KR20070108880A - 전기-수력학적 펌프 및 전기-수력학적 펌프를 포함한 냉각장치 - Google Patents

전기-수력학적 펌프 및 전기-수력학적 펌프를 포함한 냉각장치 Download PDF

Info

Publication number
KR20070108880A
KR20070108880A KR1020077019311A KR20077019311A KR20070108880A KR 20070108880 A KR20070108880 A KR 20070108880A KR 1020077019311 A KR1020077019311 A KR 1020077019311A KR 20077019311 A KR20077019311 A KR 20077019311A KR 20070108880 A KR20070108880 A KR 20070108880A
Authority
KR
South Korea
Prior art keywords
electrodes
electrode
ehd
heat sink
channel
Prior art date
Application number
KR1020077019311A
Other languages
English (en)
Inventor
다니엘 존 슐리츠
Original Assignee
손 마이크로 테크놀로지스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손 마이크로 테크놀로지스, 인코포레이티드 filed Critical 손 마이크로 테크놀로지스, 인코포레이티드
Publication of KR20070108880A publication Critical patent/KR20070108880A/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/10Component parts of trickle coolers for feeding gas or vapour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

본 발명은 냉각 시스템들에 관한 것이며, 특히 강제 대류성 가스 상태의 흐름을 제공하는 냉각 시스템들에 관한 것이다. 일 실시형태에 따르면, 냉각 시스템은 코로나 윈드 또는 마이크로-스케일 코로나 윈드와 같거나, 일시적 제어 이온-발생 기술에 의한 EHD 펌핑 메카니즘과 조합한 열 싱크를 채택한다. 열 싱크를 구현하기 위해 채널-어레이 구조체가 채택될 수 있다. EHD 펌프들은 열 싱크 채널들의 유입구 또는 유출구에 위치된다. 본 발명의 냉각 시스템에 의해, 전체 시스템이 0.1 배의 부피 및 무게를 가지면서 종래의 열 싱크 및 팬 시스템과 유사하거나 그보다 더 훌륭한 성능을 가질 수 있고, 조용하게 작동할 수 있다는 것을 포함한 많은 장점들이 달성된다. 또한, 본 발명은 EHD 가스 흐름을 채택한 마이크로-채널 열 싱크를 제작하는 방법에 관한 것이다.

Description

전기-수력학적 펌프 및 전기-수력학적 펌프를 포함한 냉각 장치{ELECTRO-HYDRODYNAMIC PUMP AND COOLING APPARATUS COMPRISING AN ELECTRO-HYDRODYNAMIC PUMP}
본 출원은, 통상적으로 양수인이 소유하고 있는 2005 년 1 월 24 일에 제출된 미국 가출원 제 60/646,750호에 기초하고, 그로부터 우선권을 주장하며, 그 전문이 본 명세서에서 인용참조된다.
본 발명은 냉각 시스템들에 관한 것이며, 특히 열 싱크(heat sink)들을 통한 강제-대류 가스 흐름(forced-convection gas flow)을 채택하는 냉각 시스템들에 관한 것이다.
열은 많은 환경들에서 문제점일 수 있으며, 과열(overheating)은 집적 회로들과 같은 구성요소들(예를 들어, 컴퓨터의 중앙 처리 장치(CPU)) 및 다른 전자 구성요소들의 고장(failure)을 초래할 수 있다고 잘 알려져 있다. 열 싱크들은 과열을 방지하는데 사용되는 통상의 디바이스이다. 열 싱크들은 주로 공기를 이용한 디바이스로부터 열의 소실(dissipation)에 의지한다. 하지만, 공기와 같은 가스를 이용하여 열을 없애는 것은 가스들의 열악한 열적 특성들 때문에 어렵다. 가스들은 낮은 열 전도율(thermal conductivity)을 가지며, 이는 열 흡수를 방해한다. 또한, 그것들은 낮은 열 용량(heat capacity)을 가지며, 이는 단지 소량의 열만 흡수한 이후에 그것들을 빠르게 가열되게 한다. 이는 가스와 열 싱크 간의 온도차를 감소시킴으로써, 열 흡수의 속도 및 양을 더디게 한다.
종래의 열 싱크들은 주어진 볼륨(volume) 내에 놓일 수 있는 제한된 양의 표면적을 갖는다. 그 결과, 이 열 싱크들은 특히 열원 및 기판에 수직인 방향으로 크다. 추가적으로, 이 열 싱크 디자인들은 소정 타입의 유체 펌프 디자인들과는 잘 통합되지 않는다.
그 전문이 본 명세서에서 인용참조되고, 2005 년 7 월 13 일에 제출된 "Micro-Channel Heat Sink"라는 제목의 미국 특허 출원 제 11/181,106호에서 설명된 새로운 종류(novel)의 열 싱크는 현재 기술의 열 싱크들을 극적으로 진보시킨다. 그것은 짧은 저내열성 경로(low thermal resistant path)들을 통해 열이 더 쉽게 전달되게 하는 비교적 짧은 마이크로-채널(micro-channel)들의 많은 어레이로 이루어진 구조를 설명한다. 그 결과, 이 개념에 기초한 열 싱크들이 고성능 냉각을 유지하면서 구식(traditional) 열 싱크들의 볼륨의 일부(fraction)를 갖는다.
미국 특허 출원 제 11/181,106호에 설명된 열 싱크 및 더 종래의 다른 열 싱크 디자인들은, 전형적으로 열 싱크의 구조들을 통해 가스들의 흐름을 촉진하기 위해 팬(fan)들 및 블로어(blower)들에 의지한다. 한편, 전기를 유체 흐름으로 직접 전환하는 다른 기술들이 개발되었다. 이 방법들은 집합적으로 전기-수력학적 펌프(electro-hydrodynamic pump: EHD 펌프)들로서 언급된다. 가스를 펌핑(pump)하는 이러한 방법들 중 하나는 코로나 윈드(corona wind)라고 불린다. 그것은 높은 전압 이 전극들 사이에 인가되는 경우에 2 개의 전극(electrode)들, 하나의 샤프(sharp)와 다른 블런트(blunt) 사이에서 확립되는 가스 흐름을 칭한다. 상기 가스는 샤프 전극 부근의 높은 전기장의 구역 내에서 부분적으로 이온화(ionize)된다. 더 멀리 있는 블런트 전극으로 이끌리는 이온들은 도중에 중성 분자(neutral molecule)들과 충돌(collide)하고 펌핑 동작을 일으킨다.
또 다른 타입의 EHD 펌프가 2005 년 11 월 10 일에 제출된 "Ion Generation by the Temporal Control of Gaseous Dielectric Breakdown"이라는 제목의 미국 특허 출원 제 11/271,092호에서 설명되며, 이는 본 명세서에서 인용참조된다. 이 방법에서, 이온들은 가스의 일시적으로 제어된 붕괴(temporally controlled breakdown)에 의해 발생된 후, 펌핑 동작을 일으키기 위해 반대로 대전된 전극(oppositely charged electrode)들로 이끌린다.
"Ion-Driven Air Flow Device and Method"라는 제목의 미국 특허 공개공보 제 2005/0007726 A1은 이온-구동되는 유체 흐름 발생 마이크로스케일 펌프 디바이스 및 냉각 고형물(cooling solid object)들을 위해 가스 상태의 유체의 흐름을 생성하는 방법에 관한 것이다. 이온 발생은 전자 터널링(electron tunneling) 공정을 수반하며, EHD 펌핑은 진행하는(traveling) 전기장 개념을 이용한다. 이 특허 출원의 개념들은 흥미롭지만, 여러 측면에서 실용적이지 않으며 복잡하다.
"Electro-hydrodynamic heat exchanger"라는 제목의 미국 특허 제 6,659,172호는 EHD 향상된 열전달을 이용하는 대향류형 열교환기(counter flow heat exchanger)에 관한 것이다. 상기 흐름은 주로 EHD 펌프에 의해 구동되는 것이 아니 라, 오히려 외부 디바이스의 종류에 의해 구동된다. EHD 동작은 아마도 시스템의 열전달율을 향상시키고 그 성능을 개선하는 2 차 흐름들을 생성한다.
"Electric wind generator"라는 제목의 미국 특허 제 4,210,847호는 열전달을 위해 공기 흐름을 제공하는 코로나 윈드 펌프를 개시한다. 하지만, 열 싱크 통합은 언급하지 않는다.
"Apparatus for producing a directed flow of a gaseous medium utilizing the electric wind principle"이라는 제목의 미국 특허 제 4,380,720호는 공기를 이동시키는 코로나 윈드 디바이스를 개시한다. 그것은 전기-수력학적 커플링을 향상시키는 에어로솔 첨가(aerosol addition)를 포함하며, 즉 펌핑 동작의 효율을 증가시킨다.
"Ion drag air flow meter"라는 제목의 미국 특허 제 5,237,281호 및 "Ion-drag flowmeter"라는 제목의 미국 특허 제 4,953,407호는 공기 흐름 속도를 결정하기 위해 이온 전류(ion current)를 측정하는 역(reverse) 코로나 윈드 디바이스들을 개시한다.
상기 이전 기술은 흥미롭지만 효과적인 열 싱크 구조체들에 적용하기에는 문제점을 남기는 개념들을 가르친다. 더 진보된 가스 상태의 흐름 기술들을 지지하고 효과적으로 채택할 수 있는 구조와 함께, 종래의 팬 또는 수동적인 기술들의 열 싱크 디자인을 넘어 개선된 가스 흐름 특성들을 이용하는 열 싱크 디자인을 갖는 것이 바람직할 것이다.
본 발명은 냉각 시스템에 관한 것이며, 특히 강제 대류성(forced convective) 가스 상태의 흐름을 제공하는 냉각 시스템에 관한 것이다. 일 실시형태에 따르면, 냉각 시스템은 코로나 윈드 또는 마이크로-스케일 코로나 윈드와 같은 EHD 펌핑 메카니즘과 조합하거나, 일시적으로 제어된 이온-발생 기술에 의한 열 싱크를 채택한다. 열 싱크를 구현하기 위해 채널-어레이 구조(channel-array structure)가 채택될 수 있다. EHD 펌프들은 열 싱크 채널들의 유입구 또는 유출구에 위치된다. 본 발명의 냉각 시스템에 의해, 전체 시스템이 0.1 배의 부피 및 무게를 가지면서 유사하거나 종래의 열 싱크 및 팬 시스템보다 더 훌륭한 성능을 갖고 조용하게 작동할 수 있다는 것을 포함하여 많은 장점들이 달성된다.
일 실시형태에 따르면, 본 발명에 따른 냉각 장치는 채널 및 가스가 채널을 통해 흐르게 하는 채널에 커플링된 전기-수력학적(EHD) 펌프를 포함한다.
또 다른 실시형태에 따르면, 본 발명에 따른 냉각 장치는 복수의 채널들 및 가스가 채널들을 통해 각각 흐르게 하는 채널들에 커플링된 복수의 전기-수력학적(EHD) 펌프들을 포함한 열 싱크를 포함한다.
또 다른 실시형태에 따르면, 본 발명에 따른 냉각 장치를 제작하는 방법은 통상적으로 전기-수력학적 펌프 구조체 및 열 싱크 구조체를 형성하기 위해 단일 공정을 사용하는 단계를 포함한다.
또 다른 실시형태에 따르면, 본 발명에 따른 마이크로-스케일 코로나 윈드를 생성하는 전기-수력학적(EHD) 펌프는 1 cm 미만의 가스 갭에 의해 제 2 전극으로부터 분리된 제 1 전극을 포함하며, 제 1 전극은 유효 직경(effective diameter)을 갖고, 유효 직경에 대한 가스 갭의 비는 6:1보다 크다.
당업자라면, 첨부된 도면들과 관련하여 본 발명의 특정 실시예들의 다음 설명들을 재검토하여, 본 발명의 이러한 측면들과 특징들 및 다른 측면들과 특징들을 분명히 알게 될 것이다:
도 1은 본 발명에 따른 EHD 가스 흐름 냉각 시스템의 바람직한 일 실시예의 사시도;
도 2는 본 발명에 따른 냉각 시스템의 바람직한 또 다른 실시예의 사시도;
도 3은 본 발명에 따른 냉각 시스템의 바람직한 또 다른 실시예의 사시도;
도 4는 본 발명에 따른 냉각 시스템의 바람직한 또 다른 실시예의 사시도;
도 5는 본 발명에 따른 냉각 시스템의 바람직한 또 다른 실시예의 사시도;
도 6은 본 발명에 따른 냉각 시스템의 바람직한 또 다른 실시예의 사시도;
도 7a 내지 도 7c는 본 발명에 따른 냉각 시스템의 바람직한 또 다른 실시예의 다양한 구성들의 사시도;
도 7d는 본 발명에 따른 냉각 시스템에서 구현될 수 있는 전극 팁(electrode tip)들의 다양한 구성들의 사시도;
도 8은 본 발명에 따른 냉각 시스템의 바람직한 또 다른 실시예의 사시도;
도 9는 본 발명에 따른 냉각 시스템의 바람직한 또 다른 실시예의 사시도;
도 10은 본 발명에 따른 냉각 시스템의 바람직한 또 다른 실시예의 사시도;
도 11은 본 발명에 따라 구성된 프로토타입에서 인가 전압의 주파수의 함수 로서 냉각 시스템의 열 저항의 추세를 나타내는 그래프;
도 12a 및 도 12b는 본 발명에 따른 냉각 장치 내의 전류 펄스 이온 발생 기술(current pulsing ion generation technique)들의 바람직한 구현을 예시하는 도면;
도 13은 모바일 컴퓨터 적용에서 EHD 가스 흐름 냉각 시스템의 바람직한 실시예를 나타내는 도면; 및
도 14a 내지 도 14d는 본 발명에 따른 마이크로-스케일 EHD 냉각 시스템을 수행하는 하나의 가능한 마이크로-제작 프로세스의 시퀀스를 나타내는 도면이다.
이제, 본 발명은 도면들을 참조하여 상세히 설명될 것이며, 이는 당업자가 본 발명을 실시할 수 있게 하도록 본 발명의 예시적인 예시들로서 제공된다. 아래에서 도면들 및 예시들은 본 발명의 범위를 단일 실시예로 제한하려는 것이 아니고, 설명되거나 예시된 요소들의 일부 또는 전부의 교체(interchange)에 의해 다른 실시예들이 가능하다는 것을 유의한다. 또한, 본 발명의 소정 요소들이 부분적으로 또는 전체적으로 알려진 구성요소들을 이용하여 구현될 수 있는 경우, 본 발명을 이해하는데 필요한 이러한 알려진 구성요소들의 그 부분들만이 설명될 것이고, 이러한 알려진 구성요소들의 다른 부분들의 상세한 설명들은 본 발명을 애매하게 하지 않도록 생략될 것이다. 본 명세서에서, 주목할 만한(singular) 구성요소를 나타내는 일 실시예는 반드시 그렇게 제한되는 것은 아니어야 한다: 오히려, 그 원리들이 복수의 동일한 구성요소를 포함한 다른 실시예들로 확장될 수 있으며, 만약 본 명세서와는 다르게 명확히 설명되지 않는다면 역일 수 있다. 또한, 출원인들은 이처럼 명확히 설명하지 않는 경우 명세서 또는 청구항에서의 여하한의 용어가 보기 드물거나 특별한 의미로 간주되는 것으로 의도하지 않는다. 또한, 본 발명은 예시에 의해 본 명세서에 언급된 알려진 구성요소들에 대한 현재 및 미래의 알려진 균등물들을 포괄한다.
일반적으로, 본 발명은 바람직하게는 EHD 기술들을 이용하여 열 싱크 구조체를 통한 강제 대류성 가스 상태의 흐름을 채택하는 냉각 시스템들에 관한 것이다. EHD 흐름은 본 명세서에서 상세히 설명될 3 개의 메카니즘들 중 하나에 의해; (1) 코로나 윈드, (2) 마이크로-스케일 코로나 윈드 또는 (3) 2005 년 11 월 10 일 제출되고, 본 명세서에서 인용참조되는 "Ion Generation by the Temporal Control of Gaseous Dielectric Breakdown"이라는 제목의 미국 특허 출원 제 11/271,092호에서 설명된 방법에 의해 발생되는 것이 바람직하다. 하지만, EHD 흐름은 이 3 개의 메카니즘들 중 2 이상의 조합에 의해, 또는 현재 및 미래의 다른 EHD 메카니즘들에 의해 발생될 수도 있으며, 또는 팬들과 같은 종래의 다른 메카니즘들과 조합하여 발생될 수도 있는 한편, 본 발명의 지침들 내에 유지된다.
도 1은 본 발명에 따른 예시적인 냉각 시스템을 예시한다. 도 1에 나타낸 바와 같이, 제 1 전극(102)은 가스(예를 들어, 공기) 갭(106)에 의해 제 2 전극(104)으로부터 분리된다. 본 발명의 일 실시형태에 따르면, 제 2 전극(104)은 열 싱크의 일부분으로 통합하여 형성되고, 제 1 및 제 2 전극들은 열 싱크 채널(110)의 유입구 부근에 배치된다. 전압원(108)은 전극들(102 및 104)에 커플링되고, 아래에서 더 상세히 설명될 기술들 중 하나에 따라 이온들을 발생시키는 가스 갭(106)을 가로지른 전기장을 확립한다. 갭(106)을 가로지른 이온 발생은 그 유입구에서 그 유출구로의 방향(112)으로, 가스가 채널(110)을 통해 흐르게 하는 운동량(momentum)을 가스에 부여한다. 당업자라면 이해할 수 있는 바와 같이, 채널(110)을 통한 가스 흐름은 열 싱크로부터의 열의 제거를 용이하게 하고, 열 싱크에 열적으로 커플링되는 열원으로부터 열을 제거하도록 작용한다.
예시적인 일 실시예에서, 열 싱크 재료는 전압원(108)이 당업자에게 알려져 있는 여하한 수의 연결 수단들을 통해 직접 연결되는 알루미늄과 같은 전기적 도전성 재료(electrically conductive material)이므로, 제 2 전극(104)으로서 작용한다. 아래 설명들로부터 더 알게 될 수 있는 바와 같이, 몇몇 예시들에서의 제 1 전극(102)은 알루미늄, 구리 또는 다른 형태의 전기적 도전성 와이어일 수 있으며, 또는 그것은 유전성 재료(dielectric materal) 상의 패터닝된 도체(patterned conductor)일 수 있으므로, 원형으로 제한되지 않는다.
나타낸 예시에서, 채널(110)은 열 싱크 핀(114-B)에 의해 분리되는 또 다른 핀(114-A)에 의해 정의된다. 소정의 예시된 요소들의 다양한 방위, 재료, 지오메트리 및 치수들은 사용된 이온-발생 기술들에 의존할 수 있으며, 아래 설명들로부터 더 알게 될 것이다. 하지만, 본 발명에 따른 냉각 시스템은 핀들 또는 다른 열 싱크 구조체들에 의해 정의된 많은 채널들(110)을 포함할 수 있으며, 이것들 모두 또는 약간은 그를 통한 가스 흐름을 야기하는 이온-발생 전극들을 갖출 것임을 유의하여야 한다. 또한, 도 1에 예시되고 본 명세서에서 더 상세히 설명될 유입구보다 는, 채널의 유출구 부근에 전극들을 제공함으로써 유사한 결과들이 얻어질 수 있다는 것을 유의하여야 한다.
코로나 윈드
본 발명의 냉각 시스템에서 사용될 수 있는 하나의 EHD 펌핑 방법, 코로나 윈드가 대규모로 연구되었다(O.Stuetzer, "Ion Drag Pressure Generation", J.Applied Physics, V.30, N.7, pp.984-994, 1959; B.L.Owsenek, J.Seyed-Yagoobi, "Theoretical and Experimental Study of Electrohydrodynamic Heat Transfer Enhancement Through Wire-Plate Corona Discharge", J.Heat Transfer, V.119, pp.604-610, 1997; Kalmen and E.Sher, "Enhancement of heat transfer by means of a corona wind created by a wire electrode and confined wings assembly", Applied Thermal Eng., 21, pp.265-282, 2001 참조). 그것은 수 센티미터의 갭(예를 들어, 갭(106))에 의해 멀리 이격된 2 개의 전극들인, 하나의 샤프(예를 들어, 제 1 전극(102)) 및 다른 블런트(예를 들어, 제 2 전극(104))를 수반한다. 전극들 사이에는 큰 정전압(constant voltage)(DC, 예를 들어 소스(108))이 인가된다. 이는 샤프 전극 부근에 강력(intense)한 전기장을 생성하고, 전극들 사이의 구역의 잔여부에는 더 약한 전기장을 생성한다. 사프 전극 부근의 높은 전기장 구역에서 가스 상태의 붕괴(gaseous breakdown)가 개시된다(코로나 방전). 이 지역에서, 자유 전자(free electron)들은 중성 분자들과 충돌함에 따라, 추가 자유 전자들 및 양 이온(positive ion)들의 쌍들을 생성하기에 충분한 에너지를 얻는다. 이 동작은 다수의 이온들이 작은 부피로 발생되도록 눈사태 효과(avalanche effect)를 일으킨다. 이 구역에서 생성된 이온들은 전기장의 영향을 받아, 블런트 전극을 향해 갭(예를 들어, 갭(106))을 가로질러 진행한다. 그 도중에, 그것들은 중성 분자들과 충돌하고, 가스가 흐르게 하는 운동량을 벌크 가스(bulk gas)에 부여한다.
마이크로-스케일 코로나 윈드
도 1에 예시된 것과 같은 냉각 시스템에서 사용될 수 있고, 자체로 본 발명의 추가적인 실시형태인 EHD 펌핑의 또 다른 방법은 본 명세서에서 마이크로-스케일 코로나 윈드라고 칭한다. 마이크로-스케일 코로나는 메조-스케일(meso-scale)의 저단부(low end)를 통한, 그리고 마이크로-스케일로의 코로나 윈드 현상의 새로운(novel) 확장이다. 마이크로-스케일 코로나는 본 명세서에서 간격이 1 cm 미만 - 종래의 코로나들에 대해 보고된 최소 갭 크기 이하인 전극들 사이의 코로나 방전으로서 정의된다.
종래의 코로나 윈드와 유사한 마이크로-스케일 코로나 윈드는 2 개의 전극들 - 하나의 블런트(예를 들어, 제 2 전극(104)) 및 다른 샤프(예를 들어, 제 1 전극(102)) 사이의 코로나 방전으로서 확립된다. 그러나, 종래의 코로나에서는 샤프 전극 특성 치수(유효 치수)에 대한 가스 갭(예를 들어, 106)의 크기의 비가 단지 6:1을 초과하도록 요구된다(Gaseous Electronics, Editors: Merle N.Hirsh & H.J.Oskam, Academic Press, New York, 1978 참조). 본 발명은 마이크로-스케일 코로나에서 이 최소 비가 더 이상 적용되지 않는다는 것을 인지한다. 마이크로-스케 일 코로나를 이용하여, 이온화 구역은 샤프 전극에 더 가깝게 한정되어야 한다. 이는 갭-대-직경 비를 증가시킴으로써 성취된다. 이는 이온화가 가스의 일반적인 붕괴를 일으키고 방지하는 구역의 크기를 제한하며, 본 발명이 더 인지함에 따라 파괴적인 아크(destructive arc) 또는 스파크(spark)의 형성이 유리하다.
특히, 본 발명은 갭-대-직경 비 요건이 갭 크기를 감소시킴에 따라 6:1을 넘어 증가한다는 것을 더 인지한다. 예를 들어, 1.25 mm의 가스 갭은 상기 비가 25:1을 초과할 것을 요구하고, 더 작은 갭들에 대해 요건은 100:1을 초과할 수 있다. 이 요건은 전형적인 마이크로-스케일 코로나 전극이 직경에 있어서 대략 10 ㎛에 대한 서브-마이크론의 범위 내에 있어야 하지만, 일반적으로 100 마이크론 미만이어야 한다는 것을 의미한다. 더 큰 직경의 전극들은 마이크로-스케일 코로나 레짐(regime)을 나타낼 것이 아니라, 대신에 전극들 사이의 전압이 올라감에 따라 절연(insulating)으로부터 아킹(arcing)까지 직접 진행할 것이다. 크기 요건은 전극들의 구성에 대해 (예를 들어, 포토리소그래피, 이온 밀링(ion milling) 및 레이저 유도 순방향 전송(laser induced forward transfer) 등을 포함한) 마이크로-제작 기술들의 사용을 필요로 할 수 있다.
마이크로-스케일 코로나 윈드는, 마이크로-스케일 코로나에 대해 요구되는 크기가 종래의 코로나에 비해 상당히 감소되기 때문에 유리하다. 이는 펌핑 섹션이 크기가 감소될 수 있게 하고, 개별적인 펌프들이 더 가깝게 이격되게 하므로, 열 싱크 채널들(예를 들어, 채널들(110))도 더 가깝게 이격되게 한다. 마이크로-스케일 코로나의 제 2 장점은 그것의 낮은 턴온(turn-on) 전압이다. 전형적인 종래의 코로나는 수십 킬로볼트로 켜거나(turn-on) 전기를 전도하기 시작하지만, 마이크로-스케일 코로나는 1000 볼트 이하에서 켤 수 있다. 감소된 전압은 더 작고 더 싼 구성요소들에 의해 생성되고, 시스템을 더 경쟁적(competitive)이게 할 수 있다.
붕괴 제어에 의한 이온 발생
본 발명에 따른 냉각 시스템에서 사용될 수 있는 EHD 펌핑의 또 다른 방법은 2005 년 11 월 10 일 제출되고 본 명세서에서 인용참조되는 "Ion Generation by the Temporal Control of Gaseous Dielectric Breakdown"이라는 제목의 미국 특허 출원 제 11/271,092호에서 상세히 설명된다. 이 방법은 근처 가스(nearby gas)의 붕괴를 개시하는 EHD 전극들(예를 들어, 전극들(102 및 104))에 가까운 추가 전극들(도 1에 도시되지 않음)을 추가하는 단계를 포함한다. 붕괴 공정은 이온 발생 전극들 사이에 가스를 가로질러 단기간(MHz 범위 주파수) 펄스를 적용하는 단계를 포함한다. 상기 펄스는 아크가 형성되기 이전에 중지(halt)된다. 결과적인 붕괴는 그 후 EHD 펌핑에 대해 사용되는 이온들을 생성한다.
이 기술의 장점들은 상기 2 개의 코로나 방법들 중 어느 것보다 더 낮은 전압으로 턴온이 일어날 수 있다는 것이다. 또한, 그것은 전자 눈사태에 의지하지 않으며, 이는 100 ㎛ 이하의 전극 갭들로 확립되기 어려우므로 코로나 윈드 방법들보다 작은 부피에서 효과적일 수 있다. 마지막으로, 그것은 샤프 전극을 필요로 하지 않기 때문에, 제작을 단순화하기 위해 크기들이 증가될 수 있다.
냉각 시스템: EHD 펌프 및 열 싱크의 통합
상기 언급되고 도 1에 예시된 바와 같이, 본 발명에 따른 냉각 시스템은 열 싱크 구조체와 EHD 가스 흐름 메카니즘을 통합한다. 이제, 통합의 다양한 구조들 및 형태들이 더 상세히 설명될 것이다.
도 1은 상기 언급된 3 개의 모든 EHD 메카니즘들에 적절한 바람직한 제 1 실시예를 나타내지만, 추가 전극들 및 요소들(도시되지 않음)이 소정 EHD 메카니즘들에 대해 포함될 수 있다. 도 1에 나타낸 바와 같이, 제 1 전극(102)은 열 싱크 채널(110)의 유입구에 위치된다. 상기 채널은 다-채널 냉각 시스템을 나타낸다. 제 1 전극(102)은 얇은 와이어로 구성된 샤프 전극일 수 있으며, 제 2 전극(104)은 알루미늄과 같은 열 싱크 핀 재료로 구성된 블런트 전극일 수 있다.
한가지 코로나 윈드 예시에서, 갭(106)은 약 30 mm이고, 와이어(102)는 약 0.5 mm의 직경을 가지며, 전압원(108)은 약 20 kV이고, 핀(114)은 약 1 mm의 두께(t)를 가지며, 채널(110)은 약 5 mm의 폭(W)과 약 100 mm의 길이(L)를 갖는다.
한가지 마이크로-스케일 코로나 윈드 예시에서, 갭(106)은 약 2 mm이고, 와이어(102)는 약 2 마이크론의 직경을 가지며, 전압원(108)은 약 1500 V이고, 핀(114)은 약 0.2 mm의 두께(t)를 가지며, 채널(110)은 약 0.5 mm의 폭(W)과 약 5 mm의 길이(L)를 갖는다.
한가지 이온-발생 붕괴 제어 예시에서, 갭(106)은 약 2 mm이고, 와이어(102)는 약 50 마이크론의 직경을 가지며, 전압원(108)은 약 1000 V이고, 핀(114)은 약 0.2 mm의 두께(t)를 가지며, 채널(110)은 약 0.5 mm의 폭(W)과 약 5 mm의 길이(L) 를 갖는다.
본 발명은 특히 마이크로-스케일 코로나의 확립시, 제 1 전극(예를 들어, 전극(102))에서 전기장 강도(strength)를 향상시키는 것이 중요하다는 것을 인지한다. 상기 서술된 바와 같이, 제 1 전극에서의 전기장 강도가 공칭값(nominal value) 이상으로 충분히 향상되지 않는 경우, 코로나는 형성되지 않을 것이다. 이 이슈를 설명하기 위해, 제 1 전극(202)이 그 측면들로부터 돌출한 다수 전극들(214)을 갖는 1 차 부재(primary member)로 구성되는 바람직한 또 다른 실시예가 도 2에 도시된다. 각각의 2 차 팁들(214)은 주 요소(216)에 기초를 두고 전기장을 향상시킨다. 2 차 전극들의 디자인(길이, 간격 및 유효 직경)은 전기장 강화 및 가스 흐름을 최대화하는 한편, 턴온 전압 및 전력 소비를 최소화하기 위해 최적화될 수 있다. 일 예시에서, 갭(106)이 약 2 mm이고, 전압(108)이 약 1500 V인 경우, 팁들(214)은 약 200 마이크론으로 이격되어 길이가 약 100 마이크론이고, 약 2 마이크론의 직경을 갖는다.
도 3은 2 차 전극들(214)의 방위가 스트림와이즈(streamwise) 방향인 것을 제외하고 도 2와 유사한 바람직한 또 다른 실시예를 나타낸다.
도 4는 단일 채널에 대해 다수의 제 1 전극들 및 제 2 전극을 채택하는 바람직한 또 다른 실시예를 나타낸다. 도 4에 나타낸 바와 같이, 단일의 제 1 전극이 대응하는 제 2 전극(예를 들어, 핀(112))과 연계된 열 싱크 구조체에 평행한 방향으로 방위되기 보다는, 2 이상의 제 1 전극들(402)이 (예를 들어, 열 싱크 핀(114)에 통합된) 제 2 전극의 방위에 수직으로 방위된다.
도 5는 대안적인 제 1 전극 지오메트리를 갖는 바람직한 또 다른 실시예를 나타낸다. 도 5에 나타낸 바와 같이, 제 1 전극(502)은 육각형의 단면을 가지며, 본 발명에 따른 제 1 전극들이 원형 단면을 갖는 것으로 제한되는 것이 아니라, 다양한 인자들에 기초하여 다른 지오메트리들이 디자인될 수 있다는 것을 나타낸다. 이 예시에서, 육각형은 날카로운 에지(sharp edge: 516)를 제공한다.
상기 실시예들에서, EHD 펌핑은 열 싱크와 제 1 전극 사이의 구역에서 일어난다. 본 발명은 열 싱크 채널을 통과하게 하도록 펌핑된 유체를 한정시키는 것이 유리할 수 있다는 것을 인지한다. 따라서, 도 6에 나타낸 바람직한 또 다른 실시예는 펌핑 지역을 부분적으로 또는 전체적으로 둘러싸는 수단들을 포함한다. 도 6에 나타낸 바와 같이, 냉각 시스템은 제 1 전극과 제 2 전극 사이의 갭에 끼워넣은 스페이서(spacer: 620)를 더 포함한다. 스페이서(620)는 유전체 또는 도체일 수 있다. 스페이서(620)가 도체인 경우, 그것은 제 2 전극의 일부분일 수 있다. 이러한 경우, 제 1 전극과 제 2 전극 사이의 갭은 아래에서 더 상세히 설명될 제 1 전극을 지지하는 기판과 같은 수단들에 의해 확립될 수 있다. 또한, 스페이서는 열 싱크를 증대하거나 교체하기 위해 열원으로부터 열을 전달할 수 있다. 스페이서의 가능한 또 다른 기능은 제 1 전극 요소에 대한 기계적인 지지체를 제공하는 것이다.
몇몇 실시예들에서, 제 1 전극들은 기계적으로 강하지 않을 수 있다. 이는 특히 마이크로-스케일 코로나 전극들과 관계가 있다. 이 전극들을 고정(anchor)시키고, 안정성을 제공하며, 신뢰할 수 있는 작동을 보장하기 위해, 그것들은 기판과 같은 적절한 구조체에 의해 지지될 수 있다. 도 7a, 도 7b 및 도 7c는 전극들이 각 각 기판(730)의 상류 벽(upstream wall), 측벽(side wall) 및 하류 벽(downstream wall) 상에 위치되는 바람직한 실시예들을 나타낸다. 스트림 방향에 대해 기판 및 전극들의 다른 방위들 및 각도들이 가능하다는 것을 이해하여야 한다.
제 1 전극들이 기판에 직접 접촉하고 있는 실시예들에서, 전극들은 기판 표면의 에지에서 끝나거나(terminate), 표면 너머로 거리를 연장시키는 것이 바람직하다. 도 7b 및 도 7c에서, 기판에 대해 각을 이루어(at an angle) 전극들의 단부들을 연장시킴으로써 동일한 장점이 성취될 수 있다. 도 7d는 기판(730)에 대한 제 1 전극들의 다양한 구성들을 예시한다. 도 7d에 나타낸 바와 같이, 전극 팁(714A)은 기판(730)과 접촉하고 이지만 기판(730)의 에지로 연장되지는 않도록 구성된다. 전극 팁(714B)은 그것이 기판(730)의 에지와 편평하게(even) 연장되도록 구성된다. 전극 팁(714C)은 기판(730)의 에지 너머로 연장되도록 구성되고, 전극 팁(714D)은 기판(730)에 대해 각을 이루어 연장되도록 구성된다.
다른 실시예들에서, 전극 팁들은 기판에 직접 접촉하고 있지 않다. 이 실시예들은 전기장 강화가 개선되었다.
도 8은 이외의 기계적으로 불안정한 제 1 전극 구조체에 기계적 안정성을 제공하는데 유용할 수 있는 대안적인 바람직한 실시예를 나타낸다. 도 8에 나타낸 바와 같이, 제 1 전극은 기판(820) 상에 제공되고, 이는 스페이서 및 기판을 단일 부재로 효과적으로 조합한다. 또한, 이 실시예는 제 1 전극 요소가 채널(110)의 중심에 위치되는 경우에 겪을 수 있는 흐름 방해(flow blockage)를 제거한다.
AC 전압
프로토타입 디바이스들은 도 8에 나타낸 것과 유사하게, 그리고 본 발명의 마이크로-스케일 코로나 기술들의 치수들에 따라 구성되었다. 상기 디바이스들은 공기 중에(in air) DC 전압들을 이용하여 작동되었다. 이 디바이스들의 테스트는 전극들이 정전압(constant potential)으로 유지되는 경우에 채널들을 통한 가스 흐름 비율이 시간에 걸쳐 차츰 줄어든다(taper off)는 것을 나타내었다. 모든 형태의 펌핑에 대해, DC 작동 중에 표면 전하(surface charge)는 유전 표면 상에 형성된다는 것이 발견되었다. 이 전하는 제 1 전극들에서 전기장 강화를 더디게 하여, 코로나 방전 및 이온들의 형성을 억제한다.
본 발명은 이 이슈를 설명하는 한가지 방식이 전압원(예를 들어, 소스(108))으로서 교번하는(AC) EHD 버스 전압(bus potential)을 사용하는 것임을 인지한다. 교번하는 버스 전압의 형태는 사인 곡선(sinusoidal)으로 제한되지 않고, 직사각형 또는 펄스형일 수 있으며, 그것의 변형들일 수 있다. 교류는 전극들 사이에서 두 극(bi-polar)의 이온들을 이동시킨다. 양 전하 및 음 전하들 모두 채널 내에 존재하기 때문에, 어느 종류도 유전 표면들 상에 형성될 수 없다. 이 표면들은 본질적으로 중성으로 유지되므로, 제 1 전극들에서 전기장을 더디게 하지 않는다. 도 11은 도 8에 나타낸 것과 같고, 마이크로-스케일 코로나 윈드 EHD 펌핑 기술을 이용하는 구조체에 적용된 주파수 상에서의 열 저항의 전형적인 의존성을 나타내는 그래프이다. 이 예시에서 나타낸 바와 같이, 열 저항은 냉각 시스템이 1 내지 100 kHz의 주파수 범위 내에서 작동하는 경우에 가장 낮다. 따라서, AC 전류의 최적 작 동 주파수는 이 범위 내에 놓인다.
많은 마이크로-채널 어레이를 갖는 냉각 시스템
본 발명에 따른 EHD 펌프 메카니즘과 통합되는 바람직한 형태의 열 싱크 구조체는 비교적 짧은 마이크로-채널들의 많은 병렬 어레이(parallel array)를 갖는 것이다; 그렇지만, 많은 다른 형태의 열 싱크들이 사용될 수 있다. 하지만, 열 싱크 핀 폭 및 채널 폭에 따라, 인접한 핀들 상에 제 1 전극 요소들을 배치시키는 것은 전기장 강화를 감소시키므로, 펌핑 성능을 감소시킬 수 있다. 이 이슈를 설명하는 바람직한 실시예는 단일의 제 1 전극 요소(902)가 다수의 채널들(110A 및 110B)에 대한 펌핑을 제공하는데 사용되어 도 9에 도시된다. 이는 이웃한 전극들 사이의 이용가능한 공간을 증가시키고, 냉각 성능을 향상시킨다.
한가지 바람직한 열 싱크 구조체가 본 명세서에서 인용참조되는 "Micro-Channel Heat Sink"라는 제목의 함께 계류중인(co-pending) 미국 특허 출원 제 11/181,106호에서 설명되었다. EHD 전극들은 이 형태의 구조체에서 채널들의 최상부 측면 또는 저부 측면 중 하나에 위치될 수 있다. 도 10은 함께 계류중인 미국 특허 출원 제 11/181,106호에서 설명된 것과 같은 전체 열 싱크 구조체를 갖는 본 발명의 바람직한 실시예를 도시한다. 도 10에 나타낸 바와 같이, 제 1 전극 요소들(1002)의 어레이는 채널들(110)의 어레이의 유입구들을 가로질러 분포된다. 제 1 전극 어레이는 전압이 인가되는 중심 코로나 버스(1040)에 전기적으로 연결(tie)된다.
도 10은 열원으로부터 열 싱크 채널 벽들로 열을 전달하는 수단들로서 열 파이프(1050)를 채택하는 냉각 시스템의 일 실시예를 나타낸다는 것을 유의하여야 한다. 코로나-타입 EHD 펌핑 시스템을 포함한 실시예들에서, 열 파이프(1050)는 제 2 전극으로서 작용할 수도 있다. 다른 실시예들에서, 열 싱크 구조체는 멀리서(remotely) 열 파이프를 통하기보다는 열원에 더 직접적으로 열적 커플링될 수 있다는 것을 유의하여야 한다.
제어된 붕괴 이온 발생을 이용한 냉각 시스템
상기 언급된 바와 같이, 동일한 전체 열 싱크 구조체 및 이온-발생 전극들이 사용될 수 있지만, 도 1 내지 도 10에 나타낸 실시예들은 함께 계류중인 미국 특허 출원 제 11/271,092호에 설명된 EHD 펌핑 방법을 수행하기 위해 추가 전극들 및 구조체들을 필요로 할 수 있다. 도 12a는 본 발명의 다양한 실시예들이 실제 적용으로 실현될 수 있는 방식을 개략적으로 나타낸다. 도 12a 및 도 12b의 예시적인 구현은 코로나 윈드 실시예들과 유사한 제 1 전극(1202) 및 제 2 전극(1204)을 포함한다. 또한, 이 실시예는 제 3 전극(1206)을 포함한다("제 2" 및 "제 3" 전극들의 지정은 본 명세서 및 함께 계류중인 출원 간에 반대인 것을 유의하여야 한다). 도 12a는 대표적인 냉각 채널의 단면도를 나타낸다. 도 12b는 추가 전극(1206)이 상기 도 8과 연결하여 설명된 것과 같은 열 싱크 구조체 내에서 구현될 수 있는 방식의 일 예시를 도시한다.
제 3 전극(1206)용 재료는 500 nm의 두께를 갖는 알루미늄 또는 여하한의 도 체일 수 있으며, 예를 들어 약 1 마이크론의 두께를 갖는 폴리이미드(polyimide)의 얇은 유전체(1208)로 덮일 수 있다. 전압원(1210)은 대개 1000 V 정도이며, 먼저 전극들(1202 및 1206) 간의 가스 갭이 붕괴를 시작하게 하기 위해 함께 계류중인 출원에서 설명된 바와 같이 일시적으로 제어된다. 전하가 전극(1206)을 덮는 유전체(1208)의 표면 상에 쌓이면 공정이 중지된다. 따라서, 유전체 코팅은 캐패시터로서 작용한다. 하지만, 얇은 유전체(1208)는 전하가 표면에서, 그리고 전극으로 느리게 새어 나가게 한다. 따라서, 유전체 코팅은 전하가 캐패시터를 통해 새고 방전하게 함으로써 저항기로도 작용한다. 이온들은 채널 유입구(1212)에서 형성되고, 제 2 전극(1204)에 의해 확립된 2 차 전기장에 의해 끌어 당겨지며, 이는 접지 전압(ground potential)에 유지된다.
원격 열 소실( remote heat dissipation )을 이용한 냉각 시스템
도 10에 나타낸 냉각 시스템은 열원으로부터 멀리 위치될 수 있는 본 발명에 따른 시스템의 일 실시예이다. 상기 서술된 바와 같이, 디바이스는 1 이상의 열 파이프에 의해 열원에 열적 커플링된다. 도 10에 나타낸 예시에서, 열 파이프는 열 싱크의 중심을 따라 진행하지만, 몇몇 다른 구성들도 실현 가능하다. 열 파이프로부터 열 싱크 채널들을 형성하는 각각의 핀의 베이스로 열이 전달된다. 간단한 도전 경로는 열 싱크가 열 파이프 없이 가능한 것보다 더 얇게 구성되게 한다. 또한, 짧은 도전 경로들은 높은 열 도전성이 재료 요건을 필요로 하지 않기 때문에, 열 싱크에 대한 많은 다른 재료들(알루미늄, 실리콘, 탄소, 섬유, 강철, 알루미나 등) 을 사용할 수 있게 한다.
랩탑 컴퓨터(laptop computer)에 대한 본 발명에 따른 완전한 냉각 시스템의 한가지 가능한 적용이 도 13에 도시된다. 완전한 시스템은 중앙 처리 유닛(1304)으로부터 EHD 가스 흐름 열 싱크(1306)로 열을 전달하는 열 파이프(1302)를 갖는다. 열 파이프는 관 내부가 2-부분 유체(phase fluid) 및 심지(wick)로 구성된 표준 규격의 상업적으로 이용가능한 디바이스일 수 있지만, 본 발명은 이러한 특정 디바이스들로 제한되지는 않는다. 열 파이프 디바이스는 관의 일 단부로부터 유체를 증발시키고 다른 쪽으로 유체를 응축(condense)시킴으로써 열을 효율적으로 전달한다. 열 싱크는 뜨거운 가스가 이 예시에서의 컴퓨터의 외부로 소모되도록 통기구(vent)를 갖는 측벽 부근에 위치된다. 전력 공급기(1310)는 EHD 가스 흐름 유닛을 구동하기 위해 교류를 제공한다.
또한, 본 발명의 냉각 시스템은 데스크톱 컴퓨터, 서버, 통신 장비, 케이블 셋-톱 박스, 비디오 게임기, 디지털 및 아날로그 텔레비전 및 디스플레이, 포켓용 개인 휴대 정보 단말기(hand-held personal digital assistant), 셀룰러 폰 등과 같은 다른 전자 장비에 적용될 수도 있다.
구성
EHD 가스 흐름을 이용한 마이크로-채널 열 싱크를 구성하는 제작 공정은 자체로 유일(unique)하고, 이제 도 14a 내지 도 14d에 예시된 바람직한 실시예와 연결하여 더 상세히 설명될 수 있는 바와 같이 본 발명의 또 다른 실시형태이다.
도 14a에 나타낸 바와 같이, 공정은 실리콘, 알루미늄, 도핑된(doped) SiC, 탄소 섬유 또는 구리로 구성된 전기적 도전성 웨이퍼와 같은 기판 재료(1402)를 이용하여 시작한다. 그 다음, 도 14b에서 유전성 재료가 표면(1404) 상에 놓이거나 부착된다(예를 들어, 실리콘 상에 열적 산화막(thermal oxide)이 부착될 수 있거나, 알루미늄이 양극 처리(anodize)될 수 있고, 또는 후막 포토레지스트(thick film photoresist)가 도포될 수 있다). 또한, 유전성 재료의 시트(sheet)가 기판에 접착될 수도 있다(예를 들어, 유리, 석영, 보로플로우트(borofloat) 또는 플렉시 유리(Plexiglas)의 시트가 기판에 부착될 수 있다). 그 다음, 도 14c에서 유전체의 표면 상에 제 1 전극들(1406) 및 버스(1408)를 패터닝하기 위해 포토리소그래피 기술들이 사용될 수 있다. 도 14d에 나타낸 최종 단계는 다이아몬드 다이싱 소우(diamond dicing saw) 또는 와이어 정전기 방전 기계(wire electrostatic discharge machine: EDM)을 이용하여 마이크로-채널들(1410)을 기계적으로 절단하거나, 건식(dry) 및 습식 에칭(wet etching) 기술들을 이용하여 초과 재료(excess material)를 화학적으로 에칭하는 것이다. 또한, 기계적 기술 및 화학적 기술의 조합이 이용될 수도 있다.
본 발명은 특히 바람직한 실시예들을 참조하여 설명하였지만, 당업자라면 본 발명의 의도와 범위를 벗어나지 않고 형태 및 세부 사항들에 있어서 변화들 및 변형들이 수행될 수 있다는 것을 쉽게 이해하여야 한다. 첨부된 청구항들은 이러한 변화들 및 변형들을 포괄하는 것으로 의도된다.

Claims (58)

  1. 냉각 장치에 있어서:
    채널(channel); 및
    상기 채널을 통해 가스가 흐르게 하는 상기 채널에 커플링된 전기-수력학적 펌프(electro-hydrodynamic pump: EHD 펌프)를 포함하여 이루어지는 냉각 장치.
  2. 제 1 항에 있어서,
    상기 EHD 펌프는 제 1 및 제 2 전극(electrode)들을 포함하여 이루어지고, 상기 채널은 분리된 핀(fin)들에 의해 정의되며, 상기 전극들 중 1 이상은 상기 핀들 내에 통합하여 형성되는 것을 특징으로 하는 냉각 장치.
  3. 제 1 항에 있어서,
    상기 채널은 열 싱크(heat sink)의 분리된 핀들에 의해 정의되는 것을 특징으로 하는 냉각 장치.
  4. 제 3 항에 있어서,
    상기 열 싱크와 열적 접촉하고 있는 열 파이프를 더 포함하여 이루어지는 냉각 장치.
  5. 제 4 항에 이어서,
    상기 EHD 펌프는 제 1 및 제 2 전극들을 포함하여 이루어지고, 상기 전극들 중 1 이상은 상기 핀들 내에 통합하여 형성되며, 상기 열 파이프는 상기 핀들과 전기적 접촉 상태인 것을 특징으로 하는 냉각 장치.
  6. 제 1 항에 있어서,
    상기 EHD 펌프는 가스 갭(gas gap)에 의해 분리된 제 1 및 제 2 전극들, 및 상기 제 1 및 제 2 전극들 사이에서 흐르는 이온(ion)들을 발생시키기 위해 상기 제 1 및 제 2 전극들 사이에 전기장을 확립하는 전압원을 포함하여 이루어지는 것을 특징으로 하는 냉각 장치.
  7. 제 6 항에 있어서,
    상기 이온들은 코로나 윈드 기술(corona wind technique)을 이용하여 발생되는 것을 특징으로 하는 냉각 장치.
  8. 제 6 항에 있어서,
    상기 이온들은 마이크로-스케일 코로나 윈드 기술(micro-scale corona wind technique)을 이용하여 발생되는 것을 특징으로 하는 냉각 장치.
  9. 제 6 항에 있어서,
    상기 이온들은 일시적 제어 유전성 붕괴 기술(temporally controlled dielectric breakdown technique)을 이용하여 발생되는 것을 특징으로 하는 냉각 장치.
  10. 제 6 항에 있어서,
    상기 제 1 전극은 단면의 형상을 갖는 와이어로 구성되는 것을 특징으로 하는 냉각 장치.
  11. 제 10 항에 있어서,
    상기 단면의 형상은 원형인 것을 특징으로 하는 냉각 장치.
  12. 제 10 항에 있어서,
    상기 채널은 열 싱크의 분리된 핀들에 의해 정의되고, 상기 제 2 전극은 상기 핀들 내에 통합하여 형성되는 것을 특징으로 하는 냉각 장치.
  13. 제 10 항에 있어서,
    상기 제 1 전극은 1 mm 미만의 유효 직경(effective diameter)을 갖는 것을 특징으로 하는 냉각 장치.
  14. 제 6 항에 있어서,
    상기 제 1 전극이 부착되는 기판을 더 포함하여 이루어지는 냉각 장치.
  15. 제 6 항에 있어서,
    상기 제 1 전극은 주 요소 및 그로부터 돌출한 복수의 2 차 팁(secondary tip)들로 구성되는 것을 특징으로 하는 냉각 장치.
  16. 제 15 항에 있어서,
    상기 제 1 전극이 부착되는 기판을 더 포함하여 이루어지는 냉각 장치.
  17. 제 16 항에 있어서,
    상기 제 1 전극은 상기 채널 내의 상기 가스 흐름의 방향에 대한 상기 기판의 상류측(upstream side)에 부착되는 것을 특징으로 하는 냉각 장치.
  18. 제 16 항에 있어서,
    상기 제 1 전극은 상기 채널 내의 상기 가스 흐름의 방향에 대한 상기 기판의 하류측(downstream side)에 부착되는 것을 특징으로 하는 냉각 장치.
  19. 제 16 항에 있어서,
    상기 제 1 전극은 상기 채널 내의 상기 가스 흐름의 방향에 대한 상기 기판의 상류측 및 하류측 모두에 수직인 측벽(side wall)에 부착되는 것을 특징으로 하 는 냉각 장치.
  20. 제 16 항에 있어서,
    상기 제 1 전극은 상기 채널 내의 상기 가스 흐름의 방향에 대한 상기 기판의 상류측 및 하류측 모두에 대해 비스듬한 각도인 측벽에 부착되는 것을 특징으로 하는 냉각 장치.
  21. 제 16 항에 있어서,
    상기 2 차 팁들은 상기 기판의 에지로 연장되는 것을 특징으로 하는 냉각 장치.
  22. 제 16 항에 있어서,
    상기 2 차 팁들은 상기 기판의 에지 너머로 연장되는 것을 특징으로 하는 냉각 장치.
  23. 제 22 항에 있어서,
    상기 2 차 팁들은 상기 에지 너머로 연장되지 않는 다른 부분들에 대해, 상기 기판의 에지 너머로 연장되는 부분들에서 각을 이루는 것을 특징으로 하는 냉각 장치.
  24. 제 6 항에 있어서,
    상기 전압원은 AC 전류를 제공하는 것을 특징으로 하는 냉각 장치.
  25. 제 24 항에 있어서,
    상기 AC 전류는 1 내지 100 kHz의 주파수 범위 내에 있는 것을 특징으로 하는 냉각 장치.
  26. 제 6 항에 있어서,
    상기 전압원은 DC 전류를 제공하는 것을 특징으로 하는 냉각 장치.
  27. 제 6 항에 있어서,
    상기 가스 갭을 전체적으로 또는 부분적으로 둘러싸는 스페이서(spacer)를 더 포함하여 이루어지는 냉각 장치.
  28. 제 27 항에 있어서,
    상기 스페이서는 도전성 재료(conductive material)를 포함하여 이루어지는 것을 특징으로 하는 냉각 장치.
  29. 제 27 항에 있어서,
    상기 스페이서는 유전성 재료(dielectric materal)를 포함하여 이루어지는 것을 특징으로 하는 냉각 장치.
  30. 제 29 항에 있어서,
    상기 제 1 전극은 상기 스페이서에 부착되는 것을 특징으로 하는 냉각 장치.
  31. 제 1 항에 있어서,
    상기 EHD 펌프는 제 1 및 제 2 전극들을 포함하여 이루어지고, 상기 채널은 제 1 및 제 2 핀들에 의해 정의되며, 상기 제 2 전극은 상기 제 2 핀 내에 통합하여 형성되고 상기 채널의 유입구에 인접한 제 1 갭에 의해 상기 제 1 전극으로부터 분리되며, 상기 장치는 상기 제 1 핀 및 제 3 핀에 의해 정의되는 제 2 채널을 더 포함하여 이루어지고, 상기 제 1 전극, 및 상기 제 3 핀 내에 통합하여 형성되고 상기 제 2 채널의 유입구에 인접한 제 2 갭에 의해 상기 제 1 전극으로부터 분리되는 또 다른 제 2 전극을 포함하여 이루어지는 제 2 EHD 펌프를 더 포함하여 이루어지는 것을 특징으로 하는 냉각 장치.
  32. 제 2 항에 있어서,
    상기 제 1 전극은 1 cm 미만의 가스 갭에 의해 상기 제 2 전극으로부터 분리되고, 상기 제 1 전극은 유효 직경을 가지며, 상기 유효 직경에 대한 상기 가스 갭의 비는 6:1보다 큰 것을 특징으로 하는 냉각 장치.
  33. 제 32 항에 있어서,
    상기 제 1 전극은 단면의 형상을 갖는 와이어로 구성되는 것을 특징으로 하는 냉각 장치.
  34. 제 33 항에 있어서,
    상기 단면의 형상은 원형인 것을 특징으로 하는 냉각 장치.
  35. 제 32 항에 있어서,
    상기 유효 직경은 100 마이크론 미만인 것을 특징으로 하는 냉각 장치.
  36. 제 32 항에 있어서,
    상기 전극들 사이에 코로나 방전을 확립하기 위해 상기 제 1 및 제 2 전극들에 커플링된 전압원을 더 포함하여 이루어지는 냉각 장치.
  37. 제 36 항에 있어서,
    상기 전압원은 1 내지 100 kHz의 주파수 범위 내의 AC 전류를 제공하는 것을 특징으로 하는 냉각 장치.
  38. 제 36 항에 있어서,
    상기 전압원은 DC 전류를 제공하는 것을 특징으로 하는 냉각 장치.
  39. 냉각 장치에 있어서:
    복수의 채널들을 포함하여 이루어지는 열 싱크; 및
    상기 채널들을 통해 가스가 각각 흐르게 하는 상기 채널들에 커플링된 복수의 전기-수력학적(EHD) 펌프들을 포함하여 이루어지는 냉각 장치.
  40. 제 39 항에 있어서,
    상기 EHD 펌프들은 상기 가스 흐름을 촉진하는 이온들을 발생시키기 위해 전기장이 각각 확립되는 복수의 제 1 전극들 및 복수의 제 2 전극들로 구성되고, 소정의 상기 제 1 전극들은 통상적으로 2 이상의 EHD 펌프들에 의해 사용되는 것을 특징으로 하는 냉각 장치.
  41. 제 40 항에 있어서,
    상기 제 2 전극들은 상기 열 싱크 내에 통합하여 형성되는 것을 특징으로 하는 냉각 장치.
  42. 제 39 항에 있어서,
    상기 EHD 펌프들은 상기 가스 흐름을 촉진하는 이온들을 발생시키기 위해 전기장이 각각 확립되는 복수의 제 1 전극들 및 복수의 제 2 전극들로 구성되고, 소정의 상기 EHD 펌프들은 2 이상의 제 1 전극들을 포함하여 이루어지는 것을 특징으 로 하는 냉각 장치.
  43. 제 42 항에 있어서,
    상기 제 2 전극들은 상기 열 싱크 내에 통합하여 형성되는 것을 특징으로 하는 냉각 장치.
  44. 제 39 항에 있어서,
    상기 EHD 펌프들은 복수의 제 1 전극들 및 복수의 제 2 전극들로 구성되고, 상기 장치는 상기 제 1 전극들이 커플링되는 전기 버스(electrical bus)를 더 포함하여 이루어지는 것을 특징으로 하는 냉각 장치.
  45. 제 44 항에 있어서,
    상기 제 2 전극들은 상기 열 싱크 내에 통합하여 형성되는 것을 특징으로 하는 냉각 장치.
  46. 제 39 항에 있어서,
    상기 각각의 채널들은 폭이 5 mm 미만이고, 길이가 100 mm 미만인 것을 특징으로 하는 냉각 장치.
  47. 제 39 항에 있어서,
    상기 EHD 펌프들은 코로나 윈드 기술을 이용하여 이온들을 발생시키는 것을 특징으로 하는 냉각 장치.
  48. 제 39 항에 있어서,
    상기 EHD 펌프들은 마이크로-스케일 코로나 윈드 기술을 이용하여 이온들을 발생시키는 것을 특징으로 하는 냉각 장치.
  49. 제 39 항에 있어서,
    상기 EHD 펌프들은 일시적 제어 유전성 붕괴 기술을 이용하여 이온들을 발생시키는 것을 특징으로 하는 냉각 장치.
  50. 제 39 항의 냉각 장치를 제작하는 방법에 있어서:
    통상적으로 상기 전기-수력학적 펌프 구조체 및 상기 열 싱크 구조체를 형성하기 위해 단일 공정을 사용하는 단계를 포함하여 이루어지는 냉각 장치를 제작하는 방법.
  51. 제 50 항에 있어서,
    상기 공정은:
    웨이퍼를 준비하는 단계;
    상기 웨이퍼의 표면 상에 유전층을 추가하는 단계;
    상기 유전층 내에 상기 전기-수력학적 펌프 구조체에 대한 전극들을 패터닝하는 단계; 및
    상기 열 싱크 구조체 및 상기 전기-수력학적 펌프 구조체 모두에 대한 채널들을 형성하기 위해, 상기 웨이퍼 및 상기 패터닝된 유전층을 절단하는 단계를 포함하는 것을 특징으로 하는 냉각 장치를 제작하는 방법.
  52. 제 51 항에 있어서,
    상기 유전층을 추가하는 단계는 상기 웨이퍼 상에 산화층(oxide layer)을 성장(grow)하는 단계를 포함하는 것을 특징으로 하는 냉각 장치를 제작하는 방법.
  53. 제 51 항에 있어서,
    상기 유전층을 추가하는 단계는 상기 웨이퍼 상에 유전성 재료를 증착하는 단계를 포함하는 것을 특징으로 하는 냉각 장치를 제작하는 방법.
  54. 제 51 항에 있어서,
    상기 유전층을 추가하는 단계는 상기 웨이퍼에 유전성 재료의 시트(sheet)를 접착하는 단계를 포함하는 것을 특징으로 하는 냉각 장치를 제작하는 방법.
  55. 제 51 항에 있어서,
    상기 유전층을 패터닝하는 단계는 포토리소그래피 기술을 이용하는 단계를 포함하는 것을 특징으로 하는 냉각 장치를 제작하는 방법.
  56. 제 51 항에 있어서,
    상기 절단하는 단계는 다이아몬드 다이싱 소우(diamond dicing saw)를 이용하여 수행되는 것을 특징으로 하는 냉각 장치를 제작하는 방법.
  57. 제 51 항에 있어서,
    상기 절단하는 단계는 와이어 정전기 방전 기계(wire electrostatic discharge machine)를 이용하여 수행되는 것을 특징으로 하는 냉각 장치를 제작하는 방법.
  58. 제 51 항에 있어서,
    상기 절단하는 단계는 건식(dry) 또는 습식 에칭(wet etching)을 포함하는 것을 특징으로 하는 냉각 장치를 제작하는 방법.
KR1020077019311A 2005-01-24 2006-01-23 전기-수력학적 펌프 및 전기-수력학적 펌프를 포함한 냉각장치 KR20070108880A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US64675005P 2005-01-24 2005-01-24
US60/646,750 2005-01-24

Publications (1)

Publication Number Publication Date
KR20070108880A true KR20070108880A (ko) 2007-11-13

Family

ID=36293581

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077019311A KR20070108880A (ko) 2005-01-24 2006-01-23 전기-수력학적 펌프 및 전기-수력학적 펌프를 포함한 냉각장치

Country Status (7)

Country Link
US (1) US7661468B2 (ko)
EP (1) EP1882099A2 (ko)
JP (1) JP2008529284A (ko)
KR (1) KR20070108880A (ko)
CN (1) CN101107444B (ko)
TW (1) TW200632273A (ko)
WO (1) WO2006079111A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110095413A (ko) * 2008-12-15 2011-08-24 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 조명기구를 위한 냉각 장치

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7269008B2 (en) * 2005-06-29 2007-09-11 Intel Corporation Cooling apparatus and method
US20100177519A1 (en) * 2006-01-23 2010-07-15 Schlitz Daniel J Electro-hydrodynamic gas flow led cooling system
US7830643B2 (en) * 2006-01-23 2010-11-09 Igo, Inc. Power supply with electrostatic cooling fan
WO2008091905A1 (en) * 2007-01-23 2008-07-31 Ventiva, Inc. Contoured electrodes for an electrostatic gas pump
US7822355B2 (en) 2007-01-24 2010-10-26 Ventiva, Inc. Method and device to prevent dust agglomeration on corona electrodes
US20080302514A1 (en) * 2007-06-09 2008-12-11 Chien Ouyang Plasma cooling heat sink
WO2008153989A1 (en) * 2007-06-11 2008-12-18 Chien Ouyang Plasma-driven cooling heat sink
US7839634B2 (en) * 2007-08-22 2010-11-23 Chien Ouyang Micro thrust cooling
US7837805B2 (en) * 2007-08-29 2010-11-23 Micron Technology, Inc. Methods for treating surfaces
US20090065177A1 (en) * 2007-09-10 2009-03-12 Chien Ouyang Cooling with microwave excited micro-plasma and ions
US20090155090A1 (en) * 2007-12-18 2009-06-18 Schlitz Daniel J Auxiliary electrodes for enhanced electrostatic discharge
US20090168344A1 (en) * 2007-12-31 2009-07-02 Ploeg Johan F Thermal device with electrokinetic air flow
DE102008010944B4 (de) * 2008-02-25 2010-05-20 Fujitsu Siemens Computers Gmbh Kühlanordnung mit einem Ionen-Kühlsystem für ein elektronisches Gerät, elektronisches Gerät und Verfahren zur Überwachung einer elektrostatischen Aufladung
US20090321056A1 (en) * 2008-03-11 2009-12-31 Tessera, Inc. Multi-stage electrohydrodynamic fluid accelerator apparatus
US20090323276A1 (en) * 2008-06-25 2009-12-31 Mongia Rajiv K High performance spreader for lid cooling applications
DE102008040225A1 (de) * 2008-07-07 2010-01-14 Robert Bosch Gmbh Kapazitive Vorrichtung und Verfahren zum elektrostatischen Transport dielektrischer und ferroelektrischer Fluide
US20100005572A1 (en) * 2008-07-10 2010-01-14 David Vern Chaplin Thermoelectric crash helmet cooling system with no mechanically moving components or fluids
US8411435B2 (en) * 2008-11-10 2013-04-02 Tessera, Inc. Electrohydrodynamic fluid accelerator with heat transfer surfaces operable as collector electrode
US8585251B2 (en) 2008-12-12 2013-11-19 Bridgelux, Inc. Light emitting diode lamp
US8585240B2 (en) * 2008-12-12 2013-11-19 Bridgelux, Inc. Light emitting diode luminaire
US20100276705A1 (en) * 2009-07-20 2010-11-04 Bridgelux, Inc. Solid state lighting device with an integrated fan
US20110116205A1 (en) * 2009-09-18 2011-05-19 Ventiva, Inc. Collector electrodes for an ion wind fan
TWI391609B (zh) * 2009-09-28 2013-04-01 Yu Nung Shen Light emitting diode lighting device
FR2950545B1 (fr) * 2009-09-29 2012-11-30 Centre Nat Rech Scient Dispositif et procede de projection electrostatique d'un liquide, injecteur de carburant incorporant ce dispositif et utilisations de ce dernier
KR20110037296A (ko) * 2009-10-06 2011-04-13 삼성전자주식회사 디스플레이장치
US20110149252A1 (en) * 2009-12-21 2011-06-23 Matthew Keith Schwiebert Electrohydrodynamic Air Mover Performance
US8274228B2 (en) * 2009-12-24 2012-09-25 Intel Corporation Flow tube apparatus
SG173932A1 (en) * 2010-02-25 2011-09-29 United Technologies Corp Repair of a coating on a turbine component
TWI418972B (zh) * 2010-04-14 2013-12-11 Acer Inc 散熱系統與散熱方法
JP2013529347A (ja) * 2010-05-26 2013-07-18 テッセラ,インコーポレイテッド 電子機器
US8139354B2 (en) 2010-05-27 2012-03-20 International Business Machines Corporation Independently operable ionic air moving devices for zonal control of air flow through a chassis
US8305728B2 (en) 2010-06-30 2012-11-06 Apple Inc. Methods and apparatus for cooling electronic devices
US20120000627A1 (en) * 2010-06-30 2012-01-05 Tessera, Inc. Electrostatic precipitator pre-filter for electrohydrodynamic fluid mover
US20120007742A1 (en) * 2010-07-09 2012-01-12 Ventiva, Inc. Consumer electronics device having replaceable ion wind fan
US8807204B2 (en) * 2010-08-31 2014-08-19 International Business Machines Corporation Electrohydrodynamic airflow across a heat sink using a non-planar ion emitter array
US20120103568A1 (en) * 2010-10-28 2012-05-03 Tessera, Inc. Layered Emitter Coating Structure for Crack Resistance with PDAG Coatings
JP2013544035A (ja) * 2010-11-10 2013-12-09 テッセラ,インコーポレイテッド 内部空気プレナムから隔離されたehdエアムーバの通気経路を備えた電子システム
WO2012064614A1 (en) * 2010-11-11 2012-05-18 Tessera, Inc. Electronic system changeable to accommodate an ehd air mover or mechanical air mover
CN102548188A (zh) * 2010-12-14 2012-07-04 联想(北京)有限公司 印刷电路板、计算机和散热方法
US20120162903A1 (en) * 2010-12-23 2012-06-28 Macdonald Mark Electro-hydrodynamic cooling for handheld mobile computing device
CN104755836A (zh) * 2012-08-22 2015-07-01 弗莱克斯-N-格特现代产品开发有限公司 用于led头灯的微通道热沉
US9038407B2 (en) 2012-10-03 2015-05-26 Hamilton Sundstrand Corporation Electro-hydrodynamic cooling with enhanced heat transfer surfaces
GB2514145A (en) * 2013-05-15 2014-11-19 Intelligent Energy Ltd Cooling system for fuel cells
CN103353786B (zh) * 2013-07-17 2016-09-21 浙江大学 具有自动温控系统的可拆卸线板结构的电晕风散热器
CN103487459B (zh) * 2013-10-15 2016-04-06 北京大学 一种微尺度液冷器散热性能测试系统及其测试方法
CN105723820B (zh) * 2014-09-16 2018-05-01 华为技术有限公司 散热方法、设备和系统
US20160356556A1 (en) * 2015-06-02 2016-12-08 University Of Florida Research Foundation, Inc. Low power cooling and flow inducement
SE541352C2 (en) * 2015-06-03 2019-08-13 Apr Tech Ab Microfluidic array
SE539310C2 (en) * 2015-06-03 2017-06-27 Rapkap Ab Microfluidic fan
CN105276894A (zh) * 2015-11-12 2016-01-27 浙江大学 带有固态风扇的半导体制冷模块和包括该模块的冷藏箱
CN109072893B (zh) * 2017-01-09 2019-11-29 华为技术有限公司 一种电液动力装置以及包含电液动力装置的系统
CN107843617B (zh) * 2017-12-01 2024-05-17 中国科学院工程热物理研究所 电流体强化对流换热实验系统
CN108054146A (zh) * 2017-12-25 2018-05-18 中国矿业大学 基于离子风的平面膜式芯片散热装置
CN108551079B (zh) * 2018-06-22 2024-02-13 嘉兴学院 一种离子风高效散热器
SE543734C2 (en) * 2019-03-11 2021-07-06 Apr Tech Ab Cooling of electronic components with an electrohydrodynamic flow unit
KR102185943B1 (ko) * 2019-07-17 2020-12-03 한국과학기술연구원 이온풍을 이용한 열교환기
TWI696328B (zh) * 2019-10-30 2020-06-11 友達光電股份有限公司 離子風扇及顯示裝置
CN111256406A (zh) * 2020-01-20 2020-06-09 珠海格力电器股份有限公司 电磁保鲜结构、电磁保鲜装置及制冷设备
CN112604833B (zh) * 2020-12-14 2022-09-13 哈尔滨工业大学 一种电导泵驱动的电喷液滴辐射散热装置
WO2022226245A1 (en) * 2021-04-23 2022-10-27 Ventiva, Inc. Heat transfer using ionic pumps
CN113266541B (zh) * 2021-05-19 2022-05-31 上海芯物科技有限公司 一种热驱动微型气体泵送器件及泵送器件加工方法
US20230132688A1 (en) * 2021-10-28 2023-05-04 Worcester Polytechnic Institute Gravity independent liquid cooling for electronics

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3267860A (en) * 1964-12-31 1966-08-23 Martin M Decker Electrohydrodynamic fluid pump
US3872917A (en) * 1971-04-08 1975-03-25 Inter Probe Cooling apparatus and method for heat exchangers
FR2270700B1 (ko) * 1974-05-09 1980-01-11 Breton Jacques
US4185316A (en) * 1977-07-06 1980-01-22 Fleck Carl M Apparatus for the generation of ions
US4210847A (en) * 1978-12-28 1980-07-01 The United States Of America As Represented By The Secretary Of The Navy Electric wind generator
US4380720A (en) * 1979-11-20 1983-04-19 Fleck Carl M Apparatus for producing a directed flow of a gaseous medium utilizing the electric wind principle
US4316233A (en) 1980-01-29 1982-02-16 Chato John C Single phase electrohydrodynamic pump
DE3148380C2 (de) * 1981-12-07 1986-09-04 Philips Patentverwaltung Gmbh, 2000 Hamburg Ionengenerator zur Erzeugung einer Luftströmung
US4953407A (en) * 1988-08-08 1990-09-04 General Motors Corporation Ion-drag flowmeter
US5237281A (en) * 1990-11-13 1993-08-17 Hughes Aircraft Company Ion drag air flow meter
IT1252811B (it) * 1991-10-11 1995-06-28 Proel Tecnologie Spa Generatore di ioni con camera di ionizzazione costruita o rivestita con materiale ad alto coefficiente di emissione secondaria
AUPM893094A0 (en) * 1994-10-20 1994-11-10 Shaw, Joshua Improvements in or in relating to negative air ion generators
SE505053C2 (sv) * 1995-04-18 1997-06-16 Strainer Lpb Ab Anordning för lufttransport och/eller luftrening med hjälp av så kallad jonvind
US6374909B1 (en) * 1995-08-02 2002-04-23 Georgia Tech Research Corporation Electrode arrangement for electrohydrodynamic enhancement of heat and mass transfer
JP3746822B2 (ja) * 1995-12-28 2006-02-15 和男 元内 内燃機関用イオン発生器
DE19603043C2 (de) * 1996-01-29 1997-11-27 Ibm Ionenerzeuger für ionographischen Druckkopf und Verfahren zu dessen Herstellung
DE19621874C2 (de) * 1996-05-31 2000-10-12 Karlsruhe Forschzent Quelle zur Erzeugung von großflächigen, gepulsten Ionen- und Elektronenstrahlen
US5769155A (en) * 1996-06-28 1998-06-23 University Of Maryland Electrohydrodynamic enhancement of heat transfer
IL119613A (en) * 1996-11-14 1998-12-06 Riskin Yefim Method and apparatus for the generation of ions
AU3180099A (en) 1998-01-08 1999-07-26 Government of the United States of America as represented by the Administrator of the National Aeronautics and Space Administration (NASA), The Paraelectric gas flow accelerator
US6659172B1 (en) * 1998-04-03 2003-12-09 Alliedsignal Inc. Electro-hydrodynamic heat exchanger
US6504308B1 (en) 1998-10-16 2003-01-07 Kronos Air Technologies, Inc. Electrostatic fluid accelerator
JP2000222072A (ja) * 1999-02-01 2000-08-11 Shingijutsu Management:Kk 冷却装置
JP2000274991A (ja) * 1999-03-18 2000-10-06 Sanyo Electric Co Ltd 熱交換器
US6409975B1 (en) * 1999-05-21 2002-06-25 The Texas A&M University System Electrohydrodynamic induction pumping thermal energy transfer system and method
US6779594B1 (en) * 1999-09-27 2004-08-24 York International Corporation Heat exchanger assembly with enhanced heat transfer characteristics
US6522536B2 (en) * 2001-01-12 2003-02-18 Dell Products L.P. Electrostatic cooling of a computer
JP2003017218A (ja) * 2001-06-27 2003-01-17 Andes Denki Kk マイナスイオン発生器
US20040244406A1 (en) 2001-08-25 2004-12-09 Anatoly-Ivanovich Savitsky Electrodynamic energy converter and refrigerating plant based thereon
US7159646B2 (en) * 2002-04-15 2007-01-09 University Of Maryland Electrohydrodynamically (EHD) enhanced heat transfer system and method with an encapsulated electrode
US6919698B2 (en) * 2003-01-28 2005-07-19 Kronos Advanced Technologies, Inc. Electrostatic fluid accelerator for and method of controlling a fluid flow
US6937455B2 (en) * 2002-07-03 2005-08-30 Kronos Advanced Technologies, Inc. Spark management method and device
US7053565B2 (en) * 2002-07-03 2006-05-30 Kronos Advanced Technologies, Inc. Electrostatic fluid accelerator for and a method of controlling fluid flow
AU2003291295A1 (en) 2002-11-05 2004-06-07 Thar Technologies, Inc Methods and apparatuses for electronics cooling
US20050007726A1 (en) * 2003-01-10 2005-01-13 Schlitz Daniel J. Ion-driven air pump device and method
US7126822B2 (en) 2003-03-31 2006-10-24 Intel Corporation Electronic packages, assemblies, and systems with fluid cooling
SE0401749L (sv) * 2004-07-02 2006-01-03 Aureola Swedish Engineering Ab Anordning och förfarande för att kyla en värmekälla
WO2006017301A2 (en) * 2004-07-13 2006-02-16 Thorrn Micro Technologies, Inc. Micro-channel heat sink
KR100616620B1 (ko) * 2004-09-22 2006-08-28 삼성전기주식회사 이온풍을 이용한 무소음 고효율 방열장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110095413A (ko) * 2008-12-15 2011-08-24 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 조명기구를 위한 냉각 장치

Also Published As

Publication number Publication date
TW200632273A (en) 2006-09-16
WO2006079111B1 (en) 2007-01-18
CN101107444B (zh) 2011-06-15
US7661468B2 (en) 2010-02-16
EP1882099A2 (en) 2008-01-30
CN101107444A (zh) 2008-01-16
WO2006079111A2 (en) 2006-07-27
WO2006079111A3 (en) 2006-11-30
JP2008529284A (ja) 2008-07-31
US20060169441A1 (en) 2006-08-03

Similar Documents

Publication Publication Date Title
US7661468B2 (en) Electro-hydrodynamic gas flow cooling system
US20080302510A1 (en) Plasma-driven cooling heat sink
EP2474782B1 (en) Cooling unit using ionic wind and LED lighting unit including the cooling unit
CN101953241B (zh) 热交换装置
US8411435B2 (en) Electrohydrodynamic fluid accelerator with heat transfer surfaces operable as collector electrode
US20090052137A1 (en) Micro thrust cooling
WO2008153988A1 (en) Plasma cooling heat sink
Kim et al. Ion wind generation and the application to cooling
JP5263701B2 (ja) プラズマシンセティックジェットを用いた冷却装置
US20050007726A1 (en) Ion-driven air pump device and method
US20090155090A1 (en) Auxiliary electrodes for enhanced electrostatic discharge
US20080175720A1 (en) Contoured electrodes for an electrostatic gas pump
JP5515099B2 (ja) イオン風発生装置及びガスポンプ
Schlitz et al. An electro-aerodynamic solid-state fan and cooling system
JPS6186403A (ja) セラミツクを用いたオゾナイザ−装置
US20210164704A1 (en) Electrohydrodynamic heat sink
CN101381006A (zh) 片上离子射流装置
JP2008218853A (ja) 針−リング電極を使用したイオン風送風装置
JP4772759B2 (ja) ディフューザ
Ong et al. Optimized and microfabricated ionic wind pump array as a next generation solution for electronics cooling systems
JP2011231928A (ja) ディフューザ
CN107910237B (zh) 大气压辉光放电离子源
Krichtafovitch et al. Electrostatic fluid accelerator and air purifier–The second wind
WO2023156804A1 (ja) 冷却装置
JP2008229432A (ja) 機械的稼働部を持たない旋回流発生装置

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid