JPH08176872A - Production of nitrogen trifluoride - Google Patents

Production of nitrogen trifluoride

Info

Publication number
JPH08176872A
JPH08176872A JP6320408A JP32040894A JPH08176872A JP H08176872 A JPH08176872 A JP H08176872A JP 6320408 A JP6320408 A JP 6320408A JP 32040894 A JP32040894 A JP 32040894A JP H08176872 A JPH08176872 A JP H08176872A
Authority
JP
Japan
Prior art keywords
anode
electrolytic solution
nickel
electrolytic
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6320408A
Other languages
Japanese (ja)
Other versions
JP3043251B2 (en
Inventor
Tadashi Yoshino
正 芳野
Hideo Kamata
秀男 釜田
Takeki Shinozaki
武樹 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP6320408A priority Critical patent/JP3043251B2/en
Publication of JPH08176872A publication Critical patent/JPH08176872A/en
Application granted granted Critical
Publication of JP3043251B2 publication Critical patent/JP3043251B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE: To provide a production method with which the formation of Ni complex salt sludge is prevented from occurring and high purity gaseous NF, can stably be produced by using Ni as the anode and circulating a fused salt electrolytic bath so as to cause convection within the bath at the time of producing NF, with fused salt electrolysis. CONSTITUTION: In this production method, an electrolytic tank provided with an anode 1 and cathodes 2 is divided into an anode chamber and cathode chamber by using partition plates 3 (skirts). In this electrolytic tank, an Ni plate is used as the anode 1 and also, a fused salt of NH4 F.HF or KF.NH4 F.HF is used as the electrolytic bath and further, this electrolytic bath is circulated so as to cause convection within the bath by using a circulating device provided with a circulating pump 7 and a heat exchanger 9. Thus, the formation of nickel complex salt sludge due to stagnation of the electrolytic bath around the Ni anode 1 is prevented from occurring and high purity gaseous NF3 5 and gaseous H2 6 can stably be taken out of the anode chamber and cathode chamber respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は三フッ化窒素(NF3
の製造方法に関する。更に詳しくは、工業的に安定的に
三フッ化窒素(NF3)提供する製造方法に関する。
FIELD OF THE INVENTION The present invention relates to nitrogen trifluoride (NF 3 ).
Manufacturing method. More specifically, it relates to a manufacturing method for industrially stably providing nitrogen trifluoride (NF 3 ).

【0002】[0002]

【従来技術とその問題点】三フッ化窒素(以下NF3
は、超LSI半導体製造時のドライエッチング用ガスと
して、或いはプラズマCVD装置のドライクリーニング
用ガスとして用いられる工業的に重要なガスである。
[Prior art and its problems] Nitrogen trifluoride (hereinafter NF 3 )
Is an industrially important gas used as a gas for dry etching during the manufacture of a VLSI semiconductor or as a gas for dry cleaning of a plasma CVD apparatus.

【0003】NF3 の製造方法は大きく化学法と電解法
とに分けられる。化学法は、第一段階として電解により
フッ素ガスを製造し、第二段階において得られたフッ素
ガスと窒素含有原料とを反応させることによりNF3
製造するものである。一方、電解法は、窒素分およびフ
ッ素分を含有する非水溶液系溶融塩を電解液とし、これ
を電解することによりNF3を製造するものである。
The manufacturing method of NF 3 is roughly divided into a chemical method and an electrolytic method. In the chemical method, fluorine gas is produced by electrolysis as the first step, and NF 3 is produced by reacting the fluorine gas obtained in the second step with the nitrogen-containing raw material. On the other hand, in the electrolysis method, NF 3 is produced by electrolyzing a non-aqueous solution molten salt containing a nitrogen content and a fluorine content as an electrolytic solution.

【0004】工業的な電解法の特徴としては、CF4
ほとんど含まない高純度のNF3 を製造できることであ
る。CF4の沸点はNF3ガスの沸点に極めて接近してい
る等、物性が極めて似ているため、NF3ガス中のCF4
を精製により除去することは極めて困難であり、高純度
NF3ガス 製造のためには炭素源を有しない工 程であ
ることが重要である。
A feature of the industrial electrolysis method is that high-purity NF 3 containing almost no CF 4 can be produced. Equal the boiling point of CF 4 is very close to the boiling point of NF 3 gas, since the physical properties are very similar, CF 4 of NF 3 gas
Is extremely difficult to remove by refining, and it is important that the process does not have a carbon source in order to produce high-purity NF 3 gas.

【0005】電解法において工業的に広く用いられてい
る陽極材料はニッケルと炭素であるが、炭素電極を使用
した場合、電極自体を炭素源としてCF4 が発生するた
め高純度のNF3の製造ができず、さらには電極が崩壊
するなどの問題がある。
Anode materials widely used industrially in the electrolysis method are nickel and carbon, but when a carbon electrode is used, CF 4 is generated using the electrode itself as a carbon source, so that high purity NF 3 is produced. However, there is a problem that the electrode is collapsed.

【0006】ニッケルを使用した場合は、CF4発生の
原因となる炭素源を有しない工程となるため、CF4
ほとんど含有しない高純度のNF3 ガスを製造すること
が出来る。しかし、ニッケル陽極は次の欠点を有してい
る。即ち、陽極に用いるニッケルは電解により、僅かに
電解液中に溶解していく。さらに、長期間の電解を継続
すると、ニッケル陽極は消耗し、やがて電極の更新が必
要となる。
When nickel is used, the process does not have a carbon source that causes CF 4 generation, so that a high-purity NF 3 gas containing almost no CF 4 can be produced. However, the nickel anode has the following drawbacks. That is, nickel used for the anode is slightly dissolved in the electrolytic solution by electrolysis. Furthermore, if electrolysis is continued for a long period of time, the nickel anode will be consumed, and eventually the electrode will need to be renewed.

【0007】電解を継続していくと溶解したニッケルの
多くは陰極に析出するが、一部はニッケル錯塩スラッジ
として電解液中に蓄積していき、該電解液を汚染する。
ニッケル錯塩スラッジがさらに増加すると電解液の粘度
が増加し、電解槽内で局所的な温度分布が発生し、電解
に悪影響を及ぼす。さらには電解槽の冷却又は、加熱の
温度制御が困難となり、電解運転を停止せざるを得ない
場合がある。また、生成したニッケル錯塩スラッジは、
電解槽下部に沈降、蓄積し、ついには電極と短絡してガ
スをを発生し爆発する危険性がある。
While the electrolysis is continued, most of the dissolved nickel is deposited on the cathode, but part of it is accumulated as nickel complex salt sludge in the electrolytic solution and contaminates the electrolytic solution.
When the nickel complex salt sludge further increases, the viscosity of the electrolytic solution increases, and a local temperature distribution occurs in the electrolytic cell, which adversely affects electrolysis. Furthermore, it may be difficult to control the temperature of cooling or heating the electrolytic cell, and the electrolytic operation may have to be stopped. In addition, the generated nickel complex salt sludge,
There is a risk of sedimentation and accumulation in the lower part of the electrolytic cell, and eventually short-circuiting with the electrode to generate gas and explode.

【0008】このため、電解液の更新も必要となるが、
これらの作業は大変煩雑で、連続操業を困難なものとし
ている。電極や電解液の更新頻度は電流量や電極の大き
さによって異なるが、工業的には操業効率を低下させる
最大の原因であり、大きな問題となっている。
Therefore, it is necessary to renew the electrolytic solution,
These operations are very complicated and make continuous operation difficult. The frequency of renewal of the electrodes and the electrolytic solution varies depending on the amount of current and the size of the electrodes, but it is the biggest cause of the reduction in operation efficiency industrially and is a serious problem.

【0009】そこで、上記問題点に対し、特開平3−2
36486号公報には、電解により発生したニッケル錯
塩スラッジ、及び電解液を、電解槽下部に設置したスク
リューフィーダーで連続的に電解槽から抜き出し、分離
器によりニッケル錯塩スラッジ除去した後、電解液を電
解槽に戻す方法が述べられている。
In view of the above problems, Japanese Patent Laid-Open No. 3-2
In Japanese Patent No. 36486, the nickel complex salt sludge generated by electrolysis and the electrolytic solution are continuously extracted from the electrolytic cell by a screw feeder installed in the lower part of the electrolytic cell, and after removing the nickel complex salt sludge by a separator, the electrolytic solution is electrolyzed. A method of returning to the tank is described.

【0010】しかしながら、この方法はニッケル錯塩ス
ラッジの発生を抑制するものではなく、根本的解決には
ならない。さらに、この方法によると電解槽の構造が複
雑になり、電解槽外に抜き出したニッケル錯塩スラッジ
の処理も必要となる。
However, this method does not suppress the generation of nickel complex salt sludge and is not a fundamental solution. Further, according to this method, the structure of the electrolytic cell becomes complicated, and it is necessary to treat the nickel complex salt sludge extracted outside the electrolytic cell.

【0011】[0011]

【課題を解決するための手段】本発明の目的は、上記溶
融塩電解法の欠点を排除し、効率良くNF3 を製造する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the molten salt electrolysis method and efficiently produce NF 3 .

【0012】本発明者等はこれらの課題を解決するため
に鋭意検討した結果、長時間電解を行うと電解液内にニ
ッケルイオンの濃度分布が発生すること、及びニッケル
錯塩スラッジが電解液中のニッケルイオン濃度の高い部
分で発生するという事実を見いだした。
The inventors of the present invention have conducted extensive studies in order to solve these problems. As a result, the nickel ion concentration distribution occurs in the electrolytic solution when electrolysis is performed for a long time, and nickel complex salt sludge is contained in the electrolytic solution. We have found the fact that it occurs in areas with high nickel ion concentrations.

【0013】以下、さらに詳しく本発明者らが明らかに
したニッケル錯塩スラッジの発生機構を説明する。即
ち、電解開始後、陽極のニッケルが徐々に電解液中に溶
解していくが、電解開始直後では電解液に溶解したニッ
ケルイオンのほとんどが陰極に析出し、ニッケル錯塩ス
ラッジはほとんど発生しない。ところが、更に電解を行
っていくと時間の経過と共に電解槽内で局部的にニッケ
ルイオン濃度の高い部分が発生し、このニッケルイオン
濃度の高い部分でニッケル錯塩スラッジが生成する。
The generation mechanism of nickel complex salt sludge clarified by the present inventors will be described in more detail below. That is, after the start of electrolysis, nickel in the anode gradually dissolves in the electrolytic solution, but immediately after the start of electrolysis, most of the nickel ions dissolved in the electrolytic solution are deposited on the cathode, and nickel complex salt sludge hardly occurs. However, when electrolysis is further performed, a portion having a high nickel ion concentration is locally generated in the electrolytic cell with the lapse of time, and nickel complex salt sludge is generated at the portion having a high nickel ion concentration.

【0014】本発明者等の研究によれば、電解操作にお
いて電解液自体が電解液や電極の発熱、及び電解槽外部
からの冷却、加熱による自然対流によりわずかではある
が緩やかに流動しており、若干の混合作用があるもの
の、電極や槽内の隔板の影響で、局部的な電解液の滞留
部分が発生し、電解槽内でニッケルイオン濃度分布が発
生している。特にニッケルが溶解する陽極付近でのニッ
ケルイオン濃度が高い領域でニッケル錯塩スラッジが多
く発生していることを見いだした。
According to the research conducted by the present inventors, during the electrolysis operation, the electrolytic solution itself is slightly but gently flowing due to heat generation of the electrolytic solution and electrodes, and cooling from the outside of the electrolytic cell and natural convection due to heating. Although there is a slight mixing action, due to the influence of the electrode and the partition plate in the tank, a local stagnation portion of the electrolytic solution is generated and a nickel ion concentration distribution is generated in the electrolytic tank. In particular, it was found that a large amount of nickel complex salt sludge was generated in a region where the nickel ion concentration was high near the anode where nickel was dissolved.

【0015】そこで、これらの問題の解決策として、電
解液を撹拌、混合等により強制的に対流させることによ
り、ニッケルイオンを連続的に陰極に析出させ、電解槽
内でのニッケル錯塩スラッジの発生を抑制することが出
来ることを見いだし、本発明の完成に至ったものであ
る。
Therefore, as a solution to these problems, by forcibly convection the electrolytic solution by stirring, mixing, etc., nickel ions are continuously deposited on the cathode to generate nickel complex salt sludge in the electrolytic cell. It was found that the above can be suppressed, and the present invention has been completed.

【0016】即ち本発明は、ニッケル陽極を用いて溶融
塩電解により三フッ化窒素を製造する方法において、電
解液を強制的に対流させることによりニッケル陽極の溶
解により生成するニッケル錯塩スラッジの発生を抑制す
ることを特徴とする三フッ化窒素の製造方法を提供する
ものである。
That is, according to the present invention, in a method for producing nitrogen trifluoride by molten salt electrolysis using a nickel anode, generation of nickel complex salt sludge generated by dissolution of the nickel anode by forcibly convection of an electrolytic solution. The present invention provides a method for producing nitrogen trifluoride characterized by suppressing.

【0017】以下、本発明を詳細に開示する。本発明で
用いる電極はニッケル電極であり、電極のニッケル含有
量が5wt%以上の物をいう。
The present invention will be disclosed in detail below. The electrode used in the present invention is a nickel electrode, and the nickel content of the electrode is 5 wt% or more.

【0018】本発明の電解液を強制的に対流させる方
法、手段としては、工業的に用いられる公知の混合方式
の全て方法が問題なく使用出来る。強制対流を発生させ
る方法としては、ポンプやサーモサイホン式等の一般的
な方法により電解液を抜き出し、循環させる方法が好適
に使用される。また、電解槽内に撹拌機、混合機を設置
し対流を発生させる方法を使用しても良い。
As the method and means for forcibly convection of the electrolytic solution of the present invention, all known mixing methods industrially used can be used without any problem. As a method of generating forced convection, a method of extracting and circulating the electrolytic solution by a general method such as a pump or a thermosiphon method is preferably used. Further, a method in which a stirrer and a mixer are installed in the electrolytic cell to generate convection may be used.

【0019】電解液を電解槽外へ抜き出し循環させる方
式において、抜き出した電解液を温度調整を目的とし
て、冷却又は加熱することは本発明を実施するにあたり
何等支障ない。
In the system in which the electrolytic solution is extracted and circulated outside the electrolytic cell, cooling or heating the extracted electrolytic solution for the purpose of adjusting the temperature does not hinder the practice of the present invention.

【0020】また、温度差による密度差により発生する
自然対流を利用した対流促進方式も全く問題無く使用で
きる。即ち、従来から行われている、電解液の温度調節
を目的とした、電解槽内部、または外部からの冷却、加
熱ではなく、電解液の一部を間接的に冷却、加熱し、電
解液平均温度との温度差により電解液を対流させるもの
である。
Also, a convection promoting method utilizing natural convection generated by a density difference due to a temperature difference can be used without any problem. That is, rather than cooling or heating from the inside or outside of the electrolytic cell for the purpose of adjusting the temperature of the electrolytic solution that has been conventionally performed, a part of the electrolytic solution is indirectly cooled and heated. The electrolyte is convected by the temperature difference from the temperature.

【0021】したがって、電解液と冷却、加熱媒体との
温度差の大きい方が対流促進効果がある。本発明におい
て充分効果がある温度差は、5〜120℃であり、電解
液の温度調整の点から好ましくは10〜70℃、更に好
ましくは15〜50℃、最も好ましくは20〜40℃で
ある。
Therefore, the larger the temperature difference between the electrolytic solution, the cooling medium and the heating medium is, the more effective the convection is. The temperature difference that is sufficiently effective in the present invention is 5 to 120 ° C, preferably 10 to 70 ° C, more preferably 15 to 50 ° C, and most preferably 20 to 40 ° C from the viewpoint of adjusting the temperature of the electrolytic solution. .

【0022】本方式を行う具体的装置としては、電解液
に蛇管やコイル状の配管を浸液し、冷却、加熱媒体を流
す方法、叉は電解槽本体の外部表面より冷却、加熱を行
う方式が使用可能である。さらに必要に応じて冷却、加
熱を交互に繰り返すことは、電解液に振動流を発生させ
るため、一層良い効果を奏するので好適である。
As a concrete apparatus for carrying out the present system, a method of immersing a flexible pipe or a coiled pipe in an electrolytic solution and cooling and flowing a heating medium, or a system of cooling and heating from the outer surface of the electrolytic cell main body Can be used. Further, it is preferable to alternately repeat cooling and heating, if necessary, because an oscillating flow is generated in the electrolytic solution, so that a better effect can be obtained.

【0023】電解液の循環、混合により発生する対流量
は特に限定されるものではないが、電解液の混合効果を
促進するために電解層内の電解液体積に対し、0.1〜
40.0倍量/時間、好ましくは0.5〜30.0倍量
/時間、さらに好ましくは1.0〜20.0倍量/時
間、最も好ましくは0.5〜10.0倍量/時間の対流
を発生させれば良い。
The counter flow rate generated by the circulation and mixing of the electrolytic solution is not particularly limited, but is 0.1 to the electrolytic solution volume in the electrolytic layer in order to promote the mixing effect of the electrolytic solution.
40.0 times amount / hour, preferably 0.5 to 30.0 times amount / hour, more preferably 1.0 to 20.0 times amount / hour, and most preferably 0.5 to 10.0 times amount / hour. It is sufficient to generate convection of time.

【0024】本発明を実施するのに好適な装置の具体例
を図1〜3に示す。図1は電解液を循環する場合の電解
槽の一例であり、外部に冷却用の熱交換器9を取り付
け、循環液戻り部8には、ガスとの混合を防止するため
邪魔板4を取り付けてある。図2は電解槽内に撹拌機を
設置した場合の電解槽の一例で、撹拌機10近傍にはガ
スの混合を防止するため邪魔板4を取り付けてある。図
3は電解槽外部に冷却、加熱用のジャケット11を設け
冷媒13、及び加熱媒体12を交互に流せるようにした
場合の電解槽の一例である。
Specific examples of devices suitable for carrying out the present invention are shown in FIGS. FIG. 1 shows an example of an electrolytic cell for circulating an electrolytic solution. A heat exchanger 9 for cooling is attached to the outside, and a baffle plate 4 is attached to the circulating fluid return section 8 to prevent mixing with gas. There is. FIG. 2 shows an example of an electrolytic cell in which an agitator is installed in the electrolytic cell. A baffle plate 4 is attached near the agitator 10 to prevent gas mixing. FIG. 3 shows an example of an electrolytic cell in which a jacket 11 for cooling and heating is provided outside the electrolytic cell so that the refrigerant 13 and the heating medium 12 can flow alternately.

【0025】電解液の循環における抜き出し、循環場
所、及び対流の発生場所は重要である。電解槽内では、
NF3 、H2 ガスがそれぞれ陽極、陰極から発生してい
る。電極表面から発生したこれらのガスは気泡となって
上昇しする。これらのガスが混合すると爆発を引き起こ
すので、この混合を避けるため、電解槽には陽極と、陰
極の間に隔板(スカート)があり陽極側と陰極側に分け
られている。本発明の方法により発生した対流によるガ
スの混合を防ぐために、図1〜3に示すような邪魔板を
設置することはなんら差し支えない。
In the circulation of the electrolytic solution, extraction, circulation place, and convection generation place are important. In the electrolytic cell,
NF 3 gas and H 2 gas are generated from the anode and cathode, respectively. These gases generated from the electrode surface rise as bubbles. When these gases mix, they cause an explosion, so to avoid this mixing, the electrolytic cell has a partition plate (skirt) between the anode and the cathode and is divided into the anode side and the cathode side. In order to prevent gas mixing due to convection generated by the method of the present invention, it is no problem to install baffles as shown in FIGS.

【0026】本発明では、前期の様に溶融電解法におい
て電解液を強制的に対流させる以外は、従来公知の方法
により実施される。即ち、酸性弗化アンモニウム又は弗
化アンモニウム、或いはアンモニアと弗化水素とを原料
とするNH4 F・HF系や、これに酸性弗化カリウム、
又は弗化カリウムを原料として加えたKF・NH4F・
HF系溶融塩を電解することによって得られる。
The present invention is carried out by a conventionally known method except that the electrolytic solution is forcibly convected in the melting electrolysis method as in the previous step. That is, acidic ammonium fluoride or ammonium fluoride, or NH 4 F.HF system using ammonia and hydrogen fluoride as raw materials, and acidic potassium fluoride,
Or KF ・ NH 4 F ・ containing potassium fluoride as a raw material
It is obtained by electrolyzing a HF-based molten salt.

【0027】電解時の電圧は5〜10V、電解密度は1
〜15A/dm2程度で好適に実施出来る。
The voltage during electrolysis is 5 to 10 V, and the electrolysis density is 1.
It can be suitably carried out at about 15 A / dm 2 .

【0028】[0028]

【作用】本発明によれば、従来技術では不可能であった
ニッケル錯塩スラッジの発生抑制が達成出来る。その理
由は必ずしも明確ではないが、電解液内にニッケルイオ
ンの濃度分布が発生し、その部分でニッケル錯塩スラッ
ジしており、電解槽内の濃度分布を均一にすることによ
りニッケル錯塩スラッジの発生を抑制するものと推察さ
れる。
According to the present invention, it is possible to suppress the generation of nickel complex salt sludge, which was impossible with the prior art. The reason for this is not clear, but nickel ion concentration distribution occurs in the electrolytic solution, and nickel complex salt sludge is generated in that part, and nickel complex salt sludge is generated by making the concentration distribution uniform in the electrolytic cell. It is presumed to suppress it.

【0029】[0029]

【実施例】以下に実施例で本発明を詳細に説明する。EXAMPLES The present invention will be described in detail below with reference to examples.

【0030】実施例1 図1に示す電解槽によりNF3 の製造を行った。NH4
F・HF系(HF/NH4 Fモル比=1.8)の溶融塩
を0.05m3 調合し、これを図1に示す電極材質が純
度98.5wt%のニッケル電極で、容積0.07m3
の電解槽に入れて電解した。電解液の循環量は、電解液
体積に対し、2.0倍量/時間となるようにした。電流
250A(陽極平均電流密度10A/dm2 )、電解液
温度120℃に制御して3カ月の長期連続電解を行った
ところ、電解液温度はほぼ一定で推移し局所的温度上昇
はみられなっかた。また、電圧の上昇は発生せず、もち
ろんガスの混合による爆発や、ニッケル錯塩スラッジに
よる電極の短絡を生ずることなく長期にわたって安全に
NF3 ガスを製造することができた。電解開始1ヶ月目
の電解液中のニッケル濃度は0.05wt%であった。
また、電解終了後の電解液中のニッケル濃度は0.10
wt%であった。
Example 1 NF 3 was produced using the electrolytic cell shown in FIG. NH 4
F · HF type (HF / NH 4 F molar ratio = 1.8) molten salt was prepared in an amount of 0.05 m 3, and the electrode material shown in FIG. 1 was a nickel electrode having a purity of 98.5 wt% and a volume of 0. 07m 3
It electrolyzed by putting it in the electrolytic bath. The circulation rate of the electrolytic solution was 2.0 times the volume of the electrolytic solution per hour. When a current of 250 A (anode average current density of 10 A / dm 2 ) and an electrolyte temperature of 120 ° C. were controlled to carry out long-term continuous electrolysis for 3 months, the electrolyte temperature remained almost constant and no local temperature rise was observed. How Further, the voltage did not rise, and of course, the NF 3 gas could be safely produced for a long period of time without causing an explosion due to gas mixture and short-circuiting of the electrode due to nickel complex salt sludge. The nickel concentration in the electrolytic solution one month after the start of electrolysis was 0.05 wt%.
The nickel concentration in the electrolytic solution after electrolysis is 0.10.
It was wt%.

【0031】実施例2 図3に示す電解槽により原料、及び運転条件は実施例1
と同様にしてNF3 の製造を行った。電解槽外部のジャ
ケットには50℃の冷却水を20分流した後、通液を1
0分間停止した。続いて130℃の蒸気を20分流した
後、通液を10分間停止した。この操作を交互に行っ
た。この条件でで3カ月の長期連続電解を行った。電解
液温度は60分サイクルで±5℃の範囲で上昇、下降を
繰り返すが平均値はほぼ一定で推移し、安定的に電解が
行えた。また、実施例1の場合と同様に電圧の上昇は発
生せず、もちろんガスの混合による爆発や、ニッケル錯
塩スラッジによる電極の短絡を生ずることなく長期にわ
たって安全にNF3 ガスを製造することができた。電解
開始1ヶ月目の電解液中のニッケル濃度は0.05wt
%であった。また、電解終了後の電解液中のニッケル濃
度は0.15wt%であった。
Example 2 With the electrolytic cell shown in FIG.
NF 3 was manufactured in the same manner as in. After flowing cooling water of 50 ° C for 20 minutes into the jacket outside the electrolyzer, pass the liquid through 1
It stopped for 0 minutes. Subsequently, after flowing steam at 130 ° C. for 20 minutes, the liquid passing was stopped for 10 minutes. This operation was performed alternately. Under this condition, long-term continuous electrolysis was performed for 3 months. The electrolytic solution temperature repeatedly increased and decreased within a range of ± 5 ° C. in a 60-minute cycle, but the average value remained almost constant, and stable electrolysis could be performed. Further, as in the case of Example 1, no voltage rise occurs, and of course, NF 3 gas can be safely produced for a long period of time without causing an explosion due to gas mixture and short circuit of electrodes due to nickel complex salt sludge. It was The nickel concentration in the electrolyte solution 1 month after the start of electrolysis was 0.05 wt.
%Met. The nickel concentration in the electrolytic solution after the electrolysis was 0.15 wt%.

【0032】比較例1 図3に示す電解槽で、電解液を循環しない以外は、実施
例1と同様にして電解を行なった。電解槽外部のジャッ
ケトには60℃の温水を連続して流して、電解液の温度
制御を行った。実施例1と同様に3カ月長期連続電解を
目指して本電解を行ったろ、1ヶ月を経過したころか
ら、電解槽内に局所的に温度分布が発生し、電解液の温
度制御が困難となった。そこでジャケットの通液を60
℃の温水から、20℃の冷却水に変更し電解を継続し
た。また、この時の電解液のニッケル濃度は0.75w
t%であった。
Comparative Example 1 Electrolysis was carried out in the same manner as in Example 1 except that the electrolytic solution was not circulated in the electrolytic cell shown in FIG. The temperature of the electrolytic solution was controlled by continuously flowing hot water of 60 ° C. into the jacket outside the electrolytic cell. As in Example 1, the main electrolysis was performed for a long-term continuous electrolysis for 3 months, and after 1 month, a temperature distribution was locally generated in the electrolytic cell, making it difficult to control the temperature of the electrolytic solution. It was Therefore, let the jacket flow 60
The hot water at ℃ was changed to the cooling water at 20 ℃ and the electrolysis was continued. Also, the nickel concentration of the electrolyte at this time is 0.75w
It was t%.

【0033】さらに、20日電解を継続したが、電解槽
内の温度が局所的に上昇しはじめ、制御困難となったた
め安全性を考え、それ以上の電解続行は危険と判断し電
解を中止した。電解液、及び電解槽内を確認したとこ
ろ、電解液はニッケル錯塩スラッジにより黄色く着色
し、電解槽底部にはニッケル錯塩スラッジが約100m
m堆積していた。この時の電解液中のニッケル濃度は
1.53wt%であった。
Further, the electrolysis was continued for 20 days, but the temperature inside the electrolyzer began to rise locally and it became difficult to control, so safety was considered, and electrolysis was stopped because it was judged to be dangerous for further electrolysis to continue. . When the inside of the electrolytic solution and the electrolytic cell was checked, the electrolytic solution was colored yellow with the nickel complex salt sludge, and the nickel complex salt sludge was about 100 m at the bottom of the electrolytic cell.
m had accumulated. The nickel concentration in the electrolytic solution at this time was 1.53 wt%.

【0034】[0034]

【発明の効果】本発明によれば、従来技術では不可能で
あったニッケル錯塩スラッジの発生が抑制できるため、
電解液の更新頻度の低減、交換作業の低減及び、これら
による操業率の向上が図れ、工業的にNF3 を連続かつ
安定的に製造する事が出来る。即ち、比較例1は電解槽
内のニッケルイオンの混合が不十分でありニッケル錯塩
スラッジが発生する。これに対し、ニッケルイオンの混
合が十分で、均一な濃度分布が達成出来る実施例1〜2
はニッケル錯塩スラッジの発生が抑制されているのは明
かであり、本発明はNF3ガスを工業的に製造する上で
極めて有意義なことである。
According to the present invention, generation of nickel complex salt sludge, which was impossible with the prior art, can be suppressed.
The renewal frequency of the electrolytic solution can be reduced, the replacement work can be reduced, and the operation rate can be improved by these, and NF 3 can be continuously and stably manufactured industrially. That is, in Comparative Example 1, the nickel ions in the electrolytic cell were not sufficiently mixed and nickel complex salt sludge was generated. On the other hand, Examples 1-2 in which the mixing of nickel ions is sufficient and a uniform concentration distribution can be achieved
It is obvious that the generation of nickel complex salt sludge is suppressed, and the present invention is extremely significant in industrially producing NF3 gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に好適な電解槽の一例(電解液の
循環)
FIG. 1 shows an example of an electrolytic cell suitable for carrying out the present invention (circulation of an electrolytic solution).

【図2】本発明の実施に好適な電解槽の一例(撹拌機の
設置)
FIG. 2 shows an example of an electrolytic cell suitable for implementing the present invention (installation of a stirrer)

【図3】本発明の実施に好適な電解槽の一例(自然対流
を利用した対流促進方式)
FIG. 3 shows an example of an electrolytic cell suitable for implementing the present invention (convection promoting method using natural convection).

【符号の説明】[Explanation of symbols]

1 陽極 2 陰極 3 隔板(スカート) 4 邪魔板 5 NF3 ガス 6 H2ガス 7 循環ポンプ 8 循環液もどり部 9 熱交換器 10 撹拌機 11 ジャケット 12 蒸気または加熱媒体 13 冷却水または冷媒体 14 冷却水または冷媒、蒸気または加熱媒体出口1 anode 2 cathode 3 partition plate (skirt) 4 baffle plate 5 NF 3 gas 6 H 2 gas 7 circulation pump 8 circulating fluid return part 9 heat exchanger 10 stirrer 11 jacket 12 steam or heating medium 13 cooling water or refrigerant body 14 Cooling water or refrigerant, steam or heating medium outlet

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ニッケル陽極を用いて溶融塩電解によ
り三フッ化窒素を製造する方法において、電解液を強制
的に対流させることによりニッケル陽極の溶解により生
成するニッケル錯塩スラッジの発生を抑制することを特
徴とする三フッ化窒素の製造方法。
1. A method for producing nitrogen trifluoride by molten salt electrolysis using a nickel anode, which suppresses generation of nickel complex salt sludge generated by dissolution of the nickel anode by forcibly convection of an electrolytic solution. A method for producing nitrogen trifluoride, comprising:
JP6320408A 1994-12-22 1994-12-22 Method for producing nitrogen trifluoride Expired - Fee Related JP3043251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6320408A JP3043251B2 (en) 1994-12-22 1994-12-22 Method for producing nitrogen trifluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6320408A JP3043251B2 (en) 1994-12-22 1994-12-22 Method for producing nitrogen trifluoride

Publications (2)

Publication Number Publication Date
JPH08176872A true JPH08176872A (en) 1996-07-09
JP3043251B2 JP3043251B2 (en) 2000-05-22

Family

ID=18121132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6320408A Expired - Fee Related JP3043251B2 (en) 1994-12-22 1994-12-22 Method for producing nitrogen trifluoride

Country Status (1)

Country Link
JP (1) JP3043251B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100541978B1 (en) * 2001-08-17 2006-01-16 주식회사 효성 Electrolyzer For High Purity Nitrogen Trifluoride Production And Manufacturing Method Of Nitrogen Trifluoride
CN112853387A (en) * 2020-12-29 2021-05-28 中船重工(邯郸)派瑞特种气体有限公司 Heat exchange device suitable for preparing nitrogen trifluoride gas by electrolysis method and electrolysis method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7413722B2 (en) 2005-08-04 2008-08-19 Foosung Co., Ltd. Method and apparatus for manufacturing nitrogen trifluoride
KR101781272B1 (en) * 2015-12-09 2017-09-26 장기용 Apparatus for bearing load

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100541978B1 (en) * 2001-08-17 2006-01-16 주식회사 효성 Electrolyzer For High Purity Nitrogen Trifluoride Production And Manufacturing Method Of Nitrogen Trifluoride
CN112853387A (en) * 2020-12-29 2021-05-28 中船重工(邯郸)派瑞特种气体有限公司 Heat exchange device suitable for preparing nitrogen trifluoride gas by electrolysis method and electrolysis method

Also Published As

Publication number Publication date
JP3043251B2 (en) 2000-05-22

Similar Documents

Publication Publication Date Title
CN1840742B (en) Electrolytic anode and method for electrolytically synthesizing fluorine-containing substance using the electrolytic anode
EA011903B1 (en) Metal producing method and producing device by molten salt electrolysis
CN107059010A (en) Cupric alkaline etching liquid circular regeneration equipment for reclaiming and method
CN101624708B (en) Method of electrolytically synthesizing nitrogen trifluoride
CN111875124A (en) Treatment method of nickel-containing waste residue wastewater generated in nitrogen trifluoride preparation process
JP3043251B2 (en) Method for producing nitrogen trifluoride
JP3569277B1 (en) Current control method and current control device for gas generator
US3915817A (en) Method of maintaining cathodes of an electrolytic cell free of deposits
CN109112597B (en) Configuration and method for reforming oxidation line to recover oxidation liquid and protect mono-nickel salt coloring tank
KR102617579B1 (en) Method for producing anode for electrolytic synthesis and fluorine gas or fluorine-containing compound
US1913929A (en) Process and furnace for remelting and fining crude metals
KR20070057489A (en) The electrolyzer for manufacturing nitrogen tri-fluoride to minimize the amount of a vaporized hydrogen flouride and the manufacturing method using the same
CN104862733A (en) Electrolytic Apparatus, System And Method For The Efficient Production Of Nitrogen Trifluoride
JP2010156033A (en) Apparatus and method for producing persulfuric acid
JP3986175B2 (en) Method for producing nitrogen trifluoride gas
JPH11189405A (en) Production of nitrogen trifluoride
CN109440133A (en) Produce the high purity titanium preparation method of smart magnesium
JPH11335882A (en) Production of gaseous nitrogen trifluoride
RU2745830C1 (en) Method of producing aluminum by electrolysis of a suspension of alumina in an aluminum melt
JPH03236486A (en) Production of nitrogen trifluoride by electrolysis of molten salt
Argo et al. The electrolytic production of fluorine
US3503858A (en) Continuous electrolytic cell process
CN108977835B (en) Electrochemical dissolution method of platinum powder
JP2000103609A (en) Production of nitrogen trifluoride gas
JPS6096779A (en) Method of deterging copper base material and regeneration of detergent liquid

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees