JPH0456789A - Production of gaseous nitrogen trifluoride - Google Patents

Production of gaseous nitrogen trifluoride

Info

Publication number
JPH0456789A
JPH0456789A JP2164031A JP16403190A JPH0456789A JP H0456789 A JPH0456789 A JP H0456789A JP 2164031 A JP2164031 A JP 2164031A JP 16403190 A JP16403190 A JP 16403190A JP H0456789 A JPH0456789 A JP H0456789A
Authority
JP
Japan
Prior art keywords
molten salt
gas
electrolysis
anode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2164031A
Other languages
Japanese (ja)
Other versions
JP2854934B2 (en
Inventor
Makoto Zaike
在家 眞
Tokuyuki Iwanaga
岩永 徳幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP2164031A priority Critical patent/JP2854934B2/en
Publication of JPH0456789A publication Critical patent/JPH0456789A/en
Application granted granted Critical
Publication of JP2854934B2 publication Critical patent/JP2854934B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To produce gaseous nitrogen trifluoride having a reduced impurity content by using a molten salt prepd. from hydrofluoric acid and ammonia as starting material and electrolyzing the molten salt by a molten salt electrolysis method. CONSTITUTION:Molten salt represented by a formula NH4F.2HF is prepd. from hydrofluoric acid and ammonia. This molten salt as starting material is dehydrated by electrolysis with an Ni electrode as the anode, this anode is changed over to a carbon electrode and the dehydrated molten salt is electrolyzed. In continuous operation with the carbon electrode, no anode effect is produced and electrolysis can safely be continued. Since the molten salt having a low water content can continuously be electrolyzed, gaseous nitrogen trifluoride is obtd. while reducing the amts. of impurities such as N2O and OF2 produced by the presence of water.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は三弗化窒素ガス(NFS)の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing nitrogen trifluoride gas (NFS).

更に詳しくは、フッ化水素酸とアンモニアを原料とする
NH,F −1(F系溶融塩の電解法によるNF3ガス
の製造方法に関する。
More specifically, the present invention relates to a method for producing NF3 gas by electrolysis of NH,F-1 (F-based molten salt) using hydrofluoric acid and ammonia as raw materials.

(従来の技術及び発明が解決しようとする課題)NF、
は沸点が一129℃、融点が一207℃の物性を示す無
色の気体である。
(Problems to be solved by conventional techniques and inventions) NF,
is a colorless gas with a boiling point of 1129°C and a melting point of 1207°C.

NFSガスは半導体のドライエツチング剤やCVD装置
のクリーニングガスとして近年注目されているが、これ
らの用途に使用されるNF、ガスは、高純度のものが要
求されている。
NFS gas has recently attracted attention as a dry etching agent for semiconductors and as a cleaning gas for CVD equipment, but NF and gas used for these purposes are required to be of high purity.

しかしながら製造されたNF3ガスは、窒素(N2)、
二弗化二窒素(NJz)、亜酸化窒素(N20) 、二
酸化炭素(Co□)、二弗化酸素(OFz) 、酸素(
0□)、未反応の弗化水素()IF)等の不純物を比較
的多量に含んでおり、本発明で対象とするNH4F −
HF系溶融塩電解法で製造されたNF3ガスも同様に不
純物を含有している。従って、上記用途としての高純度
のNFjガスを得るためには精製が必要である。
However, the produced NF3 gas is nitrogen (N2),
Nitrogen difluoride (NJz), nitrous oxide (N20), carbon dioxide (Co□), oxygen difluoride (OFz), oxygen (
NH4F −
NF3 gas produced by HF-based molten salt electrolysis similarly contains impurities. Therefore, purification is necessary to obtain high-purity NFj gas for the above-mentioned uses.

NF、ガス中のこれらの不純物を除去する精製方法とし
ては、下記する方法が知られている。
As a purification method for removing these impurities from NF and gas, the following method is known.

このうち、!’hFz、HP、 Cot 、NZ、0□
は比較的容易に除去あるいは含有量を低減させる方法が
知られている。
this house,! 'hFz, HP, Cot, NZ, 0□
There are known methods for relatively easily removing or reducing the content.

即ち、1)N2FZはKl、 Na2S、 NazSz
Os等の水溶液と接触させる方法(J、 Masson
ne+ケミ−・インジx −1−ニール・テヒニール(
CheIIl、 Ing、 Techn、)41゜(1
2)、695.(1969) )や148.9〜537
.8℃の温度で金属と接触させる方法(特公昭59−1
5081号)等を用い、ガススフラッパーあるいは熱分
解装置を設置することで工業的にも簡単に除去すること
ができる。2)OFは水あるいは弱アルカリ性水溶液へ
の吸収が容易なことから、ガススフラッパーを設置する
ことで簡単に除去することが可能である。3)CO□は
アルカリ性水溶液への吸収が良好であるため、肝同様に
ガススフラッパーを設置することで工業的にも簡単に除
去が可能である。4)N2や0□等の低沸点成分は、−
150〜−190°Cの温度に冷却してNFffを液化
することで除去することができる。
That is, 1) N2FZ is Kl, Na2S, NazSz
A method of contacting with an aqueous solution of Os, etc. (J, Masson
ne+Chemie Inji x -1-Neil Tehenir (
CheIIl, Ing, Techn, ) 41° (1
2), 695. (1969)) and 148.9-537
.. Method of contacting with metal at a temperature of 8℃ (Special Publication Publication No. 59-1)
No. 5081), etc., and by installing a gas flapper or a pyrolysis device, it can be easily removed industrially. 2) Since OF is easily absorbed into water or a weakly alkaline aqueous solution, it can be easily removed by installing a gas flapper. 3) Since CO□ is well absorbed into an alkaline aqueous solution, it can be easily removed industrially by installing a gas flapper like the liver. 4) Low boiling point components such as N2 and 0□ are -
NFff can be removed by cooling to a temperature of 150 to -190°C and liquefying it.

OL 、N、Oも次に述べるような方法で、除去するこ
とは可能であるが、工業的には完全とは言い難い。
Although it is possible to remove OL, N, and O by the method described below, it cannot be said to be perfect from an industrial perspective.

即ち、5)opzは、NazSzOs 、Kl、Naz
SOz、旧、NatS等の水溶液と接触させる方法で除
去することができる。しかし、吸収効率が比較的低いた
め、OF、を含有するガスと該水溶液の接触効率を上げ
るべく、大型のスフラッパーを設置したり、高い濃度の
水溶液を使用しなくてはならず、付帯する問題が多い。
That is, 5) opz is NazSzOs, Kl, Naz
It can be removed by contacting with an aqueous solution such as SOz, SOz, NatS, etc. However, since the absorption efficiency is relatively low, it is necessary to install a large flapper or use a highly concentrated aqueous solution in order to increase the contact efficiency between the OF-containing gas and the aqueous solution. There are many problems.

また、6)N20はゼオライト等の吸着剤と接触させる
ことで効率よく除去することができる(Chell、 
Eng、、 84.116. (1977)等)、シか
し、N20を含有するガスの通気後、ゼオライトの再生
が必要であること、また吸着能力の劣化によりゼオライ
トの更新が必要となる等の問題がある。
In addition, 6) N20 can be efficiently removed by contacting it with an adsorbent such as zeolite (Chell,
Eng,, 84.116. (1977), etc.), it is necessary to regenerate the zeolite after aeration of the gas containing N20, and there are problems such as the need to renew the zeolite due to deterioration of its adsorption capacity.

NH,F−IF系の熔融塩電解における陽極材料として
最も耐蝕性に優れた陽極材料は炭素である。しかし、炭
素電極においては陽極効果の発生が実際の使用上の障害
となる。
Carbon is the anode material with the best corrosion resistance in NH,F-IF-based molten salt electrolysis. However, the occurrence of an anodic effect in carbon electrodes poses an obstacle in actual use.

陽極効果とは表面エネルギーの極めて低い膜が炭素電極
表面に形成されることによる二次的現象として電圧が異
常に上昇し、電流が殆ど流れなくなる現象を言う、陽極
効果は溶融塩中の微量水分によって引き起こされるもの
であり、陽極効果発生を防ぐための水分の許容上限は数
1100ppとされている。
The anode effect is a secondary phenomenon caused by the formation of a film with extremely low surface energy on the surface of a carbon electrode, which causes the voltage to rise abnormally and almost no current to flow. The upper limit of moisture content to prevent the occurrence of the anodic effect is several 1100 pp.

ところが、酸性フッ化アンモニウム(NHJJ)あるい
はフッ化アンモニウム(NH4F)に無水フッ化水素酸
()IF)を加えて調製された、溶融塩は原料自体が既
に数1000 ppmの水分を含有するため、調製され
た溶融塩にも少なくとも数1000 ppmの水分混入
は避けられず、この溶融塩をそのまま使用して炭素電極
での電解を行うことは、前記、陽極効果の発生があり不
可能である。
However, the molten salt prepared by adding anhydrous hydrofluoric acid (IF) to acidic ammonium fluoride (NHJJ) or ammonium fluoride (NH4F) already contains several thousand ppm of water; The prepared molten salt inevitably contains at least several thousand ppm of water, and it is impossible to use this molten salt as it is to perform electrolysis with a carbon electrode because of the occurrence of the anodic effect described above.

そこで、このような場合−船釣には、溶融塩中の水分を
除去する方法が採られる。これには通常、脱水電解と呼
ばれる方法が用いられ、このためには陽極効果を起こさ
ない電極材料、即ちニッケル(Nt)を電極として使用
する。
Therefore, in such a case - boat fishing, a method is adopted to remove the moisture in the molten salt. A method called dehydration electrolysis is usually used for this, and for this purpose an electrode material that does not cause an anodic effect, ie nickel (Nt), is used as the electrode.

脱水電解を伴う操業形態としては、脱水電解の実施後に
引続き電極を炭素電極に切り替えての本電解を行ない、
溶融塩が消費されるに従い、溶融塩を補給して再び脱水
電解に戻る回分的方法と、脱水電解終了後の炭素電極で
の本電解中に消費量見合い分の溶融塩を少量づつ補給し
、連続的に本電解を行なう方法とがある。
As for the operation mode involving dehydration electrolysis, after the implementation of dehydration electrolysis, the electrode is subsequently switched to a carbon electrode and main electrolysis is performed,
As the molten salt is consumed, the molten salt is replenished and the process returns to dehydration electrolysis in a batch manner, and the molten salt is replenished little by little in proportion to the consumed amount during the main electrolysis using the carbon electrode after the completion of the dehydration electrolysis. There is a method of continuously performing main electrolysis.

前者は溶融塩中の水分量の許容範囲は比較的広いものの
、たびたびNi電極を使用することによる後述のスラッ
ジの問題、及び頻繁な電極の切り替えが必要であること
から実際的な方法とは言えない。
Although the former method has a relatively wide allowable range for the amount of water in the molten salt, it is not a practical method due to the sludge problem described below due to the frequent use of Ni electrodes and the need for frequent electrode switching. do not have.

後者は操業形態としては理想的であるが、補給する溶融
塩の水分量は、好ましくは500ppn+以下である必
要があり、現状の溶融塩中の水分量では陽極効果が発生
するため不可能である。補給する溶融塩も脱水電解によ
り脱水することも出来るが、やはり後述のスラッジの問
題を避けることはできない。
The latter is ideal as an operating mode, but the water content of the molten salt to be replenished must preferably be 500 ppn+ or less, which is impossible with the current water content of the molten salt because an anode effect will occur. . Although the molten salt to be replenished can also be dehydrated by dehydration electrolysis, the problem of sludge, which will be described later, cannot be avoided.

以上の理由により現在のところ、該溶融塩中での耐蝕性
が金属材料中で最も優れている、Ni或はNiを主成分
とする合金が陽極として使用される。
For the above reasons, at present, Ni or an alloy mainly composed of Ni, which has the best corrosion resistance in the molten salt among metal materials, is used as the anode.

Niは陽極効果を起こす戊はない。しかし、電解に供さ
れる電流の内、Niの溶解に使われる電流の割合(溶解
の電流効率)は数%程度あり、陽極のNi電極の消耗が
避けられない、このことは陽極のNi電極の更新、ある
いはNi1i極の溶解により生成した溶融塩中のスラッ
ジの除去を頻繁に実施しなくてはならず、大きな問題と
なっている。
Ni does not cause an anode effect. However, the proportion of the current used for dissolving Ni (dissolution current efficiency) among the current supplied for electrolysis is about a few percent, and the wear of the anode Ni electrode is unavoidable. It is necessary to frequently renew the Ni1i electrode or remove sludge in the molten salt generated by dissolving the Ni1i electrode, which is a big problem.

(課題を解決するための手段) 本発明者等はかかる状況に鑑み、鋭意検討を重ねた結果
、NH,F・HF系熔融塩の原料として、NH4F、H
あるいはNH,Fを使用せず、溶融塩中のアンモニア源
としてアンモニアによる水分含有量の少ないアンモニア
、並びにフッ化水素酸を使用すれば、陽極効果を引き起
こさない水分含有量が、500ppm以下である原料溶
融塩を、供給しながら耐蝕性の最も優れた炭素電極での
連続的な電解を可能とし、さらにNzO、OLz等の水
分に由来する不純物の低減が図れることを突き止め、本
発明を完成するに至ったものである。
(Means for Solving the Problems) In view of the above situation, the present inventors have made extensive studies and found that NH4F, H
Alternatively, if NH and F are not used, and ammonia with a low water content due to ammonia and hydrofluoric acid are used as the ammonia source in the molten salt, the water content that does not cause an anode effect is 500 ppm or less. It was discovered that continuous electrolysis using the most corrosion-resistant carbon electrode is possible while supplying molten salt, and that impurities derived from moisture such as NzO and OLz can be reduced, and the present invention was completed. This is what we have come to.

即ち、溶融塩電解法により三弗化窒素ガスを製造するに
おいて、フン化水素酸とアンモニアより調製された溶融
塩を原料とし、溶融塩電解法により電解を行なうことを
特徴とする三弗化窒素ガスの製造方法に関する。
That is, in producing nitrogen trifluoride gas by a molten salt electrolysis method, a molten salt prepared from hydrofluoric acid and ammonia is used as a raw material, and nitrogen trifluoride gas is electrolyzed by a molten salt electrolysis method. This invention relates to a method for producing gas.

(発明の詳細な開示) 以下、本発明の詳細な説明する。(Detailed disclosure of the invention) The present invention will be explained in detail below.

本発明を実施するためにまず、調製された溶融塩に外部
からの水分の侵入しないような密閉された溶融塩調製用
容器を用意する。該溶融塩調製用容器はフッ化水素酸ガ
スとアンモニアの導入、溶融塩の抜き出し、溶融塩調製
用容器内部の圧力調整用のための乾燥不活性ガス導出入
ができる構造となっている。その他に温度計、圧力計、
液面計が取り付けられる構造となっていれば更に好まし
い。また、溶融塩調製中の除熱、溶融塩保存時の保温が
できるよう加熱、冷却ができる構造となっている。溶融
塩調製用容器はテフロン製のものを使用するなが好まし
い。ニッケル等の耐蝕性金属材料も使用できるが、フッ
素樹脂製あるいはフッ素樹脂をライニングあるいはコー
ティングした容器が望ましい。尚、使用直前において該
溶融塩調製用容器内部は十分な乾燥を行なう必要がある
In order to carry out the present invention, first, a sealed molten salt preparation container is prepared so that moisture does not enter the prepared molten salt from the outside. The molten salt preparation container has a structure that allows introduction of hydrofluoric acid gas and ammonia, extraction of the molten salt, and introduction and extraction of dry inert gas for pressure adjustment inside the molten salt preparation container. In addition, thermometers, pressure gauges,
It is more preferable if the structure is such that a liquid level gauge can be attached. In addition, it has a structure that allows heating and cooling to remove heat during molten salt preparation and to maintain heat during molten salt storage. It is preferable to use a Teflon container for preparing the molten salt. Corrosion-resistant metal materials such as nickel can also be used, but containers made of fluororesin or lined or coated with fluororesin are preferable. Incidentally, the inside of the molten salt preparation container must be sufficiently dried immediately before use.

次に該溶融塩調製用容器内部を液体窒素より得た乾燥窒
素(N2)ガスで十分に置換する。アルゴン(Ar)、
ヘリウム(He)が如く不活性なガスも使用可能である
が、液化ガスを気化させた乾燥ガスを使用する必要があ
り、コストを勘案するとN2ガスが好適に使用される。
Next, the inside of the molten salt preparation container is sufficiently replaced with dry nitrogen (N2) gas obtained from liquid nitrogen. Argon (Ar),
Although an inert gas such as helium (He) can be used, it is necessary to use a dry gas obtained by vaporizing a liquefied gas, and N2 gas is preferably used in consideration of cost.

容器の内圧はガスシールと乾燥窒素を供給する圧力調整
器により調製され、常時大気圧よりやや高く保たれるの
が好ましい。
The internal pressure of the container is adjusted by a gas seal and a pressure regulator that supplies dry nitrogen, and is preferably kept slightly higher than atmospheric pressure at all times.

アンモニア(NHs)およびフッ化水素酸(HF)はい
ずれもN1(3及びHFの気化ガスを用いる。これらに
含まれる水分含有量は一般的に100〜300ppm以
下であり、外部からの水分侵入が無が無い容器を用いれ
ば、調製された溶融塩の水分含有量も低く保つことがで
きる。
Both ammonia (NHs) and hydrofluoric acid (HF) use vaporized gases of N1 (3 and HF).The moisture content in these is generally 100 to 300 ppm or less, and moisture intrusion from the outside is prevented. By using a solid container, the water content of the prepared molten salt can also be kept low.

NHsガスおよびHFガスはガス導入口を通じ容器内部
へ導入されるが、NH3ガスとHFガスの反応は極めて
速やかに進み、また発熱も大きいため、時に多量に導入
することは避けるべきである。供給速度は容器の大きさ
、除熱能力を勘案し、適宜選択される。
NHs gas and HF gas are introduced into the container through the gas inlet, but since the reaction between NH3 gas and HF gas proceeds extremely quickly and generates a large amount of heat, introduction of large amounts should be avoided. The supply rate is appropriately selected taking into consideration the size of the container and the heat removal capacity.

次に、調製された溶融塩の水分の定量を行なった。溶融
塩が含有する水分は、およそ500ppm以下であり、
簡易な水分測定法であるカールフィシャー法で水分を定
量することは難しい、そこで、溶融塩中の水分含有量は
、1988年(財)電気化学協会秋季大会において、同
志社大学、堀雅彦等によって発表された論文「溶融フッ
化物浴中の水分定量法の検討」に記載の方法によって測
定した。
Next, the water content of the prepared molten salt was determined. The water content of the molten salt is approximately 500 ppm or less,
It is difficult to quantify moisture using the Karl Fischer method, which is a simple moisture measurement method, so the moisture content in molten salt was announced by Masahiko Hori of Doshisha University and others at the 1988 Fall Conference of the Electrochemical Society. It was measured by the method described in the paper ``Study of method for determining water content in molten fluoride baths.''

該測定方法は、バインダーレスカーボンを試験電極とし
て陽極に用い、白金/電解液の示す基準電極電位に対し
電位走査を行なう。この時現れる2つの電流ピークの高
さの比率より、水分を定量する。即ち、2V付近に現れ
るピーク高さは、試験電極の有効表面積に接する溶融塩
中の水分量に比例する。試験電極の有効表面積は8■付
近に現しルピーク高さに比例する。よって2つのピーク
高さの比は溶融塩中の水分量に比例するので、これによ
り電解液中の水分含有量の検量線を求めることができる
In this measurement method, binderless carbon is used as a test electrode as an anode, and potential scanning is performed with respect to a reference electrode potential indicated by platinum/electrolyte. The water content is determined from the ratio of the heights of the two current peaks that appear at this time. That is, the peak height that appears around 2V is proportional to the amount of water in the molten salt that is in contact with the effective surface area of the test electrode. The effective surface area of the test electrode is approximately 8 cm and is proportional to the peak peak height. Therefore, since the ratio of the two peak heights is proportional to the water content in the molten salt, it is possible to obtain a calibration curve for the water content in the electrolytic solution.

これにより求めた溶融塩中の水分含有量は400ppm
以下であり、N11.F、)IあるいはNH,Fより調
製した場合と比較して半分以下であった。
The water content in the molten salt determined from this was 400 ppm.
and N11. The amount was less than half that of the case prepared from F,)I or NH,F.

次に電解を行なうが、炭素電極を用いたNH,F・肝系
溶融塩電解の運転形態は前述した理由により連続的方法
を適用する。
Next, electrolysis is carried out, and for the operation mode of NH,F/liver-based molten salt electrolysis using a carbon electrode, a continuous method is applied for the reasons described above.

まず電解槽に溶融塩を仕込んだ。溶融塩は前述で調製し
たNHiガスとHFガスからの溶融塩を用いたが、電解
開始時だけならば脱水電解を行うことは差し支えないの
で、NH,F・旺あるいはNH,Fを原料として調製さ
れた溶融塩を用いても構わない。
First, molten salt was charged into the electrolytic tank. The molten salt from NHi gas and HF gas prepared above was used, but since it is okay to perform dehydration electrolysis only at the start of electrolysis, it was prepared using NH, F, or NH, F as raw materials. You may also use a molten salt obtained by

脱水電解はNi電極を陽極として、電流密度20mA/
cm”程度で通電量40 A−hr/ l−溶融塩、以
上の電解を行なう。尚、陰極には鉄(Fe)を使用した
Dehydration electrolysis uses a Ni electrode as an anode and a current density of 20 mA/
Electrolysis was carried out at a current flow rate of 40 A-hr/l-molten salt at a current flow rate of about 1.5 cm. Iron (Fe) was used for the cathode.

脱水電解が終了したならば、次に電極を炭素電極に切り
替えて本電解を行なう。連続電解において供給される溶
融塩は電解槽とは別に設けられた溶融塩調製用容器中で
調製された溶融塩を供給しながら行なうが、電解槽その
ものを該溶融塩調製用容器と考えても、本発明ではこれ
を等価に実施出来るものである。即ち、電解槽にNH,
ガスとHFガスの導入口、槽内圧力調製用の設備を新た
に設けるだけでよい。電解が進み溶融塩が消費されるに
従い、NH,ガスと)HFガスを供給すれば良いが、電
解槽内の圧力変動をできるだけ少なくするために、Nl
(、ガスと旺ガスの吹き出し口は、電解槽内の気相部よ
り溶融塩の液中に設けられているのが好ましい。該吹き
出し口は、出来るだけ接近している方が電解槽中の溶融
塩の組成が均一となるため好ましい。またNH3ガス、
FIFガス共に溶融塩にはきわめて速やかに吸収される
ため供給量が少ない場合等は、供給管を逆流する虞があ
る。このためNH,lガスおよびHFガスに乾燥N2ガ
スを10〜20%程度同伴させると逆流は起こらずに安
定に供給が可能となる。
After the dehydration electrolysis is completed, the electrode is then switched to a carbon electrode and the main electrolysis is performed. The molten salt supplied during continuous electrolysis is carried out while supplying the molten salt prepared in a molten salt preparation container provided separately from the electrolytic cell, but even if the electrolytic cell itself is considered as the molten salt preparation container. , the present invention can equivalently implement this. That is, NH,
All that is required is to newly install gas and HF gas inlets and equipment for adjusting the pressure inside the tank. As the electrolysis progresses and the molten salt is consumed, it is sufficient to supply NH, gas, and HF gas, but in order to minimize pressure fluctuations in the electrolytic cell, Nl
(It is preferable that the gas and strong gas outlets are provided in the molten salt liquid rather than in the gas phase part of the electrolytic cell. It is preferable because the composition of the molten salt becomes uniform.Also, NH3 gas,
Since both the FIF gas and the molten salt are absorbed very quickly, if the supply amount is small, there is a risk that the gas will flow backward through the supply pipe. For this reason, if about 10 to 20% of dry N2 gas is entrained in NH, l gas, and HF gas, stable supply is possible without causing backflow.

尚、本発明は炭素電極を用いてNH,F −HF系溶融
塩の電解を行うことを主目的に実施されるものであるが
、Ni等の金属電極において電解を行なうことも、水分
含有量の少ない溶融塩を供給できるため、不純物である
opz 、N、O等の不純物生成量を低く抑えられる利
点を有している6 (実施例) 以下、実施例により本発明を更に具体的に説明する。尚
、以下において%、pp+*は特記しない限り容量基準
を表わす。
Although the present invention is carried out mainly to electrolyze NH, F-HF based molten salt using a carbon electrode, electrolysis can also be carried out using a metal electrode such as Ni, depending on the moisture content. Since the molten salt can be supplied with a small amount of molten salt, it has the advantage of suppressing the amount of impurities such as opz, N, and O produced at a low level. do. In the following, % and pp+* represent capacity standards unless otherwise specified.

実施例1 第1図に示す装置を使用して溶融塩を調製した。Example 1 A molten salt was prepared using the apparatus shown in FIG.

まず、予め内面を十分に乾燥させた容量5Nの溶融塩調
製用容器1に乾燥N2ガスを342/minにて30分
間供給し、容器内部を完全に乾燥N2ガスで置換した。
First, dry N2 gas was supplied for 30 minutes at 342/min to a molten salt preparation container 1 with a capacity of 5N whose inner surface had been sufficiently dried in advance to completely replace the inside of the container with dry N2 gas.

次に溶融塩調製用容器1本体を80°Cの調温浴5に浸
し、液化NH3ガスボンベより供給されるNH3ガス3
およびHFガスボンベより供給されるHFガス4を各々
11 g/sin、39 g/+*inにて約100分
間供給し、組成NH4F・2HFの溶融塩5kgを調製
した。
Next, the main body of the molten salt preparation container 1 is immersed in a temperature control bath 5 at 80°C, and the NH3 gas 3 supplied from the liquefied NH3 gas cylinder is heated.
and HF gas 4 supplied from an HF gas cylinder at a rate of 11 g/sin and 39 g/+*in for about 100 minutes to prepare 5 kg of a molten salt having a composition of NH4F.2HF.

この間、溶融塩調製用容器l内圧の若干の変動が微圧計
6で観測されたが、圧力は正圧に常時保たれた。調製さ
れた溶融塩7の一部を水分定量用の小型セルに導入し、
水分量を測定したところ約300ppmであった。
During this time, slight fluctuations in the internal pressure of the molten salt preparation container l were observed by the micropressure gauge 6, but the pressure was always maintained at a positive pressure. A part of the prepared molten salt 7 is introduced into a small cell for determining water content,
When the moisture content was measured, it was approximately 300 ppm.

次に容量約20!の電解槽9に溶融塩調製用容器1で調
製された溶融塩7で満たし、陽極にNtii極を使用し
て電流密度20■^/cm”で約100OA−hrの脱
水電解を行なった後、陽極のNi電極を炭素電極に切り
替え、電流密度10(laA/cm”で本電解を約1カ
月行なった。この間、溶融塩調製用容器1で調製された
溶融塩を適宜補給し、電解槽中の溶融塩量を一定に保っ
た。
Next, the capacity is about 20! After filling the electrolytic cell 9 with the molten salt 7 prepared in the molten salt preparation container 1 and performing dehydration electrolysis for about 100 OA-hr at a current density of 20 ^/cm'' using an Ntii electrode as an anode, The Ni electrode of the anode was changed to a carbon electrode, and the main electrolysis was carried out at a current density of 10 (laA/cm") for about one month. During this time, the molten salt prepared in the molten salt preparation container 1 was replenished as appropriate, and the electrolysis was carried out in the electrolytic cell. The amount of molten salt was kept constant.

以上の結果、炭素電極を使用しての連続運転において、
陽極効果は発生せず、電解運転を継続することが出来た
As a result, in continuous operation using carbon electrodes,
No anode effect occurred and electrolysis operation could be continued.

実施例2 実施例1において最初に電解槽9に仕込む溶融塩2ON
のみをN)l、F・HFおよびIP各々17kgと6.
5 kgにより調製された水分含有量0.2%の熔融塩
を使用した他は実施例1と同様の方法で行なった。
Example 2 Molten salt 2ON initially charged into the electrolytic cell 9 in Example 1
Only N)l, F, HF and IP 17kg and 6.
The same method as in Example 1 was used except that a molten salt with a water content of 0.2% prepared by 5 kg was used.

その結果、炭素電極を使用しての連続運転において、陽
極効果は発生せず、電解運転を継続することが出来た。
As a result, in continuous operation using carbon electrodes, no anode effect occurred and electrolysis operation could be continued.

実施例3 実施例1で使用した電解槽9にNH,ガス導入口10と
HFガス導入口11の供給口を設けた。この電解槽9に
実施例1と同様の方法で調製された熔融塩7を仕込み、
Ni陽極を使用して脱水電解を行なった。この後、炭素
電極に切り替え電流密度を10011IA/cl+Ig
にて1力月の本電解を行った。この間、消費された溶融
塩の補給は、乾燥N2ガスを10%同伴させた液化NH
3ガスボンベより供給されるNH3ガスをNH3ガス導
入口lOより、無水HFガスポンへより供給されるHF
ガスを肝ガス導入口11より直接電解槽中の溶融塩に吹
き込む方法で行なった。
Example 3 The electrolytic cell 9 used in Example 1 was provided with an NH gas inlet 10 and an HF gas inlet 11. The molten salt 7 prepared in the same manner as in Example 1 was charged into the electrolytic cell 9,
Dehydration electrolysis was performed using a Ni anode. After this, switch to the carbon electrode and increase the current density to 10011IA/cl+Ig.
Main electrolysis was performed for one month at . During this period, the consumed molten salt was replenished with liquefied NH gas accompanied by 10% dry N2 gas.
3 NH3 gas supplied from a gas cylinder is transferred to HF supplied from an NH3 gas inlet lO to an anhydrous HF gas pump.
This was carried out by blowing gas directly into the molten salt in the electrolytic cell through the liver gas inlet 11.

以上の結果、炭素電極を使用しての連続運転において、
陽極効果は発生せず、電解運転を継続することが出来た
As a result, in continuous operation using carbon electrodes,
No anode effect occurred and electrolysis operation could be continued.

実施例4 実施例1において、脱水電解後の本電解においても引続
きNi電極を陽極として使用した他は実施例1と同様に
行なった0本電解中に陽極12より発生するNF2ガス
を陽極ガス出口管15をえて、液体窒素で冷却されたボ
ンベを用いて捕集した。該ガスを室温においてボンベ内
で気化させた後、ガスクロマトグラフィーにて分析を行
なったところ、NZOの含有量は約300ppm、OF
、は検出限界以下であった。
Example 4 In Example 1, the NF2 gas generated from the anode 12 during electrolysis was carried out in the same manner as in Example 1 except that the Ni electrode was continued to be used as an anode in the main electrolysis after dehydration electrolysis. A tube 15 was installed, and the gas was collected using a cylinder cooled with liquid nitrogen. After the gas was vaporized in a cylinder at room temperature, it was analyzed by gas chromatography, and the NZO content was approximately 300 ppm, OF
, was below the detection limit.

(比較例) 比較例1 実施例1において本電解中に補給する溶融塩にNH,F
・旺およびHFにより調製された組成N)1.F・2H
F、水分含有量0.12%の溶融塩を使用し、陽極に炭
素電極を用いて、実施例1と同様の方法で行なった。
(Comparative example) Comparative example 1 In Example 1, NH and F were added to the molten salt to be replenished during the main electrolysis.
- Composition N) prepared by Von and HF 1. F・2H
The same method as in Example 1 was conducted using F, a molten salt with a water content of 0.12% and a carbon electrode as the anode.

その結果、本電解開始後3日目に陽極効果が発生し、電
解の継続が不可能となった。
As a result, an anodic effect occurred on the third day after the start of main electrolysis, making it impossible to continue electrolysis.

比較例2 実施例4において、本電解中に供給する溶融塩にNH,
F −HFおよびHFにより調製された組成NH,F・
28F、水分含有量0.2%の溶融塩を使用した他は実
施例1と同様の方法で行った。本電解中に陽極より発生
するガスを液体窒素で冷却されたボンへを用いて捕集し
た。該ガスを室温においてボンベ内で気化させた後、該
ガスをガスクロマトグラフィーにて分析を行なったとこ
ろ、Neoの含有量は約2000 pp剛、OF、は約
200ppmであった。
Comparative Example 2 In Example 4, NH,
Composition NH,F prepared by F-HF and HF
The same method as in Example 1 was carried out except that a molten salt having a temperature of 28F and a water content of 0.2% was used. The gas generated from the anode during the main electrolysis was collected using a bong cooled with liquid nitrogen. After the gas was vaporized in a cylinder at room temperature, the gas was analyzed by gas chromatography, and the content of Neo was about 2000 ppm, and the content of OF was about 200 ppm.

(発明の効果) 本発明は以上詳細に説明したように、NH,F・肝系溶
融塩の電解法によりNF、ガスを製造するに際し、不溶
性の炭素電極を用いる際に問題となる陽極効果を起こさ
ずに、安定に電解を継続させることの出来る非常に有効
な方法である。
(Effects of the Invention) As explained in detail above, the present invention eliminates the anode effect, which is a problem when using an insoluble carbon electrode, when producing NF and gas by the electrolytic method of NH, F and liver molten salts. This is a very effective method that allows stable electrolysis to continue without causing any problems.

前述の通り、最近、不純物の生成量の非常に少ない炭素
電極が開発されたこともあり、炭素電極においても高純
度ガスが製造できる可能性が高まったが、炭素電極の使
用は陽極効果の発生が大きな1害となっていたものであ
る。
As mentioned above, carbon electrodes that generate very small amounts of impurities have recently been developed, and the possibility of producing high-purity gas using carbon electrodes has increased. This was one of the major harms.

更には、低い水分含有量の溶融塩を用い、継続して電解
を行えることから、水分が原因となる不純物であるNz
o 、opt等の生成量も従来に比較して低く抑えられ
る利点も有している。このことはNi電極を陽極として
使用する従来の製造方法においても同様であることは言
うまでもない。
Furthermore, since electrolysis can be performed continuously using molten salt with a low water content, Nz, an impurity caused by water, can be removed.
It also has the advantage that the production amounts of o, opt, etc. can be kept lower than in the past. Needless to say, this also applies to conventional manufacturing methods that use Ni electrodes as anodes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例及び比較例で使用した溶融塩調製装置及
び電解装置を示す断面図である。 図において、 1−m−溶融塩調製用容器、 2−−−N2ガス導入口、 NH,ガス導入口、 肝ガス導入口、  5−−一調温浴、 微圧計、      7−−−溶融塩、溶融塩抜出口弁
、 電解槽、 NH,ガス導入口(電解槽吹き込み用)IFガス導入口
(電解槽吹き込み用) 陽極、      I3−m−陰極、 隔壁、 陽極ガス出口管、 陰極ガス出口管、 調温用ヒーター及びクーラー 特許出願人 三井東圧化学株式会社
FIG. 1 is a cross-sectional view showing a molten salt preparation device and an electrolysis device used in Examples and Comparative Examples. In the figure, 1-m-container for preparing molten salt, 2--N2 gas inlet, NH, gas inlet, liver gas inlet, 5--1 temperature bath, micropressure gauge, 7--molten salt, Molten salt outlet valve, electrolytic cell, NH, gas inlet (for blowing into the electrolytic cell), IF gas inlet (for blowing into the electrolytic cell), anode, I3-m-cathode, bulkhead, anode gas outlet pipe, cathode gas outlet pipe, Temperature control heater and cooler patent applicant Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1)溶融塩電解法により三弗化窒素ガスを製造するにお
いて、フッ化水素酸とアンモニアより調製された溶融塩
を原料とし、溶融塩電解法により電解を行なうことを特
徴とする三弗化窒素ガスの製造方法。
1) In producing nitrogen trifluoride gas by a molten salt electrolysis method, nitrogen trifluoride is characterized in that a molten salt prepared from hydrofluoric acid and ammonia is used as a raw material, and electrolysis is performed by a molten salt electrolysis method. Gas production method.
JP2164031A 1990-06-25 1990-06-25 Method for producing nitrogen trifluoride gas Expired - Lifetime JP2854934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2164031A JP2854934B2 (en) 1990-06-25 1990-06-25 Method for producing nitrogen trifluoride gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2164031A JP2854934B2 (en) 1990-06-25 1990-06-25 Method for producing nitrogen trifluoride gas

Publications (2)

Publication Number Publication Date
JPH0456789A true JPH0456789A (en) 1992-02-24
JP2854934B2 JP2854934B2 (en) 1999-02-10

Family

ID=15785495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2164031A Expired - Lifetime JP2854934B2 (en) 1990-06-25 1990-06-25 Method for producing nitrogen trifluoride gas

Country Status (1)

Country Link
JP (1) JP2854934B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108384A1 (en) * 2010-03-01 2011-09-09 セントラル硝子株式会社 Method and device for measuring water content in hydrogen fluoride-containing compound
CN106222688A (en) * 2016-07-19 2016-12-14 浙江博瑞电子科技有限公司 A kind of method of ammonium acid fluoride Electrowinning Nitrogen trifluoride

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011108384A1 (en) * 2010-03-01 2011-09-09 セントラル硝子株式会社 Method and device for measuring water content in hydrogen fluoride-containing compound
JP2011179951A (en) * 2010-03-01 2011-09-15 Central Glass Co Ltd Method and instrument for measuring amount of moisture in hydrogen fluoride-containing compound
CN102782491A (en) * 2010-03-01 2012-11-14 中央硝子株式会社 Method and device for measuring water content in hydrogen fluoride-containing compound
KR101469668B1 (en) * 2010-03-01 2014-12-05 샌트랄 글래스 컴퍼니 리미티드 Method and device for measuring water content in hydrogen fluoride-containing compound
US9097688B2 (en) 2010-03-01 2015-08-04 Central Glass Company, Limited Method and device for measuring water content in hydrogen fluoride-containing fluoride salt compounds
CN106222688A (en) * 2016-07-19 2016-12-14 浙江博瑞电子科技有限公司 A kind of method of ammonium acid fluoride Electrowinning Nitrogen trifluoride

Also Published As

Publication number Publication date
JP2854934B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
JPH0755807B2 (en) Method for producing nitrogen trifluoride
EP2143826B1 (en) Method of electrolytically synthesizing nitrogen trifluoride
KR100742484B1 (en) The electrolyzer for manufacturing nitrogen tri-fluoride to minimize the amount of a vaporized hydrogen flouride and the manufacturing method using the same
JPH0456789A (en) Production of gaseous nitrogen trifluoride
JP2809811B2 (en) Method for producing nitrogen trifluoride gas
JPH04131391A (en) Production of gaseous nitrogen trifluoride
JPH02263988A (en) Production of gaseous nitrogen trifluoride
US2534638A (en) Electrolytic production of fluorine
JPH03170307A (en) Production of nitrogen trifluoride
JPH11335882A (en) Production of gaseous nitrogen trifluoride
US3414495A (en) Method of electrolytic production of oxygen difluoride
KR101411714B1 (en) Nickel based electrode and production of nitrogen trifluoride using same
Tasaka et al. Electrolytic preparation of Nitrogen Trifluoride in KHF2 HF; CO (NH2) 2system
JP2764623B2 (en) Electrolytic cell
JP2004011001A (en) Fluorine electrolytic cell
JPH0230785A (en) Method for electrolytic fluorination
JPH0243400A (en) Electrolytic cell
JP2698457B2 (en) Electrolytic cell
US3276981A (en) Electrolytic production of oxygen difluoride
JP2000104187A (en) Electrolytic cell (1)
JPH03236486A (en) Production of nitrogen trifluoride by electrolysis of molten salt
JPH04160176A (en) Electrolytic cell
RU2228971C1 (en) Method of production of nitrogen trifluoride
JP3162594B2 (en) Electrolytic solution and method for producing nitrogen trifluoride gas using the same
JPH04311585A (en) System for producing ozone-containing gas

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081120

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091120

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101120

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101120

Year of fee payment: 12