KR100541978B1 - Electrolyzer For High Purity Nitrogen Trifluoride Production And Manufacturing Method Of Nitrogen Trifluoride - Google Patents

Electrolyzer For High Purity Nitrogen Trifluoride Production And Manufacturing Method Of Nitrogen Trifluoride Download PDF

Info

Publication number
KR100541978B1
KR100541978B1 KR1020010049536A KR20010049536A KR100541978B1 KR 100541978 B1 KR100541978 B1 KR 100541978B1 KR 1020010049536 A KR1020010049536 A KR 1020010049536A KR 20010049536 A KR20010049536 A KR 20010049536A KR 100541978 B1 KR100541978 B1 KR 100541978B1
Authority
KR
South Korea
Prior art keywords
electrolytic cell
nitrogen trifluoride
electrolyte
electrolyzer
molten salt
Prior art date
Application number
KR1020010049536A
Other languages
Korean (ko)
Other versions
KR20030015667A (en
Inventor
이장원
박용철
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020010049536A priority Critical patent/KR100541978B1/en
Publication of KR20030015667A publication Critical patent/KR20030015667A/en
Application granted granted Critical
Publication of KR100541978B1 publication Critical patent/KR100541978B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/245Fluorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/02Process control or regulation
    • C25B15/021Process control or regulation of heating or cooling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

본 발명은 고순도 삼불화질소(NF3) 제조용 전해조 및 삼불화질소(NF3)의 제조방법에 관한 것으로, 본 발명의 전해조는 Ni 전극을 사용하고 전기분해를 통한 용융염 NH4F.HF 혹은 KF-NH4F-HF계에서 ① 전해조 몸체, ② 불소수지로 코팅된 바닥면, ③ 불소수지로 코팅된 분리판, ④ 전해질, ⑤ Ni anode, ⑥ Ni cathode, ⑦ anode 연결봉, ⑧ cathode 연결봉, ⑨ 생성된 NF3 배출구, ⑩ 생성된 H2 배출구, ⑪ 전해조 덮개, ⑫ 냉각관을 포함하며, 본 발명의 제조방법은 본 발명의 전해조에서 용융염 전기분해 반응을 통한 NF3 제조중, NH4F에 대한 HF의 wt% 비율(HF/NH4 F)이 1.0∼2.6으로 구성되는 전해질로 NF3를 제조하는 것을 특징으로 한다. The present invention relates to an electrolytic cell for producing high purity nitrogen trifluoride (NF 3 ) and nitrogen trifluoride (NF 3 ). Regarding the manufacturing method, the electrolytic cell of the present invention uses a Ni electrode and electrolysis in the molten salt NH 4 F.HF or KF-NH 4 F-HF system ① electrolyzer body, ② bottom surface coated with fluorine resin, ③ Separator plate coated with fluorine resin, ④ electrolyte, ⑤ Ni anode, ⑥ Ni cathode, ⑦ anode connecting rod, ⑧ cathode connecting rod, ⑨ generated NF 3 outlet, H produced H 2 outlet, ⑪ electrolyzer cover, ⑫ cooling tube It includes, and the production method of the present invention of NF 3 produced by a molten salt electrolytic reaction in the electrolytic cell of the present invention, wt% ratio of HF to NH 4 F (HF / NH 4 F) is composed of 1.0 to 2.6 NF 3 is produced by the electrolyte.

본 발명에 의하여, 운전의 경제요소인 dehydration electrolysis 경과시간이 감소하였고 NF3 생성효율이 증가하였다.According to the present invention, the elapsed time of dehydration electrolysis, which is an economic factor of operation, was decreased and the NF 3 generation efficiency was increased.

삼불화질소, 전해조 Nitrogen Trifluoride, Electrolyzer

Description

고순도 삼불화질소 제조용 전해조 및 삼불화질소의 제조방법{Electrolyzer For High Purity Nitrogen Trifluoride Production And Manufacturing Method Of Nitrogen Trifluoride} Electrolyzer For High Purity Nitrogen Trifluoride Production And Manufacturing Method Of Nitrogen Trifluoride}             

도1은 본 발명의 NF3 제조용 전해조의 단면도이다.1 is a cross-sectional view of an electrolytic cell for producing NF 3 of the present invention.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

1 : 전해조 몸체 2 : 불소수지로 코팅된 바닥면,1: electrolytic cell body 2: bottom surface coated with fluorocarbon resin,

3 : 불소수지로 코팅된 분리판 4 : 전해질,        3: separator plate coated with fluorine resin 4: electrolyte,

5 : Ni anode 6 : Ni cathode,        5: Ni anode 6: Ni cathode,

7 : anode 연결봉 8 : cathode 연결봉,       7: anode connecting rod 8: cathode connecting rod,

9 : 생성된 NF3 배출구 10 : 생성된 H2 배출구,9: generated NF 3 outlet 10: generated H 2 outlet,

11 : 전해조 덮개 12 : cooling tube      11 electrolytic cell cover 12 cooling tube

본 발명은 고순도 삼불화질소(NF3) 제조용 전해조 및 삼불화질소(NF3)의 제조방법에 관한 것으로, 보다 상세하게는 운전의 경계요소인 dehydration electrolysis 경과시간을 감소시키고 전자 전류 효율 및 NF3 제조 수율이 증가시키는 삼불화질소(NF3) 제조용 전해조 및 삼불화질소(NF3)의 제조방법에 관한 것이다.The present invention relates to an electrolytic cell for producing high purity nitrogen trifluoride (NF 3 ) and nitrogen trifluoride (NF 3 ). As, more particularly, to nitrogen trifluoride to reduce the dehydration electrolysis elapsed time of the boundary elements of the operation and the electron current efficiency and the NF 3 production yield is increased (NF 3) electrolytic bath and nitrogen trifluoride by preparative relates to a process for preparing (NF 3) of It relates to a manufacturing method.

최근 NF3 가스는 반도체 제조의 건식 에칭제와 CVD장비의 세정용 및 로케트의 추진 연료로 많이 사용되고 있다. 반도체산업의 활성화로 NF3의 수요는 최근 급격히 증가하고 있다. 환경문제가 전혀 없는, 특히 온난화를 유발시키지 않는 가스 사용의 요구 증가에 따라 NF3의 수요는 기하급수적으로 증가되어지고 있다.Recently, NF 3 gas has been widely used as a dry etching agent for semiconductor manufacturing, as a fuel for cleaning CVD equipment, and as a propellant for rockets. The demand for NF 3 has increased rapidly in recent years due to the activation of the semiconductor industry. The demand for NF 3 is growing exponentially due to the increasing demand for the use of gas that is completely free of environmental problems, especially without causing warming.

제조방법으로는 일반적으로 직법 불화반응을 시키는 방법과 플라즈마를 이용하는 방법 및 전기분해를 통해 제조하는 방법 등이 있다. 이들의 방법 중에서 용융염 전해법은 높은 수율과 대량 생산에 적합하다. 전해질로는 NH4F와 HF 로부터 유도되는 NH4F-HF 혹은 NH4F-HF에 KF를 첨가하여 유도된 KF-NH4F-HF 또는 LiF-NH 4F-HF가 사용될 수 있다.As a manufacturing method, there are generally a method for direct fluorination reaction, a method using plasma, and a method for producing by electrolysis. Among these methods, molten salt electrolysis is suitable for high yield and mass production. Electrolyte to have the NH 4 F and NH 4 F-HF or KF-NH induced by the addition of KF in NH 4 F-HF 4 F- HF or NH 4 F-HF-LiF derived from HF can be used.

NF3 가스 제조에서 NF3와 N2 가스는 anode에서 발생하고, H2 가스는 cathode에서 발생한다. 즉 가스 발생 반응은 양극에서 동시에 일어난다. anode에서 발생한 NF3 가스는 cathode에서 발생한 H2 가스와 혼합되어 폭발의 가능성이 커지므로 이를 줄이기 위해 혼합 방지 및 안전성을 향상시킨 전해조 설계가 필요하다.In NF 3 gas production, NF 3 and N 2 gases are generated at the anode and H 2 gas is generated at the cathode. That is, the gas generating reaction takes place simultaneously at the anode. The NF 3 gas from the anode is mixed with the H 2 gas from the cathode, which increases the likelihood of explosion, which requires an electrolytic cell design that improves mixing prevention and safety.

일반적으로 폭발의 가능성을 줄이기 위해 전해조는 전극을 분리하는 분리판을 설치한다. 분리판의 부식방지와 분리판이 전극으로서의 기능을 막기 위해 분리판을 불소수지로 코팅을 한다.  In general, electrolytic cells are equipped with separator plates to separate the electrodes to reduce the possibility of explosion. In order to prevent corrosion of the separator and prevent the separator from functioning as an electrode, the separator is coated with fluorine resin.

anode의 재료로 탄소와 니켈전극이 사용되고 일반적으로 CF4의 양을 줄이기 위해 니켈전극이 anode에 사용되어 진다. 그러나 사용되는 니켈이 쉽게 용해되어지는 문제점이 있다. 용해된 니켈의 일부는 cathode 상에 침적하게 된다.Carbon and nickel electrodes are used as anode materials, and nickel electrodes are generally used as anodes to reduce the amount of CF 4 . However, there is a problem that the nickel used is easily dissolved. Some of the dissolved nickel is deposited on the cathode.

이때 장기 운전을 하게 되면 cathode와 분리판 사이의 거리가 점차 줄어들게 되어 결과적으로 cathode와 분리판 사이의 간격이 좁아져 NF3와 H2의 혼합으로 인한 폭발한계에 가까워지게 된다.In this case, the long distance operation decreases the distance between the cathode and the separator, and as a result, the gap between the cathode and the separator becomes narrow, which is close to the explosion limit due to the mixing of NF 3 and H 2 .

니켈전극에서 생성되는 매우 작은 NF3 기포는 전극을 따라 수직으로 상승되지 않고, 비스듬히 상부로 이동하는 확산현상이 발생한다. anode 니켈 전극의 단면적당 발생되는 NF3 가스의 양은 증가되고, NF3의 확산으로 cathode 부분의 반응은 극렬해지게 된다.Very small NF 3 bubbles generated in the nickel electrode do not rise vertically along the electrode, but diffuse upwardly at an angle. The amount of NF 3 gas generated per cross-sectional area of the anode nickel electrode is increased, and the diffusion of NF 3 causes the reaction of the cathode portion to be severe.

또한 니켈을 사용할 경우 NiF의 형태로 전해조 바닥에 침적하게 되는데 이때 전극끝과 침적물의 거리가 점차 가까워지게 된다. 반응이 진행후 점차 전해조 바닥에서 가까운 전극끝이 NiF에 묻히게 된다. NiF가 묻은 전극의 끝부분은 더 이상 전극의 역할을 하지 못하게 되며 전류밀도의 증가 및 전해조의 전압 상승, 수율의 감소를 초래한다. 심한 경우에는 short curcit이 되거나 폭발의 우려가 있다.In addition, when nickel is used, NiF is deposited on the bottom of the electrolytic cell, and the distance between the electrode tip and the deposit becomes gradually closer. After the reaction proceeds, the electrode tip close to the bottom of the electrolytic cell is buried in NiF. The tip of the NiF-embedded electrode can no longer function as an electrode, resulting in an increase in current density, an increase in voltage in the electrolyzer, and a decrease in yield. In severe cases, there may be a short curcit or explosion.

따라서, 전해에 의해 두 전극 사이에 발생되는 반응열을 제거하고 전해조의 온도 분포를 균일하게 유지하는 것과 바닥과 전극끝 사이의 거리유지는 안전 운전에 매우 중요한 요소이다. 전해조의 상단부를 냉각시키는 반면 하단부는 가열하는 것이 좋다.Therefore, eliminating the heat of reaction generated between the two electrodes by electrolysis, keeping the temperature distribution of the electrolytic cell uniform, and maintaining the distance between the bottom and the electrode tip are very important factors for safe operation. Cooling the upper end of the electrolyzer while heating the lower end is preferred.

용융염 전해법에서 용융염의 온도는 100∼130℃가 선호되는데, 이는 운전이 쉽고 전기전도도가 좋으며 전기전류효율이 좋게 되기 때문이다.In molten salt electrolysis, the temperature of molten salt is preferably 100 to 130 ° C., because it is easy to operate, has good electrical conductivity, and has good electric current efficiency.

NH4F-HF(melting point : 126℃)계에서 용융염의 온도가 100∼130℃일 경우에는, NH4F-HF가 전해조 온도보다 낮은 온도에서는 증기화된 것들이 불리하게 침적되어진다. 운전 결과 NH4F-HF는 전해조의 Lid에 침적되고 이는 생성가스 배출구를 막아버리게 된다.NH 4 F-HF: when the molten salt temperature at (melting point 126 ℃) system is one 100~130 ℃, NH 4 F-HF that is the ones adversely the deposition in the electrolytic bath temperature lower than the temperature of vaporization. As a result of operation, NH 4 F-HF is deposited in the Lid of the electrolytic cell, which blocks the product gas outlet.

이에 따라 NF3를 가지고 있으며 분리판으로 둘러싸인 anode chamber와, H2를 가지고 있으며 분리판으로 둘러싸인 cathode chamber사이의 압력 차이로 인해 전해액 계면의 높이가 달라지게 된다.As a result, the difference in pressure between the anode chamber with NF 3 and the cathode chamber with H 2 and the cathode chamber with H 2 will change the height of the electrolyte interface.

예로 anode에서 생성된 NF3로 인해 배출구가 막히면 anode chamber에서 배출될 수가 없어 내부압력이 상승하게 된다. 이에 따라 전해액 계면을 누르게 되고 반대로 cathode chamber의 계면은 상승하게 된다. 이 경우 압력이 커져 분리판보다 계면이 더욱 하강할 경우 NF3가 cathode chamber내부로 혼입되게 된다.For example, if the outlet is blocked by the NF 3 produced at the anode, the internal pressure rises because it cannot be discharged from the anode chamber. As a result, the interface of the electrolyte is pressed and the interface of the cathode chamber rises. In this case, when the pressure is increased and the interface is lower than the separator, NF 3 is introduced into the cathode chamber.

이에 따라 NF3와 H2의 혼합이 이루어져 최악의 경우 폭발을 초래하게 되는데 이를 해결하기 위해 본 발명을 연구하였다.As a result, NF 3 and H 2 are mixed to cause an explosion in the worst case. The present invention has been studied to solve this problem.

본 발명에 있어서 용융염 전해에 의한 NF3 제조용 전해조는 전극, 분리판, 전해조 바닥, 용액면, Lid로 구성이 되어있으며, 본 발명은 이들간의 관계를 설정하여 용융염 전해에 의한 NF3 제조 및 이에 사용되는 전해조 설계 기술 향상과 분리막의 부식 방지를 위한 재질 변형을 통해 전해조 폭발 방지 및 반응시 발생되는 온도 제어를 통해 국부적 고온 현상 감소 유도로 NF3 생성률 향상을 목적으로 한다.
In the present invention, the electrolytic cell for producing NF 3 by molten salt electrolysis is composed of an electrode, a separator, an electrolytic cell bottom, a solution surface, and Lid. The present invention sets the relationship therebetween to produce NF 3 by molten salt electrolysis and The purpose of the present invention is to improve NF 3 production rate by inducing local high temperature phenomena by preventing electrolytic cell explosion and controlling temperature caused by reaction by improving material design to improve electrolytic cell design and corrosion of separator.

본 발명의 전해조의 구성은 도1에 도시된 바와 같이,The configuration of the electrolytic cell of the present invention, as shown in Figure 1,

1 전해조 몸체, 2 불소수지로 코팅된 바닥면, 3 불소수지로 코팅된 분리판, 4 전해질, 5 Ni anode, 6 Ni cathode, 7 anode 연결봉, 8 cathode 연결봉, 9 생성된 NF3 배출구, 10 생성된 H2 배출구, 11 전해조 덮개, 12 냉각관 등으로 구성이 되어 있다.1 electrolyzer body, 2 fluororesin-coated bottom, 3 fluororesin-coated separator, 4 electrolyte, 5 Ni anode, 6 Ni cathode, 7 anode connecting rod, 8 cathode connecting rod, 9 generated NF 3 outlet, 10 generation H 2 outlet, 11 electrolyzer cover, 12 cooling tubes.

본 발명의 제조방법은 상기와 같이 구성된 전해조에서 용융염 전기분해 반응을 통한 NF3 제조중, NH4F에 대한 HF의 wt% 비율(HF/NH4F)이 1.0∼2.6으로 구성되는 전해질로 NF3를 제조하는 것을 특징으로 한다.In the electrolytic cell is configured as in the above production method of the present invention of NF 3 produced by the molten salt electrolysis reaction, the electrolyte wt% ratio (HF / NH 4 F) of HF to NH 4 F is composed of 1.0 to 2.6 It is characterized by producing NF 3 .

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 전해조의 구조를 상세히 설명하면, 전극의 끝부분과 분리판 끝부 분과의 높이차는 200∼2000mm, 더욱 좋기로는 500∼800mm, 전극의 끝부분과 전해조 바닥면과의 거리는 100∼1000mm, 더욱 좋기로는 200∼500mm, 그리고 전해조의 증발과 생성가스의 포집을 위한 공간구성을 위해 설치된 전해조 뚜껑과 전해액 계면과의 거리는 500∼2000mm, 더욱 좋기로는 500∼1000mm이다. 전해액 내에서 상기와 같은 전극간 구조변화를 통하여 단시간 내에 최적의 삼불화질소 생성율을 지속적으로 유지할 수 있다.Referring to the structure of the electrolytic cell of the present invention in detail, the height difference between the end of the electrode and the end of the separator plate is 200-2000mm, more preferably 500-800mm, the distance between the electrode end and the bottom of the electrolytic cell is 100-1000mm, More preferably, the distance between the electrolytic cell lid and the electrolyte interface, which is installed for the evaporation of the electrolyzer and the space configuration for collecting the generated gas, is 500 to 2000 mm, more preferably 500 to 1000 mm. It is possible to continuously maintain the optimum nitrogen trifluoride generation rate within a short time through the structure change between the electrodes in the electrolyte.

바닥면과 분리판은 불소수지 재질로 사용하여 부식을 방지한다. 사용되는 재질의 예로는 polytetrafluoroethylen, polychlorotrifluorethylen, polyvinylidene fluoride, polyvinyl fluoride, tetrafluoroethylenehexafluoropropylene copolymer, tetrafluoroethylene ethylene copolymer 등을 들 수 있다. polytetrafluoroethylen과 tetrafluoroethylene-perfluoroalkly vinyl ether copolymer가 내산성과 내열성을 가지고 있어 주로 사용된다.The bottom and the separator are made of fluorine resin to prevent corrosion. Examples of the material used may include polytetrafluoroethylen, polychlorotrifluorethylen, polyvinylidene fluoride, polyvinyl fluoride, tetrafluoroethylenehexafluoropropylene copolymer, tetrafluoroethylene ethylene copolymer, and the like. Polytetrafluoroethylen and tetrafluoroethylene-perfluoroalkly vinyl ether copolymers are mainly used because they have acid and heat resistance.

이때 전극은 Ni 재질의 전극을 사용한다. 전해질은 NH4F-HF를 사용하며 NF3 전해조내 전해질중 조성비가 NH4F 에 대한 HF의 wt% 비율이 1.0∼2.6 로 구성되게 한다. HF의 wt%비율이 2.6을 초과하게 되면 과다한 HF의 함유로 인하여 경제적 손실뿐만 아니라 부식발생의 원인이 되며, 반면에 1.0이하로 너무 작을 경우 전해질의 점도 및 부반응의 증가로 인해 NF3의 생성효율이 감소한다.In this case, an electrode made of Ni is used. The electrolyte uses NH 4 F-HF, and the composition ratio of the electrolyte in the NF 3 electrolyzer is such that the wt% ratio of HF to NH 4 F is 1.0 to 2.6. If the wt% ratio of HF exceeds 2.6, it will cause not only economic loss but also corrosion due to excessive HF content, whereas if it is less than 1.0, the formation efficiency of NF 3 is increased due to the increase of viscosity and side reaction of electrolyte. This decreases.

전해조의 온도가 130℃이상으로 높아질 경우 부반응(N2의 생성)으로 인해 효율이 떨어지므로, 전해조의 운전온도는 100∼130℃에서 운전이 가능하도록 전해조 및 전극에 thermal couple을 설치하여 온도상승을 시키고, 급격한 온도 상승의 방지 및 일정한 온도 유지를 위해 cooling tube를 전해조 상부 외곽에 설치한다.When the temperature of the electrolytic bath to increase more than 130 ℃ side reactions because due to (the generation of N 2) to fall, the efficiency, the operating temperature of the electrolytic cell is installed a thermal couple into the electrolytic bath and the electrode to enable operation at a temperature rise 100~130 ℃ In order to prevent a sudden temperature rise and maintain a constant temperature, a cooling tube is installed outside the upper part of the electrolyzer.

반응후 생성되는 가스를 분석하기 위해 anode 상단부의 생성된 NF3 배출구쪽과 cathode 상단부의 생성되는 H2 배출구쪽에 TCD와 DID용 검출기가 달린 Gas Chromatography를 설치하여 전기분해 반응후 생성되어지는 불순물 가스의 분석을 할 수 있게 한다. IR로는 CF4 생성 유무를 관찰할 수 있게 한다.In order to analyze the gas generated after the reaction, gas chromatograph with TCD and DID detector was installed at the NF 3 outlet side of the anode and H 2 outlet side of the cathode, whereby Enable analysis. IR allows observation of the presence of CF 4 .

먼저, 본 반응을 실행하기 전에 전해조가 흡습성이여서 저전류로 dehydration electrolysis를 실시한다. 저전류로 50A를 흘리고 평균전류밀도는 2A/dm2로 200시간을 운전하여 본 반응을 진행한다. 전해반응은 250A로 평균전류밀도는 10A/dm2로 4000시간을 운전하여 H2 및 NF3와 그 외 부산물의 분석을 행한다.First, before performing this reaction, the electrolytic cell is hygroscopic, so dehydration electrolysis is performed at low current. 50A flows at low current and the average current density is 2A / dm 2 for 200 hours to operate this reaction. The electrolytic reaction was performed at 250A with an average current density of 10A / dm 2 for 4000 hours to analyze H 2 and NF 3 and other by-products.

본 발명의 실시예는 아래와 같다.An embodiment of the present invention is as follows.

< 실시예 ><Example>

전극의 끝부분과 분리판 끝부분과의 높이차를 500mm, 전극의 끝부분과 전해조 바닥면과의 거리는 300mm, 그리고 전해조의 증발과 생성가스의 포집을 위한 공간구성을 위해 설치된 전해조 뚜껑과 전해액 계면과의 거리는 500mm의 구조인 전해조를 제조하였다. The height difference between the tip of the electrode and the tip of the separator is 500mm, the distance between the tip of the electrode and the bottom of the electrolytic cell is 300mm, and the electrolytic cell cap and the electrolyte interface installed for space configuration for evaporation of the electrolytic cell and capture of generated gas. And the distance was produced electrolytic cell having a structure of 500mm.

바닥면과 분리판은 불소수지 재질로 사용하여 부식을 방지하고 전극은 Ni 재 질의 전극을 사용하였다. 전해질은 NH4F-HF를 사용하였으며 NF3 전해조내 전해질중 조성비가 NH4F 에 대한 HF wt% 비율이 2.0으로 구성하였고, 전해조의 운전 온도는 100∼130℃에서 운전이 가능하도록 전해조 및 전극에 thermal couple을 설치하여 조건에 따른 온도를 관측할 수 있게 하였다.The bottom surface and the separator were made of fluorine resin to prevent corrosion and the electrode was made of Ni material. The electrolyte used NH 4 F-HF, the composition ratio of the electrolyte in the NF 3 electrolytic cell was composed of HF wt% ratio of 2.0 to NH 4 F, the operation temperature of the electrolytic cell and the electrode so that it can be operated at 100 ~ 130 ℃ Thermal couples were installed in the system to observe the temperature according to the conditions.

반응후 생성되는 가스를 분석하기 위해 anode 상단부의 생성된 NF3 배출구쪽과 cathode 상단부의 생성되는 H2 배출구쪽에 TCD와 DID용 검출기가 달린 Gas Chromatography를 설치하여 전기분해 반응후 생성되어지는 불순물 가스의 분석을 할 수 있게 하였다. In order to analyze the gas generated after the reaction, gas chromatograph with TCD and DID detector was installed at the NF 3 outlet side of the anode and H 2 outlet side of the cathode, whereby The analysis was made possible.

본 반응을 실행하기 전에 전해조가 흡습성이여서 저전류로 dehydration electrolysis를 실시하였다. Prior to carrying out this reaction, the electrolytic cell was hygroscopic and dehydration electrolysis was carried out at low current.

저전류로 40∼50A를 흘리고 평균전류밀도는 1∼2A/dm2로 200시간을 운전하여 dehydration electrolysis의 종료는 anode에서 생성되는 O2의 농도가 2%로 일정하게 유지될 때 종료하였고, 본 전해반응은 250∼500A로 평균 전류 밀도는 10∼20A/dm2로 4000시간을 운전하여 H2 및 NF3와 그외 부산물의 분석을 행하였다. 결과는 아래의 표1 과 같았다.The dehydration electrolysis was terminated by flowing 40-50A at low current and operating for 200 hours at an average current density of 1-2A / dm 2 when the concentration of O 2 produced at the anode was kept constant at 2%. The electrolytic reaction was performed at 250 to 500 A with an average current density of 10 to 20 A / dm 2 at 4000 hours for analysis of H 2 , NF 3 and other by-products. The results are shown in Table 1 below.

< 비교예1 ><Comparative Example 1>

실시예와 동일하게 시행하되, 전해조의 구조와 dehydration electrolysis를 아래의 표1과 같이 변경하였다. NF3의 생성효율은 아래의 표1과 같았다.In the same manner as in Example, the structure and dehydration electrolysis of the electrolytic cell were changed as shown in Table 1 below. The generation efficiency of NF 3 was shown in Table 1 below.

< 비교예2 ><Comparative Example 2>

실시예와 동일하게 시행하되, 전해조의 구조와 dehydration electrolysis를 아래의 표1과 같이 변경하였다. NF3의 생성효율은 아래의 표1과 같았다.In the same manner as in Example, the structure and dehydration electrolysis of the electrolytic cell were changed as shown in Table 1 below. The generation efficiency of NF 3 was shown in Table 1 below.

< 비교예3 ><Comparative Example 3>

실시예와 동일하게 시행하되, 전해조의 구조와 dehydration electrolysis를 아래의 표1과 같이 변경하였다. NF3의 생성효율은 아래의 표1과 같았다.In the same manner as in Example, the structure and dehydration electrolysis of the electrolytic cell were changed as shown in Table 1 below. The generation efficiency of NF 3 was shown in Table 1 below.

실시예Example 비교예1Comparative Example 1 비교예2Comparative Example 2 비교예3Comparative Example 3 냉각관 가동 상태 여부Cooling pipe operation status 가동behavior 비가동Non-operational 분리판끝과 전극끝 높이 (mm)Separator end and electrode tip height (mm) 500500 800800 900900 500500 전극끝과 전해조 바닥과의 거리 (mm)Distance between electrode tip and bottom of electrolyzer (mm) 300300 100100 300300 300300 전해조 뚜껑과 전해액 계면과의 거리 (mm)Distance between electrolytic cell cap and electrolyte interface (mm) 500500 500500 250250 250250 dehydration electrolysis (hour)dehydration electrolysis (hour) 200200 250250 300300 250250 NF3 생성 효율 (%)NF 3 generation efficiency (%) 4545 4040 3535 3030

상기 실시예 및 비교예 1∼3의 결과로부터, 전해조의 크기가 너무 커지게 되면 dehydration electrolysis에 소요되는 시간이 길어지고 효율이 감소하게 됨을 알 수 있다. 반대로 거리가 300mm보다 짧아지게 되면 Ni anode에서 발생한 NF3가스가 비스듬히 확산되어 분리판의 끝부분을 통과하여 cathode에서 혼합되어 폭발의 가능성이 커진다.From the results of the above Examples and Comparative Examples 1 to 3, it can be seen that when the size of the electrolytic cell becomes too large, the time required for dehydration electrolysis becomes longer and the efficiency decreases. On the contrary, if the distance is shorter than 300mm, the NF 3 gas from the Ni anode diffuses at an angle and passes through the end of the separator to be mixed in the cathode, which increases the possibility of explosion.

또한 냉각관의 가동 여부에 따라 많은 생성 효율의 차이를 보이고 있는 것이 밝혀졌다. 즉, 전해조의 외곽 및 내부에서 발생되는 열을 일정하게 제거/조절함으로서 반응성이 크게 향상되어 원하고자하는 물질의 생성률이 보다 높아짐을 확인할 수 있었다.In addition, it was found that there is a large difference in production efficiency depending on whether the cooling tube is running. In other words, by constantly removing / adjusting the heat generated in the outer and the inner of the electrolytic cell it was confirmed that the reactivity is greatly improved, the production rate of the desired material is higher.

본 발명에 있어서 용융염 전해에 의한 NF3 제조용 전해조는 전극, 분리판, 전해조 바닥, 용액면, 전해조 덮개로 구성이 되어있으며, 전해조의 상부 외곽에 냉각관을 설치하고, 이들간의 관계를 설정하여 용융염 전해에 의한 NF3 제조 및 이에 사용되는 전해조 설계 기술 향상과 운전의 경제요소인 dehydration electrolysis 경과시간이 감소하였고 NF3 생성효율이 증가하였다.



In the present invention, the electrolytic cell for manufacturing NF 3 by molten salt electrolysis is composed of an electrode, a separator, an electrolytic cell bottom, a solution surface, and an electrolytic cell cover, and a cooling tube is installed at the upper outer part of the electrolytic cell, and the relationship between them is established. Improvement of NF 3 production by molten salt electrolysis and the design of electrolytic cell used in this process and the elapsed time of dehydration electrolysis, an economic factor of operation, were reduced and NF 3 production efficiency was increased.



Claims (6)

Ni 전극을 사용하고 전기분해를 통한 용융염 NH4F.HF 혹은 KF-NH4F-HF계에서 ① 전해조 몸체, ② 불소수지로 코팅된 바닥면, ③ 불소 수지로 코팅된 분리판, ④ 전해질, ⑤ Ni anode, ⑥ Ni cathode, ⑦ anode 연결봉, ⑧ cathode 연결봉, ⑨ 생성된 NF3 배출구, ⑩ 생성된 H2 배출구, ⑪ 전해조 덮개, ⑫ 냉각관을 포함함과 동시에,In the molten salt NH 4 F.HF or KF-NH 4 F-HF system using Ni electrode and electrolysis, ① electrolyzer body, ② bottom surface coated with fluorine resin, ③ separator plate coated with fluorine resin, ④ electrolyte ⑤ Ni anode, ⑥ Ni cathode, ⑦ anode connecting rod, ⑧ cathode connecting rod, ⑨ generated NF 3 outlet, 생성 produced H 2 outlet, ⑪ electrolyzer cover, ⑫ cooling tube, 용융염 NH4F.HF계 혹은 KF-NH4F-HF계에서 전극끝과 분리판 하단끝과의 높이차가 200∼1500mm이며, 전극 끝부분과 전해조 바닥면과의 거리는 100∼1000mm이고, 전해조내에서 생성된 NF3와 H2 생성가스의 포집을 위한 공간구성을 위해 설치된 전해조 뚜껑과 전해액 계면간 거리는 500∼2000mm이며, 전해조 몸체 사이에 냉각관이 포함됨으로써 용융염 전기분해 반응을 통한 NF3 제조 반응 중 전해질의 온도를 100∼130℃로 조절할 수 있는 것을 특징으로 하는 삼불화질소(NF3) 제조용 전해조.In the molten salt NH 4 F.HF system or KF-NH 4 F-HF system, the height difference between the electrode tip and the bottom end of the separator plate is 200-1500mm, and the distance between the electrode tip and the bottom of the electrolytic cell is 100-1000mm. and an NF 3 and H 2 generated 500~2000mm distance between the lid and the electrolytic cell electrolyte interface is provided for a configuration space for collecting the gas produced in the, thereby containing the cooling pipe between the electrolytic cell body NF 3 through the molten salt electrolysis reaction An electrolytic cell for producing nitrogen trifluoride (NF 3 ), characterized in that the temperature of the electrolyte can be adjusted to 100 to 130 ° C. during the production reaction. 삭제delete 삭제delete 제1항에 있어서, 전해조 상단부에 생성된 NF3와 H2 배출구가 연결된 전해조 몸체에 불소수지로 코팅된 분리판/전해조바닥을 포함하는 것을 특징으로 삼불화질소(NF3) 제조용 전해조.The method of claim 1, wherein nitrogen trifluoride is characterized in that the NF 3 with the electrolytic cell body is connected to the outlet H 2 generated in the electrolytic cell comprises an upper distribution plate / the electrolytic cell bottom coated with a fluorine resin (NF 3) for producing the electrolytic cell. 삭제delete 제1항에 기재된 전해조에서 용융염 전기분해 반응을 통한 NF3 제조중, NH4F에 대한 HF의 wt% 비율(HF/NH4F)이 1.0∼2.6으로 구성되는 전해질로 NF3를 제조하는 것을 특징으로 삼불화질소(NF3)의 제조방법.The manufacture of NF 3 by the molten salt electrolysis reaction in the electrolytic cell according to claim 1, for producing the NF 3 as an electrolyte wt% ratio of HF to NH 4 F (HF / NH 4 F) it is composed of 1.0 to 2.6 Method for producing nitrogen trifluoride (NF 3 ) characterized in that.
KR1020010049536A 2001-08-17 2001-08-17 Electrolyzer For High Purity Nitrogen Trifluoride Production And Manufacturing Method Of Nitrogen Trifluoride KR100541978B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010049536A KR100541978B1 (en) 2001-08-17 2001-08-17 Electrolyzer For High Purity Nitrogen Trifluoride Production And Manufacturing Method Of Nitrogen Trifluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010049536A KR100541978B1 (en) 2001-08-17 2001-08-17 Electrolyzer For High Purity Nitrogen Trifluoride Production And Manufacturing Method Of Nitrogen Trifluoride

Publications (2)

Publication Number Publication Date
KR20030015667A KR20030015667A (en) 2003-02-25
KR100541978B1 true KR100541978B1 (en) 2006-01-16

Family

ID=27719511

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010049536A KR100541978B1 (en) 2001-08-17 2001-08-17 Electrolyzer For High Purity Nitrogen Trifluoride Production And Manufacturing Method Of Nitrogen Trifluoride

Country Status (1)

Country Link
KR (1) KR100541978B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100742484B1 (en) * 2005-12-02 2007-07-24 주식회사 효성 The electrolyzer for manufacturing nitrogen tri-fluoride to minimize the amount of a vaporized hydrogen flouride and the manufacturing method using the same
KR101244313B1 (en) * 2010-03-31 2013-03-19 (주)하이클로 Highly Efficient Sodium Hypochlorite Generator With Heat Exchanger
KR101411714B1 (en) * 2012-07-02 2014-06-27 최병구 Nickel based electrode and production of nitrogen trifluoride using same
KR102615096B1 (en) * 2017-10-31 2023-12-15 칸토 덴카 코교 가부시키가이샤 Electrolyzer for producing nitrogen trifluoride gas and its partition wall
KR101989519B1 (en) * 2017-11-29 2019-06-14 효성화학 주식회사 Metal Electrode with Enhanced Durability and Manufacturing Method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930001975B1 (en) * 1989-10-26 1993-03-20 미쓰이도오아쓰가가꾸 가부시끼가이샤 Electrolytic cell
JPH0688267A (en) * 1992-09-08 1994-03-29 Mitsui Toatsu Chem Inc Electrolytic bath
JPH08176872A (en) * 1994-12-22 1996-07-09 Mitsui Toatsu Chem Inc Production of nitrogen trifluoride
JPH08225976A (en) * 1995-02-21 1996-09-03 Mitsui Toatsu Chem Inc Production of composite electrode and nitrogen trifluoride gas using the electrode
JP2003340273A (en) * 2002-05-30 2003-12-02 Casio Comput Co Ltd Chemical reaction apparatus, fuel cell system and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930001975B1 (en) * 1989-10-26 1993-03-20 미쓰이도오아쓰가가꾸 가부시끼가이샤 Electrolytic cell
JPH0688267A (en) * 1992-09-08 1994-03-29 Mitsui Toatsu Chem Inc Electrolytic bath
JPH08176872A (en) * 1994-12-22 1996-07-09 Mitsui Toatsu Chem Inc Production of nitrogen trifluoride
JPH08225976A (en) * 1995-02-21 1996-09-03 Mitsui Toatsu Chem Inc Production of composite electrode and nitrogen trifluoride gas using the electrode
JP2003340273A (en) * 2002-05-30 2003-12-02 Casio Comput Co Ltd Chemical reaction apparatus, fuel cell system and manufacturing method therefor

Also Published As

Publication number Publication date
KR20030015667A (en) 2003-02-25

Similar Documents

Publication Publication Date Title
EP0424727B1 (en) Method for producing nitrogen trifluoride
US5205994A (en) Electrolytic ozone generator
JP5570627B2 (en) Method for producing peroxodisulfate
EP0628095A1 (en) Process for the electrooxidation of methanol to formaldehyde and methylal.
CN1128759C (en) Electrolytic ozone generator
CA1044175A (en) Electrolytic process for the production of metals in molten halide systems
SE441010B (en) PROCEDURE FOR IMPLEMENTATION OF ELECTRICAL LIGHTING
KR100541978B1 (en) Electrolyzer For High Purity Nitrogen Trifluoride Production And Manufacturing Method Of Nitrogen Trifluoride
KR100742484B1 (en) The electrolyzer for manufacturing nitrogen tri-fluoride to minimize the amount of a vaporized hydrogen flouride and the manufacturing method using the same
JP4252591B2 (en) Ozone production equipment
CN112831798B (en) Multi-stage tubular electrolysis device for preparing octafluoropropane and preparation method
JP5376152B2 (en) Sulfuric acid electrolysis method
US3409533A (en) Mercury-method cell for alkali chloride electrolysis
CN103482625A (en) Niobium carbide and tantalum carbide electrode preparation method
KR101696397B1 (en) Electrolytic apparatus, system and method for the efficent production of nitrogen trifluoride
US3772201A (en) Electrode for electrolytic conversion cells including passage means in the electrode for electrolyte flow through the electrode
KR20150137321A (en) Advanced fluorine gas generator
KR20010062509A (en) Electrode and electrolyte for use in preparation of nitrogen trifluoride gas, and preparation method of nitrogen trifluoride gas by use of them
Devilliers et al. Electrolytic generation of fluorine with KF—2HF metls containing AlF3 or LiF
CN1028249C (en) Improved method for electrolytic prodn. of fluorine and the special electrolytic bath
JP2000104187A (en) Electrolytic cell (1)
JP3986175B2 (en) Method for producing nitrogen trifluoride gas
JP2764623B2 (en) Electrolytic cell
US3312610A (en) Electrolytic process for producing phosphine
JP2698457B2 (en) Electrolytic cell

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
O035 Opposition [patent]: request for opposition
O132 Decision on opposition [patent]
EXTG Ip right invalidated
O064 Revocation of registration by opposition: final registration of opposition [patent]