JPH02263988A - Production of gaseous nitrogen trifluoride - Google Patents

Production of gaseous nitrogen trifluoride

Info

Publication number
JPH02263988A
JPH02263988A JP1334811A JP33481189A JPH02263988A JP H02263988 A JPH02263988 A JP H02263988A JP 1334811 A JP1334811 A JP 1334811A JP 33481189 A JP33481189 A JP 33481189A JP H02263988 A JPH02263988 A JP H02263988A
Authority
JP
Japan
Prior art keywords
molten salt
electrolysis
gas
water content
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1334811A
Other languages
Japanese (ja)
Other versions
JPH0718032B2 (en
Inventor
Makoto Aritsuka
眞 在塚
Tokuyuki Iwanaga
岩永 徳幸
Hisashi Hokonohara
鉾之原 久
Toshihiko Nishitsuji
西辻 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP1334811A priority Critical patent/JPH0718032B2/en
Publication of JPH02263988A publication Critical patent/JPH02263988A/en
Publication of JPH0718032B2 publication Critical patent/JPH0718032B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To obtain high purity gaseous NF3 having a low CF4 content by electrolyzing an NH4F.HF-based molten salt while keeping the water content in a prescribed range and replenishing the salt when gaseous NF3 is produced by electrolyzing the salt. CONSTITUTION:A molten salt is prepd. with NH4F and/or NN4F.HF and RF as starting materials. This molten salt is previously dehydrated and electrolyzed to regulate the water content to 0.01-1wt.% and electrolysis is carried out. After this electrolysis, the molten salt is replenished with 0.1-10wt.% of the above-mentioned starting materials basing on the total amt. of the salt and the replenished salt is electrolyzed while keeping the water content in the range of 0.01-1wt.%.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は三弗化窒素ガス(Nh)の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing nitrogen trifluoride gas (Nh).

更に詳しくは、弗化アンモニウムまたは/及び酸性弗化
アンモニウムと無水弗化水素酸を原料とするN11.F
・IIF系溶融溶融塩解法によるNF□ガスの製造方法
に関する。
More specifically, N11. F
-Relates to a method for producing NF□ gas by IIF-based fused salt solution method.

[従来の技1ネー及び発明が解決しようとする課題]N
F、は沸点が−129’C1融点が一207°Cの物性
を示す無色の気体である。
[Conventional techniques and problems to be solved by the invention]N
F is a colorless gas with a boiling point of -129'C1 and a melting point of 1207°C.

NF、ガスは半導体のドライエツチング剤やCVD装置
のクリーニングガスとして近年注目されているが、これ
らの用途に使用されるNF、ガスは、高純度のものが要
求されている。
NF and gas have recently attracted attention as a dry etching agent for semiconductors and a cleaning gas for CVD equipment, but NF and gas used for these purposes are required to be of high purity.

しかしながら製造されたNFffガスは、窒素(N2)
、二弗化二窒素(NzFz)、亜酸化窒素(Neo) 
、二酸化炭素(CO,) 、二弗化酸素(opt) 、
四弗化炭素(CF4) 、酸素(0□)、未反応の弗化
水素(IIF)等の不純物を比較的多量に含んでおり、
本発明で対象とする溶融塩電解法で製造されたNFff
ガスも同様である。従って、上記用途としての高純度の
NF、ガスを得るためには精製が必要である。
However, the produced NFff gas is nitrogen (N2)
, dinitrogen difluoride (NzFz), nitrous oxide (Neo)
, carbon dioxide (CO,), oxygen difluoride (OPT),
Contains relatively large amounts of impurities such as carbon tetrafluoride (CF4), oxygen (0□), and unreacted hydrogen fluoride (IIF),
NFff manufactured by the molten salt electrolysis method targeted by the present invention
The same applies to gas. Therefore, purification is necessary to obtain high-purity NF and gas for the above-mentioned uses.

NFxガス中のこれらの不純物を除去する精製方法とし
ては、下記する方法が知られている。
As a purification method for removing these impurities from NFx gas, the following method is known.

即ち、1)Nghはに1.1lazs、 NaxSzO
s等の水溶液と接触させる方法(J、 Massonn
e+ケミ−・インジェニュール・テヒニール(Chew
、 Ing、 Techn、)41+(12)、695
.(1969) )や148.9〜537.8°Cの温
度で金属と接触させる方法(特公昭59−15081号
)等で除去することができる。2) )IPはtoo’
c前後に加熱した状態でNaFと接触させる方法等で簡
便に除去できる。3)OFtは、Na1SzOz 、に
1. Na、SO)、1111NazS等の水溶液と接
触させる方法で除去することができる。4)N2OやC
O□等のような比較的高沸点の成分はゼオライト等の吸
着剤と接触させることで効率よく除去することができる
(Chew、Eng。
That is, 1) Ngh is 1.1lazs, NaxSzO
A method of contacting with an aqueous solution such as s (J, Massonn
e+Chemie Ingenur Tehenir (Chew
, Ing, Techn, )41+(12), 695
.. (1969)) or a method of contacting with metal at a temperature of 148.9 to 537.8°C (Japanese Patent Publication No. 15081/1981). 2)) IP is too'
It can be easily removed by heating it to around c and contacting it with NaF. 3) OFt is Na1SzOz, 1. It can be removed by contacting with an aqueous solution of Na, SO), 1111NazS, or the like. 4) N2O and C
Components with relatively high boiling points such as O□ can be efficiently removed by contacting with adsorbents such as zeolites (Chew, Eng.

84、116. (1977)等) 、 5)NzやO
R等の低沸点成分は、−150°C〜−190°Cの温
度に冷却してNF、を液化することで除去することがで
きる。
84, 116. (1977) etc.), 5) Nz and O
Low boiling point components such as R can be removed by cooling to a temperature of -150°C to -190°C and liquefying NF.

しかしながらCF4は上記した各方法では除去されず、
その効果的な除去方法は未だ知られていない。またCF
4は沸点が一128°Cであって、NF3の沸点と非常
に接近しているのでNf”+の深冷蒸留によっても分離
が不可能である。
However, CF4 is not removed by each of the above methods,
An effective method for removing it is not yet known. Also CF
4 has a boiling point of 1128°C, which is very close to the boiling point of NF3, so it is impossible to separate it even by cryogenic distillation of Nf''+.

このような状況から、上記各方法で精製されたNFsガ
ス中には、CF4が100〜200容量ppm程度含有
されている。これが大きく影響して現在市販されている
NF、ガスの純度は99.99容量%が限度であり、最
近の更なる高純度の要求を満足していないのが実情であ
る。また、NF、ガス中にCP、が含有されていると、
このNF3ガスを使用して半導体のドライエツチングや
CVD装置のクリーニングを行なった場合、十分満足す
る結果が得られないという問題もある。
Under these circumstances, the NFs gas purified by each of the above methods contains about 100 to 200 ppm by volume of CF4. As a result of this, the purity of currently commercially available NF and gases is limited to 99.99% by volume, and the current situation is that they do not satisfy recent demands for even higher purity. In addition, if CP is contained in the NF gas,
When this NF3 gas is used for dry etching of semiconductors or cleaning of CVD equipment, there is also the problem that sufficiently satisfactory results cannot be obtained.

一方、原料であるNH,F・IIF系溶融溶融塩常に吸
湿性が強いので、原料調製の段階でどうしても空気中の
水分を吸湿する。かかる水分を含有した溶融塩を電解す
ると、この水分の影響でOF、とH2が副生じ、このO
Ft と■、は陽極から発生するNF、ガス中に混入し
爆発の原因となる。従って、溶融塩電解法によるNF3
ガスの製造においては、予め電解(本電解)時の電流密
度よりも低い電流を流して行なう、いわゆる脱水電解が
不可欠であり、脱水電解終了後引続いて本電解に移行す
る。そして電解槽中の溶融塩が少量になった時点で電解
を停止して、再度原料を調製した後再び脱水電解、本電
解を繰り返し行なうという回分式電解である。
On the other hand, since the raw material NH, F·IIF-based molten salt is always highly hygroscopic, it inevitably absorbs moisture from the air during the raw material preparation stage. When a molten salt containing such moisture is electrolyzed, OF and H2 are produced as by-products due to the influence of this moisture, and this O
Ft and ■ mix into the NF and gas generated from the anode, causing an explosion. Therefore, NF3 by molten salt electrolysis method
In the production of gas, so-called dehydration electrolysis is indispensable, in which a current lower than the current density during electrolysis (main electrolysis) is passed in advance, and after the dehydration electrolysis is completed, the main electrolysis is carried out. This is a batch type electrolysis in which the electrolysis is stopped when the amount of molten salt in the electrolytic cell becomes small, and after the raw materials are prepared again, dehydration electrolysis and main electrolysis are repeated.

従って操業率が低く、また電力原単位等もそれだけ悪化
するので、連続式電解方法の確立が望まれている。
Therefore, the operation rate is low and the electric power consumption rate is also deteriorated accordingly, so it is desired to establish a continuous electrolysis method.

(課題を解決するための手段) 本発明者等はかかる状況に鑑み、溶融塩電解法によって
NF3ガスを製造するに際し、連続的に電解が可能で、
かつ生成したNhガス中のCF4の含有量が少なく、併
せて上記各方法で精製することにより、極めて高純度な
Nhガスを得る方法について鋭意検討を重ねた結果、溶
融塩中の水分含有量を0.01〜1.0重量%の範囲に
限定して、原料の補給を連続的にまたは間歇的に行なえ
ばCF、含有量の少ないNF、ガスが連続して得られ、
しかも溶融塩電解が回分式でな(連続的に行なえること
を見出し、本発明を完成するに至ったものである。
(Means for Solving the Problems) In view of the above situation, the present inventors have developed a method in which continuous electrolysis is possible when producing NF3 gas by the molten salt electrolysis method.
Moreover, the content of CF4 in the generated Nh gas is small, and as a result of intensive studies on how to obtain extremely high-purity Nh gas by purifying it with each of the above methods, we have found that the water content in the molten salt can be reduced. By limiting the amount to 0.01 to 1.0% by weight and replenishing the raw material continuously or intermittently, CF, NF with a small content, and gas can be continuously obtained.
Moreover, they discovered that molten salt electrolysis can be carried out continuously rather than batchwise, leading to the completion of the present invention.

即ち、弗化アンモニウムまたは/及び酸性弗化アンモニ
ウムと無水弗化水素酸を原料とする溶融塩電解法により
三弗化窒素ガスを製造するに際し、溶融塩中の水分含有
量を0.01〜1.0重量%の範囲で電解する方法であ
って、予め溶融塩電解浴の脱水電解を行ない、次に本電
解を行なった後、該原料の補給を行なうに際し、該原料
の補給量が全電解俗世に対して0.1〜10重量%の範
囲で連続的にまたは間歇的に補給せしむることを特徴と
する三弗化窒素ガスの製造方法である。
That is, when producing nitrogen trifluoride gas by a molten salt electrolysis method using ammonium fluoride or/and acidic ammonium fluoride and anhydrous hydrofluoric acid as raw materials, the water content in the molten salt is set to 0.01 to 1. This is a method of electrolyzing in the range of .0% by weight, in which the molten salt electrolytic bath is dehydrated and electrolyzed in advance, then the main electrolysis is performed, and when the raw material is replenished, the amount of the raw material supplied is equal to the total electrolysis amount. This is a method for producing nitrogen trifluoride gas, characterized in that nitrogen trifluoride gas is supplied continuously or intermittently in a range of 0.1 to 10% by weight.

(発明の詳細な開示) 以下本発明の詳細な説明する。(Detailed disclosure of the invention) The present invention will be explained in detail below.

第1図は電解装置の一例を示す図であり、陽極3からは
NF3ガスが、陰極4からはlhガスが発生するが、N
PIガスと11□ガスが混合すると爆発するので、この
混合を防ぐため陽極3と陰極4との間には隔板5が設け
である。また、電解にあたっては、陽極3例及び陰極4
側にそれぞれN2ガス等の不活性ガスをキャリヤーガス
として送入する場合もある。
FIG. 1 is a diagram showing an example of an electrolyzer, in which NF3 gas is generated from the anode 3 and lh gas is generated from the cathode 4.
If PI gas and 11□ gas mix, they will explode, so a partition plate 5 is provided between the anode 3 and cathode 4 to prevent this mixing. In addition, for electrolysis, three anodes and four cathodes were used.
In some cases, an inert gas such as N2 gas is introduced into each side as a carrier gas.

NIl、P・IIF系溶融溶融塩料としてNF3ガスを
得る場合、溶融塩中に水分が存在すると前記の通りOF
、と11□が副生じ、これが陽極から発生するNF3ガ
ス中に混入して爆発の原因となるので、この点では好ま
しくないが、溶融塩中の水分が1.[1重世%(以下、
%は特記しない限り重量%を表す)以下ではops と
I+、の副生量が少なく、爆発の危険性のないことを本
発明者等は確認している。
When obtaining NF3 gas as a NIl, P/IIF-based molten salt material, if water is present in the molten salt, OF
, and 11□ are produced as by-products, which are mixed into the NF3 gas generated from the anode and cause an explosion. This is not desirable from this point of view, but if the water in the molten salt is 1. [1st generation% (hereinafter referred to as
The inventors have confirmed that the amount of by-products of ops and I+ is small and there is no danger of explosion.

一方、本発明者等は溶融塩中の水分含有量と、NF、ガ
ス中のCF、含有量に関係があるという知見を得た。即
ち、溶融塩中に水分が若干存在すると、NF、lガス中
のCF4の含有量が低下するのである。
On the other hand, the present inventors have found that there is a relationship between the water content in the molten salt and the content of NF and CF in the gas. That is, when some moisture is present in the molten salt, the content of CF4 in the NF and l gases decreases.

その原因については詳らかではないが、おそらく、原料
中の有機物とIIFの酸化により発生したF、とが反応
してCF、となるよりも、水の分解により発生した島と
有機物が反応してCOt となる方が優先的であるため
であり、その結果CF、の含有量が低下するものと考え
られる。
The reason for this is not clear, but it is likely that the organic matter in the raw material and F generated by the oxidation of IIF react to form CF, or the islands generated by water decomposition react with the organic matter to produce COt. It is considered that this is preferential, and as a result, the content of CF decreases.

本発明では溶融塩中の水分が特定の範囲になるまで脱水
電解を行ない、その後本電解を行なう。
In the present invention, dehydration electrolysis is performed until the water content in the molten salt falls within a specific range, and then main electrolysis is performed.

本電解を長時間継続して行なうにしたがって、電解液が
減少していくので熔融塩の補給を行なわなければならな
い。
As this electrolysis continues for a long time, the electrolytic solution decreases, so it is necessary to replenish the molten salt.

しかしながら、溶融塩が少量になった時点で電解を停止
し、再び溶融塩を調製して再度脱水電解を行ない、引き
続いて本電解を行なうという回分方式では作業能率が大
幅に低下をきたすので好ましくない。
However, a batch method in which electrolysis is stopped when the amount of molten salt becomes small, molten salt is prepared again, dehydration electrolysis is performed again, and then main electrolysis is performed is not preferable because the work efficiency is significantly reduced. .

そこで、本発明者等はン容融塩中の水分含有量が0.0
1〜1.0%であれば上記の通り、OF、と112の副
生量が少なく、爆発の危険性のないことを確認している
。水分含有量が0.01%未満では、CF、の含有量の
低下が不十分であり、逆に1.0%を越えると、上記の
通り生成したNF3ガスが爆発する危険性が生ずるので
不都合である。
Therefore, the present inventors have determined that the water content in the molten salt is 0.0.
If it is 1 to 1.0%, as mentioned above, the amount of by-products of OF and 112 is small, and it has been confirmed that there is no danger of explosion. If the water content is less than 0.01%, the reduction in CF content will be insufficient, and if it exceeds 1.0%, there will be a risk of the NF3 gas generated as described above exploding, which is disadvantageous. It is.

本発明では上記のように溶融塩中の水分含有量が0.0
1〜1.0%であれば生成したNFiガスが爆発する危
険性もなく安全に操業できるのである。したがって、溶
融塩中の水分含有量が上記範囲を外れないように溶融塩
を補給してやれば安全性が確保できるのみならずCF、
の含有量の低下も達成されるのである。
In the present invention, as described above, the water content in the molten salt is 0.0.
If it is 1 to 1.0%, the operation can be carried out safely without the risk of the generated NFi gas exploding. Therefore, if the molten salt is replenished so that the water content in the molten salt does not deviate from the above range, not only can safety be ensured, but also CF,
A reduction in the content of is also achieved.

通常、溶融塩は調製する段階で空気中の水分を吸湿して
1〜2%の水分を含有している。そこで電解継続中にこ
の新たに調製した溶融塩を、連続的に、または間歇的に
少量ずつ電解槽に供給すれば、溶融塩中の水分含有量を
上記の範囲に維持することができると共に、溶融塩の補
給を行なうことが出来る。したがって、脱水電解は最初
の電解開始時にのみ行なうだけでよく、以後は連続的に
本電解を行なうことができるのである。
Usually, molten salt absorbs moisture from the air during preparation and contains 1 to 2% moisture. Therefore, if this newly prepared molten salt is continuously or intermittently supplied to the electrolytic cell in small amounts during electrolysis, the water content in the molten salt can be maintained within the above range, and Molten salt can be replenished. Therefore, dehydration electrolysis only needs to be carried out at the beginning of the first electrolysis, and the main electrolysis can be carried out continuously thereafter.

本発明では溶融塩の補給は全電解浴量に対して0.1−
10%の範囲で補給するのが好ましい、0.1%未満で
は溶融塩中の水分の増加はほとんどないものの、頻繁に
補給の必要があり、作業が繁雑となり好ましくない。1
0%を越えると急激な水分の増加、液面の変動、温度変
化があり好ましくない。
In the present invention, the replenishment of molten salt is 0.1-
It is preferable to replenish in a range of 10%; if it is less than 0.1%, the water content in the molten salt will hardly increase, but it will require frequent replenishment, making the work complicated and undesirable. 1
If it exceeds 0%, there will be a sudden increase in moisture content, fluctuations in liquid level, and temperature changes, which is undesirable.

更に、本発明では連続的に溶融塩の補給を行なえば急激
な水分の増加、液面の変動、温度変化が小さくなるので
より好ましい。
Furthermore, in the present invention, it is more preferable to continuously replenish the molten salt because this will reduce the rapid increase in water content, fluctuations in liquid level, and temperature changes.

本発明では溶融塩中の水分含有量を0.01〜1.0%
のW1囲に維持しながら、電解塩の補給を行ない、継続
して電解を行なうことができる。
In the present invention, the water content in the molten salt is 0.01 to 1.0%.
It is possible to continue electrolysis by replenishing the electrolytic salt while maintaining the W1 range.

従って、電解中に電解槽中の溶融塩の水分含有量を測定
しなければならない。しかしながら、上記溶融塩中の水
分含有量は0.01〜1.0%と少量乃至in!である
ので、簡易な水分測定法であるカールフィシャー法は適
用できない、そこで本発明では、溶融塩中の水分含有量
は、1988年(財)N、電化学協会秋季大会において
、同志社大学、堀雅彦等によって発表された論文「溶融
フン化物浴中の水分定量法の検討」に記載の方法によっ
て測定した。
Therefore, the water content of the molten salt in the electrolytic cell must be measured during electrolysis. However, the water content in the molten salt is 0.01 to 1.0%, which is a small amount to in! Therefore, the Karl Fischer method, which is a simple moisture measurement method, cannot be applied.Therefore, in the present invention, the moisture content in the molten salt is It was measured by the method described in the paper "Study of method for determining water content in molten fluoride baths" published by Masahiko et al.

即ち、バインダーレスカーボンを試験電極として陽極に
用い、白金/電解液の示す基f$電極電位に対し電位走
査を行なう、この時現れる2つの電流ピークの高さの比
率より、水分を定量する。即ち、2V付近に現れるピー
ク高さは、試験電極の有効表面積に接する溶融塩中の水
分量に比例する。
That is, using binderless carbon as the anode as a test electrode, a potential scan is performed with respect to the base f$ electrode potential shown by the platinum/electrolyte solution, and the water content is determined from the ratio of the heights of two current peaks that appear at this time. That is, the peak height that appears around 2V is proportional to the amount of water in the molten salt that is in contact with the effective surface area of the test electrode.

試験7B、Pfxの有効表面積は8■付近に現れるピー
ク高さに比例する。よって2つのピーク高さの比は溶融
塩中の水分量に比例するので、これにより電解液中の水
分含有量の検量線を求めることができるのである。
Test 7B, the effective surface area of Pfx is proportional to the peak height appearing around 8■. Therefore, since the ratio of the two peak heights is proportional to the water content in the molten salt, it is possible to obtain a calibration curve for the water content in the electrolytic solution.

尚、本発明の方法により製造されたNF3ガスは、前記
の公知の各方法により精製することにより、CF4含有
量の少ない極めて高純度のINF、ガスを容易に得るこ
とができるのである。
Incidentally, the NF3 gas produced by the method of the present invention can be purified by the above-mentioned known methods to easily obtain extremely high purity INF and gas with a low CF4 content.

〔実施例] 以下、実施例により本発明を更に具体的に説明する。尚
、以下においてpplは特記しない限り容量基準を表わ
す。
[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples. Note that in the following, ppl represents a capacity standard unless otherwise specified.

実施例1 第1図に示す電解装置を使用して、溶融塩電解によるN
F、ガスの製造を行なった。
Example 1 N by molten salt electrolysis using the electrolyzer shown in Figure 1.
F. Gas was produced.

即ち、電解槽1に酸性弗化アンモニウム(NH,F)I
F) ヲ24kg仕込ミ、120°Cの温度マチTI−
温シナがらこれに無水のIIFを6kg徐々に添加して
熔融塩2を調製した(IIFハHaFモル比1.7、水
分含有量1.8%)。
That is, acidic ammonium fluoride (NH,F) I is placed in the electrolytic cell 1.
F) 24kg preparation, 120°C temperature TI-
Molten salt 2 was prepared by gradually adding 6 kg of anhydrous IIF to the mixture while it was still warm (IIF/HaF molar ratio 1.7, water content 1.8%).

しかる後、陽極3から陰極4へ20アンペア(A)の電
流を流して、脱水電解を72時間行なった。この時点の
?6 n+塩2の水分含有量は0.32%であったので
、電流を80Aに上昇して本電解に移行した。
Thereafter, a current of 20 amperes (A) was passed from the anode 3 to the cathode 4 to perform dehydration electrolysis for 72 hours. At this point? Since the water content of 6 n+ salt 2 was 0.32%, the current was increased to 80 A and the main electrolysis was started.

本電解の続行により電解槽1中の溶融塩2が減少するの
で、予め原料槽9で調製したII P / N If、
 Fモル比が1.7、水分含有量が1.8%の溶融塩1
0を、12時間毎に0.5kgずつ間歇的に電解槽1に
補給して、本電解を300時間行なった。
As the main electrolysis continues, the molten salt 2 in the electrolytic cell 1 decreases, so the II P/N If prepared in advance in the raw material tank 9,
Molten salt 1 with an F molar ratio of 1.7 and a water content of 1.8%
The main electrolysis was carried out for 300 hours by intermittently replenishing 0.5 kg of 0.0 to the electrolytic cell 1 every 12 hours.

本電解時の熔融塩2の水分含有■を5時間毎に測定した
が水分含有量は0.03〜0.07%であった。
The water content (2) of the molten salt 2 during the main electrolysis was measured every 5 hours, and the water content was 0.03 to 0.07%.

また、本電解時の陽極3から発生したNF3ガス中のN
F+及びCF、の濃度も5時間毎に測定したが、その結
果は第1表に示す通りであった。
In addition, N in the NF3 gas generated from the anode 3 during the main electrolysis
The concentrations of F+ and CF were also measured every 5 hours and the results are shown in Table 1.

実施例2〜4 原料槽9で調製した溶融塩10の水分含有量及び脱水電
解時間を第1表に示す値に変更した以外は、実施例1と
同一条件で脱水電解及び引続いて本電解を行なった。
Examples 2 to 4 Dehydration electrolysis and subsequent main electrolysis were carried out under the same conditions as in Example 1, except that the water content of the molten salt 10 prepared in the raw material tank 9 and the dehydration electrolysis time were changed to the values shown in Table 1. I did this.

本電解時の電解槽1中の溶融塩2の水分含有量、陽極3
から発生したNF、ガス中のNF、及びCPaの濃度は
第1表に示す通りであった。
Moisture content of molten salt 2 in electrolytic cell 1 during main electrolysis, anode 3
The concentrations of NF generated from the gas, NF in the gas, and CPa were as shown in Table 1.

実施例5 第1図に示す電解装置を使用して、溶融塩電解によるN
F3ガスの製造を行なった。
Example 5 N by molten salt electrolysis using the electrolyzer shown in Figure 1.
F3 gas was produced.

即ち、電解槽lに酸性弗化アンモニウム(NH,F・1
1F)を24kg仕込み、120°Cの温度まで昇温し
ながらこれに無水のIIFを6kg徐々に添加して溶融
塩2を調製した(IIP/N11.Fモル比1.8、水
分含有量1.9%)。
That is, acidic ammonium fluoride (NH, F・1
1F) was charged, and 6 kg of anhydrous IIF was gradually added thereto while raising the temperature to 120°C to prepare molten salt 2 (IIP/N11.F molar ratio 1.8, water content 1). .9%).

しかる後、陽極3から陰極4へ20アンペア(A)の電
流を流して、脱水電解を70時間行なった。この時点の
溶融塩2の水分含有量は0.35%であったので、電流
を80Aに上昇して本電解に移行した。
Thereafter, a current of 20 amperes (A) was passed from the anode 3 to the cathode 4 to perform dehydration electrolysis for 70 hours. Since the water content of the molten salt 2 at this point was 0.35%, the current was increased to 80 A and the main electrolysis began.

本電解の続行により電解槽1中の溶融塩2が減少するの
で、予め原料槽9で調製したIIF/NH,Fモル比が
1.8、水分含有量が1.9%の溶融塩10を、ダイヤ
プラムポンプを利用して42g/hのフィード量で連続
的に補給して、本電解を300時間行なっ本電解時の溶
融塩2の水分含有■を5時間毎に測定したが水分含有量
は0.07〜0.09%で非常に安定した状態であった
。また、本電解時の陽極3から発生したNFIガス中の
NF、及びCFaの濃度も5時間毎に測定したが、その
結果は第1表に示す通りであった。
As the main electrolysis continues, the molten salt 2 in the electrolytic cell 1 decreases, so the molten salt 10 with an IIF/NH,F molar ratio of 1.8 and a water content of 1.9% prepared in advance in the raw material tank 9 is The main electrolysis was carried out for 300 hours using a diaphragm pump to continuously replenish the feed rate at a feed rate of 42 g/h, and the moisture content of the molten salt 2 during the main electrolysis was measured every 5 hours. was in a very stable state at 0.07-0.09%. Furthermore, the concentrations of NF and CFa in the NFI gas generated from the anode 3 during the main electrolysis were measured every 5 hours, and the results were as shown in Table 1.

比較例1 (従来の方法) 本電解時における電解槽1への溶融塩10の補給を行な
わずに溶融塩電解を行なった。
Comparative Example 1 (Conventional Method) Molten salt electrolysis was performed without replenishing molten salt 10 to electrolytic cell 1 during main electrolysis.

即ち、実施例1と同様に電解槽1にNIl、F・肝を2
4kgと無水のIIFを6kg仕込み、溶融塩2を調製
した(IIFハI1.Fモル比1.7、水分含有量1.
8%)後、20Aの電流を流して、脱水電解を96時間
行なった。
That is, in the same manner as in Example 1, 2 NIl and F liver were placed in the electrolytic cell 1.
Molten salt 2 was prepared by charging 4 kg of anhydrous IIF and 6 kg of anhydrous IIF (IIF-I1.F molar ratio 1.7, water content 1.7 kg).
8%), a current of 20 A was applied to perform dehydration electrolysis for 96 hours.

この時点での熔融塩2の水分含有量は0.005%であ
ったので、電流を80Aに上昇して本電解に移行し、1
50時間本電解を行なった。
At this point, the water content of molten salt 2 was 0.005%, so the current was increased to 80A and the main electrolysis started.
Main electrolysis was performed for 50 hours.

本電解により17られたNF3ガス中のNF、の′01
度は54容量%で、CFaの濃度は110ppmであっ
た。
'01 of NF in NF3 gas produced by this electrolysis
The concentration was 54% by volume, and the concentration of CFa was 110 ppm.

〔発明の効果] 本発明は以上詳細に説明したように、!+11.F・I
IF系溶融溶融塩解法によりNF3ガスを製造するに際
し、溶融塩中の水分含有量を0.01〜1.0%の範囲
に維持し、電解塩の補給を行ないながら、長期間連続し
て電解するというものであり、これによって精製によっ
て除去することが不可能であったCF4含有世の少ない
Nhガスが得られる。従って、本発明の方法により製造
されたNF、ガスを前記の如き方法で精製すれば、半導
体のドライエツチング剤やCvD装置のクリーニングガ
スとして好適な、CF、の含有量が少なく、かつ極めて
高純度のNl?ffガスを得ることができるのである。
[Effects of the Invention] As described above in detail, the present invention has the following effects! +11. F.I.
When producing NF3 gas by the IF-based molten salt solution method, electrolysis is carried out continuously for a long period of time while maintaining the water content in the molten salt in the range of 0.01 to 1.0% and replenishing the electrolytic salt. As a result, Nh gas containing less CF4, which could not be removed by purification, can be obtained. Therefore, if the NF gas produced by the method of the present invention is purified by the method described above, it will have a low CF content and extremely high purity, which is suitable as a dry etching agent for semiconductors or a cleaning gas for CvD equipment. Nl? ff gas can be obtained.

また本発明の方法は、溶融塩電解を長期間連続的に電解
を行なうことを可能にしたものであるので、従来の溶融
塩電解法のように、脱水電解、引続いて本電解を行ない
、溶融塩が少量になった時点で電解を停止し、再び溶融
塩を調製して再度脱水電解、引続いて本電解を行なうと
いう回分方法ではないので、操業率及び電力原単位等を
向上させることかできるのである。更に電解作業も簡素
化できるという利点もある。
Furthermore, since the method of the present invention makes it possible to perform molten salt electrolysis continuously for a long period of time, as in the conventional molten salt electrolysis method, dehydration electrolysis is performed, followed by main electrolysis, Since this is not a batch method in which electrolysis is stopped when the amount of molten salt becomes small, molten salt is prepared again, dehydration electrolysis is performed again, and then main electrolysis is performed, the operating rate and power consumption rate can be improved. It is possible. Another advantage is that electrolytic work can be simplified.

以上の如く、本発明の方法で製造されたNP、ガスはC
F、の含有量が少ないので、従来公知の前記の如き方法
で精製すれば極めて高純度のNFffガスが得られる点
と、電解を連続的に行なえることが相俟って、経済的な
価値は極めて大なるものがある。
As described above, the NPs and gas produced by the method of the present invention are C
Since the content of F is small, extremely high purity NFff gas can be obtained by purification using the conventionally known method described above, and the fact that electrolysis can be performed continuously makes it economically valuable. There is something very big about it.

また、本発明の方法は、アンモニアと無水弗化水素酸を
原料として、i8融塩電解法によって旺。
In addition, the method of the present invention uses ammonia and anhydrous hydrofluoric acid as raw materials and electrolyzes them by i8 molten salt electrolysis method.

ガスを製造する方法にも適用できることは勿論である。Of course, the present invention can also be applied to methods of producing gas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例及び比較例で使用した電解装Kを示す図
である。 図において、 1−−−−・−電解槽、    8−−−−−一加熱装
置、2・・−一一一一溶融塩、    9−−−一−−
原料槽、3−−−−一陽極、     10−−−−・
−溶融塩、4−−−一一−−−陰極、     11−
−−一原料補給管、隔板、 弁、 F3 ガス出口管、 ・・・−・・加熱装置 ・−・−・・)1!ガス出口管、 を示す。
FIG. 1 is a diagram showing an electrolyzer K used in Examples and Comparative Examples. In the figure, 1------ Electrolytic cell, 8---1 Heating device, 2...--1111 Molten salt, 9---1--
Raw material tank, 3----one anode, 10----
-molten salt, 4--11--cathode, 11-
--1 Raw material supply pipe, diaphragm, valve, F3 gas outlet pipe, ... Heating device ----)1! Gas outlet pipe, shown.

Claims (1)

【特許請求の範囲】 1)弗化アンモニウムまたは/及び酸性弗化アンモニウ
ムと無水弗化水素酸を原料とする溶融塩電解法により三
弗化窒素ガスを製造するに際し、溶融塩中の水分含有量
を0.01〜1.0重量%の範囲で電解することを特徴
とする三弗化窒素ガスの製造方法。 2)弗化アンモニウムまたは/及び酸性弗化アンモニウ
ムと無水弗化水素酸を原料とする溶融塩電解法により三
弗化窒素ガスを製造するに際し、予め溶融塩電解浴の脱
水電解を行ない、次に本電解を行なった後、該原料の補
給を行なうに際し、該原料の補給量が全電解浴量に対し
て0.1〜10重量%の範囲で連続的にまたは間歇的に
補給せしむることを特徴とする三弗化窒素ガスの製造方
法。
[Scope of Claims] 1) When nitrogen trifluoride gas is produced by a molten salt electrolysis method using ammonium fluoride or/and acidic ammonium fluoride and anhydrous hydrofluoric acid as raw materials, the water content in the molten salt A method for producing nitrogen trifluoride gas, which comprises electrolyzing nitrogen trifluoride gas in a range of 0.01 to 1.0% by weight. 2) When producing nitrogen trifluoride gas by the molten salt electrolysis method using ammonium fluoride or/and acidic ammonium fluoride and anhydrous hydrofluoric acid as raw materials, the molten salt electrolytic bath is dehydrated and electrolyzed in advance, and then After carrying out the main electrolysis, when replenishing the raw material, the raw material is replenished continuously or intermittently within a range of 0.1 to 10% by weight based on the total amount of the electrolytic bath. A method for producing nitrogen trifluoride gas, characterized by:
JP1334811A 1988-12-27 1989-12-26 Method for producing nitrogen trifluoride gas Expired - Lifetime JPH0718032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1334811A JPH0718032B2 (en) 1988-12-27 1989-12-26 Method for producing nitrogen trifluoride gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32787288 1988-12-27
JP63-327872 1988-12-27
JP1334811A JPH0718032B2 (en) 1988-12-27 1989-12-26 Method for producing nitrogen trifluoride gas

Publications (2)

Publication Number Publication Date
JPH02263988A true JPH02263988A (en) 1990-10-26
JPH0718032B2 JPH0718032B2 (en) 1995-03-01

Family

ID=18203921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1334811A Expired - Lifetime JPH0718032B2 (en) 1988-12-27 1989-12-26 Method for producing nitrogen trifluoride gas

Country Status (1)

Country Link
JP (1) JPH0718032B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132028A1 (en) * 2019-12-27 2021-07-01 昭和電工株式会社 Method for producing fluorine gas and apparatus for producing fluorine gas
WO2021131817A1 (en) * 2019-12-27 2021-07-01 昭和電工株式会社 Fluorine gas manufacturing method and fluorine gas manufacturing device
WO2021131579A1 (en) * 2019-12-27 2021-07-01 昭和電工株式会社 Fluorine gas production method and fluorine gas production apparatus
WO2021131816A1 (en) * 2019-12-27 2021-07-01 昭和電工株式会社 Method for producing fluorine gas and device for producing fluorine gas

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021132028A1 (en) * 2019-12-27 2021-07-01 昭和電工株式会社 Method for producing fluorine gas and apparatus for producing fluorine gas
WO2021131817A1 (en) * 2019-12-27 2021-07-01 昭和電工株式会社 Fluorine gas manufacturing method and fluorine gas manufacturing device
WO2021131579A1 (en) * 2019-12-27 2021-07-01 昭和電工株式会社 Fluorine gas production method and fluorine gas production apparatus
WO2021131816A1 (en) * 2019-12-27 2021-07-01 昭和電工株式会社 Method for producing fluorine gas and device for producing fluorine gas
CN113874553A (en) * 2019-12-27 2021-12-31 昭和电工株式会社 Method for producing fluorine gas and apparatus for producing fluorine gas
CN113950542A (en) * 2019-12-27 2022-01-18 昭和电工株式会社 Method for producing fluorine gas and apparatus for producing fluorine gas
CN113874553B (en) * 2019-12-27 2024-02-09 株式会社力森诺科 Method for producing fluorine gas and apparatus for producing fluorine gas
CN113950542B (en) * 2019-12-27 2024-03-05 株式会社力森诺科 Method for producing fluorine gas and apparatus for producing fluorine gas

Also Published As

Publication number Publication date
JPH0718032B2 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
JPH0755807B2 (en) Method for producing nitrogen trifluoride
KR101982601B1 (en) Method for producing bis (fluorosulfonyl) imide lithium salt (LiFSI) with reduced fluorine anion content using alkoxytrialkylsilanes
US4804447A (en) Method of producing NF3
JPH02263988A (en) Production of gaseous nitrogen trifluoride
KR100742484B1 (en) The electrolyzer for manufacturing nitrogen tri-fluoride to minimize the amount of a vaporized hydrogen flouride and the manufacturing method using the same
JP2809811B2 (en) Method for producing nitrogen trifluoride gas
EP0617696B1 (en) Process for purifying hydrogen fluoride
JPH0360761B2 (en)
TW460626B (en) A process for producing high-purity nitrogen trifluoride gas
US5100639A (en) Process for purifying hydrogen fluoride
JPS6077983A (en) Manufacture of octafluoropropane
JP2896196B2 (en) Method for producing nitrogen trifluoride gas
JPH06298720A (en) Purification of fluoroalkyl sulfonic acid
EP0517723A1 (en) Process for purifying hydrogen fluoride.
KR101411714B1 (en) Nickel based electrode and production of nitrogen trifluoride using same
JPH03170307A (en) Production of nitrogen trifluoride
JP2854934B2 (en) Method for producing nitrogen trifluoride gas
JP3162594B2 (en) Electrolytic solution and method for producing nitrogen trifluoride gas using the same
KR101462751B1 (en) Method for the production of nitrogen trifluoride
SU1089172A1 (en) Process for producing concentrated nitric acid
JP2854952B2 (en) Method for producing nitrogen trifluoride gas
JP3043243B2 (en) Method for producing high-purity nitrogen trifluoride gas
JPH06239603A (en) Method of refining hydrogen fluoride
US3276981A (en) Electrolytic production of oxygen difluoride
JP2000104187A (en) Electrolytic cell (1)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090301

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100301

Year of fee payment: 15

EXPY Cancellation because of completion of term