WO2023156804A1 - 冷却装置 - Google Patents

冷却装置 Download PDF

Info

Publication number
WO2023156804A1
WO2023156804A1 PCT/IB2022/000071 IB2022000071W WO2023156804A1 WO 2023156804 A1 WO2023156804 A1 WO 2023156804A1 IB 2022000071 W IB2022000071 W IB 2022000071W WO 2023156804 A1 WO2023156804 A1 WO 2023156804A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma actuator
flow
electrode
fins
cooling device
Prior art date
Application number
PCT/IB2022/000071
Other languages
English (en)
French (fr)
Inventor
健太 江森
淳平 新井田
瑛美 高橋
滋春 山上
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to PCT/IB2022/000071 priority Critical patent/WO2023156804A1/ja
Publication of WO2023156804A1 publication Critical patent/WO2023156804A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air

Definitions

  • the present invention relates to a cooling device, and more particularly to a heat sink equipped with a plasma actuator.
  • Power converters such as converters contain electronic components that generate heat, such as semiconductors, capacitors, and coils, and heat sinks are attached to cool these electronic components.
  • the cooling performance of a heat sink generally depends on its volume (heat capacity), material (thermal conductivity), and surface area (heat transfer area) depending on its shape. If the size is increased, the size of the power conversion device as a whole is increased, so it is difficult to reduce the size of the power conversion device.
  • Patent Document 1 by forming the fins of the heat sink in a desired shape with respect to the flow direction of the air flow, the flow of the air flow can be disturbed over the entire area from the base to the tip of the fins, and the air flow does not stagnate. It is disclosed that the heat dissipation performance is improved.
  • the heat sink of Patent Document 1 has a large pressure loss because the fins disturb the airflow, and in order to fully utilize the cooling performance of the heatsink, it is necessary to strengthen the airflow, which requires a large fan. Therefore, it is difficult to improve the cooling efficiency of the heat sink and downsize the power converter.
  • the present invention has been made in view of the problems of the prior art, and its object is to provide a cooling device with high cooling efficiency that enables miniaturization of power converters and the like. .
  • the present inventors have found that by generating an induced flow in the central portion of the flow path of a heat sink having a flow path formed of a plurality of fins, a large amount of heat is generated in the flow path. of air is introduced, and found that the above object can be achieved, leading to the completion of the present invention.
  • the cooling device of the present invention includes a heat sink in which channels are formed between adjacent fins, a plasma actuator.
  • the plasma actuator is characterized in that the electrodes thereof are arranged offset in the direction of the flow path, and the induced flow flowing in the direction of the flow path is generated in the central portion between the adjacent fins.
  • the present invention since an induced flow is generated in the central portion of the flow path of the heat sink, a large amount of air is introduced into the flow path, and a cooling device with high cooling efficiency that can reduce the size of the power conversion device is provided. can provide.
  • FIG. 1 is a perspective view showing an example of a heat sink that can be used in the present invention
  • FIG. FIG. 4 is a cross-sectional view showing an example of a plasma actuator provided in a flow channel of a heat sink
  • FIG. 4 is a cross-sectional view showing another example of a plasma actuator provided in a flow channel of a heat sink
  • FIG. 4 is a cross-sectional view showing an example of a state in which a plasma actuator is arranged in a flow channel of a heat sink
  • FIG. 10 is a cross-sectional view showing another example of a state in which the plasma actuator is arranged in the flow path of the heat sink
  • FIG. 4 is a cross-sectional view showing an example of a plasma actuator in which electric lines of force generated between electrodes become strong at the center of the flow path;
  • FIG. 7 is a diagram showing an example of electric lines of force generated between the plasma actuator electrodes of FIG. 6;
  • FIG. 5 is a diagram for explaining the flow of an induced flow when a plurality of plasma actuators are arranged in a channel;
  • a cooling device of the present invention includes a heat sink having flow channels formed between adjacent fins, a plasma actuator.
  • the heat sink shown in FIG. 1 is a heat sink in which a plurality of flat plate fins are arranged in parallel and erected on a base plate.
  • a support plate (not shown) is provided on the top of the fins, and air flow paths are formed between the fins together with the base plate. formed.
  • a plurality of electrodes are provided offset in the flow path direction, so the electric field generated between these electrodes is biased in the flow path direction.
  • the cations or electrons of the low-temperature plasma generated by applying an AC voltage between the electrodes and causing atmospheric pressure barrier discharge are accelerated in one direction by the electric field biased in the direction of the flow path, and collide with the surrounding air molecules. As a result, an induced flow is generated in the flow path direction (the X-axis direction in FIG. 1).
  • the induced flow generated by the plasma actuator flows toward the center of the flow path (the center in the Y-axis direction in FIG. 1) between the adjacent fins rather than the vicinity of the fins. Since the friction between the induced flow and the fins is small and the flow velocity of the induced flow is less likely to decrease, the suction force for drawing the air outside the flow channel into the flow channel increases.
  • the cooling device of the present invention does not require a large fan, it is possible to reduce the size of the power conversion device.
  • the "central portion of the flow path” refers to a region away from the fins and does not mean the center line of the flow path. I do not care.
  • Plasma actuators As a plasma actuator that generates an induced flow in the central portion between adjacent fins, there are plasma actuators provided in the central portion of the flow path, and flow fins that generate strong lines of force between the electrodes in the central portion of the flow path. Plasma actuators in which electrodes are arranged on fins forming a path, etc. can be mentioned.
  • the plasma actuator provided in the central portion of the channel has, for example, a dielectric layer, an upstream electrode, and a downstream electrode, as shown in FIG.
  • a downstream electrode is included in the dielectric layer, and the downstream electrode is offset from the upstream electrode in the in-plane direction of the dielectric layer.
  • the plasma actuator is separated from the fins that make up the flow path, and is provided parallel to the fins so that the induced flow is directed in the direction of the flow path (X-axis direction), thereby generating an induced flow in the center of the flow path. can be done.
  • the plasma actuator provided in the central portion of the flow path not only the one that generates the induced flow on one side shown in FIG. 2, but also the one that generates the induced flow on both sides can be used.
  • upstream electrodes exposed from the dielectric layer are provided on both the front and back surfaces of the dielectric layer, and the upstream electrodes are embedded in the dielectric layer at positions offset from these upstream electrodes.
  • the downstream electrode By providing the downstream electrode, an induced flow is generated on both sides of the plasma actuator, so the suction force for drawing air into the flow path is improved.
  • the length of the plasma actuator in the flow path direction is preferably shorter than the flow path length.
  • the depth in the height direction (Z-axis direction) of the flow path of the plasma actuator may be the same as the height of the flow path or shorter than the height of the flow path. Then, since an induced flow can be generated over the entire height of the flow path, the suction force for drawing air into the flow path increases.
  • the thickness of the plasma actuator is preferably 20% or less of the channel width, that is, the distance between adjacent fins in the Y-axis direction. Since the thickness of the plasma actuator is 20% or less of the width of the flow channel, it is possible to reduce the obstruction of the airflow in the flow channel by the plasma actuator, suppress the increase in pressure loss due to the plasma actuator, and improve the cooling efficiency. do.
  • the distance between the surface of the plasma actuator and the surface of the fin is preferably 10 mm or less. If the distance between the surface of the plasma actuator where the induced flow is generated and the fins is too far, the range where the induced flow is generated becomes smaller than the width of the channel, so the suction force that draws air into the channel tends to decrease.
  • the "surface of the plasma actuator” refers to the surface on which the induced flow is generated.
  • the plasma actuator may be placed upright on the base plate of the heat sink, as shown in FIG. 4. Alternatively, as shown in FIG. may be inserted between the fins and positioned within the channel.
  • the plasma actuator When the plasma actuator is erected on the base plate of the heat sink, the plasma actuator itself can function as part of the heat sink, improving cooling efficiency.
  • the plasma actuator can be applied to a general comb-shaped heat sink, and a commercially available heat sink can be used, resulting in cost reduction. can be achieved.
  • a first electrode provided on one side fin constituting the flow path and an electrode on the downstream side of the first electrode is another example.
  • the first electrode provided on the fin on one side is exposed from the dielectric layer, and the second electrode provided on the fin on the same side as the first electrode. and a third electrode provided on the fin on the other side are covered with a dielectric layer.
  • This low-temperature plasma is accelerated by the electric field formed between the electrodes to generate an induced flow.
  • an induced flow can be generated in the central portion of the flow path, so pressure loss due to the plasma actuator can be reduced.
  • FIG. 7 shows an example of electric lines of force formed between the first electrode and the second and third electrodes when the potentials of the second and third electrodes are the same.
  • the fin in addition to the plasma actuator that generates the induced flow in the center of the flow path, the fin can be provided with the plasma actuator that generates the induced flow near the fin. .
  • the induced flow generated by the plasma actuator not only slows down as it goes downstream due to friction with the fins, but also a boundary layer with a slow flow speed is formed on the surface of the fins, which reduces heat transfer from the fins to the air. do.
  • the induced flow can be reaccelerated and the generation of the boundary layer can be suppressed, thereby preventing a decrease in cooling efficiency due to the boundary layer.
  • the configuration of the plasma actuator that generates an induced flow in the vicinity of the fins is the same as the plasma actuator shown in FIG. 2, except that the plasma actuators are provided on the fins.
  • the plasma actuator that generates the induced flow near the fins is preferably provided downstream in the direction of the induced flow from the plasma actuator that generates the induced flow in the central portion of the flow path relative to the vicinity of the fins.
  • the induced flow generated by the plasma actuator that generates the induced flow in the center of the flow channel is distributed from the center of the flow channel to the entire flow channel due to the velocity difference between the center of the flow channel and the vicinity of the fins as it goes downstream. It spreads and comes to go to the vicinity of a fin.
  • a plasma actuator that generates an induced flow in the vicinity of the fins is provided on the downstream side to accelerate the flow in the vicinity of the fins, thereby allowing the airflow to flow throughout the flow path and improving the cooling efficiency.
  • FIG. 8 shows one plasma actuator that generates an induced flow in the center of the flow path rather than the vicinity of the fins, and one plasma actuator that generates an induced flow in the vicinity of the fins. It is also possible to provide a plurality of plasma actuators according to the channel length. Also, the positions of the plasma actuators provided in adjacent channels separated by fins may be the same or different between the adjacent channels.
  • the cooling device of the present invention can include a fan that causes the main flow to flow in the flow path in the same direction as the induced flow. Sending the main stream to the heat sink by means of the fan, together with the plasma actuator, increases the amount of air introduced into the flow path and improves the cooling efficiency.
  • the cooling device of the present invention has been described as an example in which the fins of the heat sink are flat plate fins, they are not limited to flat plate fins and may be offset fins or pin fins as long as flow paths are formed.

Abstract

本発明の冷却装置は、複数のフィンを有するヒートシンクと、上記フィン間の流路に設けられたプラズマアクチュエータと、を備える。そして、上記プラズマアクチュエータの電極が流路方向にオフセットして設けられ、発生する誘起流がフィンの近傍よりも流路中央部で強いため、流路内に多くの空気が導入されて冷却効率が向上する。

Description

冷却装置
 本発明は、冷却装置に係り、更に詳細には、プラズマアクチュエータを備えたヒートシンクに関する。
 コンバータ等の電力変換装置には、半導体、コンデンサ、コイルなど、発熱源となる電子部品が含まれており、これらの電子部品を冷却するためにヒートシンクが取り付けられる。
 近年、電力変換装置の小型化や大電力化が要求されており、電子部品を高密度に配置し小型化すると、電力変換装置内の発熱要素の密度が上昇し、加えて大電力化によって発熱要素の発熱量が増大するので、これらを冷却するヒートシンクの性能も向上させる必要がある。
 ヒートシンクの冷却性能は、一般的にその体積(熱容量)、材料(熱伝導率)、及び形状に応じた表面積(伝熱面積)に依存するため、ヒートシンクの冷却性能を向上させるためにヒートシンク自体を大型化すると、電力変換装置全体が大型化してしまうので、電力変換装置を小型化することは困難である。
 特許文献1には、気流の流れ方向に対するヒートシンクのフィンを所望の形状にすることで、フィンの根元から先端までの全領域に亘り気流の流れを乱すことができ、気流が滞留しないのでヒートシンクの放熱性能が向上する旨が開示されている。
日本国特開2009−290004号公報
 しかしながら、特許文献1のヒートシンクは、フィンで気流の流れを乱すものであるため圧力損失が大きく、ヒートシンクの冷却性能を十分利用するには、気流の流れを強くする必要があり大型のファンが必要になるので、ヒートシンクの冷却効率を向上させて電力変換装置を小型化することは困難である。
 本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、電力変換装置などの小型化が可能な冷却効率の高い冷却装置を提供することにある。
 本発明者は、上記目的を達成すべく鋭意検討を重ねた結果、複数のフィンで形成された流路を有するヒートシンクの流路中央部に誘起流を発生させることで、上記流路内に多くの空気が導入され、上記目的が達成できることを見出し、本発明を完成するに至った。
 即ち、本発明の冷却装置は、隣接するフィン間に流路が形成されたヒートシンクと、
 プラズマアクチュエータと、を備える。
 そして、上記プラズマアクチュエータは、その電極が流路方向にオフセットして配置され、上記流路方向に流れる誘起流を、隣接するフィン間の中央部に発生させることを特徴とする。
 本発明によれば、ヒートシンクの流路中央部に誘起流を発生させることとしたため、流路内に多くの空気が導入されて、電力変換装置の小型化が可能な冷却効率の高い冷却装置を提供することができる。
本発明に使用できるヒートシンクの一例を示す斜視図である。 ヒートシンクの流路に設けるプラズマアクチュエータの一例を示す断面図である。 ヒートシンクの流路に設けるプラズマアクチュエータの他の例を示す断面図である。 プラズマアクチュエータをヒートシンクの流路に配置した状態の一例を示す断面図である。 プラズマアクチュエータをヒートシンクの流路に配置した状態の他の例を示す断面図である。 電極間に生じる電気力線が流路中央部で強くなるプラズマアクチュエータの一例を示す断面図である。 図6のプラズマアクチュエータ電極間に生じる電気力線の一例を示す図である。 流路内にプラズマアクチュエータを複数配置した場合の誘起流の流れを説明する図である。
 本発明の冷却装置について詳細に説明する。
 本発明の冷却装置は、隣接するフィン間に流路が形成されたヒートシンクと、
プラズマアクチュエータと、を備える。
 図1に示すヒートシンクは、複数の平板フィンが平行に並んでベースプレートに立設したヒートシンクであり、フィンの頂部には図示しない支持板が設けられてベースプレートと共にフィンの間に気流が流れる流路が形成されている。
 上記流路に設けられる本発明のプラズマアクチュエータは、複数の電極が流路方向にオフセットして設けられているので、これらの電極間に生じる電界が流路方向に偏る。
 したがって、電極間に交流電圧を印加し、大気圧バリア放電させることで生じた低温プラズマの陽イオン又は電子は、流路方向に偏った電界によって一方向に加速され、これが周囲の空気分子と衝突して流路方向(図1中、X軸方向)に誘起流が生じる。
 そして、本発明の冷却装置は、プラズマアクチュエータが発生させる誘起流が、フィンの近傍よりも隣接するフィン間、すなわち流路の中央部(図1中、Y軸方向中央部)に向けて流れるので、誘起流とフィンとの摩擦が少なく、上記誘起流の流速が低下し難いため、流路外の空気を流路内に引き込む吸引力が増大する。
 すなわち、プラズマアクチュエータよりも下流側では流路内の空気が誘起流によって押し出され、上流側では流路内に空気が引き込まれるため、流路内を流れる空気の量が増大し、フィンから空気への熱伝達が向上して冷却効率が向上する。したがって、本発明の冷却装置は大型のファンを必要としないため電力変換装置などの小型化が可能である。
 なお、本発明において「流路の中央部」とは、フィンから離れた領域をいい、流路の中心線を意味せず、誘起流の最も強い箇所が流路の中心線からずれていても構わない。
 隣接するフィン間の中央部に誘起流を発生させるプラズマアクチュエータとしては、流路の中央部に設けられたプラズマアクチュエータや、電極間に生じる電気力線が流路中央部で強くなるように、流路を形成するフィンに電極を配置したプラズマアクチュエータなどが挙げられる。
 まず、流路の中央部に設けるプラズマアクチュエータについて説明する。
 流路の中央部に設けるプラズマアクチュエータは、例えば、図2に示すように、誘電体層と、上流側電極と下流側電極とを有し、上流側電極が誘電体層の表面に露出し、下流側電極が誘電体層に内包されており、この下流側電極が誘電体層の面内方向に上流側電極からオフセットして設けられている。
 したがって、プラズマアクチュエータに交流電圧を印加すると、上流側電極が露出している面で大気圧バリア放電が生じ、オフセットして設けられた電極間に生じる電界が流路方向に偏るので、この電界によって陽イオン又は電子が、誘電体層の面内方向上流側電極から下流側電極に向けて加速され易く、一方向に誘起流が生じる。
 このプラズマアクチュエータを、流路を構成するフィンと離隔し、かつ誘起流が流路方向(X軸方向)を向くようにフィンと平行に設けることで、誘起流を流路中央部に発生させることができる。
 また、流路の中央部に設けるプラズマアクチュエータとしては、図2に示す片面側に誘起流が発生するものだけでなく、その両面で誘起流が発生するものも使用できる。
 例えば、図3に示すように、誘電体層の表面と裏面の両方に、該誘電体層から露出した上流側電極を設け、これらの上流側電極からオフセットした位置に誘電体層に内包された下流側電極を設けることで、プラズマアクチュエータの両面で誘起流が発生するので、流路内に空気を引き込む吸引力が向上する。
 上記プラズマアクチュエータの流路方向の長さは、流路長よりも短いことが好ましい。
 プラズマアクチュエータの長さが長くなると、発生した誘起流がプラズマアクチュエータの表面と摩擦し、誘起流発生箇所から離れるにつれて誘起流の流速が遅くなるので、流路内に空気を引き込む吸引力が低下する傾向がある。
 上記プラズマアクチュエータの流路の高さ方向(Z軸方向)の奥行は、流路の高さと同じであっても、流路の高さよりも短くても構わないが、流路の高さと同じであると、流路の高さ方向全域に亘って誘起流を発生できるので、流路内に空気を引き込む吸引力が増大する。
 上記プラズマアクチュエータの厚さは、流路幅、すなわち、隣接するフィン同士のY軸方向の距離の20%以下であることが好ましい。
 プラズマアクチュエータの厚さが流路幅の20%以下であることで、プラズマアクチュエータが流路内の気流の流れを妨げることが低減され、プラズマアクチュエータによる圧力損失の増大が抑制されて冷却効率が向上する。
 また、プラズマアクチュエータの表面とフィンの表面との距離は、10mm以下であることが好ましい。
 誘起流が発生するプラズマアクチュエータの表面とフィンとの距離が離れすぎると、誘起流が生じる範囲が流路幅に対して小さくなるため、流路内に空気を引き込む吸引力が低下する傾向がある。
 なお、ここでの「プラズマアクチュエータの表面」とは、誘起流が生じる面をいう。
 上記プラズマアクチュエータは、図4に示すように、ヒートシンクのベースプレートに立設して配置してもよく、また、図5に示すように、ヒートシンクとは別の支持板にプラズマアクチュエータ立てて設け、これを上記フィンの間に挿入して流路内に配置してもよい。
 プラズマアクチュエータをヒートシンクのベースプレートに立設した場合は、プラズマアクチュエータ自体をヒートシンクの一部として機能させることができるので冷却効率が向上する。
 また、支持板に立設したプラズマアクチュエータを流路内に挿入することで、一般的な櫛型ヒートシンクにもプラズマアクチュエータを付与することができ、市販されているヒートシンクを利用できるので、低コスト化を図ることができる。
 また、電気力線が流路中央部で強くなるように電極を配置したプラズマアクチュエータとしては、流路を構成する一方側のフィンに設けられた第1電極と、この第1電極よりも下流側に、一方側のフィンに設けられた第2電極と他方側のフィンに設けられた第3電極とで形成されたプラズマアクチュエータを挙げることができる。
 このプラズマアクチュエータは、図6に示すように、一方側のフィンに設けられた第1電極が誘電体層から露出しており、この第1電極と同じ一方側のフィンに設けられた第2電極と他方側のフィンに設けられた第3電極とが誘電体層で覆われている。
 そして、上記第2電極と第3電極の電位は、上記第1電極と逆極性であるので、第1電極と、第2電極又は第3電極との間で大気圧バリア放電が生じて低温プラズマが発生する。
 この低温プラズマが電極間に形成される電界によって加速されることで誘起流が発生するので、上記電界が流路の中央部に向かうように、第1電極に対する第2電極と第3電極との位置や、第2電極と第3電極の電位を調節することで、流路中央部に誘起流を発生させることができるので、プラズマアクチュエータによる圧力損失を低減できる。
 第2電極と第3電極との電位が同じである場合に、第1電極と、第2電極及び第3電極との間に形成される電気力線の例を図7に示す。
 図7に示すように、第1電極及び第2電極が設けられたフィンとは異なる他方のフィンに、上記第2電極と同極性の第3電極を設けることで、電気力線が第3電極側に引っ張られて流路の中央部に向かうようになるので、流路中央部に誘起流を発生させることができる。
 本発明の冷却装置は、図8に示すように、上記流路中央部に誘起流を発生させるプラズマアクチュエータに加えて、フィンの近傍に誘起流を発生させるプラズマアクチュエータを上記フィンに設けることができる。
 プラズマアクチュエータで発生した誘起流は、フィンとの摩擦により下流に向かうにつれて流速が遅くなるだけでなく、フィンの表面に流速が遅い境界層が形成されるので、フィンから空気への熱伝導が低下する。
 フィンの近傍に誘起流を発生させるプラズマアクチュエータを設けることで、誘起流を再加速できると共に、境界層の発生を抑制できるので境界層による冷却効率の低下を防止することができる。
 フィンの近傍に誘起流を発生させるプラズマアクチュエータの構成は、プラズマアクチュエータをフィンに設ける他は、図2に示すプラズマアクチュエータと同様である。
 フィンの近傍に誘起流を発生させるプラズマアクチュエータは、フィンの近傍よりも流路中央部に誘起流を発生させるプラズマアクチュエータよりも誘起流方向下流側に設けられていることが好ましい。
 上記流路中央部に誘起流を発生させるプラズマアクチュエータで発生した誘起流は、下流側に向かうにつれ、流路中央部とフィン近傍との速度差によって誘起流が流路中央部から流路全体に広がってフィンの近傍に向かうようになる。
 図8に示すように、フィンの近傍に誘起流を発生させるプラズマアクチュエータを下流側に設け、フィンの近傍の流れを加速することで、流路内の全体に気流が流れて冷却効率が向上する。
 なお、図8では、フィンの近傍よりも流路中央部に誘起流を発生させるプラズマアクチュエータと、フィンの近傍に誘起流を発生させるプラズマアクチュエータとをそれぞれ、1つずつ示しているが、これらのプラズマアクチュエータを流路長に応じて複数設けることも可能である。
 また、フィンで隔てられた隣接する流路に設けるプラズマアクチュエータの位置は、隣接する流路間で同じであっても異なっていてもよい。
 本発明の冷却装置は、上記誘起流と同方向に主流を流路に流すファンを備えることができる。ファンによりヒートシンクに主流を送ることで、上記プラズマアクチュエータと相俟って、流路内に導入される空気量が増大して冷却効率が向上する。
 本発明の冷却装置をヒートシンクのフィンが平板フィンである場合を例に説明したが、、流路が形成されれば、平板フィンに限られず、オフセットフィンやピンフィンであっても構わない。
  1  ヒートシンク
 11  ベースプレート
 12  フィン
 13  支持板
 14  流路
  2  プラズマアクチュエータ
 2a  流路中央部に誘起流を発生させるプラズマアクチュエータ
 2b  フィンの近傍に誘起流を発生させるプラズマアクチュエータ
 21  上流側電極
 22  下流側電極
 23  誘電体層
 24  第1電極
24e  第1電極の電荷
 25  第2電極
25e  第2電極の電荷
 26  第3電極
26e  第3電極の電荷
 27  プラズマ
 28  誘起流
  3  交流電源
  4  ファン
 41  主流
  5  発熱体

Claims (11)

  1.  隣接するフィン間に流路が形成されたヒートシンクと、プラズマアクチュエータと、を備える冷却装置であって、
     上記プラズマアクチュエータは、その電極が流路方向にオフセットして配置され、上記流路方向に流れる誘起流を、隣接するフィン間の中央部に発生させることを特徴とする冷却装置。
  2.  上記隣接するフィン間の中央部に誘起流を発生させるプラズマアクチュエータが、
     上記流路を構成するフィンと離隔して設けられ、
     上記プラズマアクチュエータの流路方向の長さが、流路長よりも短いことを特徴とする請求項1に記載の冷却装置。
  3.  上記プラズマアクチュエータの厚さが、フィン間幅の20%以下であることを特徴とする請求項2に記載の冷却装置。
  4.  上記プラズマアクチュエータの表面とフィンの表面との距離が10mm以下であることを特徴とする請求項2又は3に記載の冷却装置。
  5.  上記プラズマアクチュエータが、上記ヒートシンクのベースプレートに立設していることを特徴とする請求項2~4のいずれか1つの項に記載の冷却装置。
  6.  上記プラズマアクチュエータが、支持部材に立設し、上記フィン間に挿入して設けられていることを特徴とする請求項2~5のいずれかに記載の冷却装置。
  7.  上記隣接するフィン間の中央部に誘起流を発生させるプラズマアクチュエータが、
     一方のフィンに設けられて誘電体層から露出した第1電極と、上記第1電極よりも、流路方向下流側に設けられて誘電体層で覆われた第2電極と第3電極とを備え、
     上記第2電極が、上記第1電極と同じ一方のフィンに設けられ、
     上記第3電極が、他方のフィンに設けられており、
     上記第2電極と第3電極の電位が上記第1電極と逆極性であることを特徴とする請求項1に記載の冷却装置。
  8.  上記第2電極と上記第3電極とは、電位が同電位であり、かつ流路方向同位置に配置されていることを特徴とする請求項7に記載の冷却装置。
  9.  上記隣接するフィン間の中央部に誘起流を発生させるプラズマアクチュエータに加えて、上記フィンに設けられてフィンの近傍に誘起流を発生させるプラズマアクチュエータを備えることを特徴とする請求項1~8に記載の冷却装置。
  10.  上記フィンに設けられてフィンの近傍に誘起流を発生させるプラズマアクチュエータが、上記隣接するフィン間の中央部に誘起流を発生させるプラズマアクチュエータよりも誘起流方向の下流側に設けられていることを特徴とする請求項9に記載の冷却装置。
  11.  さらに、ファンを有し、
     上記ファンが、上記誘起流と同方向の気流を上記流路に流すことを特徴とする請求項1~10のいずれかに記載の冷却装置。
PCT/IB2022/000071 2022-02-15 2022-02-15 冷却装置 WO2023156804A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2022/000071 WO2023156804A1 (ja) 2022-02-15 2022-02-15 冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2022/000071 WO2023156804A1 (ja) 2022-02-15 2022-02-15 冷却装置

Publications (1)

Publication Number Publication Date
WO2023156804A1 true WO2023156804A1 (ja) 2023-08-24

Family

ID=87577660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/000071 WO2023156804A1 (ja) 2022-02-15 2022-02-15 冷却装置

Country Status (1)

Country Link
WO (1) WO2023156804A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200252A (ja) * 2008-02-21 2009-09-03 Sharp Corp 熱交換装置
JP2011027365A (ja) * 2009-07-28 2011-02-10 Murata Mfg Co Ltd 熱交換器
JP2014183175A (ja) * 2013-03-19 2014-09-29 Toshiba Corp 放熱器
JP2016076350A (ja) * 2014-10-03 2016-05-12 国立研究開発法人海上技術安全研究所 プラズマアクチュエータを用いた流れの整流装置、触媒処理装置、及び熱交換装置
JP2020057720A (ja) * 2018-10-03 2020-04-09 日産自動車株式会社 冷却装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200252A (ja) * 2008-02-21 2009-09-03 Sharp Corp 熱交換装置
JP2011027365A (ja) * 2009-07-28 2011-02-10 Murata Mfg Co Ltd 熱交換器
JP2014183175A (ja) * 2013-03-19 2014-09-29 Toshiba Corp 放熱器
JP2016076350A (ja) * 2014-10-03 2016-05-12 国立研究開発法人海上技術安全研究所 プラズマアクチュエータを用いた流れの整流装置、触媒処理装置、及び熱交換装置
JP2020057720A (ja) * 2018-10-03 2020-04-09 日産自動車株式会社 冷却装置

Similar Documents

Publication Publication Date Title
US7661468B2 (en) Electro-hydrodynamic gas flow cooling system
US7269008B2 (en) Cooling apparatus and method
US20090321056A1 (en) Multi-stage electrohydrodynamic fluid accelerator apparatus
JP5128656B2 (ja) 流管装置
Colas et al. Ionic wind generation by a wire-cylinder-plate corona discharge in air at atmospheric pressure
US8488294B2 (en) Ionic fluid flow accelerator
US5544696A (en) Enhanced nucleate boiling heat transfer for electronic cooling and thermal energy transfer
JP5154662B2 (ja) 動電流熱デバイス
JP2008140802A (ja) ヒートシンク
US20110261499A1 (en) Collector electrode for an ion wind fan
Shin et al. Control of boundary layer by ionic wind for heat transfer
JP5263701B2 (ja) プラズマシンセティックジェットを用いた冷却装置
JP7236235B2 (ja) 冷却装置
WO2023156804A1 (ja) 冷却装置
JP2004128439A (ja) 発熱体冷却装置
CN211377343U (zh) 散热器
WO2024069203A1 (ja) 冷却装置
US11839049B2 (en) Cooling apparatus
TW201222216A (en) Computer system and heat sink thereof
JP2023018985A (ja) 冷却装置
JP2016086018A (ja) ヒートシンク
JP5316287B2 (ja) 熱交換器
KR20210009945A (ko) 이온풍을 이용하는 방열장치
KR101853567B1 (ko) 방열 장치
Cai et al. Improving the Flow Distribution in Ionic Wind Blowers by Using Auxiliary Electrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926353

Country of ref document: EP

Kind code of ref document: A1