WO2017057950A1 - Collector of electrolyzer for manufacturing nitrogen trifluoride and method for manufacturing same - Google Patents

Collector of electrolyzer for manufacturing nitrogen trifluoride and method for manufacturing same Download PDF

Info

Publication number
WO2017057950A1
WO2017057950A1 PCT/KR2016/010976 KR2016010976W WO2017057950A1 WO 2017057950 A1 WO2017057950 A1 WO 2017057950A1 KR 2016010976 W KR2016010976 W KR 2016010976W WO 2017057950 A1 WO2017057950 A1 WO 2017057950A1
Authority
WO
WIPO (PCT)
Prior art keywords
collector
reinforcing ring
injection
electrolytic cell
side portion
Prior art date
Application number
PCT/KR2016/010976
Other languages
French (fr)
Korean (ko)
Inventor
원지연
권철현
Original Assignee
후성정공 주식회사
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 후성정공 주식회사, 주식회사 효성 filed Critical 후성정공 주식회사
Publication of WO2017057950A1 publication Critical patent/WO2017057950A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/63Holders for electrodes; Positioning of the electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/245Fluorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Definitions

  • the present invention relates to a collector of an electrolytic cell for producing nitrogen trifluoride (NF 3 ) and a method for producing the same.
  • NF 3 nitrogen trifluoride
  • fluorine gas is a period gas indispensable in the semiconductor manufacturing field
  • nitrogen trifluoride (NF 3 ) gas is widely used in semiconductor and TFT-LCD manufacturing as a cleaning gas or dry etching gas of a semiconductor.
  • NF 3 nitrogen trifluoride
  • the production of nitrogen trifluoride may be a method for direct fluorination reaction, a method using plasma or a method using electrolysis.
  • the method using the direct fluorination reaction is to synthesize fluorine gas after it is introduced into a reactor containing ammonium bifluoride, which is synthesized through a two-step process.
  • the method using plasma has a problem of low compatibility, high energy, and low efficiency.
  • the production method of nitrogen trifluoride by electrolysis of molten salt is suitable for high yield and mass production.
  • Electrolyte may be the NH 4 F and NH 4 F or HF-NH 4 F in the addition of the KF-HF induces KF or LiF HF-NH 4 F-NH-4F-HF derived from the HF used.
  • NF 3 and N 2 gases are generated at the anode and H 2 gas is generated at the cathode.
  • the gas evolution reaction occurs simultaneously at the cathode and anode. Since NF 3 gas generated at the anode reacts with H 2 gas generated at the cathode, there is a possibility of explosion. Therefore, in order to suppress this, an electrolytic cell design that improves the prevention and mixing of H 2 gas and NF 3 gas is required.
  • electrolytic cells are equipped with separator plates to separate the electrodes to reduce the possibility of explosion.
  • the separator is lined with fluorocarbon resin.
  • Carbon and nickel electrodes can be used as the anode material, and nickel electrodes are generally used as anodes to reduce the amount of CF 4 .
  • Nickel electrodes have the disadvantage of being easily dissolved, and some of the dissolved nickel is deposited on the cathode. When the electrolyzer is operated for a long time, the gap between the cathode and the separator becomes narrow, so that there is a problem of approaching the explosion limit due to the mixing of NF 3 and H 2 .
  • the very small NF 3 bubbles produced at the nickel electrode do not rise vertically along the electrode but are diffused upwardly at an angle.
  • the amount of NF 3 gas generated per cross-sectional area of the anode nickel electrode is increased and the cathode is diffused by the diffusion of NF 3 .
  • the reaction of the electrode becomes extreme.
  • the nickel electrode When the nickel electrode is used, deposition occurs on the bottom of the electrolytic cell in the form of NiF, and the distance between the electrode tip and the deposit gradually approaches. After the reaction progressed, the electrode tip close to the bottom of the electrolytic cell was buried in NiF. The tip of the NiF-embedded electrode can no longer function as an electrode, resulting in an increase in current density, an increase in voltage in the electrolyzer, and a decrease in yield. In extreme cases, the circuit may be shorted or exploded. Therefore, eliminating the heat of reaction generated between the two electrodes by electrolysis, keeping the temperature distribution of the electrolytic cell uniform, and maintaining the distance between the bottom and the electrode tip are very important factors for safe operation. Therefore, it is preferable to cool the upper end of the electrolyzer while heating the lower end.
  • the temperature of molten salt is preferably 100 to 130 ° C. because it is easy to operate, has good electrical conductivity, and has good electrical current efficiency.
  • NH 4 F-HF when the molten salt temperature at (melting point 126 °C) system is one 100 ⁇ 130 °C, NH 4 F-HF that is the ones adversely the deposition in the electrolytic bath temperature lower than the temperature of vaporization. As a result of operation, NH 4 F-HF is deposited on the lid of the electrolyzer, which blocks the off-gas outlet. Accordingly, the height of the electrolyte interface is changed due to the pressure difference between the anode chamber having NF 3 and surrounded by the separator, and the cathode chamber having H 2 and surrounded by the separator.
  • the outlet is blocked by NF 3 generated at the anode
  • the internal pressure is increased because gas cannot be discharged from the anode chamber.
  • the electrolyte interface is pressed and the interface of the cathode chamber is raised.
  • NF 3 is introduced into the cathode chamber.
  • the mixture is made of NF 3 and H 2 causes the explosion in the worst case.
  • it comprises a collector for separating so that NF 3 produced at the anode and H 2 generated at the cathode are not mixed.
  • the present embodiment is the object of the present invention to provide a collector and a method of manufacturing the enhanced NF 3 for producing the electrolytic cell to prevent damage in the explosive reaction of the NF 3 generated.
  • NF 3 for producing a collector of an electrolytic cell causes a plurality of anode electrodes and a plurality of electrolytic reaction at the cathode electrode according to the collector of an electrolytic cell for producing NF 3 for producing a NF 3,
  • a flange extending vertically with respect to an upper end of the side portion
  • It is disposed on the lower end side of the side portion includes a plate-shaped reinforcement ring formed to surround the side portion up to a set height,
  • the side portion is formed with a reinforcing ring coupling portion is formed thick so as to protrude inwards by the size corresponding to the thickness of the reinforcing ring from the bottom to a height corresponding to the height of the reinforcing ring, the outer surface is formed without a step, An inner step is formed at an inner circumference of the lower end connected to the lower side of the reinforcing ring coupling portion to a thickness smaller than that of the reinforcing ring coupling portion.
  • the side portion of the collector, the reinforcing ring coupling portion and the flange are integrally injection molded
  • the reinforcing ring is provided with a plurality of through-holes along the circumference, and provides a collector of the electrolytic cell for manufacturing NF 3 characterized in that it is seated on the reinforcing ring coupling portion.
  • the reinforcing ring is characterized by consisting of SUS (Stainless Steel) material.
  • the reinforcing ring coupling portion may be removed after cutting the outer surface in a shape corresponding to the reinforcing ring to form a reinforcing ring seating groove, and the reinforcing ring seating groove may cover the outer surface of the reinforcing ring after the reinforcing ring is disposed.
  • Reinforcement ring cover of the same material as the side portion of the shape is characterized in that the welded.
  • the reinforcing ring is integrally injection-molded together when the side portion is injected to be disposed in the reinforcing ring coupling portion.
  • the side portion and the flange of the collector is characterized in that composed of PFA (Perfluoroalkoxy alkane) or polytetrafluoroethylene (PTFE).
  • PFA Perfluoroalkoxy alkane
  • PTFE polytetrafluoroethylene
  • the collector of the NF 3 electrolytic cell according to the present embodiment preheats the injection molding machine, and the reinforcing ring fixing pin is formed at the position where the reinforcing ring through hole is to be formed in the injection molding machine.
  • the generated NF 3 is smoothly collected, of the collector, is compromised by the formation reaction of NF 3 NF 3 that it is possible to prevent reaction with the leakage H 2, due to destruction of the collector electrolytic bath life Shortening can be prevented.
  • FIG. 1 is a partial cross-sectional view schematically showing an electrolytic cell for manufacturing NF 3 to which the collector is applied according to an embodiment of the present invention
  • FIG. 2 is a perspective view showing a collector according to an embodiment of the present invention.
  • FIG. 3 is a top view of the collector of FIG. 2;
  • FIG. 4 is a cross-sectional view showing a collector according to a first embodiment of the present invention.
  • Figure 5 is a cross-sectional view showing a side cross-section of the body injected for the collector of Figure 4,
  • FIG. 6 is a cross-sectional view showing a state in which a reinforcing ring seating part is processed in the body injected for manufacturing the collector of FIG. 5;
  • FIG. 7 is an enlarged cross-sectional view of a portion C of FIG. 4;
  • FIG. 8 is a cross-sectional view showing a collector according to a second embodiment of the present invention.
  • FIG. 9 is a partial cross-sectional view showing an enlarged reinforcing ring mounting portion of the collector of FIG.
  • FIG. 10 is a schematic view showing a mold and a collector for injection production for manufacturing the collector of FIG. 8, and
  • FIG. 11 is an enlarged partial cross-sectional view showing a reinforcing ring mounting portion of the collector according to the prior art.
  • FIG. 1 is a partial cross-sectional view schematically showing an electrolytic cell for manufacturing NF 3 to which the collector is applied according to an embodiment of the present invention
  • FIG. 2 is a perspective view showing a collector installed in the electrolytic cell of FIG. 1, and
  • the electrolyzer for manufacturing NF 3 to which the collector 500 according to the embodiment of the present invention is applied is an electrolyzer body 100, an electrolyzer body cover 200, a cathode part 300, an anode part 400, and a collector 500. , H 2 vent part 600, and NF 3 vent part 700.
  • the electrolyzer body 100 may be formed in a cylindrical shape or a polygonal shape in a container shape having an open top having a receiving space of an electrolyte solution.
  • the inner surface containing the electrolyte solution is preferably lined with fluorine resin or made of fluorine resin material to prevent corrosion.
  • the usable fluororesin material is not particularly limited but may be polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene, polyvinylidene, polyvinylfluoride, tetrafluoroethylene-hexafluoro propylene copolymer , Tetrafluoroethylene-ethylene copolymer and the like, and it is preferable to use polytetrafluoroethylene or tetrafluoroethylene-perfluoroalkylvinyl ether copolymer having acid resistance and heat resistance.
  • the electrolyzer body 100 may include a fastening portion for coupling with the electrolyzer body cover 200 which is coupled to seal the open top.
  • the fastening portion may be formed extending perpendicularly from the vertical surface as shown in FIG.
  • ammonium fluoride-fluoric acid (NH 4 F-HF) is used, and the composition ratio of the electrolyte in the nitrogen trifluoride (NF 3 ) electrolytic cell is a ratio of the weight% of hydrofluoric acid (HF) to ammonium fluoride (NH 4 F). It should be composed of 1.0 to 2.6.
  • the temperature range of the preferred electrolyte solution is preferably 100 to 130 ° C.
  • Ammonium fluoride-fluoric acid (NH 4 F-HF) has a melting point of 126 ° C.
  • the electrolyzer body cover 200 is to be coupled to seal the upper portion of the electrolyzer body 100, the electrolyzer body cover 200 is formed in a plate shape and corresponding size to be coupled to the fastening portion of the electrolyzer body 100 Has a shape with.
  • Fastening grooves may be formed at the edges of the electrolyzer body cover 200 so as to be coupled to the fastening portions, and the fastening portion of the cover 200 and the electrolyzer body 100 may be coupled through a packing to increase the degree of sealing. Do.
  • the electrolytic cell body cover 200 is formed with a cathode insertion hole and an anode insertion hole in which a plurality of cathode portions 300 and a plurality of anode portions 400 can be inserted, respectively, and H 2 vent portion 600 is formed at one side. And the NF 3 vent part 700 is coupled to extend from the anode part 400.
  • the cathode part 300 and the anode part 400 are preferably made of an electrode made of nickel.
  • a carbon electrode may be used in addition to the nickel electrode.
  • nickel tetrafluoride (CF 4 ) which is an impurity that is easily generated during the reaction, is not easily removed, it is preferable to use a nickel electrode.
  • One or more cathode and anode electrodes may be installed. The cathode electrode and the anode electrode are preferably arranged alternately.
  • H 2 vent unit 600 is for discharging the H 2 gas generated in the cathode in the electrolytic cell external, is coupled through said electrolytic cell body cover 200. Since the H 2 gas has an upward characteristic, it is preferable that one or more of the H 2 gas is hermetically coupled to the electrolytic cell body cover 200 through the packing without the need to individually couple the vent parts.
  • NF 3 vent unit 700 is preferably coupled to each anode unit 400 individually.
  • the NF 3 vent part 700 is located above the anode part 400.
  • NF 3 vent unit 700 is also hermetically coupled to the cover 200 via a packing.
  • NF 3 vent unit 700 is a structure for discharging the NF 3 gas collected by the collector 500 to be described later, the discharge pipe and the discharge pipe for discharging the NF 3 gas is inserted into the anode insertion hole of the electrolytic cell body cover 200 It is preferable to include a connecting member.
  • the collector 500 is installed to partition the anode portion and the cathode portion to prevent mixing of the anode generation gas and the cathode generation gas.
  • the collector 500 also has a square tubular side portion 510 and an electrolytic cell body cover 200 which wrap around the anode electrodes for each anode portion 400 to collect gas generated by the electrolysis reaction of the electrolyte at the anode.
  • a coupling flange 520 that is hermetically coupled with. Opening in the vertical direction and the side portion 510 surrounds the anode electrodes and the coupling flange 520 extends from the side portion 510 perpendicular to the upper side of the side portion 510 so as to be hermetically coupled to the electrolytic cell body cover 200 above.
  • the collector 500 is disposed inside the electrolyte and is preferably made of PFA (Perfluoroalkoxy alkane) or polytetrafluoroethylene (PTFE) in order to prevent damage during the intense electrolysis reaction caused by NF 3 generation. Since the collector 500 has a violent electrolysis reaction to generate NF 3 at the anode electrode located inside, the collector 500 is preferably integrally injection-molded without a part connected by welding. In addition, the reinforcement ring 530 which will be described later for reinforcement is coupled to the collector side portion 510 in order to prevent the intense reaction from occurring inside the collector 500 and damage to the side portion 510 of the collector 500.
  • PFA Perfluoroalkoxy alkane
  • PTFE polytetrafluoroethylene
  • Figure 4 is a cross-sectional view showing a collector according to a first embodiment of the present invention
  • Figure 5 is a cross-sectional view showing a side cross-sectional view of the body injected for the collector of Figure 4
  • Figure 6 is an injection for manufacturing the collector of Figure 5
  • Figure 5 is a cross-sectional view illustrating a state in which a reinforcing ring seating part is processed to the body
  • FIG. 7 is an enlarged cross-sectional view of part C of FIG. 4.
  • the reinforcing ring 530 is coupled around the lower side of the side portion 510 of the collector 500.
  • Reinforcing ring 530 is preferably composed of SUS (Stainless Steel) material.
  • the reinforcing ring 530 is formed in a plate-shaped ring shape that can wrap all around the collector side portion 510.
  • the reinforcing ring 530 is set to a height that requires protection up to a predetermined height at which the electrolytic reaction occurs violently at the lower end of the collector side part 510.
  • the collector 500 has a height and thickness corresponding to the height and thickness of the reinforcing ring 530 which is coupled to the lower circumference of the side portion 510 of the collector 500 for coupling the reinforcing ring 530.
  • Reinforcing ring coupling portion 511 is formed. That is, as shown in FIG. 5, the reinforcing ring coupling part 511 is integrally formed to be thicker corresponding to the thickness of the reinforcing ring 530 and the reinforcing ring cover 540 than the upper thickness of the collector side part 510.
  • the reinforcing ring seating groove 513 is cut and removed corresponding to the thickness and height of the reinforcing ring 530 and the reinforcing ring cover 540.
  • the reinforcing ring 530 is fitted to the reinforcing ring seating portion 513 as shown in FIG. 7, and is made of the same material as the collector 500 since the reinforcing ring 530, which is a metal, is corroded when exposed to the electrolyte.
  • the reinforcing ring cover 540 covers the reinforcing ring 530.
  • the reinforcing ring cover 540 is welded up and down.
  • Reference numeral 550 denotes a weld.
  • the reinforcing ring cover 540 is disposed outside the inside of the collector 500 where NF 3 is generated, the weld 550 is not damaged by the electrolysis reaction.
  • a plurality of through holes 531 are formed along the circumference.
  • the plurality of through holes 531 formed in the reinforcing ring 530 absorb shocks due to an explosive reaction occurring when NF 3 occurs inside the collector 500. Since the materials of the collector coupling part 511 and the reinforcing ring cover 540 and the reinforcing ring 530 are different, the strain due to the impact force due to the explosive reaction is different, and if the explosion continues, the welding part 550 may interact due to the difference in the strain.
  • the through hole 531 absorbs the impact force to reduce the possibility of such damage.
  • the coefficient of thermal expansion is different.
  • the through hole 531 also absorbs deformation due to thermal expansion and reduces the force applied by the reinforcing ring 530 to the collector coupling portion 511, the collector cover 540, and the welding portion 550 according to the difference in thermal expansion coefficient. It also reduces the possibility of damage due to the difference of.
  • FIG. 8 is a cross-sectional view showing a cross-section of the collector 500 according to the second embodiment of the present invention
  • FIG. 9 is a partial cross-sectional view showing in detail the lower portion of the collector side portion 510 of FIG. 8, and
  • the reinforcing ring 530 is integrally injected into the collector side portion 510.
  • Reinforcing ring coupling portion 511 is formed thicker than the side portion 510 to the thickness of the reinforcing ring 530 and the thickness to protect the reinforcing ring from the inside and the outside.
  • the reinforcing ring 530 of the collector 500 according to the second embodiment is also preferably made of SUS (Stainless Steel).
  • the reinforcing ring 530 is formed in a plate-shaped ring shape that can wrap all around the collector side portion 510.
  • the reinforcing ring 530 is set to a height that requires protection up to a predetermined height at which the electrolytic reaction occurs violently at the lower end of the collector side part 510.
  • the reinforcing ring 530 is formed with a plurality of through holes 531 along the circumference.
  • the plurality of through holes 531 formed in the reinforcing ring 530 absorb shocks due to an explosive reaction when NF 3 occurs inside the collector 500. Since the materials of the collector 500 body and the reinforcing ring 530 are different, strain due to the impact force due to the explosive reaction is different, and if the explosion continues, there is a possibility of being damaged by the interaction due to the difference in strain.
  • the through hole 531 absorbs the impact force to reduce the possibility of such damage.
  • the coefficient of thermal expansion is different.
  • the through hole 531 also absorbs deformation due to thermal expansion and reduces the force applied by the reinforcement ring 530 to the reinforcing ring coupling part 510 according to the difference in thermal expansion rate, thereby reducing the possibility of damage due to the difference in thermal expansion rate. .
  • a method of manufacturing the collector 500 according to the second embodiment will be described with reference to FIG. 10.
  • the collector internal injection mold 1100, the collector separation mold 1200, the collector external injection mold 1300, and the collector internal step injection mold 1400. Is used.
  • the collector internal injection mold 1100 has a reinforcing ring fixing pin 1110 formed at the position where the reinforcing ring through hole 531 is to be formed so as to protrude and insert, and forms the internal shape of the collector 500, and the collector separation mold ( After the injection is completed, 1200 separates the finished product, the collector outer injection mold 1300 forms the outer surface shape of the collector 500, and the collector inner step injection mold 1400 forms the inner step 512.
  • the injection machine First, preheat the injection machine and seat the mold (1100, 1200, 1300, 1400) in the injection machine. Mold the injection mold and heat it to high temperature. After opening the injection mold to operate the reinforcing ring fixing pin 1110 to assemble the reinforcing ring 530 to the mold. Thereafter, the mold is closed and the collector 500 body material such as PFA is injected. The fixing pins 1110 are inserted to separate the reinforcement ring 530 during the injection. That is, when the fixing pin 1110 is removed, the reinforcing ring 530 does not move or deform by using a fixing pin control device so that the reinforcing ring 530 does not move or deform, and the through hole 531 of the reinforcing ring 530 is filled with PFA. Then, the mold is opened and the collector separation mold 1200 is operated to extract the injection molded product.
  • both the side portion 510 and the flange 520 are integrally formed so that no welded portion is minimized and the life and quality of the collector 500 are improved.
  • the metal reinforcing ring when the metal reinforcing ring is to be installed inside the collector, when welding and welding, it is difficult to manufacture due to jig interference.
  • FIG. 11 when a metal reinforcing ring is coupled to the outer surface of the collector by welding or the like, welding and welding for bonding the reinforcing ring 53 and the cover 54 to the thinner collector side 51 may occur. Due to the overheating reaction, there is a risk that the reinforcing ring 53 and the side 51 sheet may be deformed, damaged or dropped, thereby making it difficult to guarantee the bonding safety.
  • the thickness of the reinforcing ring coupling part 511 is formed to be thick, thereby greatly reducing the possibility of deformation damage due to overheating.
  • the collector 500 according to the first embodiment of the present invention in order to solve this problem, the reinforcing ring coupling portion 511 is formed integrally with the side portion 510, reinforcing ring coupling After the part 511 is injection-molded thicker than the upper portion of the side part 510, the reinforcing ring coupling part 511 is cut and removed to form the reinforcing ring seating part 513. Therefore, the collector 500 according to the first embodiment of the present invention can stably install the metal reinforcement ring 530 on the outside of the collector 500.
  • the collector 500 forms a plurality of through holes 531 around the plate-shaped reinforcement ring 530 to absorb and disperse the impact force due to the explosive reaction, and to absorb the deformation due to thermal expansion. It can work.
  • the collector 500 according to the second embodiment of the present invention is integrally injection-molded in a state where the reinforcing ring 530 is inserted into the reinforcing ring coupling part 511, thereby forming a metal material.
  • the reinforcing ring 530 may be more completely protected.
  • the collector 500 forms an inner step 512 inside the lower end connected to the reinforcing ring coupling part 511 where the reinforcing ring 530 is installed.
  • the gas generating space is increased, and the production volume of the electrolytic cell is improved.
  • the reinforcing ring 53 is installed on the outer surface of the collector side 51 as shown in FIG. 11. Therefore, a step with the collector side 51 occurs as much as the thickness of the reinforcing ring 53 and the reinforcing ring cover 54.
  • the collector of the NF 3 electrolytic cell is a consumable and includes a process of installing and removing the electrolytic cell in the NF 3 manufacturing process.
  • the structure with the step on the outer surface of the collector has the disadvantage that the interference occurs when installing or removing the collector in the electrolytic cell, the required time is long and the process is difficult.
  • the outer side of the reinforcing ring coupling part 511 to which the outer side of the collector side part 510 and the reinforcing ring 530 are formed is provided without a step. 500) The process is convenient and safe since there is no interference with other parts of the electrolyzer during replacement or installation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

A collector of an electrolyzer for manufacturing NF3 according to the present embodiment comprises: a side portion, which surrounds the periphery of a predetermined number of anode electrodes, and which has the shape of a quadrangular tube; a flange formed to extend vertically with regard to the upper end of the side portion; and a reinforcement ring, which is arranged on the lower-end side of the side portion, which is formed to surround the side portion up to a preset height, and which has the shape of a plate-shaped ring, wherein the side portion has a reinforcement ring coupling portion formed thereon so as to protrude inwards and to be as thick as a size, which corresponds to the thickness of the reinforcement ring, from the lower end thereof to a height that corresponds to the height of the reinforcement ring.

Description

삼불화질소 제조용 전해조의 콜렉터 및 그 제조 방법Collector of Nitrogen Trifluoride Electrolyzer and Manufacturing Method Thereof
본 발명은 삼불화질소(NF3) 제조용 전해조의 콜렉터 및 그 제조 방법에 관한 것이다.The present invention relates to a collector of an electrolytic cell for producing nitrogen trifluoride (NF 3 ) and a method for producing the same.
일반적으로 불소가스는 반도체 제조분야에서 빠질 수 없는 기간 가스이며, 그 중에서도 삼불화질소(NF3) 가스는 반도체의 클리닝 가스나 드라이 에칭 가스로서 반도체 및 TFT-LCD 제조에 광범위하게 사용되고 있다. 최근 들어서는 반도체산업 및 FPD산업의 활성화에 따라 챔버 클리닝용 가스로서의 그 수요가 급격히 증가하고 있는 추세이다. In general, fluorine gas is a period gas indispensable in the semiconductor manufacturing field, and nitrogen trifluoride (NF 3 ) gas is widely used in semiconductor and TFT-LCD manufacturing as a cleaning gas or dry etching gas of a semiconductor. Recently, with the activation of the semiconductor industry and the FPD industry, the demand for the chamber cleaning gas is rapidly increasing.
특히 지구온난화 대책에 따라 다른 불화물(예를 들어, SF6나 C3F8등)의 사용이 제한되고 있는 현실에서, 분해가 쉬운 삼불화질소(NF3)는 이들 불화물의 대체물질로서 전자산업 분야에서 더욱 각광받고 있다.In particular, the use of other fluorides (eg, SF 6 or C 3 F 8, etc.) is limited by global warming measures, and easy to decompose nitrogen trifluoride (NF 3 ) as an alternative to these fluorides. It is getting more attention in the field.
일반적으로 삼불화질소(NF3)의 제조는 직접불화반응을 시키는 방법, 플라즈마를 이용하는 방법 또는 전기분해를 이용하여 제조하는 방법을 사용할 수 있다. 직접불화반응을 이용하는 방법은 불소 가스를 생산한 후 이를 암모늄바이플루오라이드가 담긴 반응기내로 투입하여 합성하는 방법으로, 이는 두 단계의 공정을 거쳐 합성되어지므로 합성 후 정제를 위한 장치 비용이 다소 높은 단점이 있다. 플라즈마를 이용하는 방법은 상용성이 떨어지고 높은 에너지를 요구하며 효율이 낮은 문제점이 있다. 용융염의 전기분해를 통한 삼불화질소의 제조방법은 높은 수율과 대량생산에 적합하다. In general, the production of nitrogen trifluoride (NF 3 ) may be a method for direct fluorination reaction, a method using plasma or a method using electrolysis. The method using the direct fluorination reaction is to synthesize fluorine gas after it is introduced into a reactor containing ammonium bifluoride, which is synthesized through a two-step process. There are disadvantages. The method using plasma has a problem of low compatibility, high energy, and low efficiency. The production method of nitrogen trifluoride by electrolysis of molten salt is suitable for high yield and mass production.
전해질로는 NH4F와 HF로부터 유도되는 NH4F-HF 혹은 NH4F-HF에 KF를 첨가하여 유도된 KF-NH4F-HF 또는 LiF-NH 4F-HF가 사용될 수 있다. NF3 가스 제조 공정에서, NF3와 N2 가스는 애노드에서 발생하고 H2 가스는 캐소드에서 발생한다. 캐소드와 애노드에서 동시에 가스 발생 반응이 일어난다. 애노드에서 발생한 NF3 가스는 캐소드에서 발생한 H2 가스와 반응할 경우 폭발의 가능성이 있으므로 이를 억제하기 위해서는 H2 가스와 NF3 가스의 혼합 방지 및 안전성을 향상시킨 전해조 설계가 요구된다.Electrolyte may be the NH 4 F and NH 4 F or HF-NH 4 F in the addition of the KF-HF induces KF or LiF HF-NH 4 F-NH-4F-HF derived from the HF used. In the NF 3 gas production process, NF 3 and N 2 gases are generated at the anode and H 2 gas is generated at the cathode. The gas evolution reaction occurs simultaneously at the cathode and anode. Since NF 3 gas generated at the anode reacts with H 2 gas generated at the cathode, there is a possibility of explosion. Therefore, in order to suppress this, an electrolytic cell design that improves the prevention and mixing of H 2 gas and NF 3 gas is required.
일반적으로 폭발의 가능성을 줄이기 위해 전해조는 전극을 분리하는 분리판을 설치한다. 분리판의 부식 방지와 분리판이 전극으로 작용하는 것을 막기 위해 분리판은 불소수지로 라이닝 된다. 애노드의 재료로 탄소와 니켈 전극이 사용될 수 있고, 일반적으로 CF4의 양을 줄이기 위해 니켈 전극이 애노드로 사용된다. 그러나 니켈 전극은 쉽게 용해되는 단점이 있고, 용해된 니켈의 일부가 캐소드 상에 침적하게 된다. 이러한 전해조를 장기간 운용할 경우 캐소드와 분리판 사이의 간격이 좁아져 NF3와 H2의 혼합으로 인한 폭발 한계에 가까워지는 문제점이 있다.In general, electrolytic cells are equipped with separator plates to separate the electrodes to reduce the possibility of explosion. In order to prevent corrosion of the separator and to prevent the separator from acting as an electrode, the separator is lined with fluorocarbon resin. Carbon and nickel electrodes can be used as the anode material, and nickel electrodes are generally used as anodes to reduce the amount of CF 4 . Nickel electrodes, however, have the disadvantage of being easily dissolved, and some of the dissolved nickel is deposited on the cathode. When the electrolyzer is operated for a long time, the gap between the cathode and the separator becomes narrow, so that there is a problem of approaching the explosion limit due to the mixing of NF 3 and H 2 .
니켈 전극에서 생성되는 매우 작은 NF3 기포는 전극을 따라 수직으로 상승되지 않고 비스듬히 상부로 이동하는 확산현상이 발생하는데 애노드 니켈 전극의 단면적당 발생되는 NF3 가스의 양은 증가되고 NF3의 확산으로 캐소드 전극의 반응은 극렬해진다.The very small NF 3 bubbles produced at the nickel electrode do not rise vertically along the electrode but are diffused upwardly at an angle. The amount of NF 3 gas generated per cross-sectional area of the anode nickel electrode is increased and the cathode is diffused by the diffusion of NF 3 . The reaction of the electrode becomes extreme.
니켈 전극 사용 시 NiF 형태로 전해조 바닥에 침적이 발생되어 전극 끝과 침적물의 거리가 점차 가까워지게 된다. 반응이 진행 후 점차 전해조 바닥에서 가까운 전극 끝이 NiF에 묻히게 된다. NiF가 묻은 전극의 끝부분은 더 이상 전극의 역할을 하지 못하게 되며 전류밀도의 증가 및 전해조의 전압 상승, 수율의 감소를 초래한다. 심한 경우에는 회로가 쇼트 되거나 폭발의 우려가 있다. 따라서, 전해에 의해 두 전극 사이에 발생되는 반응열을 제거하고 전해조의 온도 분포를 균일하게 유지하는 것과 바닥과 전극끝 사이의 거리유지는 안전 운전에 매우 중요한 요소이다. 따라서, 전해조의 상단부를 냉각시키는 반면 하단부는 가열하는 것이 좋다. When the nickel electrode is used, deposition occurs on the bottom of the electrolytic cell in the form of NiF, and the distance between the electrode tip and the deposit gradually approaches. After the reaction progressed, the electrode tip close to the bottom of the electrolytic cell was buried in NiF. The tip of the NiF-embedded electrode can no longer function as an electrode, resulting in an increase in current density, an increase in voltage in the electrolyzer, and a decrease in yield. In extreme cases, the circuit may be shorted or exploded. Therefore, eliminating the heat of reaction generated between the two electrodes by electrolysis, keeping the temperature distribution of the electrolytic cell uniform, and maintaining the distance between the bottom and the electrode tip are very important factors for safe operation. Therefore, it is preferable to cool the upper end of the electrolyzer while heating the lower end.
용융염 전해법에서 용융염의 온도는 100∼130℃가 선호되는데, 이는 운전이 쉽고 전기 전도도가 좋으며 전기 전류효율이 좋게 되기 때문이다. NH4F-HF(melting point : 126℃)계에서 용융염의 온도가 100∼130℃일 경우에는, NH4F-HF가 전해조 온도보다 낮은 온도에서는 증기화된 것들이 불리하게 침적되어진다. 운전 결과 NH4F-HF는 전해조의 리드에 침적되고 이는 생성가스 배출구를 막아버리게 된다. 이에 따라 NF3를 가지고 있으며 분리판으로 둘러싸인 애노드 챔버와, H2를 가지고 있으며 분리판으로 둘러싸인 캐소드 챔버 사이의 압력 차이로 인해 전해액 계면의 높이가 달라지게 된다. In molten salt electrolysis, the temperature of molten salt is preferably 100 to 130 ° C. because it is easy to operate, has good electrical conductivity, and has good electrical current efficiency. NH 4 F-HF: when the molten salt temperature at (melting point 126 ℃) system is one 100~130 ℃, NH 4 F-HF that is the ones adversely the deposition in the electrolytic bath temperature lower than the temperature of vaporization. As a result of operation, NH 4 F-HF is deposited on the lid of the electrolyzer, which blocks the off-gas outlet. Accordingly, the height of the electrolyte interface is changed due to the pressure difference between the anode chamber having NF 3 and surrounded by the separator, and the cathode chamber having H 2 and surrounded by the separator.
예를 들어, 애노드에서 생성된 NF3로 인해 배출구가 막히면 애노드 챔버에서 가스가 배출될 수가 없어 내부압력이 상승하게 된다. 이에 따라 전해액 계면을 누르게 되고 반대로 캐소드 챔버의 계면은 상승하게 된다. 이 경우 압력이 커져 분리판보다 계면이 더욱 하강할 경우 NF3가 캐소드 챔버 내부로 혼입되게 된다. 이에 따라 NF3와 H2의 혼합이 이루어져 최악의 경우 폭발을 초래하게 되는 문제점이 있다. 따라서, 애노드에서 생성되는 NF3와 캐소드에서 생성되는 H2가 혼합되지 않도록 분리하기 위한 콜렉터를 포함한다. For example, if the outlet is blocked by NF 3 generated at the anode, the internal pressure is increased because gas cannot be discharged from the anode chamber. As a result, the electrolyte interface is pressed and the interface of the cathode chamber is raised. In this case, when the pressure is increased and the interface is further lowered than the separator plate, NF 3 is introduced into the cathode chamber. Accordingly, there is a problem that the mixture is made of NF 3 and H 2 causes the explosion in the worst case. Thus, it comprises a collector for separating so that NF 3 produced at the anode and H 2 generated at the cathode are not mixed.
본 실시예는 NF3 발생에 따른 폭발적 반응에도 훼손되지 않도록 강화된 NF3 제조용 전해조의 콜렉터 및 그 제조 방법을 제공하는 것을 그 목적으로 한다.The present embodiment is the object of the present invention to provide a collector and a method of manufacturing the enhanced NF 3 for producing the electrolytic cell to prevent damage in the explosive reaction of the NF 3 generated.
본 실시예에 의한 NF3 제조용 전해조의 콜렉터는 복수의 애노드 전극과 복수의 캐소드 전극에서 전기분해 반응을 일으켜 NF3를 제조하는 NF3 제조용 전해조의 콜렉터에 있어서,NF 3 for producing a collector of an electrolytic cell according to the present embodiment causes a plurality of anode electrodes and a plurality of electrolytic reaction at the cathode electrode according to the collector of an electrolytic cell for producing NF 3 for producing a NF 3,
소정 개수의 애노드 전극들 주위를 감싸는 사각 관 형상의 측면부;A side surface portion of a square tube shape wrapped around a predetermined number of anode electrodes;
상기 측면부의 상단에 대하여 수직으로 연장하여 형성되는 플랜지; 및A flange extending vertically with respect to an upper end of the side portion; And
상기 측면부의 하단 측에 배치되어 설정 높이까지 상기 측면부를 둘러싸도록 형성되는 판상의 링 형상의 보강링을 포함하고,It is disposed on the lower end side of the side portion includes a plate-shaped reinforcement ring formed to surround the side portion up to a set height,
상기 측면부는, 상기 하단에서 상기 보강링의 높이에 상응하는 높이까지 상기 보강링의 두께에 상응하는 크기만큼 내측으로 돌출되도록 두껍게 형성되는 보강링 결합부가 형성되고, 외측면은 단차 없이 형성되고, 상기 보강링 결합부의 하측에 연결되는 상기 하단의 내측 둘레에는 상기 보강링 결합부보다 작은 두께로 내측단차가 형성되고,The side portion is formed with a reinforcing ring coupling portion is formed thick so as to protrude inwards by the size corresponding to the thickness of the reinforcing ring from the bottom to a height corresponding to the height of the reinforcing ring, the outer surface is formed without a step, An inner step is formed at an inner circumference of the lower end connected to the lower side of the reinforcing ring coupling portion to a thickness smaller than that of the reinforcing ring coupling portion.
상기 콜렉터의 상기 측면부, 상기 보강링 결합부 및 상기 플랜지는 일체로 사출 성형되고,The side portion of the collector, the reinforcing ring coupling portion and the flange are integrally injection molded,
상기 보강링은 둘레를 따라 복수의 관통공이 형성되고, 상기 보강링 결합부에 안착되는 것을 특징으로 하는 NF3 제조용 전해조의 콜렉터를 제공한다.The reinforcing ring is provided with a plurality of through-holes along the circumference, and provides a collector of the electrolytic cell for manufacturing NF 3 characterized in that it is seated on the reinforcing ring coupling portion.
상기 보강링은 SUS(Stainless Steel) 재질로 구성되는 것을 특징으로 한다.The reinforcing ring is characterized by consisting of SUS (Stainless Steel) material.
상기 보강링 결합부는 상기 보강링에 상응하는 형상으로 외측면이 절개 후 제거되어 보강링 안착홈이 형성되고, 상기 보강링 안착홈에 상기 보강링이 배치된 후 상기 보강링 외면을 커버할 수 있는 형상의 상기 측면부와 동일한 재질의 보강링 커버가 용접 결합되는 것을 특징으로 한다.The reinforcing ring coupling portion may be removed after cutting the outer surface in a shape corresponding to the reinforcing ring to form a reinforcing ring seating groove, and the reinforcing ring seating groove may cover the outer surface of the reinforcing ring after the reinforcing ring is disposed. Reinforcement ring cover of the same material as the side portion of the shape is characterized in that the welded.
상기 보강링은 상기 보강링 결합부 내부에 배치되도록 상기 측면부 사출 시 함께 일체로 사출 성형되는 것을 특징으로 한다.The reinforcing ring is integrally injection-molded together when the side portion is injected to be disposed in the reinforcing ring coupling portion.
상기 콜렉터의 상기 측면부와 상기 플랜지는 PFA(Perfluoroalkoxy alkane) 또는 폴리테트라플루오로에틸렌(Polytetrafluoroethylene(PTFE))을 재질로 구성되는 것을 특징으로 한다.The side portion and the flange of the collector is characterized in that composed of PFA (Perfluoroalkoxy alkane) or polytetrafluoroethylene (PTFE).
본 실시예에 의한 NF3 제조용 전해조의 콜렉터는 사출기를 예열하고 상기 사출기에 상기 보강링 관통공이 형성될 위치에 보강링 고정핀이 돌출 및 삽입 가동 가능하게 형성되고 상기 콜렉터 내부 형상을 형성하는 콜렉터 내부 사출 금형, 콜렉터 분리 금형, 상기 콜렉터의 외측면 형상을 형성하는 콜렉터 외측 사출 금형, 및 상기 내측단차를 형성하는 콜렉터 내부 단차 사출 금형을 안착하는 단계;The collector of the NF 3 electrolytic cell according to the present embodiment preheats the injection molding machine, and the reinforcing ring fixing pin is formed at the position where the reinforcing ring through hole is to be formed in the injection molding machine. Seating an injection mold, a collector separation mold, a collector outer injection mold forming an outer surface shape of the collector, and a collector inner step injection mold forming the inner step;
상기 금형들을 형폐한 후 고온으로 가열하는 단계;Heating the mold at a high temperature after mold closing;
상기 금형들을 오픈한 후 상기 보강링 고정핀을 돌출되도록 작동하여 상기 콜렉터 내부 사출 금형에 상기 보강링을 조립하는 단계;Assembling the reinforcement ring to the collector internal injection mold by operating the reinforcing ring fixing pin to protrude after opening the molds;
상기 금형들을 형폐하고 상기 콜렉터 재료를 상기 금형들에 사출하는 단계;Mold closing the molds and injecting the collector material into the molds;
상기 사출하는 단계에서 상기 사출이 완료되기 전 시간차를 주어 고정핀을 분리하는 단계; 및Separating the fixing pin by giving a time difference before the injection is completed in the injection step; And
상기 사출이 완료되면 상기 사출 금형들을 오픈하고 상기 콜렉터 분리 금형을 작동하여 완성된 상기 콜렉터를 추출하는 단계를 포함하는 것을 특징으로 한다.And when the injection is completed, opening the injection molds and operating the collector separation mold to extract the completed collector.
본 발명에 따르면, 발생된 NF3가 원활하게 포집되고, NF3의 생성 반응에 의해 콜렉터가 훼손되어 NF3가 누출 H2와 반응하는 것을 방지할 수 있고, 콜렉터의 훼손으로 인한 전해조의 수명이 단축되는 것을 방지할 수 있다.According to the invention, the generated NF 3 is smoothly collected, of the collector, is compromised by the formation reaction of NF 3 NF 3 that it is possible to prevent reaction with the leakage H 2, due to destruction of the collector electrolytic bath life Shortening can be prevented.
또한, 본 발명에 따르면, 고열과 폭발적 반응에도 안정적으로 보강링이 결합되는 NF3 제조용 전해조의 콜렉터를 제공할 수 있다.In addition, according to the present invention, it is possible to provide a collector of the electrolytic cell for NF 3 production in which a reinforcing ring is stably coupled to high heat and explosive reactions.
또한, 본 발명에 따르면, 고열과 폭발적 반응 시 보강링에 의해 콜렉터 측면부가 훼손되는 것을 방지할 수 있다.In addition, according to the present invention, it is possible to prevent the collector side portion from being damaged by the reinforcing ring during the high temperature and explosive reaction.
또한, 본 발명에 따르면, 전해조에서 콜렉터 교체 시 간섭이 발생하지 않는 NF3 제조용 전해조의 콜렉터를 제공할 수 있다.In addition, according to the present invention, it is possible to provide a collector of an electrolytic cell for manufacturing NF 3 which does not generate interference when the collector is replaced in the electrolytic cell.
도 1 은 본 발명의 실시 예에 따른 콜렉터가 적용되는 NF3 제조를 위한 전해조를 개략적으로 나타낸 부분단면도,1 is a partial cross-sectional view schematically showing an electrolytic cell for manufacturing NF 3 to which the collector is applied according to an embodiment of the present invention;
도 2 는 본 발명의 실시예에 따른 콜렉터를 나타낸 사시도,2 is a perspective view showing a collector according to an embodiment of the present invention;
도 3 은 도 2의 콜렉터의 상면도,3 is a top view of the collector of FIG. 2;
도 4 는 본 발명의 제1실시예에 따른 콜렉터를 나타낸 단면도,4 is a cross-sectional view showing a collector according to a first embodiment of the present invention;
도 5 는 도 4의 콜렉터 제조를 위해 사출된 바디의 측단면을 나타낸 단면도,Figure 5 is a cross-sectional view showing a side cross-section of the body injected for the collector of Figure 4,
도 6 은 도 5의 콜렉터 제조를 위해 사출된 바디에 보강링 안착부를 가공한 상태를 나타낸 단면도,6 is a cross-sectional view showing a state in which a reinforcing ring seating part is processed in the body injected for manufacturing the collector of FIG. 5;
도 7 은 도 4의 C 부분을 확대하여 나타낸 단면도, 7 is an enlarged cross-sectional view of a portion C of FIG. 4;
도 8 은 본 발명의 제2실시예에 따른 콜렉터를 나타낸 단면도,8 is a cross-sectional view showing a collector according to a second embodiment of the present invention;
도 9 는 도 8의 콜렉터의 보강링 설치 부분을 확대하여 나타낸 부분 단면도,9 is a partial cross-sectional view showing an enlarged reinforcing ring mounting portion of the collector of FIG.
도 10 은 도 8의 콜렉터 제조를 위한 사출 제작을 위한 금형과 콜렉터를 나타낸 개략도, 및10 is a schematic view showing a mold and a collector for injection production for manufacturing the collector of FIG. 8, and
도 11 은 종래 기술에 따른 콜렉터의 보강링 설치 부분을 확대하여 나타낸 부분 단면도이다.11 is an enlarged partial cross-sectional view showing a reinforcing ring mounting portion of the collector according to the prior art.
본 발명에 관한 설명은 구조적 내지 기능적 설명을 위한 실시예에 불과하므로, 본 발명의 권리범위는 본문에 설명된 실시예에 의하여 제한되는 것으로 해석되어서는 아니 된다. 즉, 실시예는 다양한 변경이 가능하고 여러 가지 형태를 가질 수 있으므로 본 발명의 권리범위는 기술적 사상을 실현할 수 있는 균등물들을 포함하는 것으로 이해되어야 한다.Description of the present invention is only an embodiment for structural or functional description, the scope of the present invention should not be construed as limited by the embodiments described in the text. That is, since the embodiments may be variously modified and may have various forms, the scope of the present invention should be understood to include equivalents capable of realizing the technical idea.
본 개시의 실시예들을 설명하기 위하여 참조되는 도면은 설명의 편의 및 이해의 용이를 위하여 의도적으로 크기, 높이, 두께 등이 과장되어 표현되어 있으며, 비율에 따라 확대 또는 축소된 것이 아니다. 또한, 도면에 도시된 어느 구성요소는 의도적으로 축소되어 표현하고, 다른 구성요소는 의도적으로 확대되어 표현될 수 있다.The drawings referred to for describing the embodiments of the present disclosure are intentionally exaggerated in size, height, thickness, etc. for ease of explanation and easy understanding, and are not to be enlarged or reduced in proportion. In addition, any component illustrated in the drawings may be intentionally reduced in size, and other components may be intentionally enlarged in size.
여기서 사용되는 모든 용어들은 다르게 정의되지 않는 한, 본 발명이 속하는 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한 이상적이거나 과도하게 형식적인 의미를 지니는 것으로 해석될 수 없다.All terms used herein have the same meaning as commonly understood by one of ordinary skill in the art unless otherwise defined. Terms such as those defined in the commonly used dictionaries should be construed to be consistent with the meanings in the context of the related art and should not be construed as having ideal or overly formal meanings unless expressly defined in this application. .
이하에서, 첨부된 도면을 참조하여 본 발명을 상세히 설명한다. 첨부된 도면은 본 발명의 바람직한 실시 예를 도시한 것으로, 이는 이해를 돕도록 하기 위해 제공되는 것일 뿐, 이에 의해 본 발명의 기술적 범위가 한정되는 것은 아니다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention. The accompanying drawings show preferred embodiments of the present invention, which are provided only to assist in understanding, and thus, the technical scope of the present invention is not limited thereto.
도 1 은 본 발명의 실시 예에 따른 콜렉터가 적용되는 NF3 제조를 위한 전해조를 개략적으로 나타낸 부분단면도이고, 도 2 는 도 1의 전해조에 설치되는 콜렉터를 나타낸 사시도이고, 도 3 은 도 2의 콜렉터의 상면도이다.1 is a partial cross-sectional view schematically showing an electrolytic cell for manufacturing NF 3 to which the collector is applied according to an embodiment of the present invention, FIG. 2 is a perspective view showing a collector installed in the electrolytic cell of FIG. 1, and FIG. Top view of the collector.
본 발명의 실시예에 따른 콜렉터(500)가 적용되는 NF3 제조를 위한 전해조는 전해조 바디(100), 전해조 바디 커버(200), 캐소드부(300), 애노드부(400), 콜렉터(500), H2 벤트부(600), NF3 벤트부(700)를 포함한다. The electrolyzer for manufacturing NF 3 to which the collector 500 according to the embodiment of the present invention is applied is an electrolyzer body 100, an electrolyzer body cover 200, a cathode part 300, an anode part 400, and a collector 500. , H 2 vent part 600, and NF 3 vent part 700.
전해조 바디(100)는 전해액의 수용 공간을 구비한 상단이 오픈된 용기 형상으로 원통형상이나 다각형 형상 등으로 형성될 수 있다. 전해액을 수용하는 내면은 부식방지를 위해 불소수지로 라이닝 되거나 불소수지 재질로 구성되는 것이 바람직하다. 사용 가능한 불소수지 재질은 특별히 한정되지는 않으나 폴리테트라플루오로에틸렌(Polytetrafluoroethylene(PTFE)), 폴리클로로트리플루오로에틸렌, 폴리비닐리덴, 폴리비닐플루오라이드, 테트라플루오로에틸렌-헥사플루오로 프로필렌 공중합체, 테트라플루오로에틸렌-에틸렌 공중합체 등을 예시할 수 있으며, 바람직하게는 내산성과 내열성을 가지고 있는 폴리테트라플루오로에틸렌 또는 테트라플루오로에틸렌-퍼플루오로알킬비닐 에테르 공중합체를 사용하는 것이 바람직하다. 전해조 바디(100)는 오픈된 상단을 밀폐하기 위하여 결합되는 전해조 바디 커버(200)와의 결합을 위해 체결부를 포함할 수 있다. 체결부는 도1에 도시된 바와 같이 수직면으로부터 직각 연장되어 형성될 수 있다.The electrolyzer body 100 may be formed in a cylindrical shape or a polygonal shape in a container shape having an open top having a receiving space of an electrolyte solution. The inner surface containing the electrolyte solution is preferably lined with fluorine resin or made of fluorine resin material to prevent corrosion. The usable fluororesin material is not particularly limited but may be polytetrafluoroethylene (PTFE), polychlorotrifluoroethylene, polyvinylidene, polyvinylfluoride, tetrafluoroethylene-hexafluoro propylene copolymer , Tetrafluoroethylene-ethylene copolymer and the like, and it is preferable to use polytetrafluoroethylene or tetrafluoroethylene-perfluoroalkylvinyl ether copolymer having acid resistance and heat resistance. . The electrolyzer body 100 may include a fastening portion for coupling with the electrolyzer body cover 200 which is coupled to seal the open top. The fastening portion may be formed extending perpendicularly from the vertical surface as shown in FIG.
전해액으로는 불화암모늄-불산계(NH4F-HF)를 사용하며, 삼불화질소(NF3) 전해조내 전해질의 조성비는 불화암모늄(NH4F)에 대한 불산(HF)의 중량% 비율이 1.0∼2.6 으로 구성되도록 한다. 삼불화질소(NF3)의 생성 효율을 감안하면 바람직한 전해액의 온도 범위는 100 - 130℃인 것이 바람직하다. 불화암모늄-불산(NH4F-HF)은 녹는점이 126℃로 전해액의 온도가 100℃ 미만일 경우는 불화암모늄-불산(NH4F-HF)이 전해조 내에 침적할 가능성이 커져 삼불화질소(NF3) 생성률이 급격히 감소하고, 130℃ 를 초과하면 반응률은 상승될 수 있으나, 반응 가스에 불산(HF)이 증가하여 벤트부를 막아버리는 문제점이 있으므로 반응 시 전해액의 온도는 100 - 130℃ 설정된다.As the electrolyte, ammonium fluoride-fluoric acid (NH 4 F-HF) is used, and the composition ratio of the electrolyte in the nitrogen trifluoride (NF 3 ) electrolytic cell is a ratio of the weight% of hydrofluoric acid (HF) to ammonium fluoride (NH 4 F). It should be composed of 1.0 to 2.6. In consideration of the production efficiency of nitrogen trifluoride (NF 3 ), the temperature range of the preferred electrolyte solution is preferably 100 to 130 ° C. Ammonium fluoride-fluoric acid (NH 4 F-HF) has a melting point of 126 ° C. When the temperature of the electrolyte is less than 100 ° C, ammonium fluoride-fluoric acid (NH 4 F-HF) is more likely to deposit in the electrolytic cell. 3) If the production rate is greater than the decreases, 130 ℃ rapid reaction rate can be increased. However, since the problem in that prevents the reaction gas hydrofluoric acid (HF) portion vent to increase the temperature of the reaction of the electrolytic solution is 100 - are set 130 ℃.
전해조 바디 커버(200)는 전해조 바디(100)의 상부를 밀폐하도록 결합하는 것으로, 전해조 바디커버(200)는 판 형상으로 형성되고 상기 전해조 바디(100)의 체결부에 결합할 수 있도록 상응하는 크기와 형상을 갖는다. 전해조 바디 커버(200)의 가장자리에는 체결부에 결합할 수 있도록 체결홈이 형성될 수 있고 커버(200)와 전해조 바디(100)의 체결부는 패킹을 개재하여 결합하는 것이 밀폐도를 높일 수 있어 바람직하다. 한편, 전해조 바디 커버(200)에는 복수의 캐소드부(300)와 복수의 애노드부(400)가 각각 삽입될 수 있는 캐소드 삽입공과 애노드 삽입공이 각각 형성되고, 일측에 H2 벤트부(600)가 결합하고, 애노드부(400)에서 연장하여 NF3 벤트부(700)가 결합한다.The electrolyzer body cover 200 is to be coupled to seal the upper portion of the electrolyzer body 100, the electrolyzer body cover 200 is formed in a plate shape and corresponding size to be coupled to the fastening portion of the electrolyzer body 100 Has a shape with. Fastening grooves may be formed at the edges of the electrolyzer body cover 200 so as to be coupled to the fastening portions, and the fastening portion of the cover 200 and the electrolyzer body 100 may be coupled through a packing to increase the degree of sealing. Do. On the other hand, the electrolytic cell body cover 200 is formed with a cathode insertion hole and an anode insertion hole in which a plurality of cathode portions 300 and a plurality of anode portions 400 can be inserted, respectively, and H 2 vent portion 600 is formed at one side. And the NF 3 vent part 700 is coupled to extend from the anode part 400.
캐소드부(300)와 애노드부(400)는 니켈 재질의 전극으로 구성되는 것이 바람직하다. 니켈 전극 이외에 탄소 전극을 사용할 수 있으나, 반응 중 발생하기 용이한 불순물인 사불화탄소(CF4)의 제거가 용이하지 않으므로 니켈 전극을 사용하는 것이 바람직하다. 캐소드 전극과 애노드 전극은 하나 이상 다수개 설치될 수 있다. 캐소드 전극과 애노드 전극은 교호 배열되는 것이 바람직하다.The cathode part 300 and the anode part 400 are preferably made of an electrode made of nickel. A carbon electrode may be used in addition to the nickel electrode. However, since nickel tetrafluoride (CF 4 ), which is an impurity that is easily generated during the reaction, is not easily removed, it is preferable to use a nickel electrode. One or more cathode and anode electrodes may be installed. The cathode electrode and the anode electrode are preferably arranged alternately.
H2 벤트부(600)는 캐소드 전극에서 발생하는 H2 가스를 전해조 외부로 배출하기 위한 것으로, 상기 전해조 바디 커버(200)를 관통하여 결합된다. H2 가스는 상향하는 특성을 가지고 있으므로 캐소드 전극 별로 개별적으로 벤트부가 결합할 필요없이 하나 이상이 전해조 바디 커버(200)에 패킹을 개재하여 밀폐 결합하는 것이 바람직하다.H 2 vent unit 600 is for discharging the H 2 gas generated in the cathode in the electrolytic cell external, is coupled through said electrolytic cell body cover 200. Since the H 2 gas has an upward characteristic, it is preferable that one or more of the H 2 gas is hermetically coupled to the electrolytic cell body cover 200 through the packing without the need to individually couple the vent parts.
NF3 벤트부(700)는 각 애노드부(400) 별로 개별적으로 결합하는 것이 바람직하다. NF3 벤트부(700)는 애노드부(400)의 상방에 위치한다. NF3 벤트부(700)도 커버(200)에 패킹을 개재하여 밀폐 결합한다. NF3 벤트부(700)는 후술하는 콜렉터(500)에서 포집된 NF3 가스를 배출하기 위한 구조로, NF3 가스를 배출하는 배출관과 배출관이 전해조 바디 커버(200)의 애노드 삽입공에 삽입되는 연결부재를 포함하는 것이 바람직하다.NF 3 vent unit 700 is preferably coupled to each anode unit 400 individually. The NF 3 vent part 700 is located above the anode part 400. NF 3 vent unit 700 is also hermetically coupled to the cover 200 via a packing. NF 3 vent unit 700 is a structure for discharging the NF 3 gas collected by the collector 500 to be described later, the discharge pipe and the discharge pipe for discharging the NF 3 gas is inserted into the anode insertion hole of the electrolytic cell body cover 200 It is preferable to include a connecting member.
콜렉터(500)는 애노드부와 캐소드부를 구획하기 위해 설치되는 것으로 애노드 생성 가스와 캐소드 생성 가스의 혼합을 방지한다. 콜렉터(500)는 또한 애노드에서 전해액의 전기분해 반응에 의해 발생하는 가스를 포집하기 위하여 각 애노드부(400) 별로 애노드 전극들의 주위를 감싸는 사각 관 형 상의 측면부(510)와 전해조 바디 커버(200)와 밀폐 결합하는 결합 플랜지(520)를 포함한다. 상하 방향으로 오픈되고 측면부(510)는 애노드 전극들을 감싸고 상방에는 전해조 바디 커버(200)와 밀폐 결합할 수 있도록 결합 플랜지(520)가 측면부(510) 상단에 대하여 수직으로 측면부(510)로부터 연장하여 형성한다. 콜렉터(500)는 전해액 내부에 배치되고 NF3 발생에 따른 격렬한 전기 분해 반응 시에 손상을 방지하기 위하여 PFA(Perfluoroalkoxy alkane)또는 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE)를 재질로 구성하는 것이 바람직하다. 콜렉터(500)는 내측에 위치하는 애노드 전극에서 NF3 발생을 위해 격렬한 전기 분해 반응이 발생하므로 콜렉터(500)는 용접으로 연결된 부분 없이 일체로 사출 형성되는 것이 바람직하다. 또한 콜렉터(500) 내측에서 반복해서 격렬한 반응이 발생하여 콜렉터(500)의 측면부(510)가 훼손되는 것을 방지하기 위하여 콜렉터 측면부(510)에 강화를 위한 후술할 보강링(530)이 결합한다. The collector 500 is installed to partition the anode portion and the cathode portion to prevent mixing of the anode generation gas and the cathode generation gas. The collector 500 also has a square tubular side portion 510 and an electrolytic cell body cover 200 which wrap around the anode electrodes for each anode portion 400 to collect gas generated by the electrolysis reaction of the electrolyte at the anode. And a coupling flange 520 that is hermetically coupled with. Opening in the vertical direction and the side portion 510 surrounds the anode electrodes and the coupling flange 520 extends from the side portion 510 perpendicular to the upper side of the side portion 510 so as to be hermetically coupled to the electrolytic cell body cover 200 above. Form. The collector 500 is disposed inside the electrolyte and is preferably made of PFA (Perfluoroalkoxy alkane) or polytetrafluoroethylene (PTFE) in order to prevent damage during the intense electrolysis reaction caused by NF 3 generation. Since the collector 500 has a violent electrolysis reaction to generate NF 3 at the anode electrode located inside, the collector 500 is preferably integrally injection-molded without a part connected by welding. In addition, the reinforcement ring 530 which will be described later for reinforcement is coupled to the collector side portion 510 in order to prevent the intense reaction from occurring inside the collector 500 and damage to the side portion 510 of the collector 500.
도 4 는 본 발명의 제1실시예에 따른 콜렉터를 나타낸 단면도이고, 도 5 는 도 4의 콜렉터 제조를 위해 사출된 바디의 측단면을 나타낸 단면도이고, 도 6 은 도 5의 콜렉터 제조를 위해 사출된 바디에 보강링 안착부를 가공한 상태를 나타낸 단면도이고, 도 7 은 도 4의 C 부분을 확대하여 나타낸 단면도이다.Figure 4 is a cross-sectional view showing a collector according to a first embodiment of the present invention, Figure 5 is a cross-sectional view showing a side cross-sectional view of the body injected for the collector of Figure 4, Figure 6 is an injection for manufacturing the collector of Figure 5 7 is a cross-sectional view illustrating a state in which a reinforcing ring seating part is processed to the body, and FIG. 7 is an enlarged cross-sectional view of part C of FIG. 4.
도 4 내지 도 7을 참조하여 본 발명의 제1실시예에 따른 콜렉터(500)를 보다 상세히 설명하기로 한다. 도시된 바와 같이, 콜렉터(500)의 측면부(510) 하방 둘레에 보강링(530)이 결합한다. 보강링(530)은 SUS(Stainless Steel) 재질로 구성되는 것이 바람직하다. 보강링(530)은 콜렉터 측면부(510) 둘레를 모두 감쌀 수 있는 판형 링 형상으로 형성된다. 보강링(530)은 콜렉터 측면부(510)의 하단부에서 전기 분해 반응이 격렬하게 발생하는 소정 높이까지 보호가 필요한 높이에 맞게 설정된다. 제1실시예에 따른 콜렉터(500)는 보강링(530)의 결합을 위해 콜렉터(500) 측면부(510)의 하부 둘레에는 결합하는 보강링(530)의 높이와 두께에 상응하는 높이와 두께로 보강링 결합부(511)가 형성된다. 즉, 보강링 결합부(511)는, 도 5에 도시된 바와 같이, 콜렉터 측면부(510)의 상부 두께보다 보강링(530)과 보강링 커버(540) 두께에 상응하게 더 두껍게 일체로 형성된다. 보강링(530) 안착을 위해, 도 6에 도시된 바와 같이, 보강링 안착홈(513)이 보강링(530)과 보강링 커버(540) 두께와 높이에 상응하게 절개되어 제거된다. 보강링(530)은, 도 7에 도시된 바와 같이, 보강링 안착부(513)에 끼워지고, 금속인 보강링(530)이 전해액에 노출되면 부식하게 되므로 콜렉터(500)와 동일 재질로 제작된 보강링 커버(540)에 의해 보강링(530)을 커버한다. 보강링 커버(540)는 상하 용접되어 결합한다. 도면부호 550은 용접부를 나타낸다. 보강링 커버(540)는 NF3가 발생하는 콜렉터(500)의 내측이 아닌 외측에 배치되므로 용접부(550)가 전기분해 반응에 의해 훼손되지 않는다. 한편, 도시된 바와 같이 보강링(530)에는 둘레를 따라 복수의 관통공(531)이 형성된다. 보강링(530)에 형성된 복수의 관통공(531)은 콜렉터(500) 내부에서 일어나는 NF3 발생 시 일어나는 폭발적 반응에 따른 충격을 흡수한다. 콜렉터 결합부(511) 및 보강링 커버(540)와 보강링(530)의 재질이 다르기 때문에 폭발적 반응에 따른 충격력에 의한 변형률이 달라 폭발이 계속되면 변형률의 차이에 의한 상호 작용으로 용접부(550)에 지속적인 힘이 작용하여 훼손될 가능성이 있다. 관통공(531)이 충격력을 흡수하여 이러한 훼손 가능성을 감소시키게 된다. 또한, 콜렉터 결합부(511) 및 보강링 커버(540)와 보강링(530)의 재질이 다르기 때문 열팽창률이 상이하다. 관통공(531)은 열팽창에 의한 변형도 흡수하여 열팽창률의 차이에 따라 보강링(530)이 콜렉터 결합부(511)와 콜렉터 커버(540) 및 용접부(550)에 가하는 힘을 감소시켜 열팽창률의 차이에 따른 훼손 가능성도 감소시키게 된다.4 to 7, the collector 500 according to the first embodiment of the present invention will be described in more detail. As shown, the reinforcing ring 530 is coupled around the lower side of the side portion 510 of the collector 500. Reinforcing ring 530 is preferably composed of SUS (Stainless Steel) material. The reinforcing ring 530 is formed in a plate-shaped ring shape that can wrap all around the collector side portion 510. The reinforcing ring 530 is set to a height that requires protection up to a predetermined height at which the electrolytic reaction occurs violently at the lower end of the collector side part 510. The collector 500 according to the first embodiment has a height and thickness corresponding to the height and thickness of the reinforcing ring 530 which is coupled to the lower circumference of the side portion 510 of the collector 500 for coupling the reinforcing ring 530. Reinforcing ring coupling portion 511 is formed. That is, as shown in FIG. 5, the reinforcing ring coupling part 511 is integrally formed to be thicker corresponding to the thickness of the reinforcing ring 530 and the reinforcing ring cover 540 than the upper thickness of the collector side part 510. . For seating the reinforcing ring 530, as shown in Figure 6, the reinforcing ring seating groove 513 is cut and removed corresponding to the thickness and height of the reinforcing ring 530 and the reinforcing ring cover 540. The reinforcing ring 530 is fitted to the reinforcing ring seating portion 513 as shown in FIG. 7, and is made of the same material as the collector 500 since the reinforcing ring 530, which is a metal, is corroded when exposed to the electrolyte. The reinforcing ring cover 540 covers the reinforcing ring 530. The reinforcing ring cover 540 is welded up and down. Reference numeral 550 denotes a weld. Since the reinforcing ring cover 540 is disposed outside the inside of the collector 500 where NF 3 is generated, the weld 550 is not damaged by the electrolysis reaction. On the other hand, as shown in the reinforcing ring 530, a plurality of through holes 531 are formed along the circumference. The plurality of through holes 531 formed in the reinforcing ring 530 absorb shocks due to an explosive reaction occurring when NF 3 occurs inside the collector 500. Since the materials of the collector coupling part 511 and the reinforcing ring cover 540 and the reinforcing ring 530 are different, the strain due to the impact force due to the explosive reaction is different, and if the explosion continues, the welding part 550 may interact due to the difference in the strain. There is a possibility of constant force acting on and damaging it. The through hole 531 absorbs the impact force to reduce the possibility of such damage. In addition, because the materials of the collector coupling portion 511 and the reinforcing ring cover 540 and the reinforcing ring 530 are different, the coefficient of thermal expansion is different. The through hole 531 also absorbs deformation due to thermal expansion and reduces the force applied by the reinforcing ring 530 to the collector coupling portion 511, the collector cover 540, and the welding portion 550 according to the difference in thermal expansion coefficient. It also reduces the possibility of damage due to the difference of.
도 8은 본 발명의 제2실시예에 따른 콜렉터(500)의 단면을 나타낸 단면도이고, 도 9는 도 8의 콜렉터 측면부(510)의 하부를 보다 상세히 나타낸 부분 단면도이고, 도 10 은 도 8의 콜렉터(500)의 사출 제작을 위한 금형을 나타낸 개략도다. 도시되는 바와 같이, 본 발명의 제2실시예에 따른 콜렉터(500)는 보강링(530)이 콜렉터 측면부(510)에 일체로 사출된다. 보강링 결합부(511)는 보강링(530) 두께와 보강링을 내측과 외측에서 보호할 수 있는 두께로 측면부(510) 상부보다 두껍게 형성된다. 도시되는 바와 같이, SUS 보강링(530)을 포함하고 일체로 사출 성형되는 콜렉터(500)가 적용되면, NF3 발생시의 격렬한 반응에도 SUS 보강링(530)이 훼손되지 않으면서 콜렉터(500)의 측면부를 강화시킬 수 있게 된다. 제2실시예에 따른 콜렉터(500)의 보강링(530)도 SUS(Stainless Steel) 재질로 구성되는 것이 바람직하다. 보강링(530)은 콜렉터 측면부(510) 둘레를 모두 감쌀 수 있는 판형 링 형상으로 형성된다. 보강링(530)은 콜렉터 측면부(510)의 하단부에서 전기 분해 반응이 격렬하게 발생하는 소정 높이까지 보호가 필요한 높이에 맞게 설정된다. 보강링(530)에는 둘레를 따라 복수의 관통공(531)이 형성된다. 보강링(530)에 형성된 복수의 관통공(531)은 콜렉터(500) 내부에서 일어나는 NF3 발생 시의 폭발적 반응에 따른 충격을 흡수한다. 콜렉터(500) 바디와 보강링(530)의 재질이 다르기 때문에 폭발적 반응에 따른 충격력에 의한 변형률이 달라 폭발이 계속되면 변형률의 차이에 의한 상호 작용으로 훼손될 가능성이 있다. 관통공(531)이 충격력을 흡수하여 이러한 훼손 가능성을 감소시키게 된다. 또한, 콜렉터(500) 바디와 보강링(530)의 재질이 다르기 때문 열팽창률이 상이하다. 관통공(531)은 열팽창에 의한 변형도 흡수하여 열팽창률의 차이에 따라 보강링(530)이 보강링 결합부(510)에 가하는 힘을 감소시켜 열팽창률의 차이에 따른 훼손 가능성도 감소시키게 된다.8 is a cross-sectional view showing a cross-section of the collector 500 according to the second embodiment of the present invention, FIG. 9 is a partial cross-sectional view showing in detail the lower portion of the collector side portion 510 of FIG. 8, and FIG. A schematic diagram showing a mold for injection production of the collector 500. As shown, in the collector 500 according to the second embodiment of the present invention, the reinforcing ring 530 is integrally injected into the collector side portion 510. Reinforcing ring coupling portion 511 is formed thicker than the side portion 510 to the thickness of the reinforcing ring 530 and the thickness to protect the reinforcing ring from the inside and the outside. As shown, when the collector 500 including the SUS reinforcement ring 530 and integrally injection-molded is applied, the SUS reinforcement ring 530 is not damaged while the NF 3 is generated. The side portion can be reinforced. The reinforcing ring 530 of the collector 500 according to the second embodiment is also preferably made of SUS (Stainless Steel). The reinforcing ring 530 is formed in a plate-shaped ring shape that can wrap all around the collector side portion 510. The reinforcing ring 530 is set to a height that requires protection up to a predetermined height at which the electrolytic reaction occurs violently at the lower end of the collector side part 510. The reinforcing ring 530 is formed with a plurality of through holes 531 along the circumference. The plurality of through holes 531 formed in the reinforcing ring 530 absorb shocks due to an explosive reaction when NF 3 occurs inside the collector 500. Since the materials of the collector 500 body and the reinforcing ring 530 are different, strain due to the impact force due to the explosive reaction is different, and if the explosion continues, there is a possibility of being damaged by the interaction due to the difference in strain. The through hole 531 absorbs the impact force to reduce the possibility of such damage. In addition, since the materials of the collector 500 body and the reinforcing ring 530 are different, the coefficient of thermal expansion is different. The through hole 531 also absorbs deformation due to thermal expansion and reduces the force applied by the reinforcement ring 530 to the reinforcing ring coupling part 510 according to the difference in thermal expansion rate, thereby reducing the possibility of damage due to the difference in thermal expansion rate. .
도 10을 참조하여 제2실시예에 따른 콜렉터(500) 제조방법을 설명한다. 보강링(530)과 함께 콜렉터(500) 바디를 일체로 사출 성형하기 위해, 콜렉터 내부 사출 금형(1100), 콜렉터 분리 금형(1200), 콜렉터 외측 사출 금형(1300), 콜렉터 내부 단차 사출 금형(1400)이 사용된다. 콜렉터 내부 사출 금형(1100)은 보강링 관통공(531)이 형성될 위치에 보강링 고정핀(1110)이 돌출 및 삽입 가능하게 형성되고, 콜렉터(500) 내부 형상을 형성하고, 콜렉터 분리 금형(1200)은 사출 완료 후 완성품을 분리시키고, 콜렉터 외측 사출 금형(1300)은 콜렉터(500)의 외측면 형상을 형성하고, 콜렉터 내부 단차 사출 금형(1400)은 내측단차(512)를 형성한다. A method of manufacturing the collector 500 according to the second embodiment will be described with reference to FIG. 10. In order to integrally injection-collect the collector 500 body together with the reinforcing ring 530, the collector internal injection mold 1100, the collector separation mold 1200, the collector external injection mold 1300, and the collector internal step injection mold 1400. ) Is used. The collector internal injection mold 1100 has a reinforcing ring fixing pin 1110 formed at the position where the reinforcing ring through hole 531 is to be formed so as to protrude and insert, and forms the internal shape of the collector 500, and the collector separation mold ( After the injection is completed, 1200 separates the finished product, the collector outer injection mold 1300 forms the outer surface shape of the collector 500, and the collector inner step injection mold 1400 forms the inner step 512.
먼저, 사출기를 예열하고 사출기에 상기 금형(1100,1200,1300,1400)을 안착 시킨다. 사출 금형을 형폐한 후 고온으로 가열한다. 사출 금형을 오픈한 후 보강링 고정핀(1110)을 돌출하도록 작동하여 금형에 보강링(530)을 조립한다. 그 후 금형을 형폐하고 PFA와 같은 콜렉터(500) 본체 재료를 사출한다. 사출 중 고정핀(1110)이 삽입되도록 작동하여 보강링(530)에서 분리한다. 즉, 고정핀(1110) 분리 시 고정핀 제어 장치를 사용하여 시간차를 주어 보강링(530)이 움직이거나 변형하지 않도록 하며, 이때 보강링(530)의 관통공(531)이 PFA로 메워진다. 그 다음 금형을 오픈하고 콜렉터 분리 금형(1200)을 작동하여 사출품을 추출한다.First, preheat the injection machine and seat the mold (1100, 1200, 1300, 1400) in the injection machine. Mold the injection mold and heat it to high temperature. After opening the injection mold to operate the reinforcing ring fixing pin 1110 to assemble the reinforcing ring 530 to the mold. Thereafter, the mold is closed and the collector 500 body material such as PFA is injected. The fixing pins 1110 are inserted to separate the reinforcement ring 530 during the injection. That is, when the fixing pin 1110 is removed, the reinforcing ring 530 does not move or deform by using a fixing pin control device so that the reinforcing ring 530 does not move or deform, and the through hole 531 of the reinforcing ring 530 is filled with PFA. Then, the mold is opened and the collector separation mold 1200 is operated to extract the injection molded product.
종래의 콜렉터는 불소 수지 시트를 절단하여 측면부와 플랜지를 용접 및 융착 공정으로 제작하여 높은 온도에 의해 열응력이 용접 및 융착부에 집중되어 기계적 강도 저항으로 인한 균열이 발생할 수 있으며, 이로 인해 콜렉터의 수명이 짧은 문제점이 있다. 본 발명의 제1실시예와 제2실시예에 따른 콜렉터(500)는 측면부(510)와 플랜지(520)가 모두 일체로 형성되어 용접부가 없거나 최소화되므로 콜렉터(500)의 수명과 품질이 향상된다.Conventional collectors are produced by cutting the fluororesin sheet to produce the side and flanges by welding and fusion processes, whereby thermal stress is concentrated on the welding and fusion zones due to high temperature, which may cause cracking due to mechanical strength resistance. There is a problem of short life. In the collector 500 according to the first and second embodiments of the present invention, both the side portion 510 and the flange 520 are integrally formed so that no welded portion is minimized and the life and quality of the collector 500 are improved. .
종래 기술에 의하면, 콜렉터 내측에 금속 보강링을 설치하고자 할 경우, 용접 및 융착 시, 지그 간섭으로 인해 제작이 어려운 단점이 있다. 도 11에 도시된 바와 같이, 콜렉터 외면에 용접 등으로 금속 보강링이 결합되는 경우, 두께가 얇은 콜렉터 측면(51)에 보강링(53)과 커버(54) 결합을 위한 용접 및 융착 시 발생하는 과열 반응으로 인해 보강링(53), 측면(51) 시트가 변형 손상되거나 탈락될 위험이 있어 결합 안전성을 보장하기 어렵다. 이에 반해 본 발명의 제1실시예 및 제2실시예에 따른 콜렉터(500)는 보강링 결합부(511)의 두께를 두껍게 형성하여 과열에 의한 변형 손상 가능성이 크게 낮아진다. According to the prior art, when the metal reinforcing ring is to be installed inside the collector, when welding and welding, it is difficult to manufacture due to jig interference. As shown in FIG. 11, when a metal reinforcing ring is coupled to the outer surface of the collector by welding or the like, welding and welding for bonding the reinforcing ring 53 and the cover 54 to the thinner collector side 51 may occur. Due to the overheating reaction, there is a risk that the reinforcing ring 53 and the side 51 sheet may be deformed, damaged or dropped, thereby making it difficult to guarantee the bonding safety. On the contrary, in the collector 500 according to the first and second embodiments of the present invention, the thickness of the reinforcing ring coupling part 511 is formed to be thick, thereby greatly reducing the possibility of deformation damage due to overheating.
도 7에 도시된 바와 같이, 본 발명의 제1 실시예에 따른 콜렉터(500)는 이러한 문제점을 해결하기 위하여, 보강링 결합부(511)가 측면부(510)와 일체로 형성되고, 보강링 결합부(511)가 측면부(510) 상부 보다 두껍게 사출 성형된 후, 보강링 결합부(511)에 절개 및 제거 공정을 가해 보강링 안착부(513)를 형성한다. 따라서, 본 발명의 제1 실시예에 따른 콜렉터(500)는 안정적으로 콜렉터(500) 외측에 금속 보강링(530)을 설치할 수 있다. 또한, 본 발명의 제1 실시예에 따른 콜렉터(500)는 판상의 보강링(530) 둘레에 복수개의 관통공(531)을 형성하여 폭발적 반응에 의한 충격력을 흡수 분산시키며 열팽창에 의한 변형도 흡수할 수 있는 효과가 있다. As shown in Figure 7, the collector 500 according to the first embodiment of the present invention, in order to solve this problem, the reinforcing ring coupling portion 511 is formed integrally with the side portion 510, reinforcing ring coupling After the part 511 is injection-molded thicker than the upper portion of the side part 510, the reinforcing ring coupling part 511 is cut and removed to form the reinforcing ring seating part 513. Therefore, the collector 500 according to the first embodiment of the present invention can stably install the metal reinforcement ring 530 on the outside of the collector 500. In addition, the collector 500 according to the first embodiment of the present invention forms a plurality of through holes 531 around the plate-shaped reinforcement ring 530 to absorb and disperse the impact force due to the explosive reaction, and to absorb the deformation due to thermal expansion. It can work.
도 9에 도시된 바와 같이, 본 발명의 제2실시예에 따른 콜렉터(500)는 보강링 결합부(511) 내부에 보강링(530)이 삽입된 상태에서 일체로 사출 성형되어, 금속 소재의 보강링(530)을 보다 완벽하게 보호할 수도 있다. As shown in FIG. 9, the collector 500 according to the second embodiment of the present invention is integrally injection-molded in a state where the reinforcing ring 530 is inserted into the reinforcing ring coupling part 511, thereby forming a metal material. The reinforcing ring 530 may be more completely protected.
또한, 본 발명의 제1실시예와 제2실시예에 따른 콜렉터(500)는 보강링(530)이 설치되는 보강링 결합부(511)에 연결되는 하단부 내측에 내측단차(512)를 형성하여 가스 발생 공간이 넓어져 전해조의 생산량이 향상된다.In addition, the collector 500 according to the first and second embodiments of the present invention forms an inner step 512 inside the lower end connected to the reinforcing ring coupling part 511 where the reinforcing ring 530 is installed. The gas generating space is increased, and the production volume of the electrolytic cell is improved.
또한, 종래 기술에 따른 콜렉터의 경우 콜렉터 내측에는 지그 간섭으로 인해 보강링 설치가 어려우므로 도 11에 개시된 바와 같이 콜렉터 측면(51)의 외측면에 보강링(53)이 설치된다. 따라서 보강링(53)과 보강링 커버(54)의 두께 만큼 콜렉터 측면(51)과 단차가 생긴다. NF3 제조용 전해조의 콜렉터는 소모품으로 NF3 제조 공정에서 전해조에 설치 및 제거하는 공정이 포함된다. 콜렉터 외측면에 단차가 있는 구조는 콜렉터를 전해조에 설치하거나 제거할 때 간섭이 발생하여, 소요시간이 길어지고 공정이 어려워지는 단점이 있다. 본 발명의 제1실시예와 제2실시예에 따른 콜렉터(500)는 콜렉터 측면부(510) 외측과 보강링(530)이 결합하는 보강링 결합부(511) 외측면이 단차 없이 형성되어 콜렉터(500) 교체나 설치 시 전해조의 다른 부분과 간섭이 발생하지 않게 되어 공정이 편리하고 안전하게 된다.In addition, in the case of the collector according to the prior art, since it is difficult to install the reinforcing ring due to jig interference inside the collector, the reinforcing ring 53 is installed on the outer surface of the collector side 51 as shown in FIG. 11. Therefore, a step with the collector side 51 occurs as much as the thickness of the reinforcing ring 53 and the reinforcing ring cover 54. The collector of the NF 3 electrolytic cell is a consumable and includes a process of installing and removing the electrolytic cell in the NF 3 manufacturing process. The structure with the step on the outer surface of the collector has the disadvantage that the interference occurs when installing or removing the collector in the electrolytic cell, the required time is long and the process is difficult. In the collector 500 according to the first and second embodiments of the present invention, the outer side of the reinforcing ring coupling part 511 to which the outer side of the collector side part 510 and the reinforcing ring 530 are formed is provided without a step. 500) The process is convenient and safe since there is no interference with other parts of the electrolyzer during replacement or installation.
상기에 기재되어 있음Listed above

Claims (6)

  1. 복수의 애노드 전극과 복수의 캐소드 전극에서 전기분해 반응을 일으켜 NF3를 제조하는 NF3 제조용 전해조의 콜렉터에 있어서,Causing a plurality of anode electrodes and a plurality of electrolytic reaction at the cathode electrode according to the collector of an electrolytic cell for producing NF 3 for producing a NF 3,
    소정 개수의 애노드 전극들 주위를 감싸는 사각 관 형상의 측면부;A side surface portion of a square tube shape wrapped around a predetermined number of anode electrodes;
    상기 측면부의 상단에 대하여 수직으로 연장하여 형성되는 플랜지; 및A flange extending vertically with respect to an upper end of the side portion; And
    상기 측면부의 하단 측에 배치되어 설정 높이까지 상기 측면부를 둘러싸도록 형성되는 판상의 링 형상의 보강링을 포함하고,It is disposed on the lower end side of the side portion includes a plate-shaped reinforcement ring formed to surround the side portion up to a set height,
    상기 측면부는, 상기 하단에서 상기 보강링의 높이에 상응하는 높이까지 상기 보강링의 두께에 상응하는 크기만큼 내측으로 돌출되도록 두껍게 형성되는 보강링 결합부가 형성되고, 외측면은 단차 없이 형성되고, 상기 보강링 결합부의 하측에 연결되는 상기 하단의 내측 둘레에는 상기 보강링 결합부보다 작은 두께로 내측단차가 형성되고,The side portion is formed with a reinforcing ring coupling portion is formed thick so as to protrude inwards by the size corresponding to the thickness of the reinforcing ring from the bottom to a height corresponding to the height of the reinforcing ring, the outer surface is formed without a step, An inner step is formed at an inner circumference of the lower end connected to the lower side of the reinforcing ring coupling portion to a thickness smaller than that of the reinforcing ring coupling portion.
    상기 콜렉터의 상기 측면부, 상기 보강링 결합부 및 상기 플랜지는 일체로 사출 성형되고,The side portion of the collector, the reinforcing ring coupling portion and the flange are integrally injection molded,
    상기 보강링은 둘레를 따라 복수의 관통공이 형성되고, 상기 보강링 결합부에 안착되는 것을 특징으로 하는 NF3 제조용 전해조의 콜렉터.The reinforcing ring is a collector of NF 3 manufacturing electrolytic cell, characterized in that a plurality of through-holes are formed along the circumference, and is seated on the reinforcing ring coupling portion.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 콜렉터의 상기 측면부와 상기 플랜지는 PFA(Perfluoroalkoxy alkane)또는 폴리테트라플루오로에틸렌(Polytetrafluoroethylene(PTFE))을 재질로 구성되는 NF3 제조용 전해조의 콜렉터.The side portion and the flange of the collector is a collector of NF 3 electrolytic cell consisting of PFA (Perfluoroalkoxy alkane) or polytetrafluoroethylene (PTFE) material.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 보강링은 SUS(Stainless Steel) 재질로 구성되는 NF3 제조용 전해조의 콜렉터.The reinforcing ring is a collector of the electrolytic cell for manufacturing NF 3 consisting of SUS (Stainless Steel) material.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 보강링 결합부는 상기 보강링에 상응하는 형상으로 외측면이 절개 후 제거되어 보강링 안착홈이 형성되고, 상기 보강링 안착홈에 상기 보강링이 배치된 후 상기 보강링 외면을 커버할 수 있는 형상의 상기 측면부와 동일한 재질의 보강링 커버가 용접 결합되는 NF3 제조용 전해조의 콜렉터.The reinforcing ring coupling portion may be removed after cutting the outer surface in a shape corresponding to the reinforcing ring to form a reinforcing ring seating groove, and the reinforcing ring seating groove may cover the outer surface of the reinforcing ring after the reinforcing ring is disposed. The collector of the NF 3 electrolytic cell to which the reinforcing ring cover of the same material as the side portion of the shape is welded.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 보강링은 상기 보강링 결합부 내부에 배치되도록 상기 측면부 사출 시 함께 일체로 사출 성형되는 NF3 제조용 전해조의 콜렉터.The reinforcement ring is a collector of the NF 3 manufacturing electrolytic cell is integrally injection-molded together when the side portion injection to be disposed inside the reinforcing ring coupling portion.
  6. 제 5 항의 NF3 제조용 전해조의 콜렉터 제조 방법에 있어서,The fifth term in the collector of the NF 3 production process for manufacture of the electrolytic cell,
    사출기를 예열하고 상기 사출기에 상기 보강링 관통공이 형성될 위치에 보강링 고정핀이 돌출 및 삽입 가능하게 형성되고 상기 콜렉터 내부 형상을 형성하는 콜렉터 내부 사출 금형, 콜렉터 분리 금형, 상기 콜렉터의 외측면 형상을 형성하는 콜렉터 외측 사출 금형, 및 상기 내측단차를 형성하는 콜렉터 내부 단차 사출 금형을 안착하는 단계;A collector internal injection mold, a collector separation mold, and an outer surface shape of the collector, which preheat the injection molding machine, and the reinforcement ring fixing pin is protruded and inserted into a position where the reinforcing ring through hole is to be formed in the injection molding machine, and forms the internal shape of the collector. Seating the collector outer injection mold forming the inner step, and the collector inner step injection mold forming the inner step;
    상기 금형들을 형폐한 후 고온으로 가열하는 단계;Heating the mold at a high temperature after mold closing;
    상기 금형들을 오픈한 후 상기 보강링 고정핀을 돌출하도록 작동하여 상기 콜렉터 내부 사출 금형에 상기 보강링을 조립하는 단계;Assembling the reinforcement ring to the collector internal injection mold by operating the protruding ring fixing pin after opening the molds;
    상기 금형들을 형폐하고 상기 콜렉터 재료를 상기 금형들에 사출하는 단계;Mold closing the molds and injecting the collector material into the molds;
    상기 사출하는 단계에서 상기 사출이 완료되기 전 시간차를 주어 고정핀을 분리하는 단계; 및Separating the fixing pin by giving a time difference before the injection is completed in the injection step; And
    상기 사출이 완료되면 상기 사출 금형들을 오픈하고 상기 콜렉터 분리 금형을 작동하여 완성된 상기 콜렉터를 추출하는 단계를 포함하는 NF3 제조용 전해조의 콜렉터 제조 방법.Once the injection is completed, the collector of the NF 3 production method for producing an electrolytic cell comprising the step of opening of the injection mold and extracting the finished collector to the collector operates the mold separation.
PCT/KR2016/010976 2015-10-02 2016-09-30 Collector of electrolyzer for manufacturing nitrogen trifluoride and method for manufacturing same WO2017057950A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150139285 2015-10-02
KR10-2015-0139285 2015-10-02

Publications (1)

Publication Number Publication Date
WO2017057950A1 true WO2017057950A1 (en) 2017-04-06

Family

ID=58423888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010976 WO2017057950A1 (en) 2015-10-02 2016-09-30 Collector of electrolyzer for manufacturing nitrogen trifluoride and method for manufacturing same

Country Status (3)

Country Link
KR (1) KR101771862B1 (en)
TW (1) TWI600800B (en)
WO (1) WO2017057950A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065392A (en) * 2017-09-28 2019-04-25 株式会社Lixil Gas collecting apparatus
CN111183247A (en) * 2017-10-31 2020-05-19 关东电化工业株式会社 Electrolytic cell for producing nitrogen trifluoride gas and partition wall thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102282846B1 (en) * 2019-09-17 2021-07-28 서순기 Electrode laminated structure for electrolyzed sterilizing water producing apparatus
KR200496498Y1 (en) * 2022-01-13 2023-02-13 후성정공 주식회사 Nozzle for chemical apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10151702A (en) * 1996-09-26 1998-06-09 Ngk Insulators Ltd Laminated sintered material and production of electrochemical cell and laminated sintered material
JP2006336035A (en) * 2005-05-31 2006-12-14 Mitsui Chemicals Inc Electrolysis tank and method for producing nitrogen trifluoride by using the same
KR20120099580A (en) * 2011-01-18 2012-09-11 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Electrolytic apparatus, system and method for the safe production of nitrogen trifluoride
JP2013010989A (en) * 2011-06-29 2013-01-17 Toyo Tanso Kk Electrolysis apparatus
KR101223376B1 (en) * 2011-12-19 2013-01-23 오씨아이머티리얼즈 주식회사 Electrolyzer for manufacturing nitrogen trifluoride gas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0424727B1 (en) 1989-10-26 1995-04-19 MITSUI TOATSU CHEMICALS, Inc. Method for producing nitrogen trifluoride
KR100515412B1 (en) 2003-01-22 2005-09-14 도요탄소 가부시키가이샤 Electrolytic apparatus for molten salt
KR100742484B1 (en) 2005-12-02 2007-07-24 주식회사 효성 The electrolyzer for manufacturing nitrogen tri-fluoride to minimize the amount of a vaporized hydrogen flouride and the manufacturing method using the same
KR20140035957A (en) * 2011-06-29 2014-03-24 도요탄소 가부시키가이샤 Electrolysis device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10151702A (en) * 1996-09-26 1998-06-09 Ngk Insulators Ltd Laminated sintered material and production of electrochemical cell and laminated sintered material
JP2006336035A (en) * 2005-05-31 2006-12-14 Mitsui Chemicals Inc Electrolysis tank and method for producing nitrogen trifluoride by using the same
KR20120099580A (en) * 2011-01-18 2012-09-11 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Electrolytic apparatus, system and method for the safe production of nitrogen trifluoride
JP2013010989A (en) * 2011-06-29 2013-01-17 Toyo Tanso Kk Electrolysis apparatus
KR101223376B1 (en) * 2011-12-19 2013-01-23 오씨아이머티리얼즈 주식회사 Electrolyzer for manufacturing nitrogen trifluoride gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019065392A (en) * 2017-09-28 2019-04-25 株式会社Lixil Gas collecting apparatus
JP7198619B2 (en) 2017-09-28 2023-01-04 株式会社Lixil gas recovery device
CN111183247A (en) * 2017-10-31 2020-05-19 关东电化工业株式会社 Electrolytic cell for producing nitrogen trifluoride gas and partition wall thereof
KR20200080220A (en) * 2017-10-31 2020-07-06 칸토 덴카 코교 가부시키가이샤 Electrolyzer for nitrogen trifluoride gas production and its bulkhead
EP3705604A4 (en) * 2017-10-31 2021-08-04 Kanto Denka Kogyo Co., Ltd. Electrolytic bath for producing nitrogen trifluoride gas, and partition therefor
CN111183247B (en) * 2017-10-31 2022-07-15 关东电化工业株式会社 Electrolytic cell for producing nitrogen trifluoride gas and partition wall thereof
KR102615096B1 (en) * 2017-10-31 2023-12-15 칸토 덴카 코교 가부시키가이샤 Electrolyzer for producing nitrogen trifluoride gas and its partition wall

Also Published As

Publication number Publication date
KR101771862B1 (en) 2017-08-28
TW201720965A (en) 2017-06-16
KR20170040109A (en) 2017-04-12
TWI600800B (en) 2017-10-01

Similar Documents

Publication Publication Date Title
WO2017057950A1 (en) Collector of electrolyzer for manufacturing nitrogen trifluoride and method for manufacturing same
EP2084764B1 (en) A battery and a process for making a battery
EP1536501B1 (en) Method of manufacturing a fuel cell separator
KR20070055592A (en) Electrolysis cell for producing alkali metal
WO2014040165A1 (en) Externally-reinforced water electrolyser module
US8277620B2 (en) Electrolyzer module forming method and system
BR122013009191B1 (en) ELECTRODE ASSEMBLY FOR USE IN AN ALUMINUM ELECTROLYTE CELL
CN202423500U (en) Sodium-sulfur cell
CN101469373B (en) Lithium production device
KR20180126658A (en) Collector of electrolyzer for manufacturing nitrogen trifluoride having prevention of heat deformation
CN208815142U (en) A kind of cathode assembly of electrolytic preparation metallic sodium
KR102158384B1 (en) Flat tubular solid oxide fuel cell or water electrolysis apparatus with integrated current collector and manufacturing method using the same
KR101460278B1 (en) sodium sulfur battery
CN202534703U (en) Sodium-sulfur cell
CN201144272Y (en) Lithium production device
TWI810214B (en) Electrolytic cell and partition wall for nitrogen trifluoride gas production
KR102523079B1 (en) A method of strengthening the hermeticity of lead acid batteries using a corner bulkhead structure
CN111058016A (en) Electrode mechanism of semiconductor process furnace and semiconductor process furnace
KR20140022687A (en) Sodium-sulfur rechargeable battery
KR101451408B1 (en) sodium sulfur battery
CN217562673U (en) High-power metal-air battery convenient to replace
JP7368416B2 (en) Plug attachment device and method for manufacturing a secondary battery using the device
CN115762834B (en) Molten salt purifying device and molten salt purifying method
KR101616896B1 (en) sodium sulfur battery
KR101353449B1 (en) Sodium-sulfur rechargeable battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16852096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16852096

Country of ref document: EP

Kind code of ref document: A1