JPH0243400A - Electrolytic cell - Google Patents

Electrolytic cell

Info

Publication number
JPH0243400A
JPH0243400A JP19267988A JP19267988A JPH0243400A JP H0243400 A JPH0243400 A JP H0243400A JP 19267988 A JP19267988 A JP 19267988A JP 19267988 A JP19267988 A JP 19267988A JP H0243400 A JPH0243400 A JP H0243400A
Authority
JP
Japan
Prior art keywords
electrolytic cell
molten salt
gas
fluorine
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19267988A
Other languages
Japanese (ja)
Inventor
Tokuyuki Iwanaga
岩永 徳幸
Isao Harada
功 原田
Toshiaki Yamaguchi
俊明 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP19267988A priority Critical patent/JPH0243400A/en
Publication of JPH0243400A publication Critical patent/JPH0243400A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To prevent the corrosion of the title electrolytic cell by a molten salt by coating the part of the cell to be brought into contact with the electrolyte and generated gas with a fluororesin. CONSTITUTION:The parts of the electrolytic cell to be brought into contact with the electrolyte and the gas generated by electrolysis (e.g., the electrolytic cell main body 1, a lid 3, a partition plate fixing lid 11, and insides of outlet pipes 12 and 13 for the gas generated from the anode and cathode) are coated with a fluororesin. As a result, the corrosion of the electrolytic cell by the molten salt is prevented. Accordingly, gaseous H2 resulting from corrosion is not generated, and the trouble such as the spouting of the molten salt along with gaseous H2 when the outlet valves, etc., are opened is obviated.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、溶融塩電解法による三弗化窒素ガスや弗素ガ
スの製造の際に使用される、電解槽に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electrolytic cell used in the production of nitrogen trifluoride gas or fluorine gas by molten salt electrolysis.

〔従来の技術及び発明が解決しようとする課題〕酸性弗
化アンモニウムまたは弗化アンモニウムと弗化水素を原
料とするNH,F −HF系や、これに更に酸性弗化カ
リウムまたは弗化カリウムを原料として加えたKF −
NIl、F・HF系溶融塩電解法による弗化窒素(NF
I)ガスの製造、並びに酸性弗化カリウムまたは弗化カ
リウムと弗化水素を原料とするKF・肝系溶融塩電解法
による弗素(F2)ガスの製造を行なう場合には、電解
槽の材質としては溶融塩電解浴に比較的腐食されにくい
、鉄、モネル、不銹鋼、銅、ニッケル、白金などの金属
が通常使用されている。
[Prior art and problems to be solved by the invention] NH,F-HF system using acidic ammonium fluoride or ammonium fluoride and hydrogen fluoride as raw materials, and acidic potassium fluoride or potassium fluoride as raw materials. KF − added as
Nitrogen fluoride (NF
I) When producing gas and producing fluorine (F2) gas by KF/liver-based molten salt electrolysis using acidic potassium fluoride or potassium fluoride and hydrogen fluoride as raw materials, use the following materials as the material for the electrolytic cell: Metals such as iron, monel, stainless steel, copper, nickel, and platinum, which are relatively resistant to corrosion by molten salt electrolytic baths, are usually used.

しかしながらこのような金属類でも、ある程度の腐食は
避けられず、従って、上記溶融塩電解においては電解槽
の肉厚が次第に薄くなるので、電解槽の定期的な更新を
必要とするという問題がある。更に、上記溶融塩電解浴
は非常に吸湿しやすいので電解を中止した場合、電解槽
中に残存する溶融塩電解浴は空気中の水分等外部からの
水分の吸湿を防止するために、電解槽を完全に密閉にし
ておかなければならない。しかし電解を中止した場合で
も溶融塩電解浴による電解槽の腐食は進行するので、こ
の腐食に伴って水素(11゜)ガスが発生する。ところ
が電解中止時は電解槽は完全に密閉状態にされているの
で、この発生した11□ガスは電解槽内で加圧状態にな
る。そして電解を再び開始する際には電解槽を上記密閉
状態から元の状態に戻さなければならないが、この場合
、例えば電解槽に付属する発生ガスの出口弁等を開くと
、電解槽内の溶融塩がlhガスと共に電解槽外へ噴出し
飛散して、人体への薬傷や装置のJJ、) (8を招く
という重大な問題がある。
However, even with such metals, some degree of corrosion is unavoidable, and therefore, in the above-mentioned molten salt electrolysis, the wall thickness of the electrolytic cell gradually becomes thinner, so there is a problem that the electrolytic cell needs to be periodically renewed. . Furthermore, since the molten salt electrolytic bath described above is highly susceptible to moisture absorption, when electrolysis is stopped, the molten salt electrolytic bath remaining in the electrolytic bath must be removed from the electrolytic bath in order to prevent moisture absorption from outside, such as moisture in the air. must be kept completely sealed. However, even if electrolysis is stopped, corrosion of the electrolytic cell by the molten salt electrolytic bath progresses, and hydrogen (11°) gas is generated as a result of this corrosion. However, since the electrolytic cell is completely sealed when electrolysis is stopped, the generated 11□ gas becomes pressurized within the electrolytic cell. When restarting electrolysis, the electrolytic cell must be returned from the sealed state to its original state. In this case, for example, opening the generated gas outlet valve attached to the electrolytic cell will cause the melt inside the electrolytic cell to melt. There is a serious problem in that the salt ejects out of the electrolytic cell along with the lh gas, causing chemical injuries to the human body and damage to the equipment.

(課題を解決するための手段〕 本発明者等は上記問題の根本的な解決手段である電解槽
の腐食防止について種々検討を重ねた結果、電解槽の内
面を弗素系樹脂で被覆すれば電解槽の腐食を防止するこ
とが可能であり、また、電解を中止した際でも電解槽の
腐食がないので、従って11□ガスの発生もなく溶融塩
の噴出も防止できることを見い出し本発明を完成するに
至ったものである。
(Means for Solving the Problems) The present inventors have repeatedly studied various ways to prevent corrosion of electrolytic cells, which is a fundamental solution to the above problems, and have found that if the inner surface of the electrolytic cell is coated with a fluorine-based resin, electrolytic It is possible to prevent corrosion of the electrolytic tank, and even when electrolysis is stopped, there is no corrosion of the electrolytic tank, so 11□ gas is not generated and the spouting of molten salt can be prevented, and the present invention has been completed. This is what led to this.

即ち、本発明の電解槽は少なくとも内部の電解液と接す
る部分及び電解により発生するガスと接する部分が弗素
系樹脂で被覆されてなることを特徴とするものである。
That is, the electrolytic cell of the present invention is characterized in that at least the portions inside that come into contact with the electrolytic solution and the portions that come into contact with the gas generated by electrolysis are coated with a fluorine-based resin.

〔発明の詳細な開示〕 以下本発明を添付せる図面を参照しながら詳細に説明す
る。
[Detailed Disclosure of the Invention] The present invention will be described in detail below with reference to the accompanying drawings.

本発明が対象とする電解槽には種々の形状のものがある
。例えば電解槽の底面が長方形、正方形、円形、楕円形
である場合等である。しがし電解槽は何れの形状であっ
ても、槽本体、蓋板、電極(陽極及び陰極)、陽極と陰
極を隔離する隔板等で構成されており、これらの配置や
構造が多少異なる程度なので、ここでは最も一般的な底
面が長方形である直方体の電解槽を例に挙げて本発明を
説明する。
There are various shapes of electrolytic cells to which the present invention is directed. For example, the bottom surface of the electrolytic cell may be rectangular, square, circular, or oval. No matter which shape an electrolytic cell has, it is composed of a tank body, a lid plate, electrodes (anode and cathode), a partition plate that separates the anode and cathode, etc., and the arrangement and structure of these may differ slightly. Therefore, the present invention will be explained here by taking as an example the most common rectangular parallelepiped electrolytic cell with a rectangular bottom.

第1図は内面が弗素系樹脂で被覆された本発明の電解槽
の一例を示す正面断面図であり、形状は底面が長方形の
直方体である。第2回は第1図におけるA−A”矢視図
を示す。
FIG. 1 is a front sectional view showing an example of an electrolytic cell of the present invention whose inner surface is coated with a fluorine-based resin, and the electrolytic cell has a rectangular parallelepiped shape with a rectangular bottom. The second section shows a view taken along the line A-A'' in FIG.

本発明の電解槽は、少なくとも内部の電解液と接する部
分及び電解により発生するガスと接する部分が、弗素系
樹脂で被覆されていなりればならない。
The electrolytic cell of the present invention must be coated with a fluorine-based resin at least at the parts that come into contact with the internal electrolyte and the parts that come into contact with the gas generated by electrolysis.

第1図及び第2図は、電解液及び電解により発生するガ
スと接する部分である電解槽本体1、蓋板3、隔板固定
用蓋板11、陽極及び陰極発生ガス出口管12.13の
内面が全て弗素系樹脂で被覆されているので、本発明の
目的を最も完全に達成することができる。
Figures 1 and 2 show the electrolytic cell body 1, the lid plate 3, the lid plate 11 for fixing the diaphragm, and the anode and cathode generated gas outlet pipes 12 and 13, which are the parts that come into contact with the electrolyte and the gas generated by electrolysis. Since the entire inner surface is coated with fluororesin, the object of the present invention can be most completely achieved.

尚、隔板10も弗素系樹脂で製作されていることが望ま
しい。また電解槽においては陽極5及び陰極6に接続さ
れている接続棒7a、7hは、蓋板3とは絶縁材8a、
8bで絶縁されていて、更ムこ接続棒7a、7bは接続
棒固定用袋ナツト9a、9bで蓋板3に間接的に固定さ
れているが、この絶縁材8a、8b、接続棒固定用袋ナ
ツト9a、9b、更にはガスケント14も弗素系樹脂で
製作されていることが望ましい。
Incidentally, it is desirable that the partition plate 10 is also made of fluorine-based resin. In addition, in the electrolytic cell, the connecting rods 7a and 7h connected to the anode 5 and the cathode 6 are different from the cover plate 3 by an insulating material 8a,
The connecting rods 7a and 7b are indirectly fixed to the cover plate 3 with cap nuts 9a and 9b for fixing the connecting rods. It is desirable that the cap nuts 9a, 9b and even the gasket 14 are made of fluorine resin.

ただし、本発明においては電解槽本体1の内面が弗素系
樹脂で被覆されていれば、蓋板3、隔板固定用蓋板1】
、陽極及び陰極発生ガス出口管12.13の内面は、必
ずしも弗素系樹脂で被覆せずとも、本発明の一つの目的
である電解再開始時の溶融塩の電解槽外への噴出は防止
することができる。
However, in the present invention, if the inner surface of the electrolytic cell body 1 is coated with fluorine resin, the lid plate 3, the lid plate 1 for fixing the partition plate]
The inner surfaces of the anode and cathode generated gas outlet pipes 12 and 13 are not necessarily coated with fluorine-based resin to prevent molten salt from spewing out to the outside of the electrolytic cell when electrolysis is restarted, which is one of the objects of the present invention. be able to.

尚、本発明の電解槽を使用して1?2ガスを製造する場
合に、陽極から発生ずるF2ガスが高濃度であると、弗
素系樹脂がF2ガスと反応して腐食する可能性があるの
で、この場合は隔板10で隔てられているF2ガスが発
生する陽極室へ窒素、ヘリウム、アルゴン等の不活性ガ
スを供給して、F2ガスを希釈しながら溶融塩電解を行
なうのが好ましい。
In addition, when producing 1-2 gas using the electrolytic cell of the present invention, if the F2 gas generated from the anode is at a high concentration, the fluorine-based resin may react with the F2 gas and corrode. Therefore, in this case, it is preferable to perform molten salt electrolysis while diluting the F2 gas by supplying an inert gas such as nitrogen, helium, or argon to the anode chamber where the F2 gas is generated, which is separated by the partition plate 10. .

本発明において被覆に使用される弗素系樹脂としては、
例えばポリテトラフルオロエチレン、ポリクロロトリフ
ルオロエチレン、ポリビニリデンフルオライド、ポリビ
ニルフルオライド、テトラフルオロエチレン−ヘキサフ
ルオロプロピレン共重合体、テトラフルオロエチレン−
エチレン共重合体、テトラフルオロエチレン−パーフル
オロアルキルビニルエーテル共重合体、クロロトリフル
オロエチレン−エチレン共重合体等通常公知のものが何
れも使用可能であるが、これらの中でもポリテトラフル
オロエチレン及びテトラフルオロエチレン−パーフルオ
ロアルキルビニルエーテル共重合体が耐熱性、耐酸性が
優れているので、特に好ましい。
The fluorine-based resin used for coating in the present invention includes:
For example, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-
Any of the commonly known copolymers such as ethylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, and chlorotrifluoroethylene-ethylene copolymer can be used, but among these, polytetrafluoroethylene and tetrafluoroethylene copolymer can be used. Ethylene-perfluoroalkyl vinyl ether copolymers are particularly preferred because they have excellent heat resistance and acid resistance.

尚、弗素系樹脂の被覆の方法としてはコーティング、ラ
イニングの何れの方法でもよいが、ライニングの方が半
永久的に使用できるので、より好ましい。
Incidentally, as a method for coating with the fluorine-based resin, either coating or lining may be used, but lining is more preferable because it can be used semi-permanently.

〔実施例] 以下、実施例により本発明を更に具体的に説明する。〔Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例】 第1図及び第2図に示す電解槽を用い、原料としてNH
,F −HF系の溶融塩を使用して、溶融塩電解による
NF3ガスの製造を行なった(肝/NI1.F干ル比=
1.8 )。
Example] Using the electrolytic cell shown in Figures 1 and 2, NH was used as the raw material.
, F - Using HF-based molten salt, NF3 gas was produced by molten salt electrolysis (liver/NI1.F drying ratio =
1.8).

尚、電解槽本体1、蓋板3及び隔板固定用隔板11は何
れも厚さ10mmの1iiI板製で、この内面に弗素系
樹脂2としてそれぞれポリテトラフルオロエチレンを5
mmの厚さにライニングしである。
The electrolytic cell body 1, the lid plate 3, and the diaphragm fixing diaphragm 11 are all made of 1III plate with a thickness of 10 mm, and each of them is coated with 55% polytetrafluoroethylene as a fluorine-based resin 2 on the inner surface.
It is lined to a thickness of mm.

電解反応は1週間に1日(24時間)停止するというサ
イクルで1年間行なったが、使用開始前と1年間使用後
電解槽内の弗素系樹脂2には何ら変化なく、電解槽は腐
食の点では半永久的に使用されることが判った。
The electrolytic reaction was carried out for one year with a cycle of stopping one day (24 hours) a week, but there was no change in the fluorine-based resin 2 in the electrolytic cell before and after one year of use, and the electrolytic cell was free from corrosion. It turns out that it can be used semi-permanently.

また、1年間の間において、上記の電解を停止した際は
その都度電解槽を完全に密閉し、電解を再開始する際に
陽極及び陰極から発生するガスの出口弁を開くが、この
時に溶融塩が電解槽の外に飛散することは一度もなかっ
た。
Also, during one year, whenever the above electrolysis is stopped, the electrolytic cell is completely sealed, and when restarting electrolysis, the outlet valve for the gas generated from the anode and cathode is opened. Salt never spattered outside the electrolyzer.

更に、原料溶融塩に対するNF3ガスの収率を測定した
が、収率は弗素基準で約70%と溶融塩電解によるNF
3ガスの製造としては高い値を示した。
Furthermore, we measured the yield of NF3 gas with respect to the raw material molten salt, and found that the yield was approximately 70% based on fluorine, compared to NF3 gas produced by molten salt electrolysis.
This was a high value for the production of three gases.

実施例2 実施例1と同様に第1図及び第2図に示す電解槽を用い
(ただし電解槽本体1の弗素系樹脂2はテトラフルオロ
エチレン−パーフルオロアルキルビニルエーテル共重合
体を3mmの厚さにライニング、蓋板3及び隔板固定用
蓋板11の内面は何れも弗素系樹脂による被覆なし)、
原料としてKF・)HF系の溶融塩を使用して、熔融塩
電解によるF2ガスの製造を行なった(肝/KFモル比
−2,0)。
Example 2 The electrolytic cell shown in FIGS. 1 and 2 was used in the same manner as in Example 1 (however, the fluorine-based resin 2 of the electrolytic cell body 1 was made of tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer with a thickness of 3 mm). The inner surfaces of the lining, the lid plate 3, and the partition plate fixing lid plate 11 are not coated with fluorine resin),
F2 gas was produced by molten salt electrolysis using a KF/)HF-based molten salt as a raw material (liver/KF molar ratio -2.0).

尚、電解反応時はF2ガスの発生ずる陽極室へN2ガス
を供給して発生ずるF2ガスを希釈しながら行なった。
The electrolytic reaction was carried out while diluting the generated F2 gas by supplying N2 gas to the anode chamber where the F2 gas was generated.

電解反応は実施例1と同様1週間に1日停止するという
サイクルで1年間行ない、1年間使用後の電解槽内を観
察した。その結果は、弗素系樹脂で被覆しなかった蓋板
3及び隔板固定用蓋板11については、最も腐食の激し
いところで鋼板の肉厚が各2mmJ少しでいた。しかし
弗素系樹脂であるテトラフルオロエチレン−パーフルオ
ロアルキルビニルエーテル共重合体を内面にライニング
している電解槽本体1及び弗素系樹脂2には全く変化な
く、電解槽本体1は腐食の点では半永久的に使用される
ことが判った。
The electrolytic reaction was carried out for one year with a cycle of stopping one day a week as in Example 1, and the inside of the electrolytic cell was observed after one year of use. The results showed that for the cover plate 3 and the partition plate fixing cover plate 11 that were not coated with fluorine resin, the thickness of the steel plate was slightly less than 2 mmJ at the most severely corroded areas. However, there is no change at all to the electrolytic cell body 1 and the fluorine-based resin 2, whose inner surfaces are lined with a fluorine-based resin, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, and the electrolytic cell body 1 is semi-permanent in terms of corrosion. It was found that it was used for.

また、電解再開始時における溶融塩の電解槽外への飛散
は実施例1と同様に一度もなかった。更に、原料溶融塩
に対するF2ガスの収率を測定したが、収率は弗素基準
で95%と高い値を示した。
Furthermore, as in Example 1, there was no scattering of molten salt outside the electrolytic cell when electrolysis was restarted. Furthermore, the yield of F2 gas relative to the raw material molten salt was measured, and the yield was as high as 95% based on fluorine.

比較例1 第1図及び第2図において、電解槽本体1、蓋板3及び
隔板固定用蓋板11の内面を弗素系樹脂でライニングし
ていない電解槽を使用して、実施例1と同様に溶融塩電
解によるNF3ガスの製造を1年間行なった。
Comparative Example 1 In FIGS. 1 and 2, an electrolytic cell was used in which the inner surfaces of the electrolytic cell body 1, lid plate 3, and partition plate fixing lid plate 11 were not lined with fluorine resin. Similarly, NF3 gas was produced by molten salt electrolysis for one year.

1年間使用後の電解槽内を観察したところ、腐食の最も
激しいところで電解槽本体1は肉厚が3mm減少、蓋板
3は3mm減少しており、あと数年しか使用することが
できないと判断される。
When we observed the inside of the electrolytic cell after one year of use, we found that the wall thickness of the electrolytic cell body 1 had decreased by 3 mm and the cover plate 3 had decreased by 3 mm at the most severely corroded areas, and it was determined that the electrolytic cell could only be used for a few more years. be done.

また1年間の間において、電解停止後の再開始時に発生
ガスの出口弁を注意しながら開いたにも拘わらず、溶融
塩が電解槽から士数回飛散し危険であった。尚、この溶
融塩の飛散は電解の停止時間が更に長時間であると、−
層激しくなるものと考えられる。
Furthermore, over the course of one year, even though the outlet valve for generated gas was carefully opened when restarting electrolysis after stopping, molten salt flew out from the electrolytic cell several times, creating a dangerous situation. In addition, if the electrolysis stop time is longer, the scattering of this molten salt will be -
It is thought that the situation will become even more intense.

更に、原料溶融塩に対するNF3ガスの収率も弗素基準
で約60%と、実施例1と比較して約10%も低い値で
あった。
Furthermore, the yield of NF3 gas based on the raw material molten salt was about 60% based on fluorine, which was about 10% lower than in Example 1.

比較例2 比較例1で用いたものと同一の電解槽を使用して、実施
例2と同様に溶融塩電解によるF2ガスの製造を1年間
行なった。
Comparative Example 2 Using the same electrolytic cell as that used in Comparative Example 1, F2 gas was produced by molten salt electrolysis for one year in the same manner as in Example 2.

1年間使用後の電解槽内を観察したところ、比較例1と
同様に電解槽本体1、蓋板3共に腐食の最も激しいとご
ろで肉厚が3闘減少しており、電解槽は数年間で更新す
る必要があると判断される。
When we observed the inside of the electrolytic cell after one year of use, we found that the wall thickness of both electrolytic cell body 1 and lid plate 3 had decreased by 3 mm at the most severely corroded corners, similar to Comparative Example 1. It is determined that it is necessary to update.

また1年間の間において、電解停止後の再開始時の溶融
塩の電解槽からの飛散が比較例1と同様の頻度で発生し
た。
Further, during one year, scattering of molten salt from the electrolytic cell occurred at the same frequency as in Comparative Example 1 when restarting electrolysis after stopping.

更に、原料溶融塩に対するF2ガスの収率も弗素基準で
90%と、実施例2と比較して5%も低い値であった。
Furthermore, the yield of F2 gas with respect to the raw material molten salt was 90% based on fluorine, which was 5% lower than in Example 2.

[発明の効果] 以上詳細に説明したように、本発明の電解槽は少なくと
も内部の電解液と接する部分及び電解により発生するガ
スと接する部分が弗素系樹脂で被覆されているので、従
来問題であった電解槽の溶融塩による腐食を完全に防止
することが可能になった。従って、この腐食の完全防止
によって電解槽の定期的な更新の必要がなくなった。そ
れよりまして、溶融塩電解再開始時におりる溶融塩の噴
出飛散による人体への危険や装置の損傷という問題を完
全に解決するごとが可能となり、その経済的効果は極め
て大なるものがある。そして作業の安全性も確保される
ことから、作業者の危険に対する精神的負担も解消され
ることになった。
[Effects of the Invention] As explained in detail above, the electrolytic cell of the present invention is coated with a fluorine-based resin at least at the part that comes into contact with the internal electrolyte and the part that comes into contact with the gas generated by electrolysis, so that the problems of the conventional electrolytic cell are avoided. It became possible to completely prevent corrosion caused by molten salt in the electrolytic tank. Therefore, this complete prevention of corrosion eliminates the need for regular renewal of the electrolytic cell. Moreover, it becomes possible to completely solve the problem of danger to the human body and damage to equipment due to the spouting and scattering of molten salt when restarting molten salt electrolysis, which has an extremely large economic effect. In addition, since work safety is ensured, the mental burden on workers due to danger is also relieved.

尚、本発明においては実施例2が示す如く、電解槽本体
の内面のみを弗素系樹脂で被覆することでも、電解の再
開始時における熔融塩の噴出飛散という問題は完全に防
止することは可能である。
In addition, in the present invention, as shown in Example 2, it is possible to completely prevent the problem of molten salt spouting and scattering when restarting electrolysis by coating only the inner surface of the electrolytic cell body with a fluorine-based resin. It is.

また、本発明の電解槽を使用することにより、実施例及
び比較例が示す如く収率も高くなるという効果もある。
Furthermore, the use of the electrolytic cell of the present invention also has the effect of increasing the yield, as shown in the Examples and Comparative Examples.

更にまた、電解槽の内面が弗素系樹脂が被覆されていな
い従来の電解槽では、腐食された金属が溶融塩と反応し
て金属弗化物となるので、それだけ弗素骨の損失となる
。しかもこの生成した金属弗化物は電解槽の中に蓄積す
るので、定期的に電解槽を空槽にしてこれを除去しなけ
ればならないという問題もある。これに対し本発明の電
解槽を使用した場合は、電解槽の腐食がないのでこのよ
うな問題は全くない。
Furthermore, in conventional electrolytic cells in which the inner surface of the electrolytic cell is not coated with a fluorine-based resin, corroded metal reacts with molten salt to form metal fluoride, resulting in a loss of fluorine bones. Moreover, since the generated metal fluoride accumulates in the electrolytic cell, there is a problem in that the electrolytic cell must be periodically emptied to remove it. On the other hand, when the electrolytic cell of the present invention is used, there is no corrosion of the electrolytic cell, so there is no such problem.

【図面の簡単な説明】[Brief explanation of the drawing]

第1回は内面が弗素系樹脂で被覆された本発明の電解槽
の一例を示す正面断面図であり、形状は底面が長方形の
直方体である。第2図は第1図におけるA−A’矢視図
を示す。 図において、 1−−−−電解槽本体、  2−一一−弗素系樹脂、3
−一−−蓋板、     4−−−一溶融塩電解浴、5
−一一−陽極、     6−−−−陰極、7a、7b
−−一接続棒、  8a、8b−−−絶縁材、9a、9
b−一〜接続棒固定用袋ナンド、10−−−−隔板、 11−−−−隔板固定用蓋板、 12−−−一陽極発生ガス出口管、 13−−−−陰極発生ガス出口管、 14−−−−ガスケット、 15−−−−蓋板用ポルトナノト、 16−−−−隔板固定用ボルト、 を示す。 特許出願人  三井東圧化学株式会社
The first part is a front sectional view showing an example of an electrolytic cell of the present invention whose inner surface is coated with a fluorine-based resin, and the electrolytic cell has a rectangular parallelepiped shape with a rectangular bottom. FIG. 2 shows a view taken along the line A-A' in FIG. In the figure, 1----electrolytic cell body, 2-11-fluorine resin, 3
-1--cover plate, 4--1 molten salt electrolytic bath, 5
-11-Anode, 6----Cathode, 7a, 7b
--One connecting rod, 8a, 8b---Insulating material, 9a, 9
b-1~Connecting rod fixing bag nand, 10---Partition plate, 11---Lid plate for fixing partition plate, 12---1 Anode generated gas outlet pipe, 13---Cathode generated gas Outlet pipe, 14---Gasket, 15---Port nanometer for lid plate, 16---Bolt for fixing partition plate. Patent applicant Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1)電解槽において少なくとも内部の電解液と接する部
分及び電解により発生するガスと接する部分が弗素系樹
脂で被覆されてなることを特徴とする電解槽。
1) An electrolytic cell characterized in that at least a portion of the electrolytic cell that comes into contact with an internal electrolyte and a portion that comes into contact with gas generated by electrolysis is coated with a fluorine-based resin.
JP19267988A 1988-08-03 1988-08-03 Electrolytic cell Pending JPH0243400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19267988A JPH0243400A (en) 1988-08-03 1988-08-03 Electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19267988A JPH0243400A (en) 1988-08-03 1988-08-03 Electrolytic cell

Publications (1)

Publication Number Publication Date
JPH0243400A true JPH0243400A (en) 1990-02-13

Family

ID=16295243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19267988A Pending JPH0243400A (en) 1988-08-03 1988-08-03 Electrolytic cell

Country Status (1)

Country Link
JP (1) JPH0243400A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002283500A (en) * 2001-03-28 2002-10-03 Mitsui Chemicals Inc Treatment container
WO2014141736A1 (en) * 2013-03-12 2014-09-18 住友電気工業株式会社 Fused-salt electrolysis plating apparatus, and method for producing aluminum film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142908U (en) * 1984-08-22 1986-03-20 株式会社 吉田製作所 Cutting tool attachment and detachment mechanism in dental handpiece
JPS63130790A (en) * 1986-11-21 1988-06-02 Mitsui Toatsu Chem Inc Improved electrolytic cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6142908U (en) * 1984-08-22 1986-03-20 株式会社 吉田製作所 Cutting tool attachment and detachment mechanism in dental handpiece
JPS63130790A (en) * 1986-11-21 1988-06-02 Mitsui Toatsu Chem Inc Improved electrolytic cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002283500A (en) * 2001-03-28 2002-10-03 Mitsui Chemicals Inc Treatment container
JP4592203B2 (en) * 2001-03-28 2010-12-01 三井化学株式会社 Electrolytic cell
WO2014141736A1 (en) * 2013-03-12 2014-09-18 住友電気工業株式会社 Fused-salt electrolysis plating apparatus, and method for producing aluminum film

Similar Documents

Publication Publication Date Title
US5085752A (en) Electrolytic cell
JPH03173789A (en) Filter type electrolytic bath for preparing peroxy or perhalogenated compound
JPH0755807B2 (en) Method for producing nitrogen trifluoride
US3453187A (en) Apparatus and process for reduction of hydrogen chloride
JP7428126B2 (en) Anode for electrolytic synthesis and method for producing fluorine gas or fluorine-containing compound
JPH0243400A (en) Electrolytic cell
KR20070057489A (en) The electrolyzer for manufacturing nitrogen tri-fluoride to minimize the amount of a vaporized hydrogen flouride and the manufacturing method using the same
JP4718902B2 (en) Electrolytic cell and method for producing nitrogen trifluoride using the same
KR101593800B1 (en) Advanced fluorine gas generator
US2534638A (en) Electrolytic production of fluorine
JP2698457B2 (en) Electrolytic cell
JPH04160176A (en) Electrolytic cell
CN216274410U (en) Metal electrolysis equipment and anode structure
JPH0456789A (en) Production of gaseous nitrogen trifluoride
KR102615096B1 (en) Electrolyzer for producing nitrogen trifluoride gas and its partition wall
JPS63130790A (en) Improved electrolytic cell
JPH03170687A (en) Electrolytic cell
JPH0688267A (en) Electrolytic bath
KR101411714B1 (en) Nickel based electrode and production of nitrogen trifluoride using same
JP2854952B2 (en) Method for producing nitrogen trifluoride gas
JPH04183884A (en) Electrolytic cell
JPH01119687A (en) Electrolytic cell
CN113802152A (en) Metal electrolysis equipment and anode structure
JP2000104187A (en) Electrolytic cell (1)
US3409519A (en) Method of protecting electrolytic cells