결정하여 흰색 고체 2-헥사데실/테트라데실-3-히드록시-에이코사노익/옥타데카노익 β-락톤 91g(수율 91%)을 얻었다.
Rf (EA:Hex=1:20) : 0.58 mp : 60.89℃
1H NMR (CDCl3) δ 0.88(t, 6H, CH3), 1.12~1.91(br, 62H, CH2), 3.59 (m, 1H, CH2 CHCO), 4.56(m, 1H, CHCH-O)
제2 단계 : EtOH:H2O=3:1 600ml에 NaOH 5.6g(0.14mol 1.5eq)을 용해하여 2-Hexadecyl /Tetradecyl-3-히드록시-eicosanoic/octa데카노익 β-락톤 50g(0.09mol)에 넣고 잘 교반하였다. 3~4시간 교반 후 6N HCl로 산성화시켰다. 반응물을 MC로 추출하고 MC층을 Na2SO4로 건조하고 여과한 후 용매를 감압 건조하였다. EtOH로 재결정하여 흰색 고체 2-헥사데실/테트라데실-3-히드록시-에이코사노익/옥타데칸산 49g(수율 95%)을 얻었다.
Rf (MC:EtOH=45:1) : 0.49
1H NMR (CDCl3) δ 0.86(t, 6H, CH3), 1.12~1.91(br, 62H, CH2), 2.46(m, 1H, CHCHCO), 3.85(m, 1H, CH2 CH(OH)CH)
실시예 36
제1 단계 : C16~18 알킬케텐다이머 100g(0.19mol)에 EtOH 800ml를 첨가하고 가열하여 완전히 녹여 잘 교반하였다. 여기에 새로운 0.5% Pd/A12O3 2g(2w %)을 넣고 잘 밀봉하고 H2 압력을 50기압 환경에서 4~5시간 잘 교반하였다. 반응 종료 후, 반응물을 0.5% Pd/A12O3를 이용하여 여과하고 용매를 감압 건조하였다. EtOH로 재결정하여 흰색 고체 2-헥사데실/테트라데실-3-히드록시-에이코사노익/옥타데카노익 β-락톤 95g(수율 95%)을 얻었다.
Rf (EA:Hex=1:20) : 0.58 mp : 60.89℃
1H NMR (CDCl3) δ 0.88(t, 6H, CH3), 1.12~1.91(br, 62H, CH2), 3.59 (m, 1H, CH2 CHCO), 4.56(m, 1H, CHCH-O)
제2 단계 : EtOH:H2O=3:1 600ml에 NaOH 5.6g(0.14mol 1.5eq)을 용해하여 2-Hexadecyl /Tetradecyl-3-히드록시-eicosanoic/octa데카노익 β-락톤 50g(0.09mol)에 넣고 잘 교반하였다. 3~4시간 교반 후 6N HCl로 산성화시켰다. 반응물을 MC로 추출하고 MC층을 Na2SO4로 건조하고 여과한 후 용매를 감압 건조하였다. EtOH로 재결정하여 흰색 고체 2-헥사데실/테트라데실-3-히드록시-에이코사노익/옥타데칸산 49g(수율 95%)을 얻었다.
Rf (MC:EtOH=45:1) : 0.49
1H NMR (CDCl3) δ 0.86(t, 6H, CH3), 1.12~1.91(br, 62H, CH2), 2.46(m, 1H, CHCHCO), 3.85(m, 1H, CH2 CH(OH)CH)
실시예 37
2-헥실-3-히드록시-데카노익 β-락톤 20g(0.078mol)과 글루코스 17g(0.94mol 1.2eq)을 DMF(N,N-dimethylformamide) 200ml에 첨가하였다. 여기에 진한 황산을 촉매량 첨가하고 10~24시간 가열 환류시켰다. 반응물을 실온으로 식히고 물 100ml를 첨가하고 1N NaOH로 중화하였다. 반응물을 MC로 추출하고, MC층을 Na2SO4로 건조하고 여과한 후 용매를 감압 건조하였다. 칼럼 크로마토그라피(MC:EtOH=20:1)로 분리하고 용매를 감압 건조하여 흰색 고체형태의 2-헥실-3-히드록시-데칸산 글루코스 에스테르 21.5g(수율 63%)을 얻었다.
Rf (MC:EtOH=10:1) : 0.41
1H NMR (CDCl3) δ 0.88(t, 6H, CH3), 1.12~1.91(br, 22H, CH2), 2.45(m, 1H, CHCHCO), 3.40(m, 1H, CH2CHOCH(OH)CH(OH)), 3.48~3.52(m, 2H, (OH)CHCH(OH)CH(OH)), 3.76(m, 1H, CH2 CH(OH)CH), 4.21(d, 2H, OCH 2 CH), 4.27(m, 1H, CH2 CHOCH(OH)), 5.41(d, 1H, OCH(OH) CH(OH))
실시예 38
2-헥실-3-히드록시-데카노익 β-락톤 20g(0.078mol)과 만노스 17g(0.94mol 1.2eq)을 DMF(N,N-dimethylformamide) 200ml에 첨가하였다. 여기에 진한 황산을 촉매량 첨가하고 10~24시간 가열 환류 시켰다. 반응물을 실온으로 식히고 물 100ml를 첨가하고 1N NaOH로 중화하였다. 반응물을 MC로 추출하고, MC층을 Na2SO4로 건조하고 여과한 후 용매를 감압 건조하였다. 칼럼 크로마토그라피(MC:EtOH=20:1)로 분리하고 용매를 감압 건조하여 흰색 고체형태의 2-헥실-3-히드록시-데칸산 만노스 에스테르 20.5g(수율 60%)을 얻었다.
Rf (MC:EtOH=10:1) : 0.41
1H NMR (CDCl3) δ 0.88(t, 6H, CH3), 1.12~1.91(br, 22H, CH2), 2.45(m, 1H, CHCHCO), 3.40(m, 1H, CH2CHOCH(OH)CH(OH)), 3.48~3.52(m, 2H, (OH)CHCH(OH)CH(OH)), 3.76(m, 1H, CH2 CH(OH)CH), 4.21(d, 2H, OCH 2 CH), 4.27(m, 1H, CH2 CHOCH(OH)), 5.41(d, 1H, OCH(OH) CH(OH))
실시예 39
2-헥실-3-히드록시-데카노익 β-락톤 20g(0.078mol)과 D-글루코사민 염산 20.3g(0.94mol 1.2eq)을 톨루엔 200ml를 첨가하고 10~24시간 가열 환류시켰다. 반응물을 실온으로 식히고 물 100ml를 첨가하고 1N NaOH로 중화하였다. 반응물을 MC로 추출하고, MC층을 Na2SO4로 건조하고 여과한 후 용매를 감압 건조하였다. 칼럼 크로마토그라피(MC:EtOH=20:1)로 분리하고 용매를 감압 건조하여 흰색 고체형태의 N-(3'-D-글루코실)-2-헥실-3-히드록시-데칸아미드 14.3g(수율 42%)을 얻었다.
Rf (MC:EtOH=10:1) : 0.38
1H NMR (CDCl3) δ 0.88(t, 6H, CH3), 1.12~1.91(br, 22H, CH2), 2.50(m, 1H, CHCHCO), 3.40(m, 1H, (OH)CHCH(OH)CHO(CH2)), 3.43(m, 1H, CH2 CH(OH)CH), 3.66(d, 2H, CHCHOCH 2 OH), 3.76(m, 1H, CHCHOCH2), 3.86(m, 1H, (OH)CHCH(NH)CH(OH)), 4.03(m, 1H, (OH)CHCH(OH) CH(NH)CH), 5.95(m, 1H, CHCH(NH)CHO(OH))
비교예 11
C8 알킬케텐다이머 (10g, 39.7mmol)에 NaOH(3.18g, 79.4mmol)가 용해된 90% EtOH 100ml를 가하고 30∼50℃에서 3시간 동안 반응시킨 후, NaBH4(3.26g, 89.3mmol)를 가하고 30∼40℃에서 10∼24시간 반응시켰다. 반응혼합물을 1N 염산으로 산성화시키고 MC로 추출·농축 후 칼럼 크로마토그라피(MC:EtOH=45:1)로 분리하고 용매를 감압 건조하여 연노랑 시럽형태의 2-헥실-3-하이드록시-데칸산 6.8g(수율 63%)를 얻었다.
Rf (MC:EtOH=45:1) : 0.48
1H NMR (CDCl3) δ 0.87(t, 6H, CH3), 1.12~1.91(br, 22H, CH2), 2.45(m, 1H, CHCHCO), 3.76(m, 1H, CH2 CH(OH)CH)
비교예 12
C16~18 알킬케텐다이머 (10g, 18.8mmol)에 NaOH(1.50g, 37.6mmol)가 용해된 90% 에탄올(50g)을 가하고 30∼50℃에서 3시간 동안 반응시킨 후, NaBH4(1.00g, 26.3mmol)를 가하고 30∼40℃에서 10∼24시간 반응시켰다. 반응혼합물에 1N 염산을 가해 산성화시킨 후 MC로 추출하여 얻은 흰색 고체를 EtOH로 재결정하여 흰색 고체 2-헥사데실 /테트라데실-3-히드록시-에이코사노익/옥타데칸산 6.2g(수율 60%)을 얻었다.
Rf (MC:EtOH=45:1) : 0.49
1H NMR (CDCl3) δ 0.86(t, 6H, CH3), 1.12~1.91(br, 62H, CH2), 2.46(m, 1H, CHCHCO), 3.85(m, 1H, CH2 CH(OH)CH)
이상의 전형적인 결과를 하기의 표 6에 정리하여 나타낸다.
Figure 112006051035194-PAT00005
(계속)
Figure 112006051035194-PAT00006
실시예 40
합성 생계면활성제 2-알킬-3-히드록시산의 탄화수소에 대한 유화력 평가(emulsification activity)
본 실시예는 본 발명이 복원 방법에 효과적으로 적용되는 다양한 합성 생계면활성제인 2-알킬-3-히드록시산 중 2-헥실-3-히드록시-데카노익산(2-hexyl-3-hydroxy-decanoic acid)을 선택하여 노말테트라데칸과 씨클로헥산에 대한 유화력(emulsification activity, E24 %)을 합성 비이온 계면활성제인 Tween 80과 미생물이 분비하는 다른 타입의 생계면활성제인 람노리피드(rhamnolipid)와 함께 비교 평가한 것이다.
실험 방법으로는 시험관에 2-헥실-3-히드록시-데카노익산 10, 100, 1000 ppm을 포함하는 각각의 알칼리 증류수(pH 9.5) 5 ml에 노말테트라데칸 또는 씨클로헥산 5 ml를 혼합한 이후 강하게 와류 회전 교반(vortexing)을 하여 2분간 혼합한 후 30도씨에서 24시간 동안 정치시킨 후, 에멀젼 안전성을 측정하였다. Tween 80 및 람노리피드(rhamnolipid) 또한 같은 방법으로 실험을 진행하여 유화력을 측정, 2-헥실-3-히드록시-데카노익산과 비교하였다.
에멀젼 안전성 값은 유화력 값과 동일하게 평가하며 측정값의 계산은 테스트 튜브내 유화층의 높이를 테스트 튜브 전체 높이로 나눈 후 100%을 곱하여 유화 안전성 값(E24 %)을 계산하였다.
도 12에 각각의 계면활성제의 농도에 따른 노말테트라데칸과 씨클로헥산에 대한 합성 생계면활성제 2-헥실-3-히드록시-데카노익산 및 Tween 80 및 람노리피드(rhamnolipid)에 대한 유화력 평가 결과를 나타낸다.
도 12에서 계면활성제 농도는 10, 100, 1,000 ppm이고, □ 표시는 노말테트라데칸에 대한 유화력 평가를, ■ 표시는 씨클로헥산에 대한 유화력 평가를 나타낸다.
도 12에 나타낸 바와 같이, 합성 생계면활성제 2-헥실-3-히드록시-데카노익산의 노말테트라데칸과 씨클로헥산에 대한 유화력는 비이온계면활성제인 Tween 80와 다른 생계면활성제인 람노리피드(rhamnolipid)와 계면활성제 농도 100 및 1,000 ppm는 유사한 성능을 나타내었다. 이러한 결과는 합성 생계면활성제 2-헥실-3-히드록시-데카노익산이 Tween 80이나 람노리피드(rhamnolipid)처럼 광범위한 스펙트럼의 오일에 대해 효과적으로 계면장력(interfacial tension)을 낮추어 줄 수 있는 것으로 판단된다.
상술한 바와 같이, 본 발명에 따른 신규 미생물은 넓은 스펙트럼의 유류에 대하여 우수한 생분해능을 보유하며, 본 발명에 따른 유류 오염 토양의 생물학적 복원 방법은 이들 미생물 균주를 포함하여 유류 오염 토양으로부터 분리된 유류 분해능을 갖는 다양한 균주를 적어도 1종을 사용하고, 더욱이 이들 미생물 균주의 분해를 촉진하는 생물 계면활성제로서 높은 수율로 효과적ㅇ고도 용이하게 제조될 수가 있는 2-알킬-3-히드록시산 및 그 유도체를 병용(倂用)하는 것에 의하여, 기존의 오염토양복원 방법에 비하여 효과적이고도 경제적이며 환경친화적으로 오염 환경을 정화 할 수가 있다.
<110> NeoPharm Co., LTD. <120> Novel microorganisms having biodegradation ability for oil and bioremediation method for oil-contaminated sites <160> 3 <170> KopatentIn 1.71 <210> 1 <211> 1450 <212> DNA <213> Rhodococcus sp. EN3 <400> 1 tggctcagga cgaacgctgg cggcgtgctt aacacatgca agtcgagcgg taaggccttt 60 cggggtacac gagcggcgaa cgggtgagta acacgtgggt gatctgccct gcacttcggg 120 ataagcctgg gaaactgggt ctaataccgg atatgacctc ctatcgcatg gtgggtggtg 180 gaaagattta tcggtgcagg atgggcccgc ggcctatcag cttgttggtg gggtaatggc 240 ctaccaaggc gacgacgggt agccgacctg agagggtgac cggccacact gggactgaga 300 cacggcccag actcctacgg gaggcagcag tggggaatat tgcacaatgg gcgaaagcct 360 gatgcagcga cgccgcgtga gggatgacgg ccttcgggtt gtaaacctct ttcagcaggg 420 acgaagcgca agtgacggta cctgcagaag aagcaccggc taactacgtg ccagcagccg 480 cggtaatacg tagggtgcaa gcgttgtccg gaattactgg gcgtaaagag ttcgtaggcg 540 gtttgtcgcg tcgtttgtga aaaccagcag ctcaactgct ggcttgcagg cgatacgggc 600 agacttgagt actgcagggg agactggaat tcctggtgta gcggtgaaat gcgcagatat 660 caggaggaac accggtggcg aaggcgggtc tctgggcagt aactgacgct gaggaacgaa 720 agcgtgggta gcgaacagga ttagataccc tggtagtcca cgccgtaaac ggtgggcgct 780 aggtgtgggt tccttccacg gaatccgtgc cgtagctaac gcattaagcg ccccgcctgg 840 ggagtacggc cgcaaggcta aaactcaaag gaattgacgg gggcccgcac aagcggcgga 900 gcatgtggat taattcgatg caacgcgaag aaccttacct gggtttgaca tataccggaa 960 agctgcagag atgtggcccc ccttgtggtc ggtatacagg tggtgcatgg ctgtcgtcag 1020 ctcgtgtcgt gagatgttgg gttaagtccc gcaacgagcg caacccctat cttatgttgc 1080 cagcacgtta tggtggggac tcgtaagaga ctgccggggt caactcggag gaaggtgggg 1140 acgacgtcaa gtcatcatgc cccttatgtc cagggcttca cacatgctac aatggccagt 1200 acagagggct gcgagaccgt gaggtggagc gaatccctta aagctggtct cagttcggat 1260 cggggtctgc aactcgaccc cgtgaagtcg gagtcgctag taatcgcaga tcagcaacgc 1320 tgcggtgaat acgttcccgg gccttgtaca caccgcccgt cacgtcatga aagtcggtaa 1380 ccacccgaag ccggtggctt aaccccttgt gggagggagc cgtcgaaggt gggatcggcg 1440 attgggacga 1450 <210> 2 <211> 1389 <212> DNA <213> Acinetobacter sp. EN67 <400> 2 gctcagattg aacgctggcg gcaggcttaa cacatgcaag tcgagcgggg agatgtagct 60 tgctacattt cctagcggcg gacgggtgag taatgcttag gaatctgcct attagtgggg 120 gacaacattc cgaaaggaat gctaataccg catacgccct acgggggaaa gcaggggatc 180 ttcggacctt gcgctaatag atgagcctaa gtcagattag ctagttggtg gggtaaaggc 240 ctaccaaggc gacgatctgt agcgggtctg agaggatgat ccgccacact gggactgaga 300 cacggcccag actcctacgg gaggcagcag tggggaatat tggacaatgg gcgaaagcct 360 gatccagcca tgccgcgtgt gtgaagaagg ccttttggtt gtaaagcact ttaagcgagg 420 aggaggctac ttagattaat actctaggat agtggacgtt actcgcagaa taagcaccgg 480 ctaactctgt gccagcagcc gcggtaatac agagggtgcg agcgttaatc ggatttactg 540 ggcgtaaagc gtgcgtaggc ggcttcttaa gtcggatgtg aaatccctga gcttaactta 600 ggaattgcat tcgatactgg gaagctagag tatgggagag gatggtagaa ttccaggtgt 660 agcggtgaaa tgcgtagaga tctggaggaa taccgatggc gaaggcagcc atctggccta 720 atactgacgc tgaggtacga aagcatgggg agcaaacagg attagatacc ctggtagtcc 780 atgccgtaaa cgatgtctac tagccgttgg ggcctttgag gctttagtgg cgcagctaac 840 gcgataagta gaccgcctgg ggagtacggt cgcaagacta aaactcaaat gaattgacgg 900 gggcccgcac aagcggtgga gcatgtggtt taattcgatg caacgcgaag aaccttacct 960 ggtcttgaca tagtaagaac tttccagaga tggattggtg ccttcgggaa cttacataca 1020 ggtgctgcat ggctgtcgtc agctcgtgtc gtgagatgtt gggttaagtc ccgcaacgag 1080 cgcaaccctt ttccttattt gccagcgggt taagccggga actttaagga tactgccagt 1140 gacaaactgg aggaaggcgg ggacgacgtc aagtcatcat ggcccttacg accagggcta 1200 cacacgtgct acaatggtcg gtacaaaggg ttgctaccta gcgataggat gctaaactca 1260 aaaagccgat cgtagtccgg attggagtct gcaactcgac tccatgaagt cggaatcgct 1320 agtaatcgcg gaacagaatg ccgcggtgaa tacgttcccg ggcctgtaac accgcccgtg 1380 caccatggg 1389 <210> 3 <211> 1450 <212> DNA <213> Acinetobacter sp. EN96 <400> 3 ctggcggcag gcttaacaca tgcaagtcga gcggggaagt gtagcttgct acattaccta 60 gcggcggacg ggtgagtaat gcttaggaat ctgcctatta gtgggggaca acattccgaa 120 aggaatgcta ataccgcata cgtcctacgg gagaaagcag gggatcttcg gaccttgcgc 180 taatagatga gcctaagtcg gattagctag ttggtggggt aaaggcctac caaggcgacg 240 atctgtagcg ggtctgagag gatgatccgc cacactggga ctgagacacg gcccagactc 300 ctacgggagg cagcagtggg gaatattgga caatgggggg aaccctgatc cagccatgcc 360 gcgtgtgtga agaaggcctt atggttgtaa agcactttaa gcgaggagga ggctactcta 420 gataatacct agagatagtg gacgttactc gcagaataag caccggctaa ctctgtgcca 480 gcagccgcgg taatacagag ggtgcgagcg ttaatcggat ttactgggcg taaagcgtgc 540 gtaggcggct gattaagtcg gatgtgaaat ccctgagctt aacttaggaa ttgcattcga 600 tactggtcag ctagagtatg ggagaggatg gtagaattcc aggtgtagcg gtgaaatgcg 660 tagagatctg gaggaatacc gatggcgaag gcagccatct ggcctaatac tgacgctgag 720 gtacgaaagc atggggagca aacaggatta gataccctgg tagtccatgc cgtaaacgat 780 gtctactagc cgttggggcc tttgaggctt tagtggcgca gctaacgcga taagtagacc 840 gcctggggag tacggtcgca agactaaaac tcaaatgaat tgacgggggc ccgcacaagc 900 ggtggagcat gtggtttaat tcgatgcaac gcgaagaacc ttacctggtc ttgacatagt 960 aagaactttc cagagatgga ttggtgcctt cgggaactta catacaggtg ctgcatggct 1020 gtcgtcagct cgtgtcgtga gatgttgggt taagtcccgc aacgagcgca acccttttcc 1080 ttacttgcca gcatttcgga tgggaacttt aaggatactg ccagtgacaa actggaggaa 1140 ggcggggacg acgtcaagtc atcatggccc ttacgaccag ggctacacac gtgctacaat 1200 ggtcggtaca aagggttgct acctagcgat aggatgctaa tctcaaaaag ccgatcgtag 1260 tccggattgg agtctgcaac tcgactccat gaagtcggaa tcgctagtaa tcgcggatca 1320 gaatgccgcg gtgaatacgt tcccgggcct tgtacacacc gcccgtcaca ccatgggagt 1380 ttgttgcacc agaagtaggt agtctaaccg caaggaggac gcttaccacg gtgtggccga 1440 tgactggggt 1450

Claims (13)

  1. 유류 분해능을 갖는 로도코코스 바이코뉴렌시스 EN3 KCTC19082(Rhodococcus baikoneurensis EN3 KCTC19082).
  2. 유류 분해능을 갖는 아씨네토박터 존스니 EN67 KCTC12360(Acinetobacter johnsonii EN67 KCTC12360).
  3. 유류 분해능을 갖는 아씨네토박터 헤모리티쿠스 EN96 KCTC12361 (Acinetobacter haemolyticus EN96 KCTC12361).
  4. 하기의 그룹으로 이루어지는 군으로부터 선택되는 균주 중 적어도 1종의 균주를 유류 오염 토양에 접종하고 증식시킴으로써 유류를 생분해하여 제거하는 것으로 구성되는 유류 오염 토양의 생물학적 복원 방법:
    로도코코스 바이코뉴렌시스 EN3 KCTC19082(Rhodococcus baikoneurensis EN3 KCTC19082), 아씨네토박터 존스니 EN67 KCTC12360(Acinetobacter johnsonii EN67 KCTC12360), 아씨네토박터 헤모리티쿠스 EN96 KCTC12361 (Acinetobacter haemolyticus EN96 KCTC12361), 노카디아 트랜스발렌시스(Nocardia transvalensis DSM43405T), 노카디아 아스테로이데스(Nocardia asteroides ATCC19247T), 고도니아 스푸티(Gordonia sputi DSM43896T), 고도니아 리조스페라(Gordonia rhizosphera IFO16068T), 고도니아 니티다(Gordonia nitida LE31T), 고도니아 히르수타(Gordonia hirsuta DSM44140T), 고도니아 브론치알리스(Gordonia bronchialis CIP1780.88T), 고도니아 아마라에(Gordonia amarae DSM43392T), 고도니아 디설푸리칸스(Gordonia desulfuricans NCIMB40816T), 고도니아 좁피(Rhodococcus zopfii ATCC51349T), 로도코코스 란티슬라비엔시스(Rhodococcus wratislaviensis NCIMB13082T), 로도코코스 투키사무엔시스(Rhodococcus tukisamuensis Mb8T), 로도코코스 루베르(Rhodococcus ruber DSM43338T), 로도코코스 로도코우스(Rhodococcus rhodochrous CIP1759.88T), 로도코코스 로드니(Rhodococcus rhodnii DSM43336T), 로도코코스 피리디노란스(Rhodococcus pyridinovorans KCTC0647BPT), 로도코코스 퍼콜라투스(Rhodococcus percolatus MBS1T), 로도코코스 오파쿠스(Rhodococcus opacus DSM43205T), 로도코코스 마리노나센스(Rhodococcus marinonascens DSM43752T), 로도코코스 코랜시스(Rhodococcus koreensis DNP505T type2), 로도코코스 조스티(Rhodococcus jostii IFO16295T), 로도코코스 글로버룰러스(Rhodococcus globerulus DSM43954T), 로도코 코스 파시안스(Rhodococcus fascians DSM20669T), 로도코코스 에리스로폴리스(Rhodococcus erythropolis ATCC4277T), 로도코코스 에리스루스(Rhodococcus erythreus DSM43066T), 로도코코스 에퀴(Rhodococcus equi DSM20307T), 로도코코스 코프로필루스(Rhodococcus coprophilus ATCC29080T), 로도코코스 바이코뉴렌시스(Rhodococcus baikonurensis GTC 1041T), 아씨네토박터 타우네리(Acinetobacter towneri AB1110T), 아씨네토박터 베일리(Acinetobacter baylyi B2T), 아씨네톡박터 칼코아세티쿠스(Acinetobacter calcoaceticus DSM30006T), 아씨네토박터 그리몬티(Acinetobacter grimontii 17A04T), 아씨네토박터 이오피(Acinetobacter lwoffii DSM2403T), 아씨네토박터 래디오레시스텐스(Acinetobacter radioresistens ATCC17909T), 아씨네토박터 탄도이(Acinetobacter tandoii 4N13T), 아씨네토박터 타운네리(Acinetobacter towneri AB1110T), 아씨네토박터 바우만니(Acinetobacter baumannii ATCC19606T), 아씨네토박터 바우베티(Acinetobacter bouvetii 4B02T), 아씨네토박터 저너리(Acinetobacter gerneri 9A01T), 아씨네토박터 주니 (Acinetobacter junii ATCC17908T), 아씨네토박터 파르부스(Acinetobacter parvus LUH4616T), 아씨네토박터 쉰들러리(Acinetobacter schindleri NIPH1034T), 아씨네토박터 티전베르지아에(Acinetobacter tjernbergiae 7N16T) 및, 아씨네토박터 우르싱기(Acinetobacter ursingii NIPH137T).
  5. 제 4항에 있어서, 하기의 화학식 1로 표시되는 생계면활성제인 2-알킬-3-히드록시산 및 그 유도체를 유류 분해 활성화제로서 첨가하는 유류 오염 토양의 생물학적 복원 방법.
    (화학식 1)
    Figure 112006051035194-PAT00007
    (상기 식 중, R1, R2는 각각 탄소수 4∼50의 히드록시, 메톡시, 케토, 카보닐, 카복시, 에폭시 에스터, 또는 시클로프로판링을 포함하는 직쇄 혹은 분지형 알킬기 ; R3는 -OR4 [여기서 R4는 수소, 나트륨, 칼륨, 마그네슘, 칼슘, 암모늄, 또는 트리에탄올아민], 모노에탄올아민, 디에탄올아민, D-글루코사민, 글루카민, N-메틸글루카민, 글루코오스, 람노스, 만노스, 갈락토스, 락토스, 슈크로스, 말토스, 아라비노스, 셀로바이오스, 또는 이와 같은 단당 및 이당류를 포함하는 다당류이다.)
  6. 제 4항에 있어서, 상기한 균주가 유류 오염 토양으로부터 순수 분리된 균주를 분리하여 배양한 후, 오일 분해능이 우수한 균주를 1차 스크린닝한 다음, 생계면활성제에 의해 고농도의 오일 오염원의 분해가 증가되는 균주를 2차 스크린닝하여 분리, 동정되는 균주인 유류 오염 토양의 생물학적 복원 방법.
  7. 제 6항에 있어서, 상기한 생계면활성제가 상기한 제5항에 따른 2-알킬-3-히드록시산 및 그 유도체인 유류 오염 토양의 생물학적 복원 방법.
  8. 제 5항에 있어서, 상기한 균주의 배지 포함 접종량이 0.001~8%(v/v 또는 v/w)의 범위이고, 상기한 생계면활성제의 첨가량이 배지 포함 접종량의 0.0001~10중량% 범위인 유류 오염 토양의 생물학적 복원 방법.
  9. 제 5항에 있어서, 상기의 화학식 1로 표시되는 생계면활성제인 2-알킬-3-히드록시산 및 그 유도체가 수소 분위기에서 알킬케텐다이머의 수소화 반응에 따른 β-락톤의 형성하는 제1 단계 반응과, 개환반응에 의한 2-알킬-3-히드록시산의 제조 혹은 글루코스와 친핵체의 반응에 따른 2-알킬-3-히드록시산의 유도체를 형성하는 제2 단계 반응으로 제조되는 것을 특징으로 하는 유류 오염 토양의 생물학적 복원 방법.
  10. 제 9항에 있어서, 상기 제1 단계의 수소화 반응이 수소화 촉매로서 Pd/C 또는 Pd/Al2O3를 사용하고 수소 압력이 1~50기압인 것을 특징으로 하는 유류 오염 토양의 생물학적 복원 방법.
  11. 제 9항에 있어서, 상기 제1 단계 반응의 용매가 에틸 아세테이트와 에틸알코올을 5%:95%~95%:5%의 체적 비율로 혼합하여 사용하는 것을 특징으로 하는 유류 오염 토양의 생물학적 복원 방법.
  12. 제 5항에 있어서, 상기 식 중, R1, R2는 각각 탄소수 4~50의 히드록시, 메톡시, 케토, 카보닐, 카복시, 에폭시 에스터, 또는 시클로프로판링을 포함하는 직쇄 혹은 분지형 알킬기 것을 특징으로 하는 유류 오염 토양의 생물학적 복원 방법.
  13. 제 5항에 있어서, 상기 친핵체와의 반응에 사용되는 당이 글루코스, 람노스, 만노스, 갈락토스, 락토스, 슈크로스, 말토스, 아라비노스 및, 셀로바이오스로 이루어지는 그룹으로부터 선택되는 1종의 당인 것을 특징으로 하는 유류 오염 토양의 생물학적 복원 방법.
KR1020060067042A 2006-07-18 2006-07-18 유류 분해능을 갖는 신규 미생물 및 유류 오염 토양의생물학적 복원 방법 KR20080007861A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020060067042A KR20080007861A (ko) 2006-07-18 2006-07-18 유류 분해능을 갖는 신규 미생물 및 유류 오염 토양의생물학적 복원 방법
US11/544,900 US20080020947A1 (en) 2006-07-18 2006-10-06 Novel microorganisms having oil biodegradability and method for bioremediation of oil-contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060067042A KR20080007861A (ko) 2006-07-18 2006-07-18 유류 분해능을 갖는 신규 미생물 및 유류 오염 토양의생물학적 복원 방법

Publications (1)

Publication Number Publication Date
KR20080007861A true KR20080007861A (ko) 2008-01-23

Family

ID=38983514

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060067042A KR20080007861A (ko) 2006-07-18 2006-07-18 유류 분해능을 갖는 신규 미생물 및 유류 오염 토양의생물학적 복원 방법

Country Status (2)

Country Link
US (1) US20080020947A1 (ko)
KR (1) KR20080007861A (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101018026B1 (ko) * 2010-07-16 2011-03-02 (주)동명엔터프라이즈 유류오염 토양의 복원용 미생물제제, 그 제조방법 및 유류오염 토양의 생물학적 복원방법
CN102250796A (zh) * 2011-06-21 2011-11-23 中国农业科学院农业环境与可持续发展研究所 一种赤红球菌和微生物菌剂及它们的应用
KR101443883B1 (ko) * 2014-03-07 2014-09-23 한국지질자원연구원 오일샌드 지역의 유류오염토양 정화방법
CN105731657A (zh) * 2016-04-01 2016-07-06 南京林业大学 一种微生物絮凝剂的制备方法
CN109423455A (zh) * 2017-08-30 2019-03-05 中国石油化工股份有限公司 一种马红球菌及其鉴定方法和应用
CN115305226A (zh) * 2022-09-22 2022-11-08 郑州轻工业大学 一株降解烟碱并产氢的抗辐射不动杆菌zj-22及其应用

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8222018B2 (en) * 2008-12-18 2012-07-17 Chevron U.S.A. Inc. Gordonia sihwensis strain and uses thereof
FR2944006B1 (fr) * 2009-04-03 2011-04-01 Inst Francais Du Petrole Bacteries capables de degrader des composes petroliers multiples en solution dans des effluents aqueux et procede de traitement desdits effluents
WO2012006486A2 (en) * 2010-07-09 2012-01-12 E. I. Du Pont De Nemours And Company A method for treatment of subterranean sites adjacent to water injection wells
US8371377B2 (en) 2010-07-09 2013-02-12 E.I. Du Pont De Nemours And Company Method for pre-treatment of subterranean sites adjacent to water injection wells
GB2497212A (en) * 2010-07-09 2013-06-05 Du Pont A method for treatment of subterranean sites adjacent to water injection wells
US20150014931A1 (en) * 2011-03-03 2015-01-15 Tructo LLC Strategy game
EP2557129B1 (en) 2011-08-09 2018-02-28 Omya International AG Surface-treated calcium carbonate for binding and bioremediating hydrocarbon-containing compositions
CN104870712B (zh) * 2012-11-08 2018-01-02 索理思科技开曼公司 氢化烷基烯酮二聚体的组合物和用途
US9035703B2 (en) * 2012-12-17 2015-05-19 Qualcomm Incorporated Tunable wide band driver amplifier
JP6310326B2 (ja) * 2014-05-27 2018-04-11 富士フレーバー株式会社 δ−バレロラクトンの製造方法
CN105733976B (zh) * 2015-12-29 2019-06-28 中国科学院烟台海岸带研究所 一种降解石油的复合菌剂及其制备方法与应用
CN107217017B (zh) * 2017-05-27 2020-12-08 青岛农业大学 一株不动杆菌及其在石油降解中的应用
EA038309B1 (ru) * 2017-08-16 2021-08-06 Товарищество С Ограниченной Ответственностью "Экостандарт.Kz" Способ получения биологического препарата для очистки почвы от нефти и нефтепродуктов
EA038354B1 (ru) * 2017-08-16 2021-08-12 Товарищество С Ограниченной Ответственностью "Экостандарт.Kz" Биологический препарат для очистки почвы и воды от нефти и нефтепродуктов
CN110846257A (zh) * 2019-12-11 2020-02-28 中冶华天工程技术有限公司 降解长链烷烃的微生物菌及其应用
CN111533615A (zh) * 2020-04-02 2020-08-14 西安石油大学 一种修复高含油黏土的组合物及其修复方法
CN111733100B (zh) * 2020-06-19 2021-05-04 新疆农业大学 一株降解聚乙烯地膜的申氏不动杆菌及其应用

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101018026B1 (ko) * 2010-07-16 2011-03-02 (주)동명엔터프라이즈 유류오염 토양의 복원용 미생물제제, 그 제조방법 및 유류오염 토양의 생물학적 복원방법
CN102250796A (zh) * 2011-06-21 2011-11-23 中国农业科学院农业环境与可持续发展研究所 一种赤红球菌和微生物菌剂及它们的应用
CN102250796B (zh) * 2011-06-21 2013-11-06 中国农业科学院农业环境与可持续发展研究所 一种赤红球菌和微生物菌剂及它们的应用
KR101443883B1 (ko) * 2014-03-07 2014-09-23 한국지질자원연구원 오일샌드 지역의 유류오염토양 정화방법
CN105731657A (zh) * 2016-04-01 2016-07-06 南京林业大学 一种微生物絮凝剂的制备方法
CN105731657B (zh) * 2016-04-01 2019-03-22 南京林业大学 一种微生物絮凝剂的制备方法
CN109423455A (zh) * 2017-08-30 2019-03-05 中国石油化工股份有限公司 一种马红球菌及其鉴定方法和应用
CN115305226A (zh) * 2022-09-22 2022-11-08 郑州轻工业大学 一株降解烟碱并产氢的抗辐射不动杆菌zj-22及其应用
CN115305226B (zh) * 2022-09-22 2023-06-16 郑州轻工业大学 一株降解烟碱并产氢的抗辐射不动杆菌zj-22及其应用

Also Published As

Publication number Publication date
US20080020947A1 (en) 2008-01-24

Similar Documents

Publication Publication Date Title
KR20080007861A (ko) 유류 분해능을 갖는 신규 미생물 및 유류 오염 토양의생물학적 복원 방법
Mercade et al. Olive oil mill effluent (OOME). New substrate for biosurfactant production
Yumoto et al. Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons.
Tuleva et al. Biosurfactant production by a new Pseudomonas putida strain
Christova et al. Rhamnolipid biosurfactants produced by Renibacterium salmoninarum 27BN during growth on n-hexadecane
Ferhat et al. Screening and preliminary characterization of biosurfactants produced by Ochrobactrum sp. 1C and Brevibacterium sp. 7G isolated from hydrocarbon-contaminated soils
Vipulanandan et al. Enhanced solubility and biodegradation of naphthalene with biosurfactant
JP5251003B2 (ja) 潤滑油分解微生物および微生物コンソーシアム、ならびにそれらを用いた潤滑油汚染土壌の浄化方法
Tuleva et al. Isolation and characterization of trehalose tetraester biosurfactants from a soil strain Micrococcus luteus BN56
Femi-Ola et al. Isolation and screening of biosurfactant-producing bacteria from soil contaminated with domestic waste water
Al-Hawash et al. Biodegradation of n-hexadecane by Aspergillus sp. RFC-1 and its mechanism
US8343750B2 (en) Ochrobactrum sp. for degrading tetrabromobisphenol-A (TBBPA) and its application
RU2344170C2 (ru) Штамм бактерий pseudomonas putida, продуцирующий поверхностно-активные вещества, для деградации полициклических ароматических углеводородов и углеводородов нефти
Espuny et al. Characterization of trehalose tetraester produced by a waste lube oil degrader Rhodococcus sp. 51T7
Sana et al. Production kinetics of Rhamnolipid using fish fat: A step towards environmental hazard control of sewage
Ehmedan et al. Acceleration the bacterial biodegradation of crude oil pollution using Fe2O3 and ZnO nanoparticles
Ghojavand et al. A halotolerant, thermotolerant, and facultative biosurfactant producer: identification and molecular characterization of a bacterium and evolution of emulsifier stability of a lipopeptide biosurfactant
Saimmai et al. Biosurfactant production by Bacillus subtilis TD4 and Pseudomonas aeruginosa SU7 grown on crude glycerol obtained from biodiesel production plant as sole carbon source
KR100998035B1 (ko) 유류 분해능을 갖는 슈도모나스 속 미생물 및 상기미생물을 이용한 유류 오염 물질의 처리 방법
KR101198103B1 (ko) 유류 분해능을 가지는 신규 미생물 및 이를 이용한 유류 오염 토양의 생물학적 복원 방법
KR101673058B1 (ko) 유류분해능을 갖는 신균주 바실러스 퓨밀러스 ij-1의 생장 및 생물계면활성제 생산효율을 증가시키기 위한 배양방법
KR20070027151A (ko) 람노리피드 생산능을 갖는 신규한 테트라제노코코스코렌시스 및 이를 이용한 람노리피드의 제조방법
KR101093079B1 (ko) 유류분해능을 갖고 생물계면활성제를 생산하는 바실러스 서브틸리스 제이케이-1의 배양방법
JP5565796B2 (ja) 新規微生物及びそれを用いる糖型バイオサーファクタントの製造方法
KR20030076142A (ko) 신규한 중·저온 유류분해균주 로도코커스sp.YHLT-2 KCTC 10203BP 균주 및 이를이용한 생물학적 유류 제거 방법

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid