KR20070057489A - The electrolyzer for manufacturing nitrogen tri-fluoride to minimize the amount of a vaporized hydrogen flouride and the manufacturing method using the same - Google Patents

The electrolyzer for manufacturing nitrogen tri-fluoride to minimize the amount of a vaporized hydrogen flouride and the manufacturing method using the same Download PDF

Info

Publication number
KR20070057489A
KR20070057489A KR1020050117004A KR20050117004A KR20070057489A KR 20070057489 A KR20070057489 A KR 20070057489A KR 1020050117004 A KR1020050117004 A KR 1020050117004A KR 20050117004 A KR20050117004 A KR 20050117004A KR 20070057489 A KR20070057489 A KR 20070057489A
Authority
KR
South Korea
Prior art keywords
electrolytic cell
electrolyzer
nitrogen trifluoride
top plate
electrolyte
Prior art date
Application number
KR1020050117004A
Other languages
Korean (ko)
Other versions
KR100742484B1 (en
Inventor
이장원
박용철
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020050117004A priority Critical patent/KR100742484B1/en
Publication of KR20070057489A publication Critical patent/KR20070057489A/en
Application granted granted Critical
Publication of KR100742484B1 publication Critical patent/KR100742484B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/245Fluorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/085Removing impurities

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

An electrolyzer for producing high purity nitrogen trifluoride(NF3) at high efficiency and low cost, which has an electrolyzer top plate cooling pipe that removes hydrofluoric acid(HF) generated during the electrolysis for producing nitrogen trifluoride, and a method of producing nitrogen trifluoride using the electrolyzer are provided. In an electrolyzer for producing nitrogen trifluoride(NF3) through molten salt electrolysis, the electrolyzer comprises an electrolyzer body(1), a fluorine resin coated bottom face(2), a fluorine resin coated separation plate(3), an electrolyte(4), a Ni anode(5), a Ni cathode(6), an anode connecting rod(7), a cathode connecting rod(8), a produced nitrogen trifluoride(NF3) outlet(9), a produced hydrogen(H2) outlet(10), an electrolyzer top plate(11), and a cooling pipe, wherein the cooling pipe includes an electrolyzer top plate cooling pipe(13). The electrolyzer top plate cooling pipe is a cooling system capable of controlling temperature of the electrolyzer top plate to 10 to 130 deg.C while proceeding the molten salt electrolysis. The electrolyzer further comprises an electrolyzer sidewall cooling pipe(12) in addition to the electrolyzer top plate cooling pipe to control temperature of the electrolyte to 100 to 130 deg.C during the molten salt electrolysis.

Description

기화되는 불산을 최소화한 고순도 삼불화질소 제조용 전해조 및 이를 이용한 삼불화 질소의 제조방법 {THE ELECTROLYZER FOR MANUFACTURING NITROGEN TRI-FLUORIDE TO MINIMIZE THE AMOUNT OF A VAPORIZED HYDROGEN FLOURIDE AND THE MANUFACTURING METHOD USING THE SAME}ELECTROLYZER FOR MANUFACTURING NITROGEN TRI-FLUORIDE TO MINIMIZE THE AMOUNT OF A VAPORIZED HYDROGEN FLOURIDE AND THE MANUFACTURING METHOD USING THE SAME}

도 1은 본 발명의 삼불화질소(NF3) 제조용 전해조의 종단면도이다.1 is a longitudinal cross-sectional view of an electrolytic cell for producing nitrogen trifluoride (NF 3) of the present invention.

*도면의 주요부분에 대한 부호의 설명** Explanation of symbols for main parts of drawings *

1 : 전해조 몸체 2 : 불소수지로 코팅된 바닥면,1: electrolytic cell body 2: bottom surface coated with fluorocarbon resin,

3 : 불소수지로 코팅된 분리판 4 : 전해질3: separator plate coated with fluororesin 4: electrolyte

5 : 니켈 음극(Ni anode) 6 : 니켈 양극(Ni cathode)5: nickel anode 6: nickel anode

7 : 음극 연결봉 8 : 양극 연결봉7: cathode connecting rod 8: anode connecting rod

9 : 생성된 삼불화질소(NF3) 배출구 9: generated nitrogen trifluoride (NF 3 ) outlet

10 : 생성된 수소(H2) 배출구 11 : 전해조 상판10: generated hydrogen (H 2 ) outlet 11: electrolytic cell top plate

12 : 전해조 측벽 냉각관 13 : 전해조 상판 냉각관 12 electrolytic cell side wall cooling tube 13 electrolytic cell upper plate cooling tube

본 발명은 삼불화질소(NF3) 제조용 전해조에 관한 것으로, 보다 구체적으로는 용융염 전기분해반응을 통해 삼불화질소(NF3)를 제조함에 있어서 삼불화질소(NF3)와 함께 과량으로 배출되는 불산(HF)의 함량을 최소화함으로서 고순도의 삼불화질소를 경제적으로 제조할 수 있는 삼불화질소(NF3) 제조용 전해조 및 이를 이용한 삼불화질소(NF3)의 제조 방법에 관한 것이다.The present invention relates to nitrogen trifluoride (NF 3) for producing the electrolytic cell, and more particularly to exhaust the excess with nitrogen trifluoride (NF 3) in the manufacture of nitrogen trifluoride (NF 3) through the molten salt electrolysis reaction The present invention relates to an electrolytic cell for producing nitrogen trifluoride (NF 3 ) which can economically produce high purity nitrogen trifluoride by minimizing the amount of hydrofluoric acid (HF), and a method for producing nitrogen trifluoride (NF 3 ) using the same.

통상적으로 불소가스는 반도체 제조분야에서 빠질수 없는 기간 가스이며, 그 중에서도 삼불화질소(NF3) 가스는 반도체의 클리닝 가스나 드라이 에칭 가스로서 반도체 및 TFT-LCD 제조에 광범위하게 사용되어지고 있다. 최근 들어서는 반도체산업 및 FPD산업의 활성화에 따라 챔버 클리닝용 가스로서의 그 수요가 급격히 증가하고 있는 추세이다.In general, fluorine gas is an essential gas in the semiconductor manufacturing field, and nitrogen trifluoride (NF 3 ) gas is widely used in semiconductor and TFT-LCD manufacturing as a cleaning gas or dry etching gas of semiconductors. Recently, with the activation of the semiconductor industry and the FPD industry, the demand for the chamber cleaning gas is rapidly increasing.

특히 지구온난화 대책에 따라 다른 불화물(예를 들어, SF6나 C3F8등)의 사용이 제한되고 있는 현실에서, 분해가 쉬운 삼불화질소(NF3)는 이들 불화물의 대체물질로서 전자산업 분야에서 더욱 각광받고 있다.In particular, the use of other fluorides (eg, SF 6 or C 3 F 8, etc.) is limited by global warming measures, and easy to decompose nitrogen trifluoride (NF 3 ) as an alternative to these fluorides. It is getting more attention in the field.

일반적으로 삼불화질소(NF3)의 제조는 직접불화반응을 시키는 방법, 플라즈마를 이용하는 방법 또는 전기분해를 통해 제조하는 방법을 통해 가능하다.In general, the production of nitrogen trifluoride (NF 3 ) is possible through a method of performing a direct fluorination reaction, a method using a plasma or a method through electrolysis.

첫번째 방법인 직접불화반응은 불소 가스를 생산한 후 이를 암모늄바이플루오라이드가 담겨진 반응기내로 투입하여 합성하는 방법으로, 이는 두 단계의 공정을 거쳐 합성되어지므로 합성후 정제를 위한 장치 비용이 다소 높은 단점이 있다. 두 번째 방법인 플라즈마 이용 방법은 아직 상용성이 떨어지고, 높은 에너지를 요구하며, 효율이 낮은 문제점을 가지고 있다.The first method, direct fluorination, is a method in which fluorine gas is produced and then injected into a reactor containing ammonium bifluoride, which is synthesized through a two-step process. There are disadvantages. The second method, the plasma using method, still has low compatibility, requires high energy, and has low efficiency.

한편, 세 번째 방법인 전기분해를 통한 용융염 전해법은 상기의 두가지 방법에 비해 고순도 제품 생산과 높은 수율이 가능한 바, 고순도 삼불화질소의 대량 생산에 적합하다.On the other hand, the molten salt electrolysis method through the electrolysis, the third method is possible to produce a high-purity product and a high yield compared to the above two methods, it is suitable for mass production of high-purity nitrogen trifluoride.

상기의 용융염의 전기분해를 통한 삼불화질소(NF3)의 제조 방법은 다음과 같다.The production method of nitrogen trifluoride (NF 3 ) through the electrolysis of the molten salt is as follows.

전해조 내부에는 탄소 또는 니켈로 된 전극을 사용하며, 전해질로는 불화암모늄(NH4F)과 불산(HF)으로 부터 유도되는 NH4F-HF 계 혹은 NH4F-HF계에 불화칼륨(KF)을 첨가하여 유도된 KF-NH4F-HF 계 또는 LiF-NH4F-HF 계를 사용한다.Electrodes made of carbon or nickel are used inside the electrolyzer, and potassium fluoride (KF) is used in the NH 4 F-HF system or NH 4 F-HF system derived from ammonium fluoride (NH 4 F) and hydrofluoric acid (HF). Either KF-NH 4 F-HF system or LiF-NH 4 F-HF system derived by addition) is used.

전해질의 전기분해 과정에서 삼불화질소(NF3)와 질소(N2)가스는 음극(anode)에서 발생하고, 수소(H2)가스는 양극(cathode)에서 발생하며, 가스 발생 반응은 양 극에서 동시에 일어나고, 생성된 삼불화질소 가스를 따로 배출하여 포집하 므로써 제조한다.Nitrogen trifluoride (NF 3 ) and nitrogen (N 2 ) gases are produced at the anode, hydrogen (H 2 ) gases are produced at the cathode, and the gas evolution reaction is positive during the electrolysis of the electrolyte. At the same time, and produced by collecting and discharging the generated nitrogen trifluoride gas separately.

또한, 좁은 전해조 내부에서 삼불화질소(NF3)가 생성됨에 따라 음극(anode)에서 발생한 삼불화질소(NF3) 가스는 양극(cathode)에서 발생한 수소(H2) 가스와 혼합되어 폭발의 가능성이 커지게 되므로, 챔버간 생성가스의 혼합 방지 및 안전성을 향상시키기 위해 불소수지로 코팅한 분리판을 설치한다.In addition, as nitrogen trifluoride (NF 3 ) is generated in a narrow electrolyzer, nitrogen trifluoride (NF 3 ) gas generated at the anode is mixed with hydrogen (H 2 ) gas generated at the cathode, which may cause an explosion. Since this becomes large, to prevent the mixing of the product gas between the chambers and install a separator plate coated with fluorine resin to improve safety.

상기와 같은 삼불화질소(NF3)의 용윰염 전기분해를 통한 제조에 있어 반드시 관리되어야 할 사항으로서는 첫째, 전극에 사용되는 니켈이 쉽게 용해되어 양극(Cathode)에 침적됨으로 인해 삼불화질소(NF3)와 수소의 혼합을 유발하고, 둘째, 삼불화질소(NF3) 기포가 전극을 따라 수직으로 상승되지 않고, 비스듬히 상부로 확산됨으로 인해 반응이 격렬해지며, 셋째, 니켈전극이 NiF의 형태로 전해조 바닥에 침적하게 전극끝이 NiF에 묻히게 되면 더 이상 전극의 역할을 하지 못하게 되므로써, 결국 삼불화질소(NF3)의 수율의 감소를 초래하며 나아가 단락(short circuit)이 되거나 폭발이 될 우려가 있다는 점이다.As matters to be managed in the preparation of molten salt electrolysis of nitrogen trifluoride (NF 3 ) as described above, first, the nickel trifluoride (NF 3 ) is easily dissolved and deposited on the cathode, resulting in nitrogen trifluoride (NF 3). 3 ) and the mixing of hydrogen, and second, the nitrogen trifluoride (NF 3 ) bubble does not rise vertically along the electrode, but the reaction is intense because it diffuses obliquely to the top, third, the nickel electrode in the form of NiF If the electrode tip is buried in NiF on the bottom of the electrolyzer, it will no longer function as an electrode, resulting in a decrease in yield of nitrogen trifluoride (NF 3 ) and further short circuit or explosion. Is that there is.

이외에 추가적으로 관리되어져야 할 중요한 사항으로서는 전해조 내의 용융염의 온도를 일정하게 유지하는 것이다. 전해조의 일반적인 운전온도는 100∼130℃가 선호되는데, 이는 운전이 쉽고 전기전도도가 좋으며 전기전류효율이 좋게 되기 때문이다.In addition, an important matter to be managed additionally is to maintain a constant temperature of the molten salt in the electrolyzer. The general operating temperature of the electrolyzer is preferably 100 to 130 ° C., because it is easy to operate, has good electrical conductivity, and has good electric current efficiency.

한편, 상기 전해조의 운전온도가 130℃를 초과할 경우 기화되어지는 전해질 성분(NH4F-HF 또는 HF)이 생성가스의 배출구를 막아 최종적으로 삼불화질소(NF3)의 수율 저하를 유발하게 되는 문제점이 있다.On the other hand, when the operating temperature of the electrolytic cell exceeds 130 ℃, the vaporized electrolyte component (NH 4 F-HF or HF) blocks the outlet of the product gas to finally reduce the yield of nitrogen trifluoride (NF 3 ) There is a problem.

이러한 문제점을 제어하는데 있어 가장 중요한 인자는 불산(HF)의 배출량이다. 즉, 삼불화질소(NF3) 생성중 과량으로 기화되어지는 전해질인 불산(HF) 함량의 억제가 삼불화질소(NF3)의 수율을 결정하는 중요한 요소인 것이다.The most important factor in controlling these problems is the emissions of hydrofluoric acid (HF). In other words, the nitrogen trifluoride (NF 3) major factor in determining the yield of the electrolyte is hydrofluoric acid (HF) is nitrogen trifluoride (NF 3) inhibition of the content that is vaporized in an amount in excess of the generation.

통상적으로 100∼130℃의 온도에서 불산(HF)의 증기압은 100mHg(100℃ 기준) 정도이므로, 음극(anode) 및 양극(cathode)에는 많은 양의 불산(HF)이 함유되어지게 되며, 특히 음극(Anode)의 경우에는 배출가스에 생성된 삼불화질소(NF3)이외에 기화된 불산(HF)이 동반되어 전체 삼불화질소(NF3) 가스의 조성물 중 20~25%의 가장 많은 함량을 차지하게 된다.In general, since the vapor pressure of hydrofluoric acid (HF) is about 100mHg (100 ° C) at a temperature of 100 to 130 ° C, a large amount of hydrofluoric acid (HF) is contained in the anode and the cathode, particularly the cathode. In the case of (Anode), in addition to nitrogen trifluoride (NF 3 ) generated in the exhaust gas, it is accompanied by vaporized hydrofluoric acid (HF) and occupies the highest content of 20-25% of the total composition of nitrogen trifluoride (NF 3 ) gas. Done.

일반적으로 불산의 함량을 낮추기 위하여 생성가스가 전해조로부터 배출된 후 바로 불산(HF)을 제거하는 NaF 트랩 혹은 저온 냉각 트랩을 설치하고는 있으나, 공정 효율 및 생산성에 있어서 이는 근본적인 해결책이 될 수 없다.Generally, in order to lower the amount of hydrofluoric acid, a NaF trap or a low temperature cooling trap which removes hydrofluoric acid (HF) immediately after the generated gas is discharged from the electrolytic cell is installed, but this cannot be a fundamental solution in process efficiency and productivity.

따라서, 전해질의 기화를 억제함으로써 전해조로부터 배출되는 삼불화질소(NF3) 가스에 포함된 불산(HF)의 함량을 크게 낮추어 준다면, 중요한 원부재료인 불산(HF)의 소모량 감소가 가능하므로 공정 원단위를 향상시키고, 더불어 시간당 삼불화질소(NF3) 생성 수율의 향상 또한 가능할 것이다. 특히 고순도 삼불화질소(NF3) 제조를 위한 후 공정의 부하를 감소시킴으로써 전체적인 공정 및 장치의 효율 성을 향상시킬 수 있다.Therefore, if the amount of hydrofluoric acid (HF) contained in the nitrogen trifluoride (NF 3 ) gas discharged from the electrolytic cell is greatly reduced by suppressing the evaporation of the electrolyte, the consumption of hydrofluoric acid (HF), which is an important raw material, can be reduced. In addition, it will also be possible to improve the yield of nitrogen trifluoride (NF 3 ) per hour. In particular, by reducing the load on the post-process for the production of high purity nitrogen trifluoride (NF 3 ) can improve the efficiency of the overall process and apparatus.

이와 같은 목적의 달성을 위해서는 전해질의 기화를 억제함으로써 전해조로부터 배출되는 삼불화질소(NF3) 가스에 포함된 불산(HF)의 함량을 크게 낮추어 주므로써 불산(HF)을 안전하고, 경제적으로 처리할 수 있는, 종래의 전해조에 비해 개선된 구조의 삼불화질소(NF3) 제조용 전해조의 개발이 필요하다.In order to achieve this purpose, it is possible to safely and economically treat hydrofluoric acid (HF) by significantly reducing the amount of hydrofluoric acid (HF) contained in the nitrogen trifluoride (NF 3 ) gas discharged from the electrolytic cell by suppressing evaporation of the electrolyte. There is a need to develop an electrolytic cell for the production of nitrogen trifluoride (NF 3 ) having an improved structure compared to a conventional electrolytic cell.

본 발명은 상술한 종래기술의 문제점을 해결하기 위한 것으로서,The present invention is to solve the above problems of the prior art,

본 발명의 하나의 목적은 삼불화질소(NF3)의 제조를 위한 전해반응중 발생하는 불산(HF)을 제거하기위하여 전해조 상판 냉각관을 구비한 고효율 저비용의 고순도 삼불화질소(NF3) 제조용 전해조를 제공하는 것이다.One object is nitrogen trifluoride (NF 3) a high-purity nitrogen trifluoride of high efficiency low cost having an electrolytic cell top plate cooling pipe to remove the hydrofluoric acid (HF) generated during the electrolytic reaction for the production of the present invention (NF 3) for preparing It is to provide an electrolytic cell.

본 발명의 다른 목적은 전해조 상판 냉각관을 구비한 고효율 저비용의 고순도 삼불화질소(NF3) 제조용 전해조를 이용하여 삼불화질소를 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing nitrogen trifluoride using an electrolytic cell for manufacturing high efficiency low cost high purity nitrogen trifluoride (NF 3 ) having an electrolytic cell upper plate cooling tube.

상기한 기술적 과제를 해결하기 위한 본 발명의 하나의 양상은One aspect of the present invention for solving the above technical problem is

전해조 몸체, 불소수지로 코팅된 바닥면, 불소 수지로 코팅된 분리판, 전해질, 니켈 음극(Ni anode), 니켈 양극(Ni cathode), 음극 연결봉, 양극 연결봉, 생성된 삼불화질소(NF3) 배출구, 생성된 수소(H2) 배출구, 전해조 상판, 냉 각관으로 이루어진 전해조로서, 상기 냉각관은 전해조 상판 냉각관을 포함하는 것을 특징으로 하는 삼불화질소(NF3) 제조용 전해조와 관계한다.Body of electrolyzer, bottom surface coated with fluorine resin, separator plate coated with fluorine resin, electrolyte, nickel anode (Ni anode), nickel anode (cathode), cathode connecting rod, anode connecting rod, produced nitrogen trifluoride (NF 3 ) An electrolyzer consisting of an outlet, a generated hydrogen (H 2 ) outlet, an electrolyzer top plate, and a cooling tube, wherein the cooling tube relates to an electrolyzer for the production of nitrogen trifluoride (NF 3 ), comprising an electrolyzer top plate cooling tube.

본 발명의 다른 양상은 상기의 전해조 상판 냉각관을 포함하는 것을 특징으로 하는 삼불화질소(NF3) 제조용 전해조 내에서 불화암모늄(NH4F)에 대한 불산(HF)의 중량% 비율이 HF/NH4F = 1.0∼2.6인 전해질을 사용하여 삼불화질소(NF3)를 제조하는 방법에 관계한다.According to another aspect of the present invention, the weight percent ratio of hydrofluoric acid (HF) to ammonium fluoride (NH 4 F) in an electrolytic cell for producing nitrogen trifluoride (NF 3 ) is characterized in that it comprises the electrolytic cell upper plate cooling tube. A method for producing nitrogen trifluoride (NF 3 ) using an electrolyte having NH 4 F = 1.0 to 2.6.

이하에서는 첨부된 도면을 참조하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in more detail the present invention.

도 1은 본 발명의 일 실시예로서 삼불화질소(NF3) 제조용 전해조의 종단면을 도시한 것이다.1 illustrates a longitudinal section of an electrolytic cell for producing nitrogen trifluoride (NF 3) as an embodiment of the present invention.

도 1을 참조하면, 본 발명의 전해조는 전해조 몸체(1), 불소수지로 코팅된 바닥면(2), 불소수지로 코팅된 분리판(3), 전해질(4), 니켈 음극(Ni anode)(5), 니켈 양극(Ni cathode)(6), 음극 연결봉(7), 양극 연결봉(8), 생성된 삼불화질소(NF3) 배출구(9), 생성된 수소(H2) 배출구(10), 전해조 상판(11), 전해조 측벽 냉각관(12), 전해조 상판 냉각관(13)으로 구성되어 있다.Referring to Figure 1, the electrolytic cell of the present invention is an electrolyzer body (1), the bottom surface (2) coated with a fluorine resin, the separator plate (3) coated with a fluorine resin, the electrolyte (4), a nickel anode (Ni anode) (5), nickel cathode (6), cathode connecting rod (7), anode connecting rod (8), produced nitrogen trifluoride (NF 3 ) outlet (9), generated hydrogen (H 2 ) outlet (10) ), An electrolytic cell upper plate 11, an electrolytic cell side wall cooling tube 12, and an electrolytic cell upper plate cooling tube 13.

본 발명의 전해조의 각 구성에 대하여 상세하게 설명하면, 상기 바닥면(2)과 분리판(3)은 부식방지를 위하여 불소 수지 재질로 코팅하며, 사용 가능한 불소수지 재질은 특별히 한정되는 것은 아니나, 폴리테트라플루오로에틸렌, 폴리클로로트리 플루오로에틸렌, 폴리비닐리덴, 폴리비닐플루오라이드, 테트라플루오로에틸렌-헥사플루오로프로필렌 공중합체, 테트라플루오로에틸렌- 에틸렌 공중합체 등을 예시할 수 있으며, 바람직하게는 내산성과 내열성을 가지고 있는 폴리테트라플루오로에틸렌 또는 테트라플루오로에틸렌-퍼플루오로알킬비닐 에테르 공중합체이다.In detail with respect to each configuration of the electrolytic cell of the present invention, the bottom surface 2 and the separator 3 is coated with a fluororesin material to prevent corrosion, the fluororesin material that can be used is not particularly limited, Polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene, polyvinyl fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer, etc. can be illustrated, and is preferable. It is preferably a polytetrafluoroethylene or tetrafluoroethylene-perfluoroalkylvinyl ether copolymer having acid resistance and heat resistance.

본 발명에서 사용되는 전해질(4)로서는 불화암모늄-불산계(NH4F-HF)를 사용하며, 삼불화질소(NF3) 전해조내 전해질의 조성비는 불화암모늄(NH4F)에 대한 불산(HF)의 중량% 비율이 1.0∼2.6 으로 구성되도록 한다.As the electrolyte 4 used in the present invention, ammonium fluoride-fluoric acid (NH 4 F-HF) is used, and the composition ratio of the electrolyte in the nitrogen trifluoride (NF 3 ) electrolytic cell is based on hydrofluoric acid (NH 4 F). The percentage by weight of HF) is comprised between 1.0 and 2.6.

또한 본 발명에서 전극(5,6)은 니켈(Ni) 재질의 전극을 사용한다. 니켈 전극 이외에 탄소전극을 사용할 수 있으나, 반응중 발생하기 쉬운 불순물인 사불화탄소(CF4)의 제거가 용이하지 않으므로, 니켈(Ni)전극을 사용함이 바람직하다.In the present invention, the electrodes 5 and 6 use electrodes made of nickel (Ni). A carbon electrode may be used in addition to the nickel electrode. However, since it is not easy to remove carbon tetrafluoride (CF 4 ), which is an easily generated impurity during the reaction, it is preferable to use a nickel (Ni) electrode.

상기 냉각관(12, 13)은 고순도 삼불화질소의 제조에 있어 불순물인 불산이 과량 배출되지 않도록 전해질 성분의 기화를 억제하기 위하여 사용하는 것으로서, 본 발명에서는 사용되는 냉각관은 전해조 상판(11)에 설치된 냉각관(13)을 포함하여 이루어진 것을 특징으로 한다. 본 발명의 전해조 상판 냉각관(13)의 냉각용 냉매는 편의에 따라 선택하여 사용 가능하며, 전해조 냉각관의 냉각용 냉매로서 통상적으로 사용하는 메틸알콜, 에틸알콜, 혹은 에틸렌글리콜 등과 동일한 것을 사용할 수 있다.The cooling tubes 12 and 13 are used to suppress evaporation of the electrolyte component so that the hydrofluoric acid as an impurity is not excessively discharged in the production of high-purity nitrogen trifluoride. It characterized in that it comprises a cooling tube 13 installed. The refrigerant for cooling the electrolytic cell upper plate cooling tube 13 of the present invention may be selected and used according to convenience, and the same refrigerant as that for methyl alcohol, ethyl alcohol, ethylene glycol, and the like commonly used as the refrigerant for cooling the electrolytic cell cooling tube may be used. have.

또한, 본 발명에서 사용되는 상기 전해조 상판 냉각관(13)은 냉매의 온도를 조절하여 전해조 상판(11)의 온도를 변화 및 유지시킬 수 있으며, 삼불화질소(NF3) 의 생성 효율을 감안하면 바람직한 온도 범위는 10 - 130 ℃ 이고, 더욱 바람직하게는 85 - 125 ℃ 이다. 10 ℃ 미만의 낮은 온도에서는 전해조의 운전 온도를 낮게 하여 반응성 하락으로 인한 효율 감소가 유발되고, 130 ℃ 를 초과하는 경우 전해조의 온도가 지나치게 높아지므로 부반응(N2 의 생성)이 생성되어 효율이 떨어지게 된다.In addition, the electrolytic cell upper plate cooling tube 13 used in the present invention may change and maintain the temperature of the electrolytic cell upper plate 11 by adjusting the temperature of the refrigerant, and considering the generation efficiency of nitrogen trifluoride (NF 3 ). The preferred temperature range is 10-130 ° C, more preferably 85-125 ° C. At lower temperatures below 10 ° C, the operating temperature of the electrolyzer is lowered, leading to a decrease in efficiency due to a decrease in reactivity. If the temperature is above 130 ° C, the temperature of the electrolyzer is too high, resulting in side reactions (the formation of N 2 ) resulting in decreased efficiency. do.

한편, 상기 냉각관은 삼불화질소(NF3)의 제조를 위한 전해반응 중 전해질(4)의 온도를 100 -130 ℃ 범위 내로 조절하기 위하여 상기 전해조 상판 냉각관(13) 이외에 전해조 측벽의 냉각관(12)을 추가로 포함할 수 있다.On the other hand, the cooling tube is a cooling tube of the side wall of the electrolytic cell in addition to the electrolytic cell upper plate cooling tube 13 in order to control the temperature of the electrolyte 4 during the electrolytic reaction for the production of nitrogen trifluoride (NF 3 ) in the range of 100 -130 ℃. (12) may be further included.

상기 전해조의 운전 온도는 100 -30 ℃ 인 것이 바람직한데, 불화암모늄-The operating temperature of the electrolytic cell is preferably 100-30 ℃, ammonium fluoride-

불산(NH4F-HF, 녹는점 : 126℃)계에서 전해질의 온도가 100℃ 미만일 경우는 불화암모늄-불산(NH4F-HF)이 전해조 내에 침적할 가능성이 커져 삼불화질소(NF3) 생성률이 급격히 감소하고, 130℃ 를 초과하면 반응률은 상승될 수 있으나, 불산(HF)을 포함하는 기화된 전해질 성분이 증가하여 생성가스 배출구(9)를 막아버리게 된다. 결국 배출구(9)가 막히면 음극 챔버(anode chamber)에서의 내부압력이 상승함에 따라 분리판보다 계면이 더욱 하강하게 되고 삼불화질소(NF3)는 양극 챔버(cathode chamber)내부로 혼입되게 되어, 최종적으로 삼불화질소(NF3)의 수율 저하가 유발된다.Hydrofluoric acid (NH 4 F-HF, melting point: 126 ℃) system when the temperature of the electrolyte is less than 100 ℃ in the ammonium fluoride-hydrofluoric acid (NH 4 F-HF) is a possibility that the nitrogen trifluoride (NF 3 becomes large to be immersed in the electrolytic bath When the production rate decreases rapidly and exceeds 130 ° C., the reaction rate may increase, but the vaporized electrolyte component including hydrofluoric acid (HF) increases to block the generated gas outlet 9. As a result, when the outlet 9 is blocked, as the internal pressure in the anode chamber increases, the interface is lowered than the separator plate, and nitrogen trifluoride (NF 3 ) is incorporated into the cathode chamber. Finally, the yield of nitrogen trifluoride (NF 3 ) is reduced.

따라서, 전해조의 운전 온도를 바람직한 범위 내에서 조절하기 위하여 상기 전해조 상판 냉각관(13)과 전해조 측벽 냉각관(12)을 함께 설치할 수 있으며, 또한 이러한 목적에서 상기 전해조 상판 냉각관(13)은 전해조 외부 또는 내부의 다른 냉각관과 함께 연결되거나, 혹은 서로 독립적으로 설치되어 사용될 수도 있다.Therefore, in order to control the operating temperature of the electrolytic cell, the electrolytic cell upper plate cooling tube 13 and the electrolytic cell side wall cooling tube 12 may be installed together, and for this purpose, the electrolytic cell upper plate cooling tube 13 may be an electrolytic cell. It may be connected with other cooling pipes inside or outside, or may be installed and used independently of each other.

상술한 바와 같이 구성된 본 발명에 의한 전해조에서 용융염 전기분해 반응을 통해 삼불화질소(NF3)를 제조하는 방법은 불화암모늄(NH4F)에 대한 불산(HF)의 중량% 비율이 HF/NH4F = 1.0∼2.6인 전해질을 사용하여 용융염 전기분해반응시키는 것을 특징으로 한다. 불산(HF)의 중량% 비율이 1.0 미만으로 너무 작을 경우 전해질의 점도 및 부반응의 증가로 인해 삼불화질소(NF3)의 생성효율이 감소하게되며, 반면 2.6을 초과하게 되면 과다한 불산(HF)의 함유로 인하여 경제적 손실을 유발할 뿐만 아니라 부식발생의 원인이 된다.The method for producing nitrogen trifluoride (NF 3 ) through the molten salt electrolysis reaction in the electrolytic cell according to the present invention configured as described above is the weight ratio of hydrofluoric acid (HF) to ammonium fluoride (NH 4 F) is HF / It is characterized in that the molten salt electrolysis reaction using an electrolyte of NH 4 F = 1.0 ~ 2.6. If the weight percentage of hydrofluoric acid (HF) is too small, less than 1.0, the production efficiency of nitrogen trifluoride (NF 3 ) decreases due to an increase in the viscosity and side reaction of the electrolyte, whereas an excess of hydrofluoric acid (HF) exceeds 2.6 Not only causes economic loss but also causes corrosion.

하기에서는 구체적인 실시예와 비교예를 들어 본 발명을 더욱 상세하게 설명한다. 다만, 이는 설명의 목적을 위한 것으로서 본 발명이 이에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to specific examples and comparative examples. However, this is for the purpose of explanation and the present invention is not limited thereto.

[실시예 1]Example 1

삼불화질소(NF3) 제조용 전해조의 상판(11)에 전해질 성분의 기화를 억제하기 위한 냉각관(13)을 설치하고, 추가적으로 전해조의 측면에도 냉각관(12)을 설치하였다. 전해조 상판 및 측면 냉각관(12,13)의 냉각용 냉매는 편의에 따라 선택하 여 사용이 가능한 바, 메틸알콜, 에틸알콜, 에틸렌글리콜 중 에틸렌글리콜을 사용하였다. 냉매 온도를 조절하여 상판(11)의 온도를 10℃가 되게 유지하였다.A cooling tube 13 for suppressing vaporization of the electrolyte component was provided on the upper plate 11 of the electrolytic cell for producing nitrogen trifluoride (NF 3 ), and a cooling tube 12 was further provided on the side of the electrolytic cell. The refrigerant for cooling the electrolytic cell upper plate and the side cooling tubes 12 and 13 can be selected and used according to convenience, and ethylene glycol was used in methyl alcohol, ethyl alcohol, and ethylene glycol. The temperature of the upper plate 11 was maintained at 10 ° C. by adjusting the coolant temperature.

바닥면(2)과 분리판(3)은 불소수지 재질로 사용하여 부식을 방지하고, 전극(5,6)은 니켈(Ni) 재질을 사용하였다. 전해질(4)은 불화암모늄-불산계(NH4F-HF)를 사용하였으며, 삼불화질소(NF3) 제조용 전해조내의 전해질의 조성비는 불화암모늄(NH4F)에 대한 불산(HF) 중량% 비율을 2.0으로 구성하였고, 반응중 전해질(4)의 온도는 100∼130℃에서 운전이 가능하도록 전해조 및 전극에 써멀 커플(thermal couple)을 설치하여 조건에 따른 온도를 관측할 수 있게 하였으며, 본 실시예에서는 125℃를 유지하였다.The bottom surface 2 and the separator 3 were made of fluorine resin to prevent corrosion, and the electrodes 5 and 6 were made of nickel (Ni). As the electrolyte 4, ammonium fluoride-fluoric acid (NH 4 F-HF) was used, and the composition ratio of the electrolyte in the electrolytic cell for producing nitrogen trifluoride (NF 3 ) was% by weight of hydrofluoric acid (HF) relative to ammonium fluoride (NH 4 F). The ratio was set to 2.0, and a thermal couple was installed in the electrolyzer and the electrode so that the temperature of the electrolyte 4 during the reaction could be operated at 100 to 130 ° C. so that the temperature according to the conditions could be observed. In the examples, 125 ℃ was maintained.

반응후 생성되는 가스를 분석하기 위해 양극(5) 상단부의 생성된 삼불화질소(NF3) 배출구(9)쪽과 양극 상단부의 생성되는 수소(H2) 배출구(10)쪽에 TCD와 DID용 검출기가 달린 가스 크로마토그래피(Gas Chromatography)를 설치하여 전기분해 반응후 생성되어지는 불순물 가스의 분석을 할 수 있게 하였다.Detectors for TCD and DID on the generated nitrogen trifluoride (NF 3 ) outlet 9 at the top of the anode (5) and the generated hydrogen (H 2 ) outlet (10) at the top of the anode to analyze the gases produced after the reaction. Gas chromatography (Gas Chromatography) was installed to enable analysis of impurity gas generated after electrolysis reaction.

전해조가 흡습성이여서 본 반응을 실행하기 전에 저전류로 탈수 전기 분해반응(dehydration electrolysis)을 실시하였다. 저전류로 40∼50A를 흘리고, 평균전류밀도 1∼2A/dm2 로 200시간을 운전한 다음 양극에서 생성되는 산소(O2) 의 농도가 2%로 일정하게 유지될 때 탈수 전기분해반응 (dehydration electrolysis)을 종료하였다.Since the electrolytic cell was hygroscopic, dehydration electrolysis was carried out at low current before carrying out this reaction. After 40-50A flow at low current, 200 hours at average current density of 1-2A / dm 2 , dehydration electrolysis reaction is carried out when the concentration of oxygen (O 2 ) produced at the anode is kept at 2%. dehydration electrolysis) was terminated.

그 다음으로 본 반응인 삼불화질소(NF3)를 제조하기위한 용융염전해반응을 250∼500A, 평균 전류 밀도 10∼20A/dm2 로 4000시간을 운전하여 배출된 수소(H2) 및 삼불화질소(NF3)와 그 외 부산물의 함량분석 및 삼불화질소(NF3) 의 생성효율 분석을 행하였으며, 그 결과는 하기의 표 1 에 나타내었다.Then, hydrogen (H 2 ) and trioxide discharged by operating the molten salt electrolysis reaction to produce nitrogen trifluoride (NF 3 ), 4000 hours at 250 to 500 A and an average current density of 10 to 20 A / dm 2 . Nitrogen fluoride (NF 3 ) and other by-product content analysis and nitrogen trifluoride (NF 3 ) production efficiency analysis was performed, the results are shown in Table 1 below.

[실시예 2]Example 2

전해조 상판의 온도를 50℃로 한 것을 제외하고는 실시예 1과 동일하게 실시하였으며, 함량분석 및 삼불화질소(NF3) 의 생성효율 분석 결과는 하기의 표 1에 함께 나타내었다.Except that the temperature of the electrolytic cell top plate was carried out in the same manner as in Example 1, the content analysis and the analysis results of the production efficiency of nitrogen trifluoride (NF 3 ) are shown in Table 1 below.

[실시예 3]Example 3

전해조 상판의 온도를 85℃로 한 것을 제외하고는 실시예 1과 동일하게 실시하였으며, 함량분석 및 삼불화질소(NF3) 의 생성효율 분석 결과는 하기의 표 1에 함께 나타내었다.Except that the temperature of the electrolytic cell upper plate was set to 85 ℃ was carried out in the same manner as in Example 1, the content analysis and analysis results of the production efficiency of nitrogen trifluoride (NF 3 ) are shown in Table 1 below.

[실시예 4]Example 4

전해조 상판의 온도를 100℃로 한 것을 제외하고는 실시예 1과 동일하게 실시하였으며, 함량분석 및 삼불화질소(NF3) 의 생성효율 분석 결과는 하기의 표 1에 함께 나타내었다.Except that the temperature of the electrolytic cell top plate was 100 ℃ was carried out in the same manner as in Example 1, the content analysis and the analysis results of the production efficiency of nitrogen trifluoride (NF 3 ) are shown together in Table 1 below.

[실시예 5]Example 5

전해조 상판의 온도를 125℃로 한 것을 제외하고는 실시예 1과 동일하게 실 시하였으며, 함량분석 및 삼불화질소(NF3) 의 생성효율 분석 결과는 하기의 표 1에 함께 나타내었다.Except that the temperature of the electrolytic cell upper plate was set to 125 ℃ was the same as in Example 1, the content analysis and analysis results of the production efficiency of nitrogen trifluoride (NF 3 ) are shown in Table 1 below.

[비교예 1]Comparative Example 1

전해조 상판 냉각관을 설치하지 않은 것을 제외하고는 실시예 1과 동일하게 실시하였으며, 함량분석 및 삼불화질소(NF3) 의 생성효율 분석 결과는 하기의 표 1에 함께 나타내었다.Except not installing the electrolytic cell upper cooling tube was carried out in the same manner as in Example 1, the content analysis and the analysis results of the production efficiency of nitrogen trifluoride (NF 3 ) are shown in Table 1 below.

Figure 112005070599605-PAT00001
Figure 112005070599605-PAT00001

표 1에서 볼 수 있는 바와 같이, 상기 비교예 1에 비해 실시예 3~5의 경우 기화되는 불산(HF)의 함량이 약 5-15%정도로 급격히 감소되어 삼불화질소(NF3) 생성 효율이 약 30%정도 크게 향상된 것을 알 수 있다. 즉, 삼불화질소(NF3) 전해조의 내부에서 발생되는 열로 인해 기화되어 배출되는 불산(HF)등의 전해질 성분을 전해조 상판 냉각 시스템을 통해 보다 미세하게 제어 또는 억제함으로서 반응성이 크게 향상됨을 확인할 수 있다.As can be seen in Table 1, compared to Comparative Example 1, in the case of Examples 3 to 5, the amount of hydrofluoric acid (HF) vaporized rapidly decreased to about 5-15%, so that the production efficiency of nitrogen trifluoride (NF 3 ) was increased. It can be seen that about 30% is greatly improved. That is, it can be confirmed that the reactivity is greatly improved by controlling or inhibiting the electrolyte components such as hydrofluoric acid (HF) vaporized and discharged due to heat generated inside the nitrogen trifluoride (NF 3 ) electrolytic cell more finely through the electrolytic cell upper plate cooling system. have.

그러나, 실시예 1,2에서와 같이 전해조 상판의 온도를 너무 낮게 설정하면 전해조의 운전 온도를 떨어뜨려 반응성 하락으로 인한 효율 감소가 발생함을 알 수 있다.However, it can be seen that when the temperature of the electrolytic cell upper plate is set too low as in Examples 1 and 2, the operating temperature of the electrolytic cell is lowered, resulting in a decrease in efficiency due to a decrease in reactivity.

이와 같은 본 발명에 따른 전해조 상판 냉각관을 포함하는 삼불화질소(NF3) 제조용 전해조 장치 및 이를 이용한 삼불화질소의 제조 방법에 의하면,According to the electrolytic cell apparatus for producing nitrogen trifluoride (NF 3 ) including the electrolytic cell upper plate cooling tube according to the present invention and the method for producing nitrogen trifluoride using the same,

생성되는 삼불화질소(NF3) 성분과 함께 동시에 과량으로 배출되는 불산(HF)의 기화를 억제하므로써 불산(HF)을 포함한 불순물의 함량을 효율적으로 낮출 수 있으며, 중요한 원부재료인 불산(HF)의 소모량 감소가 가능하므로 공정 원단위를 향상시키고, 또한 고순도 삼불화질소(NF3) 제조를 위한 후 공정의 부하를 줄여줌으로써 삼불화질소(NF3) 생성 수율 및 전체적인 유틸리티와 장치 효율성의 향상을 도모할 수 있다.By suppressing evaporation of hydrofluoric acid (HF), which is discharged in excess at the same time with the produced nitrogen trifluoride (NF 3 ) component, it is possible to effectively lower the content of impurities including hydrofluoric acid (HF), and important raw material, hydrofluoric acid (HF) It is possible to reduce the consumption of carbon dioxide, thereby improving the process unit and reducing the load of the post-process for the production of high purity nitrogen trifluoride (NF 3 ), thereby improving the yield of nitrogen trifluoride (NF 3 ) production and overall utility and device efficiency. can do.

Claims (5)

용융염 전기분해를 통해 삼불화질소(NF3)를 제조하는 전해조에 있어서,In the electrolytic cell for producing nitrogen trifluoride (NF 3 ) through molten salt electrolysis, 전해조 몸체, 불소수지로 코팅된 바닥면, 불소 수지로 코팅된 분리판, 전해질, Ni 음극(anode), Ni 양극(cathode), 음극 연결봉, 양극 연결봉, 생성된 삼불화질소(NF3) 배출구, 생성된 수소(H2) 배출구, 전해조 상판, 냉각관으로 이루어진 전해조로서, 상기 냉각관은 전해조 상판 냉각관을 포함하는 것을 특징으로 하는 삼불화질소(NF3) 제조용 전해조.Body of electrolyzer, bottom surface coated with fluororesin, separator plate coated with fluorine resin, electrolyte, Ni anode, Ni cathode, cathode connecting rod, anode connecting rod, nitrogen trifluoride (NF 3 ) outlet, the generated hydrogen (H 2) outlet, the electrolytic cell tops, as an electrolytic cell consisting of a cooling tube, said cooling tube is nitrogen trifluoride (NF 3) for producing electrolytic cell characterized in that it comprises an electrolytic cell top plate condenser. 제1항에 있어서, 상기 전해조 상판 냉각관은 용융염 전기분해 반응의 진행중 전해조 상판의 온도를 10∼130℃로 조절할 수 있는 냉각 시스템인 것을 특징으로 하는 삼불화질소(NF3) 제조용 전해조.The method of claim 1, wherein the electrolytic cell top plate condenser is nitrogen trifluoride (NF 3) for producing electrolytic cell characterized in that the cooling system which can adjust the temperature of the top plate of the electrolytic cell in progress molten salt electrolysis reaction to 10~130 ℃. 제 1항 또는 제 2항에 있어서, 상기 전해조는 용융염 전기분해 반응중의 전해질 온도를 100∼130℃로 조절하기 위해 상기 전해조 상판 냉각관이외에 전해조 측면 내벽의 냉각관을 추가로 포함하는 것을 특징으로 하는 삼불화질소(NF3) 제조용 전해조.According to claim 1 or 2, wherein the electrolytic bath further comprises a cooling tube of the inner wall of the electrolytic cell in addition to the upper plate cooling tube of the electrolytic cell in order to adjust the electrolyte temperature during the molten salt electrolysis reaction to 100 ~ 130 ℃. Electrolyzer for the production of nitrogen trifluoride (NF 3 ). 제 1항 또는 제 2항에 있어서, 상기 전해조 상판 냉각관은 전해조 외부 또는 내부의 다른 냉각관과 함께 연결되거나, 혹은 서로 독립적으로 설치되어 사용될 수 있는 것을 특징으로 하는 삼불화질소(NF3) 제조용 전해조.The method of claim 1 or 2, wherein the electrolytic cell upper plate cooling tube is connected with other cooling tubes outside or inside the electrolytic cell, or for the production of nitrogen trifluoride (NF 3 ), which can be installed and used independently of each other. Electrolyzer. 제 1항 또는 제 2항에 기재된 전해조에서 불화암모늄(NH4F)에 대한 불산(HF)의 중량% 비율이 HF/NH4F = 1.0∼2.6인 전해질을 사용하여 용융염 전기분해반응시키는 것을 특징으로 하는 삼불화질소(NF3)의 제조 방법.The electrolytic reaction of molten salt using an electrolyte in which the weight percentage ratio of hydrofluoric acid (HF) to ammonium fluoride (NH 4 F) is HF / NH 4 F = 1.0 to 2.6 in the electrolytic cell according to claim 1 or 2. A process for producing nitrogen trifluoride (NF 3 ).
KR1020050117004A 2005-12-02 2005-12-02 The electrolyzer for manufacturing nitrogen tri-fluoride to minimize the amount of a vaporized hydrogen flouride and the manufacturing method using the same KR100742484B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050117004A KR100742484B1 (en) 2005-12-02 2005-12-02 The electrolyzer for manufacturing nitrogen tri-fluoride to minimize the amount of a vaporized hydrogen flouride and the manufacturing method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050117004A KR100742484B1 (en) 2005-12-02 2005-12-02 The electrolyzer for manufacturing nitrogen tri-fluoride to minimize the amount of a vaporized hydrogen flouride and the manufacturing method using the same

Publications (2)

Publication Number Publication Date
KR20070057489A true KR20070057489A (en) 2007-06-07
KR100742484B1 KR100742484B1 (en) 2007-07-24

Family

ID=38354816

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050117004A KR100742484B1 (en) 2005-12-02 2005-12-02 The electrolyzer for manufacturing nitrogen tri-fluoride to minimize the amount of a vaporized hydrogen flouride and the manufacturing method using the same

Country Status (1)

Country Link
KR (1) KR100742484B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605384A (en) * 2011-01-18 2012-07-25 气体产品与化学公司 Electrolytic apparatus, system and method for the safe production of nitrogen trifluoride
KR101411662B1 (en) * 2012-07-02 2014-06-25 최병구 Nickel based electrode and production of nitrogen trifluoride using same
CN110656344A (en) * 2019-11-05 2020-01-07 贵州理工学院 Device and method for removing water by using anhydrous hydrogen fluoride

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101771862B1 (en) 2015-10-02 2017-08-28 후성정공 주식회사 Collector of electrolyzer for manufacturing nitrogen trifluoride and manufacturing method the same
KR101989519B1 (en) 2017-11-29 2019-06-14 효성화학 주식회사 Metal Electrode with Enhanced Durability and Manufacturing Method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755807B2 (en) * 1987-11-04 1995-06-14 三井東圧化学株式会社 Method for producing nitrogen trifluoride
SG80671A1 (en) * 1999-02-10 2001-05-22 Mitsui Chemicals Inc A process for producing high-purity nitrogen trifluoride gas
KR100541978B1 (en) * 2001-08-17 2006-01-16 주식회사 효성 Electrolyzer For High Purity Nitrogen Trifluoride Production And Manufacturing Method Of Nitrogen Trifluoride

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102605384A (en) * 2011-01-18 2012-07-25 气体产品与化学公司 Electrolytic apparatus, system and method for the safe production of nitrogen trifluoride
US8945367B2 (en) 2011-01-18 2015-02-03 Air Products And Chemicals, Inc. Electrolytic apparatus, system and method for the safe production of nitrogen trifluoride
CN102605384B (en) * 2011-01-18 2016-05-11 气体产品与化学公司 For electrolysis installation, the system and method for the Nitrogen trifluoride of keeping the safety in production
KR101411662B1 (en) * 2012-07-02 2014-06-25 최병구 Nickel based electrode and production of nitrogen trifluoride using same
CN110656344A (en) * 2019-11-05 2020-01-07 贵州理工学院 Device and method for removing water by using anhydrous hydrogen fluoride

Also Published As

Publication number Publication date
KR100742484B1 (en) 2007-07-24

Similar Documents

Publication Publication Date Title
CN1840742B (en) Electrolytic anode and method for electrolytically synthesizing fluorine-containing substance using the electrolytic anode
KR100742484B1 (en) The electrolyzer for manufacturing nitrogen tri-fluoride to minimize the amount of a vaporized hydrogen flouride and the manufacturing method using the same
CN101624708B (en) Method of electrolytically synthesizing nitrogen trifluoride
JP3727797B2 (en) Method for producing nitrogen trifluoride
CN211871386U (en) Device for pre-purifying nitrogen trifluoride crude product prepared by electrolysis
CN101429664B (en) Full-fluorine octyl sulfuryl fluoride production technology
CN116254547B (en) Preparation method of nitrogen trifluoride
KR101696397B1 (en) Electrolytic apparatus, system and method for the efficent production of nitrogen trifluoride
CN105624725B (en) The preparation technology of full-fluorine octyl sulfuryl fluoride
KR100541978B1 (en) Electrolyzer For High Purity Nitrogen Trifluoride Production And Manufacturing Method Of Nitrogen Trifluoride
JP2000104187A (en) Electrolytic cell (1)
KR101411714B1 (en) Nickel based electrode and production of nitrogen trifluoride using same
KR101462751B1 (en) Method for the production of nitrogen trifluoride
JPH02263988A (en) Production of gaseous nitrogen trifluoride
JP3986175B2 (en) Method for producing nitrogen trifluoride gas
CN115323412B (en) Preparation method of difluoroethylene carbonate
JP2764623B2 (en) Electrolytic cell
KR101411662B1 (en) Nickel based electrode and production of nitrogen trifluoride using same
JP2000104188A (en) Electrolytic cell
JP2698457B2 (en) Electrolytic cell
JP2854952B2 (en) Method for producing nitrogen trifluoride gas
JPH0456789A (en) Production of gaseous nitrogen trifluoride
KR20220040750A (en) Apparatus for producing nitrogen trifluoride
CN118028834A (en) Electrolytic process system for preparing fluorine gas by electrolysis of potassium hydrogen fluoride molten salt
JP2004011001A (en) Fluorine electrolytic cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]
FPAY Annual fee payment

Payment date: 20130607

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140603

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150618

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160614

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170613

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180612

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190611

Year of fee payment: 13