JP2698457B2 - Electrolytic cell - Google Patents

Electrolytic cell

Info

Publication number
JP2698457B2
JP2698457B2 JP1309093A JP30909389A JP2698457B2 JP 2698457 B2 JP2698457 B2 JP 2698457B2 JP 1309093 A JP1309093 A JP 1309093A JP 30909389 A JP30909389 A JP 30909389A JP 2698457 B2 JP2698457 B2 JP 2698457B2
Authority
JP
Japan
Prior art keywords
gas
electrolytic cell
electrolytic bath
electrolytic
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1309093A
Other languages
Japanese (ja)
Other versions
JPH0463291A (en
Inventor
徳幸 岩永
信彦 藤枝
Original Assignee
三井東圧化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井東圧化学株式会社 filed Critical 三井東圧化学株式会社
Priority to JP1309093A priority Critical patent/JP2698457B2/en
Priority to DE69018761T priority patent/DE69018761T2/en
Priority to EP90119385A priority patent/EP0424727B1/en
Priority to US07/595,284 priority patent/US5085752A/en
Priority to KR1019900017250A priority patent/KR930001975B1/en
Priority to US07/660,743 priority patent/US5084156A/en
Publication of JPH0463291A publication Critical patent/JPH0463291A/en
Application granted granted Critical
Publication of JP2698457B2 publication Critical patent/JP2698457B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融塩電解法による三弗化窒素ガスの製造
の際に使用される電解槽に関する。
Description: TECHNICAL FIELD The present invention relates to an electrolytic cell used in producing nitrogen trifluoride gas by a molten salt electrolysis method.

〔従来の技術及び発明が解決しようとする課題〕[Problems to be solved by conventional technology and invention]

三弗化窒素(NF3)ガスは半導体のドライエッチング
剤やCVD装置のクリーニンクーガスとして、近年需要が
増加しており、これらの用途においては特に四弗化炭素
(CF4)の少ない高純度なガスが好んで使用される。
Nitrogen trifluoride (NF 3 ) gas has been increasing in demand in recent years as a dry etching agent for semiconductors and as a cleansing gas for CVD equipment. In these applications, particularly high purity of carbon tetrafluoride (CF 4 ) is used. Gas is preferably used.

従来、NF3ガスは種々の方法で製造されるが、中でも
溶融塩電解法は収率がよく、しかも量産が他の方法より
容易であるので工業的な製造方法として有利に製造され
る。更に、前述したようなCF4の少ない高純度のガスを
得るには、溶融塩電解法で得られるNF3が最も低コスト
であることから有力視されている。
Conventionally, NF 3 gas is produced by various methods. Among them, the molten salt electrolysis method has a high yield and is easier to mass-produce than other methods, so that it is advantageously produced as an industrial production method. Furthermore, NF 3 obtained by a molten salt electrolysis method is considered to be the most promising for obtaining a high-purity gas containing a small amount of CF 4 as described above, since it is the lowest cost.

該溶融塩電解法によるNF3ガスの製造は酸性弗化アン
モニウムまたは弗化アンモニウムと弗化水素を原料とす
るNH4F−HF系や、これに更に酸性弗化カリウムまたは弗
化カリウムを原料として加えたKF−NH4F−HF系溶融塩を
電解する方法によって行なわれる。
Production of NF 3 gas by the molten salt electrolysis method is based on NH 4 F-HF system using ammonium acid fluoride or ammonium fluoride and hydrogen fluoride as raw materials, or further using acid potassium fluoride or potassium fluoride as a raw material. the KF-NH 4 F-HF molten salts plus performed by a method of electrolysis.

そして、溶融塩電解法によるNF3ガスの製造において
は、陽極からはNF3ガスと窒素(N2)ガスが発生し、陰
極からは水素(H2)ガスが発生する、いわゆる両電極共
にガス発生反応である。そして陽極から発生したNF3
スと陰極から発生したH2ガスが混合すると爆発を引き起
こす危険性があり、爆発を引き起こさないように安全対
策を行なう必要がある。
In the production of NF 3 gas by molten salt electrolysis, NF 3 gas and nitrogen (N 2 ) gas are generated from the anode, and hydrogen (H 2 ) gas is generated from the cathode. It is an evolving reaction. When the NF 3 gas generated from the anode and the H 2 gas generated from the cathode mix, there is a risk of causing an explosion, and it is necessary to take safety measures so as not to cause an explosion.

従って、この爆発を防止するため電解槽には第1図及
び第2図に示すように、陽極発生ガスと陰極発生ガスと
の気相での混合を防止するための隔板が設けられてい
る。
Therefore, in order to prevent this explosion, the electrolytic cell is provided with a partition plate for preventing mixing of the gas generated in the anode and the gas generated in the gaseous phase in the gas phase, as shown in FIGS. .

なお、隔板は腐食及び隔板自体が電極化するのを防止
するため、通常、弗素系樹脂を用いるか、あるいは弗素
系樹脂で被覆するのが好ましい。
In addition, in order to prevent the corrosion of the partition and the partition itself from becoming an electrode, it is usually preferable to use a fluorine-based resin or to coat the partition with a fluorine-based resin.

溶融塩電解法による電解時の溶融塩の温度は、100〜1
30℃で行なう場合が操作が容易で電導性がよくさらに電
流効率も良いことから、最も好都合である。
The temperature of the molten salt during electrolysis by the molten salt electrolysis method is 100 to 1
The operation at 30 ° C. is most convenient because the operation is easy, the conductivity is good, and the current efficiency is good.

しかしながら、溶融塩がNH4F−HF系では溶融塩の温度
が100〜130℃になると蒸気圧のために、NH4F・HF(融点
126℃)が電解浴より温度の低い所で析出する欠点を有
する。本発明者等が長期間連続使用を行なったところ、
電解槽の蓋や発生ガスの出口に蒸発したNH4F−HF系の一
部がNH4F・HFとなって析出し、比較的容易にガス出口が
閉塞されることがわかった。
However, when the molten salt is NH 4 F-HF system, when the temperature of the molten salt reaches 100 to 130 ° C., NH 4 F · HF (melting point)
126 ° C.) has the disadvantage that it precipitates at lower temperatures than the electrolytic bath. When the present inventors performed continuous use for a long time,
It was found that a part of the NH 4 F-HF system evaporated into the lid of the electrolytic cell and the outlet of the generated gas became NH 4 F · HF and precipitated, and the gas outlet was blocked relatively easily.

そこで、ガス出口が閉塞されることのないよう防止対
策としてキャリヤーガスを流しながら長期間連続使用を
行なったところ、キャリヤーガスの入口でも同様にNH4F
・HFが析出して閉塞されることがわかった。上記のよう
にキャリヤーガスの入口や発生ガスの出口で閉塞する
と、先に述べた隔板で仕切られた陽極発生ガスであるNF
3の存在する陽極室と、陰極発生ガスであるH2の存在す
る陰極室との圧力差を生じるため両極室の液面に差を生
じ、大きなトラブルの原因となる。
Therefore, as a preventive measure to prevent the gas outlet from being blocked, the carrier gas was used continuously for a long period of time while flowing the carrier gas.
・ It was found that HF was deposited and clogged. When blocked at the inlet of the carrier gas or the outlet of the generated gas as described above, NF which is the anode generated gas partitioned by the above-described partition plate
Since a pressure difference occurs between the anode chamber where 3 is present and the cathode chamber where H 2 which is a cathode-generated gas is present, a difference occurs between the liquid levels of the two electrode chambers, which causes a major trouble.

例えば、陽極ガス出口が閉塞した場合は、陽極室から
NF3ガスが抜けず引続きNF3ガスは発生しているため陽極
室内の圧力が上昇する。陽極室内の圧力が上昇するため
陽極室内の液面が押し下げられて、一方の陰極室内の液
面が押し上げられることとなる。陽極室内の液面が隔板
の下端より下がると陽極室内のNF3ガスが陽極室内に混
入し、爆発性混合ガスとなって容易に陰極室内で爆発に
至ることとなる。一旦爆発に至ると、電解槽の設備の一
部が破壊されさらにフッ酸という非常に腐食性の強い薬
品を使っていることからも重大な事故につながる可能性
が大であり、もはやNF3の製造が出来なくなる。
For example, if the anode gas outlet is blocked,
Since the NF 3 gas is continuously generated without the NF 3 gas being released, the pressure in the anode chamber increases. Since the pressure in the anode chamber increases, the liquid level in the anode chamber is pushed down, and the liquid level in one cathode chamber is pushed up. When the liquid level in the anode chamber falls below the lower end of the diaphragm, the NF 3 gas in the anode chamber mixes into the anode chamber and becomes an explosive mixed gas, which easily causes an explosion in the cathode chamber. Once reaching the explosive, can lead to even serious accident since you have a strong chemicals very corrosive of further hydrofluoric acid partially destroyed in the electrolyzer equipment is large, no longer of NF 3 Manufacturing becomes impossible.

陽極室内で陽極ガス出口が閉塞すれば上記の通り大き
な事故につながるが、陰極室で閉塞が起こっても同様の
事故となる。このようにガスの出入口での閉塞は安全上
避けなければならない必須のことである。
Blockage of the anode gas outlet in the anode chamber leads to a major accident as described above, but similar obstruction occurs in the cathode chamber. As described above, blockage at the gas inlet / outlet is indispensable for safety.

しかしながら、これらの問題点については未だよく知
られておらず何ら有効な対策も無いため、本発明者等が
鋭意検討を行なった結果、電解槽の蓋と電解浴の液面と
の距離をある範囲内に制御することにより、長期間にわ
たって電解浴の蒸発による閉塞のトラブルを生じること
なく安全にNF3ガスを得ることが出来るのである。
However, since these problems are not yet well known and there are no effective countermeasures, the present inventors have conducted intensive studies and found that the distance between the lid of the electrolytic tank and the liquid level of the electrolytic bath is large. By controlling within this range, NF 3 gas can be obtained safely without causing a trouble of clogging due to evaporation of the electrolytic bath for a long period of time.

〔問題を解決するための手段〕[Means for solving the problem]

本発明者等は上記状況に鑑み溶融塩電解法によるNF3
製造用電解槽において、ガスの出入口で容易に生じるNH
4F・HFの蒸発による閉塞問題について種々検討を重ねた
結果、電解槽の蓋と電解浴の液面との距離を一定の範囲
に限定すれば、長期にわたって閉塞を生じることなく、
安全にNF3ガスが製造可能であることを見出し、本発明
を完成するに至ったものである。
In view of the above situation, the present inventors consider that NF 3 by molten salt electrolysis
NH easily generated at gas inlet and outlet in production electrolytic cell
4 As a result of repeated investigations on the blocking problem due to evaporation of FHF, if the distance between the lid of the electrolytic tank and the liquid level of the electrolytic bath is limited to a certain range, the blocking does not occur for a long time,
The inventors have found that NF 3 gas can be safely produced, and have completed the present invention.

即ち、本発明は溶融塩電解法による三弗化窒素ガス製
造用電解槽であって、溶融塩が電解浴を形成し、電解浴
中に陽極及び陰極が浸漬し、電解浴の蒸発を防止するよ
うに電解槽に蓋をしてなる電解槽において、該電解槽の
蓋と該電解浴の液面との距離が100〜500mmの範囲で電解
することを特徴とする電解槽に関する。
That is, the present invention is an electrolytic cell for producing nitrogen trifluoride gas by a molten salt electrolysis method, in which a molten salt forms an electrolytic bath, and an anode and a cathode are immersed in the electrolytic bath to prevent evaporation of the electrolytic bath. Thus, the present invention relates to an electrolytic cell having an electrolytic cell with a lid, wherein the distance between the lid of the electrolytic cell and the liquid level of the electrolytic bath ranges from 100 to 500 mm.

〔発明の詳細な開示〕[Detailed Disclosure of the Invention]

以下、本発明について詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明でいう電解槽とは、NF3ガスを安全に、かつ、
長時間にわたって製造するための電解槽であって、溶融
塩が電解浴を形成し、電解浴中に陽極及び陰極が浸漬
し、電解浴の蒸発を防止するように電解槽に蓋をしてな
る電解槽において、電解槽の蓋と電解浴の液面との距離
を一定に定めた電解槽である。
The electrolytic cell referred to in the present invention means that NF 3 gas is safe, and
An electrolytic cell for manufacturing for a long time, wherein a molten salt forms an electrolytic bath, and an anode and a cathode are immersed in the electrolytic bath, and the electrolytic bath is covered so as to prevent evaporation of the electrolytic bath. In the electrolytic cell, the distance between the lid of the electrolytic cell and the liquid level of the electrolytic bath is fixed.

溶融塩電解法は、NF3ガスの製造において用いられる
電解法であって、通常は、酸性弗化アンモニウムまたは
弗化アンモニウムと弗化水素を原料とするNH4F−HF系
や、これに更に酸性弗化カリウムまたは弗化カリウムを
原料として加えた KF−NH4F−HF系溶融塩を電解する方法によって行なわれ
る。
The molten salt electrolysis method is an electrolysis method used in the production of NF 3 gas, and is usually an NH 4 F-HF system using ammonium acid fluoride or ammonium fluoride and hydrogen fluoride as raw materials, It is carried out by a method of electrolyzing a KF-NH 4 F-HF molten salt to which potassium acid fluoride or potassium fluoride is added as a raw material.

以下、本発明を添付する図面を参照しながら詳細に説
明する。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明の実施に好適な、NF3ガス製造用電解
槽の一例を示す縦断面図であり、第2図は第1図におけ
るA−A′矢視図を示す。
FIG. 1 is a longitudinal sectional view showing an example of an electrolytic cell suitable for carrying out the present invention for producing NF 3 gas, and FIG. 2 is a view taken along the line AA ′ in FIG.

本発明においては、電解槽の蓋3(以下、電解槽の蓋
3は隔板固定用蓋板11を含む)と電解浴4の液面との距
離は100〜500mmの距離を有している。電解浴4はNH4F−
HF系でもKF−NH4F−HF系溶融塩でもよく、電解浴の100
〜130℃にて電解されている。そして、陽極5よりNF3
スが発生し、陽極ガス出口12より出て行き、陰極6より
H2が発生し、陰極ガス出口13より出て行っている。
In the present invention, the distance between the lid 3 of the electrolytic bath (hereinafter, the lid 3 of the electrolytic bath includes the cover plate 11 for fixing the diaphragm) and the liquid surface of the electrolytic bath 4 has a distance of 100 to 500 mm. . The electrolytic bath 4 is NH 4 F−
HF-based or KF-NH 4 F-HF-based molten salt may be used.
Electrolyzed at ~ 130 ° C. Then, NF 3 gas is generated from the anode 5, exits from the anode gas outlet 12, and exits from the cathode 6.
H 2 is generated and exits from the cathode gas outlet 13.

以後の説明は上記の場合について行うが、両極から発
生するガスをフローするために各々の電解槽内に窒素
(N2)等の不活性ガスをフローする場合もあり、このフ
ローするN2ガス等の入口が設けらることになる。このよ
うな場合においても差し支えない。
Although the following description is carried out for the case described above, may want to flow the nitrogen (N 2) an inert gas such as to each of the electrolytic cell in order to flow the gas generated from the poles, N 2 gas to the flow Etc. will be provided. There is no problem in such a case.

本発明の電解槽の蓋3と電解浴4の液面との距離は以
上の如き構成である。電解槽の蓋3と電解浴の液面との
距離が100mmより短くなると、陰極ガス出口13または陰
極ガス出口12において、電解浴の一部の蒸発に伴いNH4F
・HFが析出して長期使用した場合閉塞に至る。
The distance between the lid 3 of the electrolytic cell of the present invention and the liquid level of the electrolytic bath 4 is as described above. When the distance between the lid 3 of the electrolytic bath and the liquid level of the electrolytic bath is shorter than 100 mm, NH 4 F is discharged at the cathode gas outlet 13 or the cathode gas outlet 12 as a part of the electrolytic bath evaporates.
-HF precipitates and leads to blockage when used for a long time.

例えば、陰極ガス出口13が閉塞した場合は、陰極室か
らH2ガスを抜けず引続きH2ガスは発生しているため陰極
室内の圧力が上昇して、陰極室内の液面が押し下げられ
て、一方の陽極室内の液面が押し上げられることにな
る。陰極室内の液面が隔板10の下端より下がると陰極室
内のH2ガスが陽極室内に混入し、爆発性混合ガスとなっ
て容易に陽極室内で爆発に至ることになる。一旦爆発に
至ると、電解槽の設備の一部が破壊され、さらに、フッ
酸という非常に腐食性の強い薬品を使っていることから
も重大な事故につながる可能性が大であり、もはやNF3
の製造が出来なくなる。
For example, when the cathode gas outlet 13 is blocked, the pressure in the cathode chamber is increased for continued H 2 gas without loss of H 2 gas from the cathode chamber is generated, and the liquid surface of the cathode chamber is pressed down, The liquid level in one anode chamber will be pushed up. When the liquid level in the cathode chamber falls below the lower end of the partition plate 10, the H 2 gas in the cathode chamber mixes into the anode chamber and becomes an explosive mixed gas, which easily causes an explosion in the anode chamber. Once an explosion occurs, part of the equipment in the electrolytic cell is destroyed, and the use of a highly corrosive chemical called hydrofluoric acid can lead to serious accidents. Three
Cannot be manufactured.

ここで、陽極室出口12で閉塞が起こっても上記同様の
危険性がある。また、先に述べた様にN2ガス等の入口が
設けられた場合には、ガスの入口での閉塞が起こっても
同様である。従って、これらの閉塞は安全上非常に大き
な問題点であり絶対に避けねばならない。
Here, even if the blockage occurs at the anode chamber outlet 12, there is the same danger as described above. Further, when an inlet for N 2 gas or the like is provided as described above, the same applies even if the gas inlet is blocked. Therefore, these occlusions are a very serious problem in terms of safety and must be avoided.

一方、電解槽の蓋3と電解浴4の液面との距離が500m
mより長くなると、電解槽の蓋3と電解浴4の液面の陽
極生成ガスのNF3ガス及び陰極生成ガスのH2ガスが存在
する容積が大きくなり、万が一閉塞等の原因でNF3とH2
ガスの混合ガスを生じて爆発等が発生すると、大きな被
害をこおむることが充分に予想される。従って、爆発等
の被害を最小限に食い止めなければならないことから、
このような電解槽は避けなければならない。
On the other hand, the distance between the lid 3 of the electrolytic bath and the liquid level of the electrolytic bath 4 is 500 m.
If the length is longer than m, the volumes of the anodic gas NF 3 gas and the cathodic gas H 2 gas present on the liquid surface of the electrolytic cell lid 3 and the electrolytic bath 4 become large, and NF 3 may become H 2
If an explosion or the like occurs due to the generation of a gas mixture, it is sufficiently expected that serious damage will be caused. Therefore, since damage such as explosion must be minimized,
Such an electrolytic cell must be avoided.

さらに、電解槽の蓋3と電解浴4の液面の間の距離が
500mmより長くなると、それに伴い電解槽も大きくな
り、過剰な設備とコスト高となる欠点が生じる。特に、
この電解浴は非常に吸湿性が強いので、原料調製の段階
でどうしても空気中の水分を吸湿する。従ってNF3の製
造に際しては、予め本電解時の電流密度よりも低い電流
を流して行なう脱水電解が不可欠であり、脱水電解終了
後引続いて本電解に移行する。本発明者等が検討を重ね
た結果、電解槽が大きすぎると、この脱水電解の時間が
長くなりすぎ脱水効率が非常に悪くなるという欠点が生
じる。
Further, the distance between the lid 3 of the electrolytic bath and the liquid level of the electrolytic bath 4 is
If the length is longer than 500 mm, the size of the electrolytic cell also becomes large, resulting in excessive equipment and high cost. Especially,
Since this electrolytic bath has a very strong hygroscopic property, it always absorbs moisture in the air at the stage of preparing the raw material. Thus in the production of NF 3 is essential dehydration electrolysis performed by applying a lower current than the current density of the pre-present electrolysis time, the process proceeds to the electrolysis subsequently dehydrated completion of electrolysis. As a result of repeated studies by the present inventors, if the electrolytic cell is too large, there is a disadvantage that the time for the dehydration electrolysis becomes too long and the dehydration efficiency becomes very poor.

なお、溶融塩電解法によるNF3ガス製造用電解槽にお
いては、電解槽本体の底板部には通常弗化系樹脂の板が
敷いてあり、これにより該底板部の腐食を防止している
が、本発明の電解槽においても、第1図及び第2図に示
すように弗素系樹脂板2が設けてある。また、電解槽は
底板部のみならず溶融塩及び電解により発生したガスと
接する部分は、弗素系樹脂で被覆(ライニングまたはコ
ーティング)することが電解槽の腐食を防止する上で好
ましい。
In the electrolytic cell for producing NF 3 gas by the molten salt electrolysis method, a fluorinated resin plate is usually laid on the bottom plate of the electrolytic cell main body, thereby preventing corrosion of the bottom plate. Also, in the electrolytic cell of the present invention, as shown in FIGS. 1 and 2, a fluorine-based resin plate 2 is provided. In addition, it is preferable to coat (line or coat) the electrolytic bath not only with the bottom plate but also with the molten salt and the gas generated by electrolysis with a fluorine-based resin in order to prevent corrosion of the electrolytic bath.

ここで、前述した弗素系樹脂を例示すると、例えばポ
リテトラフルオロエチレン、ポリクロロトリフルオロエ
チレン、ポリビニリデンフルオライド、ポリビニルフル
オライド、テトラフルオロエチレン−ヘキサフルオロプ
ロピレン共重合体、テトラフルオロエチレン−エチレン
共重合体、テトラフルオロエチレン−パーフルオロアル
キルビニルエーテル共重合体、クロロトリフルオロエチ
レン−エチレン共重合体等通常公知のものが何れも使用
可能であるが、これらの中でもポリテトラフルオロエチ
レン及びテトラフルオロエチレン−パーフルオロアルキ
ルビニルエーテル共重合体が耐熱性、耐酸性が優れてい
るので、特に好ましい。
Here, when the above-mentioned fluorine-based resin is exemplified, for example, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer Polymers, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymers, chlorotrifluoroethylene-ethylene copolymers and the like can be used, any of which are generally known, among which polytetrafluoroethylene and tetrafluoroethylene- Perfluoroalkyl vinyl ether copolymers are particularly preferred because of their excellent heat resistance and acid resistance.

〔実施例〕〔Example〕

実施例1 NF4F・HF系(HF/NF4Fモル比=1.8)の溶融塩を用い、
これを第1図に示す電解槽の蓋3と電解浴4の液面の間
の距離が150mmである電解槽を使用して、50アンペア
(A)の電流を流して(陽極平均電流密度2A/dm2)120
℃にて脱水電解を開始した。陽極発生ガス中のO2濃度を
ガスクロマトグラフィーで分析したところ、徐々に減少
してきた80時間後から2%(以下容量%)付近で一定と
なり脱水電解が終了したと判断した。
Example 1 Using a molten salt of NF 4 F · HF system (HF / NF 4 F molar ratio = 1.8),
Using an electrolytic cell in which the distance between the lid 3 of the electrolytic cell and the liquid surface of the electrolytic bath 4 shown in FIG. 1 is 150 mm, a current of 50 amperes (A) is passed (average anode current density 2 A). / dm 2) 120
Dehydration electrolysis was started at ℃. When the O 2 concentration in the gas generated from the anode was analyzed by gas chromatography, it was determined that the dehydration electrolysis was completed after 80 hours after the gradual decrease and became constant at around 2% (hereinafter referred to as volume%).

脱水が完了したと考えられる80時間後に引き続いて本
電解に移行し、電流250A(陽極平均電流密度10A/dm2
で3カ月長期連続電解を行ないながら、陽極発生ガスの
流量及び陰極発生ガスの流量をモニターし、その経時変
化より各々のガス出口の閉塞状況を確認したところ両極
共に変化は見られず、もちろん爆発を生ずることなく長
期にわたって安全にNF3を製造することができた。
After 80 hours when dehydration is considered complete, the process proceeds to main electrolysis and the current is 250 A (average anode current density 10 A / dm 2 )
While performing electrolysis continuously for 3 months, the flow rate of the gas generated by the anode and the flow rate of the gas generated by the cathode were monitored, and the clogging status of each gas outlet was confirmed from the change over time. NF 3 could be safely produced over a long period of time without producing any problems.

実施例2 電解槽の蓋3と電解浴4の液面の間の距離が400mmで
ある以外は、実施例1と同様にして脱水電解及び本電解
を行なった(溶融塩は実施例1と同一のものを使用し
た)。
Example 2 Dehydration electrolysis and main electrolysis were performed in the same manner as in Example 1 except that the distance between the lid 3 of the electrolytic cell and the liquid surface of the electrolytic bath 4 was 400 mm (the molten salt was the same as in Example 1). Was used.)

脱水電解が終了したと判断した陽極発生ガスのガスク
ロマトグラフィー分析によるO2濃度の値が、徐々に減少
して2%付近で一定となった時間は100時間と実施例1
よりやや長くなったが、実施例1と同様に3カ月長期連
続電解を行ないながら、陽生成ガスの流量及び陰極発生
ガスの流量をモニターしその経時変化より、各々のガス
出口の閉塞状況を確認したところ両極共に変化は見られ
ず、もちろん爆発を生ずることなく長期にわたって安全
にNF3を製造することができた。
The time when the value of the O 2 concentration by gas chromatography analysis of the anode generated gas judged that the dehydration electrolysis was completed was gradually reduced and became constant at around 2% was 100 hours, which is Example 1.
Although it became slightly longer, while performing continuous electrolysis for 3 months as in Example 1, the flow rate of the positive gas and the flow rate of the cathode generated gas were monitored, and the state of blockage of each gas outlet was confirmed from the change over time. As a result, no change was observed in both poles, and of course, NF 3 could be safely produced for a long time without explosion.

比較例1 電解槽の蓋3と電解浴4の液面の間の距離が50mmであ
る(本発明で規定する数値を越えるもの)以外は、実施
例1と同様にして脱水電解及び本電解を行なった(溶融
塩は実施例1と同一のものを使用した)。脱水電解が終
了したと判断した陽極発生ガスのガスクロマトグラフィ
ー分析によるO2濃度の値が、徐々に減少して2%付近で
一定となった時間は80時間と実施例1と同様であった。
しかし、引き続き実施例1〜2と同様に3カ月長期連続
電解を目指して本電解を行い、陽極発生ガスの流量及び
陰極発生ガスの流量をモニターし、その経時変化より各
々のガス出口の閉塞状況を確認したところ、約1週間後
において陽極からの流量が急激に減少し0に近くなっ
た。電解を止めて陽極ガス出口12を観察すると、NH4F・
HFが析出し陽極ガス出口12を閉塞しているのが判った。
又、陰極ガス出口13の方ものNH4F・HFの析出が見られ、
まもなく閉塞に至る危険性のあることが判った。このよ
うに、実施例1〜2に比べて、長期間の運転が不可能で
あることが判った。
Comparative Example 1 Dehydration electrolysis and main electrolysis were performed in the same manner as in Example 1 except that the distance between the lid 3 of the electrolytic cell and the liquid level of the electrolytic bath 4 was 50 mm (a value exceeding the value specified in the present invention). (The same molten salt as in Example 1 was used). The time when the value of the O 2 concentration by gas chromatography analysis of the anode generated gas judged that the dehydration electrolysis was completed was gradually decreased and became constant at around 2% was 80 hours, which was the same as in Example 1. .
However, in the same manner as in Examples 1 and 2, the main electrolysis was carried out for the long-term continuous electrolysis for 3 months, and the flow rate of the anode-generated gas and the flow rate of the cathode-generated gas were monitored. As a result, after about one week, the flow rate from the anode rapidly decreased and approached zero. When the electrolysis was stopped and the anode gas outlet 12 was observed, NH 4 F
It was found that HF was deposited and blocked the anode gas outlet 12.
Also, precipitation of NH 4 F ・ HF at the cathode gas outlet 13 was observed,
It soon became apparent that there was a risk of blockage. Thus, it was found that long-term operation was impossible as compared with Examples 1 and 2.

なお、電解槽の蓋3と電解浴4の液面の間の距離が50
0mmより大きい(本発明で規定する数値を越えるもの)
電解槽については、実施例2から危険をともなわないこ
とは明らかであることから検討は実施しなかった。
The distance between the electrolytic bath lid 3 and the liquid level of the electrolytic bath 4 is 50.
Greater than 0mm (exceeding the value specified in the present invention)
The electrolyzer was not examined because it is clear from Example 2 that no danger was involved.

〔発明の効果〕〔The invention's effect〕

以上詳細に説明したように、本発明は溶融塩電解法に
よるNF3製造用電解槽で、電解槽の蓋と電解浴の液面の
間の距離を特定することにより、NF3ガスを長期にわた
って安全に製造することを可能にしたものである。
As described in detail above, the present invention is an electrolytic cell for producing NF 3 by the molten salt electrolysis method, by specifying the distance between the lid of the electrolytic cell and the liquid level of the electrolytic bath, the NF 3 gas can be used for a long time. It has made it possible to manufacture safely.

したがって、前述のように電解槽の蓋と電解浴の液面
の間の距離を特定することにより長期間使用しても電解
槽内キャリヤーガス入口または両電極室からの発生ガス
出口等が閉塞する事態は避けることが可能になった。
Therefore, as described above, by specifying the distance between the lid of the electrolytic cell and the liquid level of the electrolytic bath, the carrier gas inlet in the electrolytic cell or the generated gas outlet from both electrode chambers and the like are closed even when used for a long time. Things can now be avoided.

その結果、発生ガスのNF3ガスとH2ガスの混合による
爆発の危険性も皆無となり長期間安全に、NF3ガスの操
業を可能にしたことはNF3ガスを工業的に製造する上で
極めて有意義なことでNF3業界に与える影響は大なるも
のがある。
As a result, there is no danger of explosion due to the mixture of NF 3 gas and H 2 gas as the generated gas, and the safe operation of NF 3 gas for a long period of time is a factor in industrial production of NF 3 gas. The implications for the NF 3 industry are extremely significant.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施に好適な、NF3ガス製造用電解槽
の一例を示す縦断面図であり、第2図は第1図における
A−A′矢視図を示す。 図において、 1……電解槽本体、2……弗素系樹脂板、 3……蓋板、4……電解浴、 5……陽極、6……陰極、 7a,7b……接続棒、8a,8b……絶縁材、 9a,9b……接続棒固定用袋ナット、 10……隔板、 11……隔板固定用蓋板、 12……陽極発生ガス出口管、 13……陰極発生ガス出口管、 14……パッキング、 15……蓋板用ボルトナット、 16……隔板固定用ボルト、 を示す。
FIG. 1 is a longitudinal sectional view showing an example of an electrolytic cell for producing NF3 gas, which is suitable for carrying out the present invention, and FIG. 2 is a view taken along the line AA 'in FIG. In the drawing, 1 ... the electrolytic cell main body, 2 ... the fluorine resin plate, 3 ... the lid plate, 4 ... the electrolytic bath, 5 ... the anode, 6 ... the cathode, 7a, 7b ... the connecting rod, 8a, 8b: Insulation material, 9a, 9b: Cap nut for fixing the connecting rod, 10: Separator plate, 11: Lid plate for fixing the separator plate, 12: Anode generating gas outlet tube, 13: Cathode generating gas outlet Pipe, 14 packing, 15 bolt nut for lid plate, 16 bolt for fixing plate.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】溶融塩電解法による三弗化窒素ガス製造用
電解槽であって、溶融塩が電解浴を形成し、電解浴中に
陽極及び陰極が浸漬し、電解浴の蒸発を防止するように
電解槽に蓋をしてなる電解槽において、該電解槽の蓋と
該電解浴の液面との距離が100〜500mmの範囲で電解する
ことを特徴とする電解槽。
1. An electrolytic cell for producing nitrogen trifluoride gas by a molten salt electrolysis method, wherein a molten salt forms an electrolytic bath, and an anode and a cathode are immersed in the electrolytic bath to prevent evaporation of the electrolytic bath. An electrolytic cell comprising an electrolytic cell having a lid as described above, wherein the distance between the lid of the electrolytic cell and the liquid level of the electrolytic bath ranges from 100 to 500 mm.
JP1309093A 1989-10-26 1989-11-30 Electrolytic cell Expired - Lifetime JP2698457B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1309093A JP2698457B2 (en) 1989-11-30 1989-11-30 Electrolytic cell
DE69018761T DE69018761T2 (en) 1989-10-26 1990-10-10 Method of producing nitrogen trifluoride.
EP90119385A EP0424727B1 (en) 1989-10-26 1990-10-10 Method for producing nitrogen trifluoride
US07/595,284 US5085752A (en) 1989-10-26 1990-10-10 Electrolytic cell
KR1019900017250A KR930001975B1 (en) 1989-10-26 1990-10-26 Electrolytic cell
US07/660,743 US5084156A (en) 1989-10-26 1991-02-26 Electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1309093A JP2698457B2 (en) 1989-11-30 1989-11-30 Electrolytic cell

Publications (2)

Publication Number Publication Date
JPH0463291A JPH0463291A (en) 1992-02-28
JP2698457B2 true JP2698457B2 (en) 1998-01-19

Family

ID=17988805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1309093A Expired - Lifetime JP2698457B2 (en) 1989-10-26 1989-11-30 Electrolytic cell

Country Status (1)

Country Link
JP (1) JP2698457B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200758A (en) * 2004-01-15 2005-07-28 Takayuki Shimamune Electrolytic cell structure

Also Published As

Publication number Publication date
JPH0463291A (en) 1992-02-28

Similar Documents

Publication Publication Date Title
US5085752A (en) Electrolytic cell
CN1840742B (en) Electrolytic anode and method for electrolytically synthesizing fluorine-containing substance using the electrolytic anode
EP0269949B1 (en) Process for producing a high purity quaternary ammonium hydroxide
US3492209A (en) Hydrodimerization in a wicking type cell
EP2143826B1 (en) Method of electrolytically synthesizing nitrogen trifluoride
KR100742484B1 (en) The electrolyzer for manufacturing nitrogen tri-fluoride to minimize the amount of a vaporized hydrogen flouride and the manufacturing method using the same
JP2698457B2 (en) Electrolytic cell
JP7428126B2 (en) Anode for electrolytic synthesis and method for producing fluorine gas or fluorine-containing compound
KR101696397B1 (en) Electrolytic apparatus, system and method for the efficent production of nitrogen trifluoride
JP2764623B2 (en) Electrolytic cell
JP2766845B2 (en) Electrolytic cell
JP2000104187A (en) Electrolytic cell (1)
JP2914698B2 (en) Method for producing nitrogen trifluoride by molten salt electrolysis
RU2274601C1 (en) Nitrogen trifluoride production process
JP2854934B2 (en) Method for producing nitrogen trifluoride gas
US3798144A (en) Method for separating liquids
JP2854952B2 (en) Method for producing nitrogen trifluoride gas
US3414495A (en) Method of electrolytic production of oxygen difluoride
JPH0243400A (en) Electrolytic cell
Sartori et al. Binary systems in electrochemical fluorination. I. Sulfamoyl fluoride and hydrazinium (2+) fluoride
JPH0548312B2 (en)
JPH0570982A (en) Production of gaseous nitrogen trifluoride
Dotson et al. Electrochemical production of KNO 3/NANO 3 salt mixture
Townsend The Electropurification of Molten Fluoride Solutions
JPH03104891A (en) Method for electrolyzing molten salt

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080919

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 13