JP2019065392A - Gas collecting apparatus - Google Patents

Gas collecting apparatus Download PDF

Info

Publication number
JP2019065392A
JP2019065392A JP2018179817A JP2018179817A JP2019065392A JP 2019065392 A JP2019065392 A JP 2019065392A JP 2018179817 A JP2018179817 A JP 2018179817A JP 2018179817 A JP2018179817 A JP 2018179817A JP 2019065392 A JP2019065392 A JP 2019065392A
Authority
JP
Japan
Prior art keywords
gas
partition
gas chamber
gas recovery
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018179817A
Other languages
Japanese (ja)
Other versions
JP7198619B2 (en
Inventor
恵都子 藤中
Etsuko Fujinaka
恵都子 藤中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lixil Corp
Original Assignee
Lixil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lixil Corp filed Critical Lixil Corp
Publication of JP2019065392A publication Critical patent/JP2019065392A/en
Application granted granted Critical
Publication of JP7198619B2 publication Critical patent/JP7198619B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

To provide a technology capable of achieving good workability in cleaning a gas-chamber forming surface of a gas collecting apparatus.SOLUTION: A gas collecting apparatus includes a bulkhead 28 that encircles an electrode on which electrolytic gas G is generated due to electrolysis of electrolyte and forms a gas chamber 32 for collecting the electrolytic gas G on the electrolyte. An aperture 38 opening downward is formed in the bulkhead 28. When the electrolyte is removed from an electrolytic bath, a cleaning instrument can be arranged so as to pass through the aperture 38 of the bulkhead 28 and cleaning solution can be jetted out upwardly, without disassembling or removing the bulkhead 28. Therefore, a gas-chamber forming surface such as the bulkhead can easily be cleaned and good workability in the cleaning can be achieved.SELECTED DRAWING: Figure 3

Description

本発明は、電解設備に用いられるガス回収装置に関する。   The present invention relates to a gas recovery apparatus used for an electrolysis facility.

従来より、電解液の電気分解を利用して被処理材に表面処理を施す電解設備が知られている。この種の電解設備では、通常、電解液の電気分解に伴い電極から水素等の電解ガスが生じる。近年、この電解ガスを回収して利用する試みがなされている。たとえば、特許文献1には、電解ガスが生じる陰極の全体を隔壁体により包囲して陰極室を形成し、その電解ガスを電解液上のガス室で集めて回収する技術が開示されている。   DESCRIPTION OF RELATED ART Conventionally, the electrolysis installation which surface-treats to-be-processed material using electrolysis of electrolyte solution is known. In this type of electrolytic facility, an electrolytic gas such as hydrogen is generally generated from the electrode along with the electrolysis of the electrolytic solution. In recent years, attempts have been made to recover and use this electrolytic gas. For example, Patent Document 1 discloses a technique in which the entire cathode from which electrolytic gas is generated is surrounded by a partition to form a cathode chamber, and the electrolytic gas is collected and recovered in a gas chamber above the electrolytic solution.

特開昭56−33496号公報Japanese Patent Application Laid-Open No. 56-33496

ところで、電解ガスの気泡が電解液上で破裂するとミストが周囲に飛散する。このミストがガス室を形成するガス室形成面、被処理材、電解設備等に付着すると、その乾燥により結晶が析出する。この結晶がガス室形成面等に付着したままであると、腐食による劣化等の不具合の原因となる。よって、通常、ガス室形成面等に付着した結晶の除去を目的として、ガス室形成面等の洗浄作業が行われる。   By the way, when bubbles of the electrolytic gas burst on the electrolytic solution, the mist scatters around. When the mist adheres to the gas chamber forming surface forming the gas chamber, the material to be treated, the electrolytic equipment and the like, crystals are deposited by the drying. If this crystal remains attached to the gas chamber formation surface or the like, it causes problems such as deterioration due to corrosion. Therefore, the cleaning operation of the gas chamber formation surface or the like is usually performed for the purpose of removing the crystals adhering to the gas chamber formation surface or the like.

ここで、特許文献1の技術のもとでは、隔壁体が陰極の全体を覆っている。よって、ガス室形成面の洗浄作業をするうえで、ガス室形成面に洗浄液を届かせるため、隔壁体の分解又は取り外しを経る必要があり、作業性に劣るという問題点がある。   Here, under the technique of Patent Document 1, the partition covers the entire cathode. Therefore, in order to allow the cleaning liquid to reach the gas chamber formation surface when the gas chamber formation surface is cleaned, it is necessary to go through the disassembly or removal of the partition wall, and there is a problem that the workability is inferior.

本発明のある態様は、このような課題に鑑みてなされ、その目的の1つは、ガス回収装置のガス室形成面の洗浄作業で良好な作業性を得られる技術を提供することにある。   One aspect of the present invention is made in view of such a subject, and one of the objects is to provide art which can acquire good operativity by cleaning operation of a gas room formation side of a gas recovery device.

上記課題を解決するための本発明のある態様はガス回収装置である。第1態様のガス回収装置は、電解液の電気分解に伴い電解ガスが生じる電極を取り囲み、前記電解液上に前記電解ガスを集めるためのガス室を形成する隔壁体を備え、前記隔壁体には、下向きに開く開口部が形成されるガス回収装置。   One aspect of the present invention for solving the above-mentioned subject is a gas recovery device. The gas recovery apparatus according to the first aspect includes a partition that surrounds an electrode generated by an electrolytic gas as the electrolytic solution is electrolyzed, and forms a gas chamber for collecting the electrolytic gas on the electrolytic solution. A gas recovery device in which an opening that opens downward is formed.

第1態様によれば、電解槽の電解液を除去したとき、隔壁体の分解や取り外しを伴うことなく、隔壁体の開口部を通るように洗浄器具を配置したり洗浄液を噴出できる。このため、隔壁体等のガス室形成面を容易に洗浄でき、その洗浄作業で良好な作業性を得られる。   According to the first aspect, when the electrolytic solution in the electrolytic cell is removed, the cleaning device can be disposed or the cleaning solution can be ejected so as to pass through the opening of the partition without involving disassembly and removal of the partition. Therefore, the gas chamber formation surface such as the partition can be easily cleaned, and good workability can be obtained in the cleaning operation.

第1実施形態のガス回収装置が用いられる電解設備を模式的に示す正面断面図である。It is a front sectional view showing typically an electrolysis installation where gas recovery equipment of a 1st embodiment is used. 第1実施形態の電解設備の模式的な側面断面とともにガス回収装置を示す構成図である。It is a block diagram which shows a gas collection | recovery apparatus with the typical side surface cross section of the electrolysis installation of 1st Embodiment. 図1の一部の拡大図である。It is an enlarged view of a part of FIG. 図2の一部の拡大図である。It is an enlarged view of a part of FIG. 第1実施形態のガス回収装置の機能ブロックを示す構成図である。It is a block diagram which shows the functional block of the gas recovery system of 1st Embodiment. 第1実施形態の隔壁体の一部を模式的に示す斜視図である。It is a perspective view which shows typically a part of partition body of 1st Embodiment. 図7(a)は、図6の矢視Paから見た図であり、図7(b)は、図7(a)のA−A線断面図である。Fig.7 (a) is the figure seen from arrow Pa of FIG. 6, FIG.7 (b) is the sectional view on the AA line of FIG. 7 (a). 第1実施形態の隔壁体から第2隔壁部材を取り外した状態を示す斜視図である。It is a perspective view which shows the state which removed the 2nd partition member from the partition of 1st Embodiment. 図9(a)は、第1変形例のガス回収装置の動作を示す図であり、図9(b)は、第1実施形態のガス回収装置の動作を示す図である。Fig.9 (a) is a figure which shows operation | movement of the gas collection | recovery apparatus of a 1st modification, FIG.9 (b) is a figure which shows operation | movement of the gas collection | recovery apparatus of 1st Embodiment. 第2実施形態のガス回収装置を模式的に示す斜視図である。It is a perspective view which shows typically the gas recovery system of 2nd Embodiment. 第2実施形態のガス回収装置の正面断面図である。It is front sectional drawing of the gas recovery apparatus of 2nd Embodiment. 第3実施形態の陰極の液面周りの構成を模式的に示す図である。It is a figure which shows typically the structure around the liquid level of the cathode of 3rd Embodiment. 第2変形例のガス回収装置の一部を示す図である。It is a figure showing a part of gas recovery device of the 2nd modification. 第4実施形態の隔壁体を周辺構造と併せて示す断面図である。It is sectional drawing which shows the partition of 4th Embodiment with peripheral structure. 第5実施形態の電解設備を模式的に示す正面断面図である。It is a front sectional view showing an electrolysis installation of a 5th embodiment typically. 図16(a)は、図15の範囲Bのガス回収装置の側面図であり、図16(b)は、その側面断面図である。Fig.16 (a) is a side view of the gas recovery apparatus of the range B of FIG. 15, FIG.16 (b) is the side sectional view. 図15の範囲Bの拡大図である。It is an enlarged view of the range B of FIG. 第6実施形態の隔壁体を図17と同じ視点から見た図である。It is the figure which looked at the partition of 6th Embodiment from the same viewpoint as FIG. 図19(a)は、第7実施形態の隔壁体の一部を示す側面図であり、図19(b)は、複数の隔壁体ユニットの分解図である。Fig.19 (a) is a side view which shows a part of partition body of 7th Embodiment, FIG.19 (b) is an exploded view of several partition body units. 図20(a)は、図19(a)のD−D線断面図であり、図20(b)は、隔壁体ユニットの組立途中状態を示す図である。Fig.20 (a) is the DD sectional view taken on the line of Fig.19 (a), and FIG.20 (b) is a figure which shows the middle condition of an assembly of a partition unit.

以下、実施形態、変形例では、同一の構成要素に同一の符号を付し、重複する説明を省略する。各図面では、説明の便宜のため、構成要素の一部を適宜省略したり、構成要素の寸法を適宜拡大、縮小して示す。本明細書での「接触」や「接続」とは、特に明示がない限り、言及している条件を二者が直接的に満たす場合の他に、他の部材を介して満たす場合も含む。   Hereinafter, in the embodiment and the modification, the same reference numerals are given to the same components, and the overlapping description will be omitted. In the drawings, for convenience of explanation, some of the components are omitted as appropriate, and the dimensions of the components are appropriately enlarged and reduced. Unless otherwise specified, the terms "contact" and "connection" in the present specification include cases in which the two mentioned conditions are satisfied directly, as well as the case where they are satisfied via other members.

図1は、第1実施形態のガス回収装置10が用いられる電解設備12を模式的に示す正面断面図である。電解設備12は、電解液14に浸漬させた陰極16と陽極18とに通電することにより電解液14を電気分解させて、電解液14に浸漬させた被処理材に表面処理を施すためのものである。本実施形態の表面処理は、被処理材に陽極酸化皮膜(アルマイト皮膜)を生成する陽極酸化処理である。陽極酸化処理では、アルミニウム、白金等が陰極16に用いられ、アルミニウム製の被処理材が陽極18として用いられる。本実施形態の陰極はアルミニウム製である。   FIG. 1: is front sectional drawing which shows typically the electrolysis installation 12 in which the gas recovery apparatus 10 of 1st Embodiment is used. The electrolytic equipment 12 is for performing surface treatment on a material to be treated immersed in the electrolytic solution 14 by causing the electrolytic solution 14 to be electrolyzed by energizing the cathode 16 and the anode 18 immersed in the electrolytic solution 14. It is. The surface treatment of the present embodiment is an anodizing treatment to form an anodic oxide film (alumite film) on a material to be treated. In the anodizing treatment, aluminum, platinum or the like is used for the cathode 16, and a material to be treated made of aluminum is used as the anode 18. The cathode of the present embodiment is made of aluminum.

電解設備12は、主に、陰極16と、陽極18と、電解槽20と、支持構造体22とを備える。   The electrolysis facility 12 mainly includes a cathode 16, an anode 18, an electrolytic cell 20, and a support structure 22.

図2は、電解設備12の模式的な側面断面ととともにガス回収装置10を示す構成図である。図1、図2に示すように、陰極16は、鉛直方向に延びる長尺体であり、水平方向に複数配列される。陽極18は、鉛直方向に延びる長尺体であり、図示はしないが、複数の陰極16の配列方向(以下、X方向という)に複数配列される。陰極16と陽極18との間には不図示の電源により電圧が印加される。   FIG. 2 is a block diagram showing the gas recovery apparatus 10 together with a schematic side cross-sectional view of the electrolysis facility 12. As shown in FIGS. 1 and 2, the cathodes 16 are elongated members extending in the vertical direction, and a plurality of cathodes 16 are arranged in the horizontal direction. The anodes 18 are elongated members extending in the vertical direction, and although not shown, a plurality of the anodes 18 are arranged in the arrangement direction of the plurality of cathodes 16 (hereinafter referred to as the X direction). A voltage is applied between the cathode 16 and the anode 18 by a power supply (not shown).

電解槽20には、表面処理の内容に応じた電解液14が貯留される。本実施形態では、陽極酸化処理を施すための電解液14として、たとえば、硫酸を含む水溶液が用いられる。本実施形態の電解槽20は、電解液14の液面が大気圧に晒された開放型の構造であり、その上面部には開口部20aが開口する。   In the electrolytic cell 20, an electrolytic solution 14 corresponding to the content of the surface treatment is stored. In the present embodiment, for example, an aqueous solution containing sulfuric acid is used as the electrolytic solution 14 for anodizing treatment. The electrolytic cell 20 of the present embodiment has an open-type structure in which the liquid surface of the electrolytic solution 14 is exposed to the atmospheric pressure, and an opening 20 a is opened on the upper surface thereof.

図3は、図1の一部の拡大図であり、図4は、図2の一部の拡大図である。本実施形態の陰極16は、陰極16の上端部に設けられるプレート部16aと、プレート部16aの下方に設けられるとともにプレート部16aに接続されるパイプ部16bとを有する。   FIG. 3 is an enlarged view of a part of FIG. 1, and FIG. 4 is an enlarged view of a part of FIG. The cathode 16 of the present embodiment has a plate portion 16a provided at the upper end portion of the cathode 16, and a pipe portion 16b provided below the plate portion 16a and connected to the plate portion 16a.

支持構造体22は、長尺体であるベース部材24と、ベース部材24に設けられる電極接続部26とを有する。支持構造体22は、不図示の電源から複数の陰極16に至る通電経路の一部となり、金属等の導電性素材を用いて構成される。ベース部材24は、剛性に優れた断面形状であり、本実施形態では角形筒状の断面形状である。ベース部材24の両端部は電解槽20の上面部等の他の構造体の上に載せられ、支持構造体22はその構造体に支持される。   The support structure 22 has a base member 24 which is an elongated body, and an electrode connection portion 26 provided on the base member 24. The support structure 22 is a part of the conduction path from the power supply (not shown) to the plurality of cathodes 16, and is configured using a conductive material such as metal. The base member 24 has a cross-sectional shape excellent in rigidity, and has a rectangular cylindrical cross-sectional shape in the present embodiment. Both ends of the base member 24 are mounted on other structures such as the upper surface of the electrolytic cell 20, and the support structure 22 is supported by the structure.

電極接続部26は、ベース部材24から下向きに突き出る。電極接続部26は、ベース部材24の長手方向に沿った板状の長尺体である。ベース部材24及び電極接続部26は、X方向を長手方向として延びる。本実施形態の電極接続部26は、ベース部材24とは別体であり、溶接等によりベース部材24に接続される。電極接続部26は、ベース部材24の長手方向の両端部より長手方向の内側に収まる位置に設けられ、電解槽20内に配置される(図2参照)。ここでの「長手方向の内側」とは、言及している構成要素(ここではベース部材24)の長手方向の中央に近づく側を意味する。電極接続部26には、陰極16のプレート部16aが重ね合わせられ、複数のボルト等の接続具を用いてプレート部16aが接続される。   The electrode connection 26 protrudes downward from the base member 24. The electrode connection portion 26 is a plate-like elongated body along the longitudinal direction of the base member 24. The base member 24 and the electrode connection portion 26 extend in the X direction as a longitudinal direction. The electrode connection portion 26 of the present embodiment is a separate body from the base member 24 and is connected to the base member 24 by welding or the like. The electrode connection portion 26 is provided at a position that is fitted inward in the longitudinal direction from both end portions in the longitudinal direction of the base member 24, and is disposed in the electrolytic cell 20 (see FIG. 2). "Longitudinal inside" as used herein means the side closer to the longitudinal center of the component being referred to (here base member 24). The plate portion 16a of the cathode 16 is superimposed on the electrode connection portion 26, and the plate portion 16a is connected using a plurality of connectors such as bolts.

以上の電解設備12では、電解液14の電気分解に伴い電解ガスGが陰極16から生じる。本実施形態では電解ガスGとして水素(H)ガスが生じる。ガス回収装置10は、この陰極16から生じる電解ガスGを回収するために用いられる。 In the above-mentioned electrolysis installation 12, electrolysis gas G arises from cathode 16 with electrolysis of electrolysis solution 14. In the present embodiment, hydrogen (H 2 ) gas is generated as the electrolytic gas G. The gas recovery device 10 is used to recover the electrolytic gas G generated from the cathode 16.

本実施形態のガス回収装置10は、主に、隔壁体28と、気泡ガイド部材30とを備える。隔壁体28は、電解ガスGが生じる陰極16を取り囲み、電解液14上に電解ガスGを集めるためのガス室32を形成する。ガス室32内のガスは、後述するガス回収通路52やガス排出通路56を通して他の空間に送られる。   The gas recovery apparatus 10 of the present embodiment mainly includes a partition 28 and a bubble guide member 30. The partition body 28 surrounds the cathode 16 where the electrolytic gas G is generated, and forms a gas chamber 32 for collecting the electrolytic gas G on the electrolytic solution 14. The gas in the gas chamber 32 is sent to another space through a gas recovery passage 52 and a gas discharge passage 56 described later.

気泡ガイド部材30は、陰極16で生じた電解ガスGの気泡をガス室32に導くようにガイド可能である。気泡ガイド部材30は、電解液14の液面より上方から陰極16の下端より下方に亘る範囲で、陰極16を取り囲むように設けられる。本実施形態の気泡ガイド部材30は、複数の微小な開口部となる網目が形成された網状体であり、可撓性を持つ。気泡ガイド部材30の開口部の寸法は、その開口部を通過しようとする気泡を遮断する大きさに設定される。   The bubble guide member 30 can be guided so as to lead the bubble of the electrolytic gas G generated at the cathode 16 to the gas chamber 32. The bubble guide member 30 is provided to surround the cathode 16 in a range from above the liquid surface of the electrolyte 14 to below the lower end of the cathode 16. The air bubble guide member 30 according to the present embodiment is a net-like body in which meshes forming a plurality of minute openings are formed, and has flexibility. The size of the opening of the bubble guide member 30 is set to a size that blocks air bubbles that are going to pass through the opening.

隔壁体28は、隔壁体28の周囲の外部空間34とガス室32を隔離している。隔壁体28は、電解液14に対して耐腐食性があり、かつ、絶縁性のある素材が用いられる。この素材は、たとえば、塩化ビニル樹脂等である。絶縁性を条件とするのは、支持構造体22と電解液14の間で隔壁体28を通して通電される事態を避けるためである。   The partition body 28 separates the external space 34 around the partition body 28 and the gas chamber 32. The partition body 28 is made of a material that has corrosion resistance to the electrolyte solution 14 and is insulating. This material is, for example, vinyl chloride resin or the like. The condition of the insulating property is to avoid a situation where current is passed through the partition 28 between the support structure 22 and the electrolyte 14.

図5は、隔壁体28の模式的な平面断面とともにガス回収装置10の機能ブロックを示す構成図である。図3〜図5に示すように、隔壁体28は、陰極16の上方に設けられる天壁部28aと、陰極16を取り囲む筒状の周壁部28bとを有する。周壁部28bは、X方向に沿って延びる一対の側壁部28cと、X方向の両端側に設けられる一対の端壁部28dとを有する。   FIG. 5 is a block diagram showing a functional block of the gas recovery system 10 together with a schematic plan cross section of the partition 28. As shown in FIGS. 3 to 5, the partition body 28 has a top wall portion 28 a provided above the cathode 16 and a cylindrical peripheral wall portion 28 b surrounding the cathode 16. The peripheral wall portion 28 b has a pair of side wall portions 28 c extending along the X direction, and a pair of end wall portions 28 d provided on both end sides in the X direction.

ガス室32は、隔壁体28の周壁部28bの内壁面、支持構造体22のベース部材24の外面(下面)、及び、電解液14の液面に囲まれて形成される。以下、これら隔壁体28や支持構造体22のガス室32を形成する面をガス室形成面36という。   The gas chamber 32 is formed by being surrounded by the inner wall surface of the peripheral wall portion 28 b of the partition body 28, the outer surface (lower surface) of the base member 24 of the support structure 22, and the liquid surface of the electrolyte solution 14. Hereinafter, the surface of the partition 28 and the support structure 22 forming the gas chamber 32 will be referred to as a gas chamber forming surface 36.

ガス室32は、平面視において、X方向を長手方向とし、そのX方向と直交する方向(以下、Y方向という)を短手方向として細長に広がっている。これは、平面視において、ガス室32のX方向に沿った内寸法よりY方向に沿った内寸法が小さいことを意味する。   In a plan view, the gas chamber 32 has an X direction as a longitudinal direction, and a direction orthogonal to the X direction (hereinafter, referred to as a Y direction) as a narrow direction. This means that the internal dimension along the Y direction is smaller than the internal dimension along the X direction of the gas chamber 32 in plan view.

隔壁体28は、陰極16に上側から被せるように設けられ、一種のフードとして機能する。隔壁体28は下向きに開いた箱状をなしており、隔壁体28には下向きに開く開口部38が形成される。開口部38は、電解液14の液面下にて少なくとも陰極16と鉛直方向に重なる位置では隔壁体28の一部が存在しないように設けられる。本実施形態の開口部38は、周壁部28bの下端部が形成している。開口部38は、電解液14の液面下に没している。本実施形態の開口部38は、陰極16の上端部16cが貫通する位置に設けられる。ここでの「陰極16の上端部16c」とは、陰極16の上端から陰極16の長手方向の全長の10%の領域をいう。開口部38は、陰極16に対して水平方向に重なる位置に設けられることになる。開口部38と気泡ガイド部材30の間には洗浄液を通すための隙間40が設けられる。   The partition body 28 is provided so as to cover the cathode 16 from the upper side, and functions as a kind of hood. The partition 28 is in the form of a box that opens downward, and the partition 28 is formed with an opening 38 that opens downward. The opening 38 is provided such that a portion of the partition 28 does not exist at a position vertically overlapping the cathode 16 at least below the liquid surface of the electrolyte solution 14. The opening 38 of the present embodiment is formed by the lower end of the peripheral wall 28 b. The opening 38 is sunk below the surface of the electrolyte 14. The opening 38 of the present embodiment is provided at a position where the upper end 16 c of the cathode 16 penetrates. Here, the “upper end portion 16 c of the cathode 16” refers to a region of 10% of the entire length of the cathode 16 in the longitudinal direction from the upper end of the cathode 16. The opening 38 is provided at a position overlapping the cathode 16 in the horizontal direction. A gap 40 is provided between the opening 38 and the air bubble guide member 30 for passing the cleaning liquid.

本実施形態の隔壁体28は、複数の陰極16を取り囲んで一つのガス室32を形成する。本実施形態の隔壁体28は、複数の陰極16のうちX方向の両端側の陰極16以外の全ての陰極16を取り囲んで一つのガス室32を形成している(図2参照)。X方向の両端側の陰極16から生じる電解ガスGは回収せず、それ以外の陰極16から生じる電解ガスGを回収することになる。   The partition 28 of the present embodiment surrounds a plurality of cathodes 16 to form one gas chamber 32. The partition body 28 of the present embodiment forms one gas chamber 32 by surrounding all the cathodes 16 other than the cathode 16 at both ends in the X direction among the plurality of cathodes 16 (see FIG. 2). The electrolytic gas G generated from the cathodes 16 on both ends in the X direction is not recovered, and the electrolytic gas G generated from the other cathodes 16 is recovered.

図6は、隔壁体28の一部を模式的に示す斜視図である。図7(a)は、図6の矢視Paから見た図であり、図7(b)は、図7(a)のA−A線断面図である。隔壁体28は、第1隔壁部材42と、第2隔壁部材44とを有する。第1隔壁部材42は、隔壁体28の天壁部28aを形成する天面部42aと、隔壁体28の一対の側壁部28cを形成する第1隔壁部42bとを有する。天面部42aは、支持構造体22のベース部材24に被せられており、そのY方向の両端部のそれぞれから第1隔壁部42bが垂下している。一対の第1隔壁部42bは、ベース部材24のY方向の側面に接触して又は近傍に設けられる。   FIG. 6 is a perspective view schematically showing a part of the partition 28. As shown in FIG. Fig.7 (a) is the figure seen from arrow Pa of FIG. 6, FIG.7 (b) is the sectional view on the AA line of FIG. 7 (a). The partition body 28 has a first partition member 42 and a second partition member 44. The first partition wall member 42 has a top surface portion 42 a forming the top wall portion 28 a of the partition wall 28 and a first partition wall portion 42 b forming a pair of side wall portions 28 c of the partition wall 28. The top surface portion 42 a is covered on the base member 24 of the support structure 22, and the first partition wall portion 42 b is suspended from each of both end portions in the Y direction. The pair of first partition portions 42 b is provided in contact with or in the vicinity of the side surface of the base member 24 in the Y direction.

第2隔壁部材44は、ガス室32のX方向の両端部に設けられる。第2隔壁部材44は、隔壁体28の端壁部28dを形成する第2隔壁部44aと、第1隔壁部材42に接続される一対の第1接続壁部44bと、支持構造体22の電極接続部26に接続される一対の第2接続壁部44cとを有する。   The second partition members 44 are provided at both ends of the gas chamber 32 in the X direction. The second partition wall member 44 includes a second partition wall portion 44 a forming the end wall portion 28 d of the partition wall body 28, a pair of first connection wall portions 44 b connected to the first partition wall member 42, and an electrode of the support structure 22. And a pair of second connection wall portions 44 c connected to the connection portion 26.

図8は、隔壁体28から第2隔壁部材44を取り外した状態を示す斜視図である。図7、図8に示すように、隔壁体28の端壁部28d、つまり、第2隔壁部材44の第2隔壁部44aは、電極接続部26の長手方向(X方向)の一端26aより長手方向の内側に配置される。ここでの「長手方向の内側」とは、前述の通り、電極接続部26の長手方向の中央に近づく側をいう。これを実現するため、第2隔壁部44aには、支持構造体22の電極接続部26に応じた形状の切欠部44dが形成される。切欠部44dは、第2隔壁部44aの上辺部から下向きに窪む溝状をなす。支持構造体22の電極接続部26は、切欠部44dを貫通するとともに切欠部44dに嵌め込まれる。   FIG. 8 is a perspective view showing a state in which the second partition wall member 44 is removed from the partition wall 28. As shown in FIG. As shown in FIGS. 7 and 8, the end wall 28 d of the partition body 28, that is, the second partition 44 a of the second partition member 44 is longer than one end 26 a in the longitudinal direction (X direction) of the electrode connection portion 26. Placed inside the direction. Here, “inward in the longitudinal direction” refers to the side closer to the center in the longitudinal direction of the electrode connection portion 26 as described above. In order to realize this, a notch 44 d having a shape corresponding to the electrode connection portion 26 of the support structure 22 is formed in the second partition wall 44 a. The notch 44d has a groove shape that is recessed downward from the upper side of the second partition wall 44a. The electrode connection portion 26 of the support structure 22 penetrates the notch 44 d and is fitted into the notch 44 d.

図6、図7に示すように、第1接続壁部44bは、第1隔壁部42bのY方向の両端部から電極接続部26の長手方向の内側に延びている。本実施形態の第1接続壁部44bは、第2隔壁部44aと同じ部材の一部として設けられる。第1接続壁部44bは、第1隔壁部材42の第1隔壁部42bと重ね合わせられ、ねじ等の接続具46を用いて第1隔壁部42bに接続される。第1接続壁部44bと第1隔壁部42bの間は、これらの間に挟み込まれる弾性体であるシール材(不図示)によりシールされる。   As shown in FIGS. 6 and 7, the first connection wall 44 b extends inward in the longitudinal direction of the electrode connection portion 26 from both ends of the first partition 42 b in the Y direction. The first connection wall 44b of the present embodiment is provided as part of the same member as the second partition 44a. The first connection wall 44 b is superimposed on the first partition 42 b of the first partition 42 and is connected to the first partition 42 b using a connector 46 such as a screw. The first connection wall 44 b and the first partition 42 b are sealed by a sealing material (not shown) which is an elastic body sandwiched therebetween.

一対の第2接続壁部44cは、支持構造体22の電極接続部26を間に挟んだ両側に配置される。第2接続壁部44cは、第2隔壁部44aの切欠部44dの縁部から電極接続部26の長手方向の外側に延びている。本実施形態の第2接続壁部44cは、第2隔壁部44aとは別体であり、溶接等により第2隔壁部44aに接続される。一対の第2接続壁部44cは、電極接続部26と重ね合わせられ、ねじ等の接続具48を用いて電極接続部26に接続される。第2接続壁部44cと電極接続部26の間は、これらの間に挟み込まれる弾性体であるシール材(不図示)によりシールされる。なお、第2接続壁部44cは、第2隔壁部44aと同じ単数の部材の一部を構成していてもよい。   The pair of second connection wall portions 44 c is disposed on both sides of the electrode connection portion 26 of the support structure 22. The second connection wall 44 c extends from the edge of the notch 44 d of the second partition 44 a to the outside in the longitudinal direction of the electrode connection 26. The second connection wall portion 44c of the present embodiment is separate from the second partition wall portion 44a, and is connected to the second partition wall portion 44a by welding or the like. The pair of second connection wall portions 44 c is superimposed on the electrode connection portion 26 and is connected to the electrode connection portion 26 using a connection tool 48 such as a screw. The second connection wall portion 44c and the electrode connection portion 26 are sealed by a sealing material (not shown) which is an elastic body sandwiched therebetween. The second connection wall 44 c may form part of the same single member as the second partition 44 a.

以上の第1隔壁部材42は支持構造体22に被せられ、第2隔壁部材44を介して支持構造体22に接続されることで、支持構造体22に固定される。第1隔壁部材42を第2隔壁部材44に接続する接続具46や、第2隔壁部材44を支持構造体22に接続する接続具48は、第1隔壁部材42、第2隔壁部材44、支持構造体22に対して着け外し可能である。隔壁体28は、この接続具46、48の着け外しにより、支持構造体22に着脱可能に取り付けられる。   The first partition wall member 42 described above is placed on the support structure 22 and is fixed to the support structure 22 by being connected to the support structure 22 via the second partition wall member 44. The connector 46 for connecting the first partition member 42 to the second partition member 44 and the connector 48 for connecting the second partition member 44 to the support structure 22 are the first partition member 42, the second partition member 44, and the support. It can be attached to and detached from the structure 22. The partition body 28 is detachably attached to the support structure 22 by removing and attaching the connectors 46 and 48.

以上のガス回収装置10の効果を説明する。
(A)隔壁体28には、図3、図4に示すように、下向きに開く開口部38が形成される。よって、電解槽20の電解液14を除去したとき、隔壁体28の分解や取り外しを伴うことなく、隔壁体28の開口部38を通るように洗浄器具を配置したり洗浄液を噴出できる。このため、隔壁体28等のガス室形成面36を容易に洗浄でき、その洗浄作業で良好な作業性を得られる。なお、ここでの洗浄器具とは洗浄液を噴出可能な器具をいう。また、この洗浄作業は、ガス室形成面36に析出している結晶に洗浄液を噴出して結晶を洗い流すことで行われる。
The effects of the above gas recovery apparatus 10 will be described.
(A) As shown in FIG. 3 and FIG. 4, the partition wall 28 is formed with an opening 38 opening downward. Therefore, when the electrolytic solution 14 of the electrolytic cell 20 is removed, the cleaning tool can be disposed or the cleaning solution can be ejected so as to pass through the opening 38 of the partition 28 without disassembling or removing the partition 28. Therefore, the gas chamber forming surface 36 such as the partition 28 can be easily cleaned, and good workability can be obtained in the cleaning operation. Here, the cleaning device means an device capable of spouting the cleaning solution. Further, this cleaning operation is performed by spouting the cleaning liquid onto the crystals deposited on the gas chamber forming surface 36 to wash out the crystals.

(B)隔壁体28は、複数の陰極16を取り囲んで一つのガス室32を形成する。よって、陰極16毎に個別の隔壁体28を用いるよりも隔壁体28の個数を削減でき、隔壁体28の設置作業が容易となる。また、これに伴いガス回収装置10の製品コストの削減も図れる。 (B) The partition body 28 surrounds a plurality of cathodes 16 to form one gas chamber 32. Therefore, the number of partition bodies 28 can be reduced compared to using individual partition bodies 28 for each cathode 16, and the installation work of the partition bodies 28 becomes easier. Further, along with this, the product cost of the gas recovery apparatus 10 can be reduced.

(C)なお、隔壁体28は、複数の陰極16の間には壁部がない構造である。よって、複数の陰極16の間に壁部がある構造と比べ、洗浄器具を大きく動かさずとも、隔壁体28のガス室形成面36の広範囲に洗浄液を行き届かせ易くなる。 (C) The partition 28 has a structure in which there is no wall between the plurality of cathodes 16. Therefore, the cleaning solution can easily reach the wide area of the gas chamber forming surface 36 of the partition body 28 without moving the cleaning tool largely, as compared with the structure in which the wall portion is provided between the plurality of cathodes 16.

(D)隔壁体28の開口部38は陰極16の上端部16cが貫通する位置に設けられる。よって、隔壁体28等のガス室形成面36から開口部38までの距離が短くなり、それだけ開口部38を通る洗浄器具や洗浄液を用いてガス室形成面36を洗浄し易くなる。 (D) The opening 38 of the partition 28 is provided at a position where the upper end 16 c of the cathode 16 penetrates. Therefore, the distance from the gas chamber forming surface 36 such as the partition 28 to the opening 38 is shortened, and the gas chamber forming surface 36 can be easily cleaned using the cleaning tool or the cleaning liquid passing through the opening 38.

かりに、後述する図11の構造のように、隔壁体28の荷重を接続具80を介して支持構造体22に伝達しなければならない場合を考える。この場合、隔壁体28の荷重を支持構造体22にしっかりと伝達するうえで、支持構造体22と隔壁体28の接続強度の確保のために支持構造体22に大面積の被接続部22aを設けたり、接続具80の個数を増大させる必要がある。これに伴い、隔壁体28を支持構造体22に接続するための接続構造が複雑化してしまう。   Consider a case where the load of the bulkhead 28 has to be transmitted to the support structure 22 through the connector 80 as in the structure of FIG. 11 described later. In this case, in order to securely transmit the load of the partition 28 to the support structure 22, the large-area connected portion 22 a is formed on the support structure 22 in order to secure the connection strength between the support structure 22 and the partition 28. It is necessary to provide or increase the number of connectors 80. Along with this, the connection structure for connecting the partition body 28 to the support structure 22 becomes complicated.

この点、隔壁体28の第1隔壁部材42は、図6、図7に示すように、支持構造体22に被せられている。よって、隔壁体28の荷重を支持構造体22にしっかりと伝達するうえで、隔壁体28の荷重を支持構造体22に直接に伝達できる。このため、隔壁体28を支持構造体22に接続するための接続構造を簡素化でき、ガス回収装置10の製品コストの削減を図れる。   In this regard, as shown in FIGS. 6 and 7, the first partition member 42 of the partition body 28 is covered on the support structure 22. Therefore, in order to transmit the load of the partition 28 firmly to the support structure 22, the load of the partition 28 can be directly transmitted to the support structure 22. For this reason, the connection structure for connecting the partition body 28 to the support structure 22 can be simplified, and the product cost of the gas recovery apparatus 10 can be reduced.

また、後述する図11の構造と比べ、隔壁体28を支持構造体22に接続するため、支持構造体22に出っ張りとなる被接続部22aを設けずともよくなる。よって、ガス回収装置10を用いるうえで、支持構造体22の小型化を図れ、その被接続部22aの周辺構造物との干渉を避けられる。   Further, as compared with the structure of FIG. 11 described later, in order to connect the partition body 28 to the support structure 22, it is not necessary to provide the connection portion 22a which is a protrusion on the support structure 22. Therefore, when using the gas recovery apparatus 10, the support structure 22 can be miniaturized, and interference with the peripheral structure of the connected portion 22a can be avoided.

なお、本実施形態の気泡ガイド部材30の上端部には、図8に示すように、紐状体50が繋がれている。気泡ガイド部材30は、支持構造体22のベース部材24に紐状体50を巻き掛けることで、支持構造体22に支持される。ここで、本実施形態によれば、気泡ガイド部材30の紐状体50を支持構造体22に巻き掛けるうえで、出っ張りとなる支持構造体22の被接続部22aがないため、その巻き掛け作業が容易となる。   In addition, as shown in FIG. 8, the string-like body 50 is connected to the upper end part of the bubble guide member 30 of this embodiment. The air bubble guide member 30 is supported by the support structure 22 by winding the cord-like body 50 around the base member 24 of the support structure 22. Here, according to the present embodiment, when the string-like body 50 of the air bubble guide member 30 is wound around the support structure 22, since there is no connected portion 22a of the support structure 22 to be a protrusion, the winding operation is performed. Becomes easy.

隔壁体28の端壁部28dは、図8に示すように、支持構造体22の電極接続部26の一端26aより長手方向の内側に配置される。よって、隔壁体28は、支持構造体22の電極接続部26より長手方向の外側にはみ出ないレイアウトとなる。このため、図2に示すように、既存の電解槽20の内壁面と支持構造体22の電極接続部26の一端26aと間に隙間があまりない場合でも、その電解槽20との干渉を避けつつ隔壁体28を利用できる。   The end wall portion 28d of the partition body 28 is disposed longitudinally inward of one end 26a of the electrode connection portion 26 of the support structure 22, as shown in FIG. Therefore, the partition body 28 has a layout that does not extend beyond the electrode connection portion 26 of the support structure 22 in the longitudinal direction. For this reason, as shown in FIG. 2, even when there is not much gap between the inner wall surface of the existing electrolytic cell 20 and one end 26a of the electrode connection portion 26 of the support structure 22, interference with the electrolytic cell 20 is avoided. While the partition body 28 can be used.

なお、本実施形態では、支持構造体22の電極接続部26の一端26aから、X方向の最端側の電極16までの間に第2隔壁部材44の第2接続壁部44cを配置できるだけのスペースがない。そこで、本実施形態では、X方向の最端側の電極16から二番目の箇所にあった既存の陰極16(不図示)を取り外し、その陰極16の取り付け箇所に第2隔壁部材44を接続している。このとき、既存の陰極16を電極接続部26に接続するための既存のボルト穴にボルトを挿通し、そのボルトを用いて第2隔壁部材44を電極接続部26に接続している。この第2隔壁部材44の接続箇所を確保するために取り外される既存の陰極16は特に限定されず、たとえば、X方向の最端側の陰極16を対象にしてもよい。また、電極接続部26の一端26aからX方向の最端側の陰極16までの間に第2隔壁部材44の第2接続壁部44cを配置できるスペースがある場合を考える。この場合、既存の陰極16を取り外さずに、電極接続部26に新たに形成したボルト穴にボルトを挿通し、そのボルトを用いて第2隔壁部材44を接続してもよい。   In the present embodiment, the second connection wall portion 44c of the second partition member 44 can be disposed between the one end 26a of the electrode connection portion 26 of the support structure 22 and the electrode 16 at the end of the X direction. There is no space. Therefore, in the present embodiment, the existing cathode 16 (not shown) at the second place is removed from the electrode 16 on the endmost side in the X direction, and the second partition member 44 is connected to the attachment place of the cathode 16. ing. At this time, a bolt is inserted into an existing bolt hole for connecting the existing cathode 16 to the electrode connection portion 26, and the second partition member 44 is connected to the electrode connection portion 26 using the bolt. The existing cathode 16 removed in order to secure the connection point of the second partition wall member 44 is not particularly limited. For example, the cathode 16 at the endmost side in the X direction may be targeted. A case will be considered where there is a space in which the second connection wall portion 44c of the second partition wall member 44 can be disposed between one end 26a of the electrode connection portion 26 and the cathode 16 at the end of the X direction. In this case, a bolt may be inserted through a bolt hole newly formed in the electrode connection portion 26 without removing the existing cathode 16, and the second partition member 44 may be connected using the bolt.

ガス回収装置10の他の特徴を説明する。ガス回収装置10は、図2、図5に示すように、ガス回収通路52と、ガス供給通路54と、ガス排出通路56と、切替弁58と、計測部60と、制御部62とを更に備える。   Other features of the gas recovery apparatus 10 will be described. The gas recovery apparatus 10 further includes a gas recovery passage 52, a gas supply passage 54, a gas discharge passage 56, a switching valve 58, a measuring unit 60, and a control unit 62, as shown in FIGS. Prepare.

ガス回収通路52は、ガス室32内の電解ガスGを回収用空間64に送るためのものである。ガス回収通路52には、水等の封止液66が貯留された液槽68が設置される。ガス室32内のガスは液槽68内の封止液66を通過しつつ回収用空間64に送られる。液槽68は逆火防止器としての役割の他、可溶性ミストをガスから除去する役割がある。   The gas recovery passage 52 is for sending the electrolytic gas G in the gas chamber 32 to the recovery space 64. In the gas recovery passage 52, a liquid tank 68 in which a sealing liquid 66 such as water is stored is installed. The gas in the gas chamber 32 is sent to the recovery space 64 while passing through the sealing liquid 66 in the liquid tank 68. The liquid tank 68 plays a role in removing soluble mist from the gas, in addition to serving as a flashback protector.

ガス回収通路52は、ガスが流出するガス流出口52aを有する。ガス流出口52aは封止液66に全体が没している。封止液66の一部はガス回収通路52の下流側部分52bの内部を満たしている。この封止液66により、隔壁体28内のガス室32と液槽68内の回収用空間64との間の連通が遮断される。   The gas recovery passage 52 has a gas outlet 52a from which the gas flows out. The gas outlet 52 a is entirely submerged in the sealing liquid 66. A portion of the sealing liquid 66 fills the inside of the downstream portion 52 b of the gas recovery passage 52. The sealing liquid 66 blocks the communication between the gas chamber 32 in the partition 28 and the recovery space 64 in the liquid tank 68.

ガス供給通路54は、ガス源からガス室32に不活性ガスを供給するためのものである。ここでの不活性ガスとは、たとえば、窒素、アルゴン等である。ガス供給通路54の途中位置には開閉弁70が設置される。開閉弁70が開弁状態にあるとき、ガス室32に不活性ガスが供給され、開閉弁70が閉弁状態にあるとき、不活性ガスの供給が停止する。本実施形態の開閉弁70は、制御部62による制御のもとで、その開閉状態が切り替えられる。なお、開閉弁70は、手動により開閉状態を切り替えてもよい。   The gas supply passage 54 is for supplying an inert gas from the gas source to the gas chamber 32. The inert gas here is, for example, nitrogen, argon or the like. An on-off valve 70 is installed at an intermediate position of the gas supply passage 54. When the on-off valve 70 is in the open state, the inert gas is supplied to the gas chamber 32, and when the on-off valve 70 is in the closed state, the supply of the inert gas is stopped. The on-off state of the on-off valve 70 of the present embodiment is switched under the control of the control unit 62. The on-off valve 70 may switch the open / close state manually.

ガス排出通路56は、ガス回収通路52から分岐しており、ガス室32内のガスを排気用空間72に送るためのものである。本実施形態では、ガス排出通路56を通してガス室32内に残存する空気を排出しようとしており、排気用空間72は大気空間となる。   The gas discharge passage 56 is branched from the gas recovery passage 52 and is for sending the gas in the gas chamber 32 to the exhaust space 72. In the present embodiment, the air remaining in the gas chamber 32 is to be discharged through the gas discharge passage 56, and the exhaust space 72 becomes an atmospheric space.

切替弁58は、回収用空間64及び排気用空間72のいずれかにガス室32内のガスの送り先を切り替えるためのものである。本実施形態の切替弁58は、ガス回収通路52からガス排出通路56が分岐する分岐点に設けられる三方弁である。切替弁58は、ガス室32内のガスを回収用空間64のみに流通させることが可能な第1状態と、ガス室32内のガスを排気用空間72のみに流通させることが可能な第2状態とを切り替え可能である。本実施形態の切替弁58は、制御部62による制御のもとで、これら動作状態を切り替え可能である。切替弁58が第1状態にあるとき、ガス室32内のガスの送り先が回収用空間64になる。切替弁58が第2状態にあるとき、ガス室32内のガスの送り先が排気用空間72になる。   The switching valve 58 is for switching the destination of the gas in the gas chamber 32 to any one of the recovery space 64 and the exhaust space 72. The switching valve 58 of the present embodiment is a three-way valve provided at a branch point where the gas discharge passage 56 branches from the gas recovery passage 52. The switching valve 58 has a first state in which the gas in the gas chamber 32 can be circulated only to the recovery space 64 and a second state in which the gas in the gas chamber 32 can be circulated only to the exhaust space 72. It is possible to switch between the states. The switching valve 58 of the present embodiment can switch these operation states under the control of the control unit 62. When the switching valve 58 is in the first state, the gas destination in the gas chamber 32 becomes the recovery space 64. When the switching valve 58 is in the second state, the gas destination in the gas chamber 32 is the exhaust space 72.

計測部60は、酸素センサである。計測部60は、ガス室32内の酸素の濃度を計測し、その計測結果を計測信号として制御部62に出力可能である。本実施形態の計測部60は、ガス回収通路52の切替弁58より上流側部分であって、後述する合流点より下流側に設置されている。これにより、計測部60は、ガス室32内からガス回収通路52内に送られる酸素の濃度を、ガス室32内の濃度として計測することになる。   The measuring unit 60 is an oxygen sensor. The measurement unit 60 can measure the concentration of oxygen in the gas chamber 32, and can output the measurement result to the control unit 62 as a measurement signal. The measurement unit 60 of the present embodiment is a portion upstream of the switching valve 58 of the gas recovery passage 52 and is installed downstream of a junction point described later. Accordingly, the measuring unit 60 measures the concentration of oxygen sent from the inside of the gas chamber 32 into the gas recovery passage 52 as the concentration in the gas chamber 32.

制御部62は、計測部60から出力される計測信号に基づいて、切替弁58や開閉弁70を制御する。詳しくは、制御部62は、計測部60により計測される酸素の濃度が所定の下限濃度超の場合、開閉弁70を開弁状態に切り替えて、ガス室32内に不活性ガスを供給する。これと併せて、制御部62は、切替弁58を第2状態に切り替えて、ガス室32内のガスの送り先を排気用空間72にする。これにより、隔壁体28のガス室32内に残存する空気が不活性ガスによりパージされて、排気用空間72に排出される。この下限濃度は、ガス室32内の電解ガスGと空気が混合したとき、その混合ガスの混合比が燃焼範囲に属さない大きさに設定される。下限濃度は、たとえば、5%未満の範囲で設定される。   The control unit 62 controls the switching valve 58 and the on-off valve 70 based on the measurement signal output from the measurement unit 60. Specifically, when the concentration of oxygen measured by the measurement unit 60 exceeds the predetermined lower limit concentration, the control unit 62 switches the on-off valve 70 to the open state to supply the inert gas into the gas chamber 32. At the same time, the control unit 62 switches the switching valve 58 to the second state to set the gas destination in the gas chamber 32 to the exhaust space 72. Thus, the air remaining in the gas chamber 32 of the partition 28 is purged by the inert gas and discharged to the exhaust space 72. The lower limit concentration is set so that the mixing ratio of the mixed gas does not belong to the combustion range when the electrolytic gas G and air in the gas chamber 32 are mixed. The lower limit concentration is set, for example, in the range of less than 5%.

制御部62は、計測部60により計測される酸素の濃度が所定の下限濃度以下の場合、開閉弁70を閉弁状態に切り替えて、ガス室32内への不活性ガスの供給を停止する。これと併せて、制御部62は、切替弁58を第1状態に切り替えて、ガス室32内のガスの送り先を回収用空間64にする。これにより、隔壁体28のガス室32内に電解ガスGが集められると、その電解ガスGが回収用空間64に送られる。   When the concentration of oxygen measured by the measurement unit 60 is equal to or less than the predetermined lower limit concentration, the control unit 62 switches the on-off valve 70 to the closed state to stop the supply of the inert gas into the gas chamber 32. At the same time, the control unit 62 switches the switching valve 58 to the first state, and sets the gas destination in the gas chamber 32 to the recovery space 64. Accordingly, when the electrolytic gas G is collected in the gas chamber 32 of the partition body 28, the electrolytic gas G is sent to the recovery space 64.

このとき、隔壁体28のガス室32内での電解ガスGのガス量が多くなるほど、ガス室32内での電解ガスGの内圧が大きくなる。これに伴い、ガス回収通路52の下流側部分52bに満たされる封止液66の液面が徐々に低下する。ガス回収通路52のガス流出口52aと重なる位置まで封止液66の液面が下がったところで、ガス室32内の電解ガスGがガス流出口52aを通して液槽68の回収用空間64に送られる。   At this time, the internal pressure of the electrolytic gas G in the gas chamber 32 increases as the gas amount of the electrolytic gas G in the gas chamber 32 of the partition body 28 increases. Along with this, the liquid level of the sealing liquid 66 filled in the downstream portion 52 b of the gas recovery passage 52 gradually decreases. When the liquid level of the sealing liquid 66 falls to a position overlapping the gas outlet 52a of the gas recovery passage 52, the electrolytic gas G in the gas chamber 32 is sent to the recovery space 64 of the liquid tank 68 through the gas outlet 52a. .

以上のガス回収装置10の効果を説明する。
ガス回収装置10では、ガス室形成面36の洗浄作業や、陰極16の交換を目的として、定期的にメンテナンスが行われる。ガス回収装置10のメンテナンスに伴い電解液14を除去した後、電解槽20内に電解液14を再び貯留すると、隔壁体28のガス室32内には空気が残存した状態となる。ここで、本実施形態では、不活性ガスをガス室32内に供給するガス供給通路54を備えている。よって、電解ガスGを発生させる前にガス室32内に不活性ガスを供給することで、ガス室32内に残存した空気をガス回収通路52を通して不活性ガスによりパージできる。このため、ガス室32内に残存した空気の酸素成分を可能な限り除去してから電解ガスGを回収できる。この結果、空気中の多くの酸素成分が混入した電解ガスGをガス回収通路52を通して回収してしまう事態を避けられる。
The effects of the above gas recovery apparatus 10 will be described.
In the gas recovery apparatus 10, maintenance is performed periodically for the purpose of cleaning the gas chamber forming surface 36 and replacing the cathode 16. When the electrolyte solution 14 is removed after the maintenance of the gas recovery apparatus 10 and the electrolyte solution 14 is stored again in the electrolytic cell 20, air remains in the gas chamber 32 of the partition 28. Here, in the present embodiment, the gas supply passage 54 for supplying an inert gas into the gas chamber 32 is provided. Therefore, by supplying the inert gas into the gas chamber 32 before generating the electrolytic gas G, the air remaining in the gas chamber 32 can be purged by the inert gas through the gas recovery passage 52. Therefore, the electrolytic gas G can be recovered after removing the oxygen component of air remaining in the gas chamber 32 as much as possible. As a result, the electrolytic gas G mixed with a large amount of oxygen components in the air can be prevented from being recovered through the gas recovery passage 52.

また、ガス回収装置10は、回収用空間64と排気用空間72のいずれかにガス室32内のガスの送り先を切り替え可能な切替弁58を備える。よって、ガス室32内に残存する空気を排気用空間72に送ってから、電解ガスGを回収用空間64に送れるようになる。このため、空気の酸素成分を可能な限り除去した電解ガスGを回収用空間64で回収できる。   Further, the gas recovery apparatus 10 includes a switching valve 58 capable of switching the destination of the gas in the gas chamber 32 to any one of the recovery space 64 and the exhaust space 72. Therefore, after the air remaining in the gas chamber 32 is sent to the exhaust space 72, the electrolytic gas G can be sent to the recovery space 64. Therefore, the electrolytic gas G from which the oxygen component of air is removed as much as possible can be recovered in the recovery space 64.

また、ガス回収装置10は、前述のように、計測部60の計測結果に基づき切替弁58を制御する制御部62を備える。よって、ガス室32内に残存する空気を排気用空間72に送ってから、電解ガスGを回収用空間64に送るように、ガス回収装置10の動作の自動化を図れる。   Further, as described above, the gas recovery apparatus 10 includes the control unit 62 that controls the switching valve 58 based on the measurement result of the measurement unit 60. Therefore, the operation of the gas recovery apparatus 10 can be automated so that the electrolytic gas G is sent to the recovery space 64 after the air remaining in the gas chamber 32 is sent to the exhaust space 72.

なお、回収用空間64に送られる電解ガスGは、不図示の貯留槽に一時的に貯留してから他の製造プロセスで活用してもよい。また、この他にも、貯留槽で貯留せずに他の製造プロセスで活用してもよい。   The electrolytic gas G sent to the recovery space 64 may be temporarily stored in a storage tank (not shown) and then used in another manufacturing process. In addition to this, it may be used in other manufacturing processes without being stored in a storage tank.

図5に示すように、ガス回収通路52は、ガス室32からガスが流入するガス流入口52cを有する。ガス流入口52cは、隔壁体28のX方向の一端側(図5中の右側)にある第1端壁部28dの内壁面に開口する。本実施形態のガス回収通路52は、図5、図6に示すように、その途中位置に設けられる合流点から上流側に向かって分岐する複数の第1分岐通路52dを有する。ガス流入口52cは、その第1分岐通路52dの上流端に設けられる。隔壁体28の第1端壁部28dの内壁面には複数のガス流入口52cが開口することになる。複数のガス流入口52cのうち一部のガス流入口52cは電極接続部26の下端より上方に位置しており、他のガス流入口52cは電極接続部26の下端より下方に位置する。   As shown in FIG. 5, the gas recovery passage 52 has a gas inlet 52 c into which the gas flows from the gas chamber 32. The gas inlet port 52c is opened to the inner wall surface of the first end wall portion 28d at one end side (right side in FIG. 5) of the partition body 28 in the X direction. As shown in FIGS. 5 and 6, the gas recovery passage 52 of the present embodiment has a plurality of first branch passages 52d branched upstream from a junction provided at an intermediate position. The gas inlet 52c is provided at the upstream end of the first branch passage 52d. A plurality of gas inlets 52 c are opened on the inner wall surface of the first end wall portion 28 d of the partition body 28. A part of the gas inlets 52 c is located above the lower end of the electrode connection 26, and the other gas inlet 52 c is located below the lower end of the electrode connection 26.

ガス供給通路54は、ガス室32に不活性ガスが流出するガス流出口54aを有する。ガス流出口54aは、隔壁体28のX方向の他端側(図5中の左側)にある第2端壁部28dの内壁面に開口する。本実施形態のガス供給通路54は、その途中位置に設けられる分岐点から下流側に向かって分岐する複数の第2分岐通路54bを有し、その第2分岐通路54bの下流端にガス流出口54aが設けられる。隔壁体28の第2端壁部28dの内壁面には複数のガス流出口54aが開口することになる。図示はしないが、複数のガス流出口54aのうちの一部のガス流出口54aは電極接続部26の下端より上方に位置し、他のガス流出口54aは電極接続部26の下端より下方に位置する。   The gas supply passage 54 has a gas outlet 54 a through which the inert gas flows out to the gas chamber 32. The gas outlet 54a is opened to the inner wall surface of the second end wall portion 28d on the other end side (left side in FIG. 5) of the partition body 28 in the X direction. The gas supply passage 54 of the present embodiment has a plurality of second branch passages 54b branched toward the downstream side from a branch point provided in the middle position, and the gas outlet at the downstream end of the second branch passage 54b. 54a is provided. A plurality of gas outlets 54a are opened on the inner wall surface of the second end wall portion 28d of the partition body 28. Although not shown, a part of the gas outlets 54a of the plurality of gas outlets 54a is located above the lower end of the electrode connection 26, and the other gas outlets 54a are below the lower end of the electrode connection 26. To position.

図9(a)は、第1変形例のガス回収装置10の動作を示す図である。図9(b)は、第1実施形態のガス回収装置10の動作を示す図である。いずれの図でもガスの流れ方向Pbを示す。本例のガス回収通路52のガス流入口52cやガス供給通路54のガス流出口54aは、隔壁体28の側壁部28cの内壁面に開口する。ガス流出口54aから不活性ガスを供給してガス室32内の空気をパージする場合を考える。この場合、本例の構造では、ガス室32のX方向の末端箇所32aを不活性ガスが通り難くなり、その末端箇所32aに残存する空気を不活性ガスにより押し出し難くなる。   Fig.9 (a) is a figure which shows operation | movement of the gas recovery apparatus 10 of a 1st modification. FIG. 9 (b) is a view showing the operation of the gas recovery system 10 of the first embodiment. Both figures show the gas flow direction Pb. The gas inlet 52 c of the gas recovery passage 52 of this example and the gas outlet 54 a of the gas supply passage 54 are opened on the inner wall surface of the side wall 28 c of the partition 28. It is assumed that the inert gas is supplied from the gas outlet 54 a to purge the air in the gas chamber 32. In this case, in the structure of the present embodiment, the inert gas hardly passes through the end 32 a of the gas chamber 32 in the X direction, and the air remaining in the end 32 a becomes difficult to push out by the inert gas.

この点、本実施形態のガス流出口54aやガス流入口52cは、隔壁体28の端壁部28dの内壁面に開口する。よって、ガス室32のX方向の末端箇所32aを不活性ガスが通り易くなり、その末端箇所32aに残存する空気を不活性ガスによりスムーズに押し出し易くなる。この結果、ガス室32内の空気のパージに要する不活性ガスの使用量を削減できる。   In this respect, the gas outlet 54 a and the gas inlet 52 c of the present embodiment are opened on the inner wall surface of the end wall portion 28 d of the partition 28. Therefore, the inert gas can easily pass through the end portion 32a in the X direction of the gas chamber 32, and the air remaining in the end portion 32a can be easily pushed out smoothly by the inert gas. As a result, it is possible to reduce the amount of use of the inert gas required to purge the air in the gas chamber 32.

なお、電解設備12は、図1に示すように、電解槽20の内底部に設置される散気管74を備える。散気管74は、電解液14内を上昇する攪拌用気泡76を電解液14内に送り込む。攪拌用気泡76は、電解液14の攪拌により鉛直方向での温度の均一化を目的として用いられる。電解液14の温度の均一化により、被処理材に生成される陽極酸化皮膜の膜厚の鉛直方向での均一化が図られる。   In addition, the electrolysis installation 12 is equipped with the aeration pipe 74 installed in the inner bottom part of the electrolytic vessel 20, as shown in FIG. The air diffusion tube 74 feeds the stirring bubble 76 rising in the electrolyte 14 into the electrolyte 14. The stirring bubble 76 is used for the purpose of homogenizing the temperature in the vertical direction by stirring the electrolytic solution 14. By making the temperature of the electrolytic solution 14 uniform, the film thickness of the anodic oxide film formed on the material to be treated can be made uniform in the vertical direction.

攪拌用気泡がガス室32内に入り込むと、攪拌用気泡76のガス成分が電解ガスGに混ざってしまう。この対策として、本実施形態では気泡ガイド部材30が用いられている。気泡ガイド部材30により気泡ガイド部材30の内部への攪拌用気泡76の侵入を防止でき、ガス室32内への攪拌用気泡76の入り込みを防げる。   When the stirring bubble enters the gas chamber 32, the gas component of the stirring bubble 76 mixes with the electrolytic gas G. As a countermeasure against this, the bubble guide member 30 is used in the present embodiment. The bubble guide member 30 can prevent the agitating bubble 76 from entering the bubble guide member 30 and prevent the agitating bubble 76 from entering the gas chamber 32.

同様の効果を発揮するうえでは、攪拌用気泡76として不活性ガスを用いてもよい。また、この他にも、攪拌用気泡76の浮上経路と電解ガスGの浮上経路を分離できるように、他の気泡ガイド部材が用いられてもよい。   In order to exert the same effect, an inert gas may be used as the stirring bubble 76. In addition to this, another bubble guide member may be used so as to be able to separate the rising path of the stirring bubble 76 and the rising path of the electrolytic gas G.

(第2の実施の形態)
図10は、第2実施形態のガス回収装置10を模式的に示す斜視図である。図11は、ガス回収装置10の正面断面図である。第2実施形態では、図3、図8の例と比べて、隔壁体28の構成が主に異なる。支持構造体22は、隔壁体28を接続するための被接続部22aを有する。被接続部22aは、ベース部材24からY方向の両側に突き出る板状をなす。被接続部22aは、ベース部材24とは別体であり、溶接等によりベース部材24に接続される。
Second Embodiment
FIG. 10 is a perspective view schematically showing the gas recovery apparatus 10 of the second embodiment. FIG. 11 is a front cross-sectional view of the gas recovery device 10. In the second embodiment, the configuration of the partition 28 mainly differs from the examples of FIGS. 3 and 8. The support structure 22 has a connected portion 22 a for connecting the partition 28. The connected portion 22a has a plate shape that protrudes from the base member 24 to both sides in the Y direction. The connected portion 22a is separate from the base member 24, and is connected to the base member 24 by welding or the like.

隔壁体28は、筒状の周壁部28bの他に、周壁部28bの上端開口部から外周側に張り出すフランジ部28eを有する。本実施形態の周壁部28bは単一の部材を用いて構成される。周壁部28bの端壁部28dは、図8の例と異なり、支持構造体22の電極接続部26の一端26aより長手方向(X方向)の外側に配置される。   In addition to the cylindrical peripheral wall portion 28b, the partition body 28 has a flange portion 28e which protrudes outward from the upper end opening of the peripheral wall portion 28b. The peripheral wall portion 28b of the present embodiment is configured using a single member. Unlike the example of FIG. 8, the end wall 28 d of the peripheral wall 28 b is disposed outside the one end 26 a of the electrode connection portion 26 of the support structure 22 in the longitudinal direction (X direction).

フランジ部28eは、支持構造体22の被接続部22aに下側から重ね合わせられ、ボルト等の接続具80を用いて被接続部22aに接続される。図3の例と異なり、隔壁体28は支持構造体22に被せないことになる。この隔壁体28でも、前述した効果(A)〜(D)を得られる。   The flange portion 28 e is superimposed on the connected portion 22 a of the support structure 22 from the lower side, and is connected to the connected portion 22 a using a connector 80 such as a bolt. Unlike the example of FIG. 3, the partition 28 can not cover the support structure 22. The effects (A) to (D) described above can be obtained with this partition 28 as well.

(第3の実施の形態)
図12は、第3実施形態の陰極16の液面周りの構成を模式的に示す図である。ガス室形成面36の洗浄作業を楽にする観点からは、電解ガスGの気泡の破裂に伴い生じるミストMの周辺構造物への飛散を防止できると好ましい。このような観点のもと、ガス回収装置10は、電解ガスGの気泡のガス室32内での破裂により生じるミストMを捕捉して、その周辺構造物への飛散を防止するためのミスト捕捉体82を備える。ここでの周辺構造物とは、支持構造体22のベース部材24や電極接続部26、隔壁体28であり、ガス室形成面36が設けられる箇所である。ミスト捕捉体82は、これら支持構造体22や隔壁体28とは別体であり、電解液14の液面より上方にてガス室32内に設けられる。
Third Embodiment
FIG. 12 is a view schematically showing the configuration around the liquid surface of the cathode 16 of the third embodiment. From the viewpoint of facilitating the cleaning operation of the gas chamber formation surface 36, it is preferable that the mist M can be prevented from scattering to the peripheral structure that is generated as the bubbles of the electrolytic gas G burst. From such a point of view, the gas recovery apparatus 10 captures mist M generated by the burst of bubbles of electrolytic gas G in the gas chamber 32, and captures mist for preventing scattering to the surrounding structure. The body 82 is provided. Here, the peripheral structure is the base member 24 of the support structure 22, the electrode connection portion 26, and the partition 28, and is a portion where the gas chamber forming surface 36 is provided. The mist capturing body 82 is separate from the support structure 22 and the partition 28, and is provided in the gas chamber 32 above the liquid surface of the electrolyte solution 14.

本実施形態のミスト捕捉体82は、気泡ガイド部材30の一部として設けられる。詳しくは、ミスト捕捉体82は、気泡ガイド部材30の上端部にて上方に向かって先細りとなる箇所として設けられる。ミスト捕捉体82は、電解液14の液面上であって電解ガスGの浮上箇所14aを上側から部分的に覆う位置に設けられることになる。ここでの電解ガスGの浮上箇所14aとは、電解液14の液面において気泡ガイド部材30で囲まれた箇所をいう。ミスト捕捉体82は、陰極16の全周に亘る範囲のうち少なくとも一部の範囲で陰極16に対して隙間をおいて設けられる。これにより、気泡ガイド部材30の内側に電解ガスGがこもり難くなる。   The mist capturing body 82 of the present embodiment is provided as a part of the bubble guide member 30. Specifically, the mist capturing body 82 is provided as a point which is tapered upward at the upper end of the bubble guide member 30. The mist capturing body 82 is provided on the liquid surface of the electrolytic solution 14 and at a position that partially covers the floating point 14 a of the electrolytic gas G from the upper side. Here, the floated portion 14 a of the electrolytic gas G refers to a portion surrounded by the bubble guide member 30 on the liquid surface of the electrolytic solution 14. The mist capturing body 82 is provided with a gap with respect to the cathode 16 in at least a part of the range around the entire circumference of the cathode 16. As a result, the electrolytic gas G is less likely to stagnate inside the bubble guide member 30.

以上の構成により、電解ガスGの気泡の破裂に伴いミストMが生じたときでも、ミスト捕捉体82によりミストMを捕捉して、その周辺構造物への飛散を防止できる。よって、周辺構造物でのミストMの付着を防止でき、ガス室形成面36の洗浄作業を楽にできる。なお、ミスト捕捉体82により捕捉したミストMは液滴の状態で自重により流下して電解液14に戻される。   According to the above configuration, even when mist M is generated along with the explosion of the bubbles of electrolytic gas G, mist M can be captured by mist capturing body 82 and scattering to the surrounding structure can be prevented. Therefore, the adhesion of the mist M in the peripheral structure can be prevented, and the cleaning operation of the gas chamber forming surface 36 can be facilitated. The mist M captured by the mist capturing body 82 flows down by its own weight in the state of droplets and is returned to the electrolyte solution 14.

ミスト捕捉体82は、電解液14のミストが付着し難い非粘着性素材を用いて構成されてもよい。この非粘着性素材は、たとえば、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシアルカン(PFA)等である。   The mist capturing body 82 may be configured using a non-adhesive material to which the mist of the electrolyte solution 14 does not easily adhere. The non-adhesive material is, for example, polytetrafluoroethylene (PTFE), perfluoroalkoxyalkane (PFA) or the like.

図13は、第2変形例のガス回収装置10の一部を示す図である。ミスト捕捉体82は、その具体例について特に限定されるものではない。ミスト捕捉体82は、たとえば、気泡ガイド部材30とは別体に設けられるフィルタでもよい。フィルタは、通気性がある素材を用いて構成される。フィルタの素材は、電解液のミストをはじく撥液性(撥水性)も兼ね備えると好ましい。この素材は、たとえば、不織布等である。ミスト捕捉体82は、電解液14の液面上であって電解ガスGの浮上箇所14aを上側から全体的に覆う位置に設けられる。   FIG. 13 is a view showing a part of a gas recovery apparatus 10 of a second modification. The mist capturing body 82 is not particularly limited as to its specific example. The mist capturing body 82 may be, for example, a filter provided separately from the bubble guide member 30. The filter is constructed using a breathable material. The material of the filter is preferably combined with liquid repellency (water repellency) that repels the mist of the electrolytic solution. This material is, for example, a non-woven fabric or the like. The mist capturing body 82 is provided on the liquid surface of the electrolytic solution 14 so as to entirely cover the floating point 14 a of the electrolytic gas G from the upper side.

(第4の実施の形態)
図14は、第4実施形態の隔壁体28を周辺構造と併せて示す断面図である。図3の例では支持構造体22のベース部材24の断面形状が角形筒状であり、その上面部が平板状である例を説明した。ベース部材24の断面形状は特に限定されず、たとえば、その上面部が湾曲した板状であってもよい。
Fourth Embodiment
FIG. 14 is a cross-sectional view showing the partition body 28 of the fourth embodiment together with the peripheral structure. In the example of FIG. 3, the cross-sectional shape of the base member 24 of the support structure 22 is square cylindrical shape, The example whose upper surface part is flat form was demonstrated. The cross-sectional shape of the base member 24 is not particularly limited, and may be, for example, a plate whose upper surface is curved.

また、ベース部材24に被せられる第1隔壁部材42の天面部42aは、そのベース部材24の上面部に沿って接触可能な形状であると好ましい。本実施形態の第1隔壁部材42の天面部42aは、ベース部材24の上面部に沿って接触するように湾曲した板状をなす。これを実現するうえで、第1隔壁部材42は、可撓性を持つ素材を用いて構成されると好ましい。この素材は、たとえば、軟質ポリ塩化ビニル等である。これにより、第1隔壁部材42の天面部42aとベース部材24の間に隙間が生じ難くなり、その隙間を通してガス室32内のガスが外部空間に抜け出る事態を避けられる。   Further, it is preferable that the top surface portion 42 a of the first partition member 42 placed on the base member 24 be shaped to be able to contact along the upper surface portion of the base member 24. The top surface portion 42 a of the first partition wall member 42 of the present embodiment has a plate shape curved so as to be in contact along the upper surface portion of the base member 24. In order to realize this, the first partition member 42 is preferably configured using a flexible material. This material is, for example, soft polyvinyl chloride or the like. As a result, a gap is less likely to be generated between the top surface portion 42a of the first partition member 42 and the base member 24, and a situation in which the gas in the gas chamber 32 escapes to the external space through the gap can be avoided.

(第5の実施の形態)
図15は、第5実施形態の電解設備12を模式的に示す正面断面図である。本実施形態のガス回収装置10は、隔壁体28に覆い被さるフード状のシュート100を備える。シュート100は、電解槽20内に陽極18を配置するときに隔壁体28に対する陽極18の接触を避けるために用いられる。
Fifth Embodiment
FIG. 15: is front sectional drawing which shows typically the electrolysis installation 12 of 5th Embodiment. The gas recovery apparatus 10 of the present embodiment includes a hood-like chute 100 that covers the partition 28. The chute 100 is used to avoid contact of the anode 18 with the bulkhead 28 when placing the anode 18 in the electrolytic cell 20.

図16(a)は、図15の範囲Bのガス回収装置10の側面図であり、図16(b)は、その側面断面図である。図17は、図15の範囲Bの拡大図である。図17は、図16(a)のC−C線断面図でもある。隔壁体28の一対の側壁部28cは、陰極16(電極)を間に挟んで配置される。隔壁体28は、外部空間34とガス室32を通じさせる開口部102が形成された開口壁部104を備える。開口壁部104は、本実施形態では、一対の側壁部28cのうちの一方の側壁部28cが構成する。   Fig.16 (a) is a side view of the gas recovery apparatus 10 of the range B of FIG. 15, and FIG.16 (b) is the side surface sectional view. FIG. 17 is an enlarged view of the range B of FIG. FIG. 17 is also a cross-sectional view taken along the line C-C in FIG. The pair of side wall portions 28 c of the partition body 28 is disposed with the cathode 16 (electrode) interposed therebetween. The partition body 28 includes an opening wall portion 104 in which an opening portion 102 for communicating the external space 34 and the gas chamber 32 is formed. The opening wall portion 104 is configured by one side wall portion 28c of the pair of side wall portions 28c in the present embodiment.

本実施形態の隔壁体28は、ガス室32内の過圧を外部に逃がすことができる過圧逃がし部106を備える。ここでの過圧とは、予め定められる許容圧力超の圧力のことをいう。ここでの許容圧力とは、隔壁体28において設計上許容できる最大の圧力のことをいう。この許容圧力は、たとえば、常圧(≒1.0×10[Pa])より大きい1.3×10[Pa]に設定される。 The partition 28 of the present embodiment includes an overpressure relief portion 106 capable of releasing the overpressure in the gas chamber 32 to the outside. Here, the overpressure refers to a pressure that exceeds a predetermined allowable pressure. Here, the allowable pressure refers to the maximum design allowable pressure at the partition 28. This allowable pressure is set to, for example, 1.3 × 10 5 [Pa], which is larger than normal pressure (≒ 1.0 × 10 5 [Pa]).

本実施形態の過圧逃がし部106は、隔壁体28の一部を構成するとともに外部空間34とガス室32を隔てる壁体108と、隔壁体28の他の箇所に壁体108を固定する固定部110と、を備える。本実施形態の壁体108は、開口壁部104の開口部102を覆い塞いでおり、固定部110は壁体108を開口壁部104に固定する。固定部110は、たとえば、ボルト、接着剤等である。   The overpressure relief part 106 of the present embodiment is a part of the partition body 28 and a wall 108 for separating the external space 34 from the gas chamber 32 and a fixing for fixing the wall 108 to the other part of the partition 28 And a unit 110. The wall 108 of this embodiment covers and covers the opening 102 of the opening wall 104, and the fixing portion 110 fixes the wall 108 to the opening wall 104. The fixing portion 110 is, for example, a bolt, an adhesive, or the like.

本実施形態の壁体108は、外部空間34とガス室32を隔てる隔壁体28の他の壁部より剛性が弱い脆弱壁部が構成する。ここでの「他の壁部」とは、本実施形態では、開口壁部104である。このように剛性を弱めるうえで、脆弱壁部は、前述の隔壁体28の他の壁部より厚みが薄くなるように構成される。脆弱壁部の厚みは、たとえば、隔壁体28の他の壁部の厚みに対して、0.2倍以下の大きさに設定される。   The wall body 108 of the present embodiment is constituted by a fragile wall portion whose rigidity is weaker than the other wall portions of the partition body 28 which separates the outer space 34 and the gas chamber 32. Here, the “other wall portion” is the opening wall portion 104 in the present embodiment. Thus, in order to weaken the rigidity, the fragile wall portion is configured to be thinner than the other wall portions of the partition body 28 described above. The thickness of the fragile wall portion is set to, for example, 0.2 times or less of the thickness of the other wall portion of the partition 28.

ガス回収装置10は、隔壁体28の内部に配置され、ガス室32を複数の小室112に仕切る仕切り部材114を備える。本実施形態の仕切り部材114は隔壁体28の内部に複数配置され、複数の仕切り部材114はガス室32を三つ以上の小室112に仕切っている。本実施形態の複数の小室112はX方向に配列される。本実施形態の仕切り部材114は板状、詳しくは、平板状をなす。仕切り部材114は、複数の陰極16のうち、X方向に隣り合う一部の陰極16の間に配置される。   The gas recovery apparatus 10 includes a partition member 114 which is disposed inside the partition body 28 and divides the gas chamber 32 into a plurality of small chambers 112. A plurality of partition members 114 in the present embodiment are disposed inside the partition body 28, and the plurality of partition members 114 divide the gas chamber 32 into three or more small chambers 112. The plurality of cells 112 in the present embodiment are arranged in the X direction. The partition member 114 of the present embodiment has a plate shape, more specifically, a flat plate shape. The partition member 114 is disposed between some of the plurality of cathodes 16 adjacent to one another in the X direction.

仕切り部材114には、支持構造体22の電極接続部26に応じた形状の切欠部116が形成される。電極接続部26は、切欠部116を貫通するとともに切欠部116に嵌め込まれる。   In the partition member 114, a notch 116 having a shape corresponding to the electrode connection portion 26 of the support structure 22 is formed. The electrode connection portion 26 penetrates the notch portion 116 and is fitted into the notch portion 116.

仕切り部材114の上辺部114aは、支持構造体22のベース部材24と接触する。仕切り部材114の一対の側辺部114bのそれぞれは、隔壁体28の一対の側壁部28cのそれぞれと接触する。仕切り部材114の下辺部114cは、電解液14の液面下に没している。仕切り部材114は、たとえば、ボルト、溶接等によって、隔壁体28の側壁部28cに固定される。   The upper side 114 a of the partition member 114 contacts the base member 24 of the support structure 22. Each of the pair of side portions 114 b of the partition member 114 is in contact with each of the pair of side wall portions 28 c of the partition body 28. The lower side portion 114 c of the partition member 114 is sunk below the liquid surface of the electrolytic solution 14. The partition member 114 is fixed to the side wall portion 28c of the partition body 28 by, for example, a bolt, welding or the like.

仕切り部材114には、隣り合う複数の小室112を連通する連通路118が形成される。本実施形態の連通路118は、仕切り部材114を貫通する貫通孔である。連通路118は、隣り合う小室112の間で電解ガスGや不活性ガス等の気体を通すことができる。これにより、仕切り部材114とは別部材を用いて連通路118を設けるより、部品点数の削減を図れる。本実施形態では複数の仕切り部材114のそれぞれに連通路118が形成される。これにより、全ての小室112が連通路118を介して連通される。よって、全ての小室112内にガス供給通路54から不活性ガスを送ったり、全ての小室112内の電解ガスGや不活性ガスをガス回収通路52に送ることができる。   The partition member 114 is formed with a communication passage 118 which communicates the plurality of adjacent small chambers 112. The communication passage 118 in the present embodiment is a through hole penetrating the partition member 114. The communication passage 118 can pass a gas such as an electrolytic gas G or an inert gas between adjacent small chambers 112. Thus, the number of parts can be reduced by providing the communication passage 118 using a member separate from the partition member 114. In the present embodiment, the communication passage 118 is formed in each of the plurality of partition members 114. Thus, all the small chambers 112 are communicated via the communication passage 118. Therefore, the inert gas can be sent from the gas supply passage 54 into all the cells 112, and the electrolytic gas G and the inert gas in all the cells 112 can be sent to the gas recovery passage 52.

本実施形態の連通路118は、隣り合う小室112それぞれの上側部分に連通するように形成される。これにより、電解液14の液面から離れた箇所に連通路118を設けられる。これに伴い、電解ガスの気泡の破裂に伴い飛散する電解液のミストが連通路118に付着し難くなり、その電解液の結晶により連通路118が塞がれにくくなる。また、不活性ガスより軽い電解ガスGを通し易くもなる。   The communication passage 118 in the present embodiment is formed to communicate with the upper portion of each adjacent small chamber 112. As a result, the communication passage 118 is provided at a location away from the liquid surface of the electrolyte solution 14. Along with this, the mist of the electrolytic solution that scatters along with the rupture of the bubble of the electrolytic gas is less likely to adhere to the communication passage 118, and the communication passage 118 is less likely to be blocked by the crystal of the electrolytic solution. In addition, the electrolytic gas G, which is lighter than the inert gas, can be easily passed.

前述の過圧逃がし部106は、複数の小室112に対応して設けられる。本実施形態の過圧逃がし部106は、複数の小室112のそれぞれに対応して個別に設けられる。本実施形態では、一つの小室112につき複数(二つ)の過圧逃がし部106が設けられる。この過圧逃がし部106は、対応する小室112内の過圧を外部に逃がすことができる。   The above-described overpressure relief portion 106 is provided corresponding to the plurality of small chambers 112. The overpressure relief part 106 of the present embodiment is individually provided corresponding to each of the plurality of small chambers 112. In the present embodiment, a plurality of (two) overpressure relief portions 106 are provided for one small chamber 112. The overpressure relief portion 106 can release the overpressure in the corresponding chamber 112 to the outside.

以上のガス回収装置10の動作を説明する。ガス室32内に過圧がかかる場合を考える。これは、たとえば、ガス室32内に電解ガスGを回収している途中にガス室32内の電解ガスGが燃焼し、その燃焼に伴う加熱によりガス室32内の気体が急膨張したときである。このようにガス室32内に過圧がかかったとき、隔壁体28の他の箇所より先に、過圧逃がし部106が破壊される。本実施形態では、過圧逃がし部106の壁体108が破壊され、その壁体108が覆い塞いでいた開口部102を通して外部空間34とガス室32が連通される。このように、過圧逃がし部106は、ガス室32内に過圧がかかったときに、隔壁体28の他の箇所より先に破壊されることで、外部空間34とガス室32を連通させる開口部102を設けることができる。   The operation of the above gas recovery apparatus 10 will be described. A case where an overpressure is applied in the gas chamber 32 will be considered. This is because, for example, the electrolytic gas G in the gas chamber 32 burns while recovering the electrolytic gas G in the gas chamber 32, and the gas in the gas chamber 32 rapidly expands due to the heating accompanying the combustion. is there. As described above, when the overpressure is applied to the inside of the gas chamber 32, the overpressure relief portion 106 is broken before the other portion of the partition 28. In the present embodiment, the wall 108 of the overpressure relief portion 106 is broken, and the external space 34 and the gas chamber 32 communicate with each other through the opening 102 which was covered by the wall 108. As described above, the overpressure relief portion 106 causes the external space 34 and the gas chamber 32 to communicate with each other by being destroyed earlier than the other portions of the partition body 28 when the overpressure is applied in the gas chamber 32. An opening 102 can be provided.

このような開口部102を設けることで、ガス室32内の過圧が開口部102から外部空間34に逃がされる。(E)これにより、ガス室32内に過圧がかかった状態のもとでガス室32内の圧力が更に増大する事態を避けられ、ガス回収装置10の安全性の向上を図れる。   By providing such an opening 102, the overpressure in the gas chamber 32 is released from the opening 102 to the external space 34. (E) Thereby, the situation where the pressure in the gas chamber 32 further increases under the state where the overpressure is applied in the gas chamber 32 can be avoided, and the safety of the gas recovery apparatus 10 can be improved.

ガス回収装置10の他の動作を説明する。ガス室32内に電解ガスGを回収している途中に、いずれかの小室112内で電解ガスGが着火された場合を考える。この場合、電解ガスGの燃焼により生じる火炎が着火箇所から周囲に広がるように伝搬しようとする。いずれかの小室112から隣り合う小室112に火炎が伝搬しようとしたとき、その火炎の伝搬が仕切り部材114により堰き止められる。仕切り部材114で堰き止められた火炎は、連通路118を通して他の小室112内に伝わり、その小室112内で広がるように伝搬する。このように、小室112内での火炎の伝搬と、その火炎伝搬の仕切り部材114による堰き止めとを繰り返しつつ、ガス室32の全体に火炎が伝搬しようとする。   Another operation of the gas recovery system 10 will be described. A case where the electrolytic gas G is ignited in any one of the small chambers 112 during collection of the electrolytic gas G in the gas chamber 32 is considered. In this case, a flame generated by the combustion of the electrolytic gas G tends to propagate from the ignition point to the periphery. When a flame is to be propagated from one of the small chambers 112 to the adjacent small chamber 112, the propagation of the flame is blocked by the partition member 114. The flame blocked by the partition member 114 is transmitted through the communication passage 118 into the other compartment 112 and propagates so as to spread in the compartment 112. As described above, while the flame propagation in the small chamber 112 and the blocking by the partition member 114 of the flame propagation are repeated, the flame tends to propagate throughout the gas chamber 32.

このようにガス室32の全体に火炎が伝搬する過程で、仕切り部材114により火炎伝搬を堰き止めることで、その伝搬速度を一時的に遅くでき、ガス室32の全体に急速に火炎が伝搬するのを避けられる。これに伴い、次に説明するような、その急速な火炎伝搬に伴いガス室32内に過大な圧力がかかる前にガス室32の内圧を逃がす設計を許容でき、ガス回収装置10の安全性の向上を図れる。   Thus, in the process of flame propagation throughout the gas chamber 32, the propagation speed can be temporarily reduced by blocking the flame propagation by the partition member 114, and the flame propagates rapidly throughout the gas chamber 32. Can avoid Along with this, it is possible to allow a design for escaping the internal pressure of the gas chamber 32 before an excessive pressure is applied to the gas chamber 32 due to the rapid flame propagation as described below, and the safety of the gas recovery apparatus 10 I can improve it.

いずれかの小室112内で電解ガスGが燃焼したとき、その燃焼に伴う加熱により小室112内の気体が急膨張し、その小室112内での圧力が他の小室112より大きくなり、その小室112内に過圧がかかる。このように小室112内に過圧がかかったとき、その小室112に対応する過圧逃がし部106が隔壁体28の他の箇所より先に破壊され、その小室112内の過圧が外部空間34に逃がされる。これにより、複数の小室112内で順次に火炎が伝搬する過程で、個々の小室112内で過圧を徐々に外部に逃がせるようになる。よって、ガス室32内全体に一気に火炎が伝搬する場合と比べ、ガス室32全体に過大な圧力がかかり難くなるため、ガス回収装置10の更なる安全性の向上を図れる。   When the electrolytic gas G burns in any of the small chambers 112, the gas in the small chamber 112 expands rapidly due to the heating accompanying the combustion, the pressure in the small chamber 112 becomes larger than that of the other small chambers 112, and the small chamber 112 Overpressure is applied inside. Thus, when the overpressure is applied to the small chamber 112, the overpressure relief portion 106 corresponding to the small chamber 112 is destroyed earlier than the other portion of the bulkhead 28, and the overpressure in the small chamber 112 is the external space 34. Be missed. As a result, in the process of propagation of the flame sequentially in the plurality of small chambers 112, the overpressure can be gradually released to the outside in the individual small chambers 112. Therefore, as compared with the case where the flame is propagated all at once in the entire gas chamber 32, an excessive pressure is not easily applied to the entire gas chamber 32, so that the safety of the gas recovery apparatus 10 can be further improved.

本実施形態の過圧逃がし部106は、一対の壁部(側壁部28c)のうちの一方の壁部にのみ設けられる。ここでの「一対の壁部」とは、本実施形態において、一対の側壁部28cをいう。よって、他方の壁部の近くに他の物体を置いても、過圧逃がし部106が動作するとき、その他の物体との干渉を避けられる。本実施形態でいえば、過圧逃がし部106の壁体108が破壊されたとき、その破壊された壁体108の一部と他の物体との干渉を避けられる。このため、他方の壁部の近くに他の物体を置くような設計を許容でき、隔壁体28に過圧逃がし部106を設けるうえでの設計の自由度の向上を図れる。ここでの「他の物体」とは、本実施形態では、他の隔壁体28や、電解槽20の一部をいう(図15照)。   The overpressure relief part 106 of the present embodiment is provided only on one of the pair of wall parts (side wall parts 28c). Here, the “pair of wall portions” refers to the pair of side wall portions 28 c in the present embodiment. Therefore, even if another object is placed near the other wall, interference with the other object can be avoided when the overpressure relief unit 106 operates. In the present embodiment, when the wall 108 of the overpressure relief portion 106 is broken, interference with a part of the broken wall 108 and another object can be avoided. For this reason, a design in which another object is placed near the other wall can be accepted, and the design freedom in providing the overpressure relief portion 106 in the bulkhead 28 can be improved. In the present embodiment, the “other object” here refers to another partition body 28 or a part of the electrolytic cell 20 (see FIG. 15).

ここでの「一対の壁部」として、一対の側壁部28cを例に説明したが、一対の端壁部28dであってもよい。また、過圧逃がし部106は、隔壁体28の任意の壁部に設けられていてもよい。   Although a pair of side wall part 28c was demonstrated to an example as a "pair of wall parts" here, a pair of end wall part 28d may be sufficient. In addition, the overpressure relief portion 106 may be provided on any wall portion of the bulkhead 28.

なお、本実施形態のガス回収装置10は、図示はしないが、第1実施形態で説明したガス回収通路52、ガス供給通路54、ガス排出通路56、切替弁58、計測部60、制御部62等を備えてもよい。   Although the gas recovery apparatus 10 of the present embodiment is not shown, the gas recovery passage 52, the gas supply passage 54, the gas discharge passage 56, the switching valve 58, the measuring unit 60, and the control unit 62 described in the first embodiment. Etc. may be provided.

(第6の実施の形態)
図18は、第6実施形態の隔壁体28を図17と同じ視点から見た図である。本実施形態では、第6実施形態と比べ、過圧逃がし部106の構成が相違する。本実施形態の過圧逃がし部106の壁体108は、ヒンジ機構120を介して、隔壁体28の開口壁部104に回動可能に取り付けられる。壁体108は、開口壁部104の開口部102を覆い塞ぐ閉位置P1と、その開口部102を開く開位置P2との間を回動可能である。本実施形態の固定部110は壁体108を閉位置P1に固定する。
Sixth Embodiment
FIG. 18 is a view of the partition body 28 of the sixth embodiment as viewed from the same viewpoint as FIG. 17. In the present embodiment, the configuration of the overpressure relief part 106 is different from that of the sixth embodiment. The wall body 108 of the overpressure relief portion 106 of the present embodiment is rotatably attached to the opening wall portion 104 of the partition body 28 via the hinge mechanism 120. The wall 108 is pivotable between a closed position P1 covering and closing the opening 102 of the opening wall 104 and an open position P2 opening the opening 102. The fixing portion 110 of the present embodiment fixes the wall 108 at the closed position P1.

本実施形態の固定部110は、ガス室32内に過圧がかかったとき、隔壁体28の他の箇所より先に破壊されるように構成される。これを実現するうえでは、固定部110の素材、構造の調整を通じて固定強度が調整される。   The fixing portion 110 of the present embodiment is configured to be broken earlier than the other portions of the partition body 28 when an overpressure is applied to the inside of the gas chamber 32. In order to realize this, the fixing strength is adjusted through the adjustment of the material and structure of the fixing portion 110.

これにより、ガス室32内に過圧がかかったとき、隔壁体28の他の箇所より先に過圧逃がし部106の固定部110が破壊される。これに伴い、ガス室32内の過圧によって、過圧逃がし部106の壁体108が閉位置P1から開位置P2に移動し、その壁体108が覆い塞いでいた開口部102を通して外部空間34とガス室32が連通される。これにより、ガス室32内の過圧が開口部102から外部空間34に逃がされる。よって、前述の(E)と同様の効果を得られる。   As a result, when an overpressure is applied to the inside of the gas chamber 32, the fixing portion 110 of the overpressure relief portion 106 is destroyed earlier than the other portions of the partition 28. Along with this, the overpressure in the gas chamber 32 moves the wall 108 of the overpressure relief portion 106 from the closed position P1 to the open position P2, and the wall 108 covers the outside space 34 through the opening 102 which was covered. And the gas chamber 32 communicate with each other. As a result, the overpressure in the gas chamber 32 is released from the opening 102 to the external space 34. Therefore, the same effect as the above (E) can be obtained.

(第7の実施の形態)
図19(a)は、第7実施形態の隔壁体28の一部を示す側面図であり、図19(b)は、複数の隔壁体ユニット122(後述する)の分解図である。図20(a)は、図19(a)のD−D線断面図であり、図20(b)は、隔壁体ユニット122の組立途中状態を示す図である。
Seventh Embodiment
Fig.19 (a) is a side view which shows a part of partition body 28 of 7th Embodiment, FIG.19 (b) is an exploded view of several partition body unit 122 (it mentions later). Fig.20 (a) is the DD sectional view taken on the line of Fig.19 (a), and FIG.20 (b) is a figure which shows the state in the middle of the assembly of the partition unit 122. As shown in FIG.

本実施形態の隔壁体28は、隔壁体28をX方向に分割して構成される複数の隔壁体ユニット122を備える。隔壁体ユニット122は、隔壁体28の天壁部28aを形成する軟質部材124と、隔壁体28の一対の側壁部28cのそれぞれを形成する一対の硬質部材126と、を備える。軟質部材124は、可撓性を持つ素材を用いて構成される。硬質部材126は、軟質部材124より硬質な素材を用いて構成される。これらの素材は、たとえば、塩化ビニル等の樹脂素材である。軟質部材124と硬質部材126は互いの一部を重ね合わせたうえで、その重ね合わせ箇所の接着等により一体化される。   The partition 28 of the present embodiment includes a plurality of partition units 122 configured by dividing the partition 28 in the X direction. The partition body unit 122 includes a soft member 124 forming the top wall portion 28 a of the partition body 28 and a pair of hard members 126 forming the pair of side wall portions 28 c of the partition body 28. The soft member 124 is configured using a flexible material. The hard member 126 is configured using a material harder than the soft member 124. These materials are, for example, resin materials such as vinyl chloride. The soft member 124 and the hard member 126 are partially integrated with each other, and then integrated by bonding or the like at the overlapping portion.

隣り合う隔壁体ユニット122のうちの一方の隔壁体ユニット122は、その隣り合う隔壁体ユニット122の継ぎ目128を覆い塞ぐ第1塞ぎ材130を備える。本実施形態の第1塞ぎ材130は一方の隔壁体ユニット122の端部にて硬質部材126にボルト、接着等により取り付けられる。第1塞ぎ材130は、隣り合う隔壁体ユニット122の端部に重ね合わせられることで、それらの継ぎ目128を覆い塞ぐ。   One partition body unit 122 of the adjacent partition body units 122 includes a first plugging material 130 that covers and closes the joint 128 of the adjacent partition body units 122. The first closing member 130 of the present embodiment is attached to the hard member 126 at the end of one of the partition units 122 by bolts, adhesion or the like. The first closing members 130 overlap the joint 128 by overlapping the ends of the adjacent bulkhead units 122.

前述の仕切り部材114は、隣り合う隔壁体ユニット122のうちの他方の隔壁体ユニット122に取り付けられる。本実施形態の仕切り部材114は、仕切り部材114を二つに分割して構成される一対の分割部材132を備える。一方の分割部材132は、他方の隔壁体ユニット122の一方の側壁部28cに固定され、他方の分割部材132は、その隔壁体ユニット122の他方の側壁部28cに固定される。   The above-mentioned partition member 114 is attached to the other partition unit 122 of the adjacent partition units 122. The partition member 114 of the present embodiment includes a pair of dividing members 132 configured by dividing the partition member 114 into two. One divided member 132 is fixed to one side wall portion 28 c of the other partition body unit 122, and the other divided member 132 is fixed to the other side wall portion 28 c of the partition body unit 122.

隔壁体ユニット122は、隣り合う分割部材132の継ぎ目134を覆い塞ぐ第2塞ぎ材138を備える。第2塞ぎ材138は、一方の分割部材132にボルト、接着等により取り付けられる。第2塞ぎ材138は、他方の分割部材132に重ね合わせられることで、隣り合う分割部材132の継ぎ目134を部分的に覆い塞ぐ。   The bulkhead unit 122 includes a second closing member 138 which covers and closes the joint 134 of the adjacent dividing members 132. The second closing member 138 is attached to one of the divided members 132 by a bolt, an adhesive, or the like. The second closing member 138 partially overlaps the joint 134 of the adjacent divided members 132 by being superimposed on the other divided member 132.

以上の隔壁体ユニット122の組立方法を説明する。まず、支持構造体22のベース部材24に隔壁体ユニット122の軟質部材124を覆い被せる。このとき、軟質部材124は、ベース部材24の上面部に沿うように撓み変形しつつ覆い被せられる。次に、軟質部材124を撓み変形させつつ、隔壁体ユニット122の一方の硬質部材126を動かすことで、その硬質部材126に固定される分割部材132をベース部材24の下方に配置する(図20(b)参照)。次に、軟質部材124を撓み変形させつつ、隔壁体ユニット122の他方の硬質部材126を動かすことで、その硬質部材126に固定される分割部材132をベース部材24の下方に配置する(図20(a)参照)。これにより、隔壁体ユニット122の一部を支持構造体22のベース部材24に被せつつ、そのベース部材24の下方に一対の分割部材132が構成する仕切り部材114を配置できる。   The assembling method of the above-mentioned partition body unit 122 is demonstrated. First, the soft member 124 of the bulkhead unit 122 is covered on the base member 24 of the support structure 22. At this time, the soft member 124 is covered while being bent and deformed along the upper surface portion of the base member 24. Next, by moving one of the hard members 126 of the bulkhead unit 122 while bending the flexible member 124, the dividing member 132 fixed to the hard member 126 is disposed below the base member 24 (FIG. 20) (B)). Next, by moving the other hard member 126 of the bulkhead unit 122 while bending the flexible member 124, the dividing member 132 fixed to the hard member 126 is disposed below the base member 24 (FIG. 20) See (a)). Thus, the partition member 114 configured by the pair of divided members 132 can be disposed below the base member 24 while covering a part of the partition body unit 122 on the base member 24 of the support structure 22.

次に、各構成要素の変形例を説明する。   Next, modifications of each component will be described.

電解設備12による表面処理の種類は特に限定されない。たとえば、エッチング、電解研磨等に用いられてもよい。電気分解に伴い電解ガスGが生じる電極は陰極16である例を説明したが、陽極18でもよい。また、陰極16、陽極18の具体的な構造は特に限定されない。たとえば、陰極16のプレート部16aには、パイプ部16bの代替として、他のプレート部が接続されてもよい。   The type of surface treatment by the electrolytic facility 12 is not particularly limited. For example, it may be used for etching, electrolytic polishing and the like. Although the electrode which the electrolysis gas G produces | generates with electrolysis was demonstrated the example which is the cathode 16, the anode 18 may be sufficient. Further, the specific structure of the cathode 16 and the anode 18 is not particularly limited. For example, another plate portion may be connected to the plate portion 16a of the cathode 16 as an alternative to the pipe portion 16b.

隔壁体28は、電解ガスGが生じる複数の電極に個別に用いられてもよい。隔壁体28の開口部38は、電解ガスGが生じる電極の上端部が貫通する位置に設けられる例を説明したが、その位置は特に限定されない。たとえば、電極の下端部より下方に設けられてもよい。   The partition 28 may be used individually for a plurality of electrodes from which the electrolytic gas G is generated. Although the opening part 38 of the partition body 28 demonstrated the example provided in the position which the upper end part of the electrode which electrolytic gas G produces penetrates, the position in particular is not limited. For example, it may be provided below the lower end of the electrode.

隔壁体28は、複数の陰極16の一部を取り囲んで一つのガス室32を形成する例を説明した。この他にも、電解槽20の内壁面と支持構造体22の電極接続部26の一端26aとの間に十分なスペースがある場合、そのスペースを通るように隔壁体28の一部を配置しつつ、全ての電極を取り囲んで一つのガス室32を形成してもよい。   The example in which the partition body 28 surrounds a part of several cathode 16 and forms one gas chamber 32 was demonstrated. In addition to this, when there is a sufficient space between the inner wall surface of the electrolytic cell 20 and the one end 26a of the electrode connection portion 26 of the support structure 22, a part of the partition 28 is disposed to pass through the space. However, one gas chamber 32 may be formed so as to surround all the electrodes.

切替弁58は、制御部62による制御のもとで動作状態が切り替えられる例を説明したが、手動で切り替えられてもよい。また、切替弁58は、三方弁に限定されるものではない。たとえば、ガス排出通路56に設置される第1開閉弁と、ガス回収通路52の下流側部分に設置される第2開閉弁の組み合わせでもよい。   Although the example in which the switching valve 58 switches the operation state under the control of the control unit 62 has been described, it may be switched manually. Further, the switching valve 58 is not limited to the three-way valve. For example, a combination of a first on-off valve installed in the gas discharge passage 56 and a second on-off valve installed in the downstream portion of the gas recovery passage 52 may be used.

ガス室32内に残存した空気をガス回収通路52を通して不活性ガスによりパージするうえで、その空気をガス回収通路52からガス排出通路56を通して排出する例を説明した。この空気の排出方法は特に限定されない。たとえば、ガス室32内の空気をガス回収通路52を通して回収用空間64まで送り、その回収用空間64の空気をポンプ等で排出してから、電解ガスGをガス回収通路52を通して回収用空間64に送るようにしてもよい。   In the case where the air remaining in the gas chamber 32 is purged by the inert gas through the gas recovery passage 52, an example of discharging the air from the gas recovery passage 52 through the gas discharge passage 56 has been described. The method of discharging the air is not particularly limited. For example, after the air in the gas chamber 32 is sent to the recovery space 64 through the gas recovery passage 52 and the air in the recovery space 64 is discharged by a pump or the like, the electrolytic gas G is recovered through the gas recovery passage 52. It may be sent to

また、ガス室32内に残存した空気を排気用空間72に送るうえで、ガス供給通路54から供給される不活性ガスを用いる例を説明した。同様の目的を果たすうえで、ガス供給通路54は必須とはならない。たとえば、ガス室32内に空気が残存した状態のまま電解ガスGをガス室32内に集めるようにし、その電解ガスGを利用してガス室32内の空気を電解ガスGとともに排気用空間72に送ってもよい。   Further, in the case of sending the air remaining in the gas chamber 32 to the exhaust space 72, an example of using the inert gas supplied from the gas supply passage 54 has been described. The gas supply passage 54 is not essential to achieve the same purpose. For example, electrolytic gas G is collected in gas chamber 32 with air remaining in gas chamber 32, and the air in gas chamber 32 is discharged together with electrolytic gas G using exhaust gas G. You may send it to

ガス回収通路52のガス流出口52aは、液槽68の側壁面に開口する例を説明した。この他にも、ガス流出口52aは、ガス回収通路52の一部が内部に形成されるパイプの先端部に形成されてもよい。これは、パイプの先端部のガス流出口52a全体が封止液66内に浸漬している状態を想定している。このパイプの先端部の向きは特に問わず、下向き、横向きの何れに配置されてもよい。また、ガス回収通路52には複数の液槽68がガスの送り方向に順に設置されていてもよい。   The example in which the gas outlet 52 a of the gas recovery passage 52 is opened to the side wall surface of the liquid tank 68 has been described. Besides this, the gas outlet 52a may be formed at the end of a pipe in which a part of the gas recovery passage 52 is formed. This assumes that the entire gas outlet 52 a at the tip of the pipe is immersed in the sealing liquid 66. The direction of the end of the pipe is not particularly limited, and it may be disposed either downward or sideways. Further, in the gas recovery passage 52, a plurality of liquid tanks 68 may be installed in order in the gas feed direction.

計測部60は、防爆仕様、薬品耐性のあるセンサを用いるのが好ましい。また、計測部60は、ガス室32内の酸素の濃度を計測可能であれば、その設置位置は特に限定されない。たとえば、計測部60は、ガス回収通路52の他に、ガス室32内に設置されていてもよい。また、計測部60は、ガス回収通路52にて封止液66より上流側に設置される例を示したが、封止液66より下流側に設置されてもよい。この場合、計測部60は、防爆仕様、薬品耐性のあるセンサを用いなくともよい。   The measuring unit 60 preferably uses an explosion-proof, chemical resistant sensor. Moreover, if the measurement part 60 can measure the density | concentration of the oxygen in the gas chamber 32, the installation position will not be specifically limited. For example, the measurement unit 60 may be installed in the gas chamber 32 in addition to the gas recovery passage 52. In addition, although the measurement unit 60 is disposed upstream of the sealing liquid 66 in the gas recovery passage 52, the measuring unit 60 may be disposed downstream of the sealing liquid 66. In this case, the measuring unit 60 may not use an explosion-proof sensor or a chemical resistant sensor.

制御部62は、製造システムと連動して切替弁58や開閉弁70を制御してもよい。   The control unit 62 may control the switching valve 58 and the on-off valve 70 in conjunction with the manufacturing system.

過圧逃がし部106は、ガス室32内に過圧がかかったときに、隔壁体28の他の箇所より先に破壊されることで、外部空間34とガス室32を連通させる開口部102を設けることができればよい。これを実現するうえで、たとえば、過圧逃がし部106の壁体108及び固定部110のいずれが破壊されてもよい。   The overpressure relief portion 106 is broken earlier than the other portions of the partition 28 when an overpressure is applied in the gas chamber 32, whereby the opening portion 102 communicating the external space 34 with the gas chamber 32 is formed. It should just be able to provide. In realizing this, for example, either the wall 108 of the overpressure relief part 106 or the fixing part 110 may be destroyed.

隔壁体28の壁部に開口部102を形成しないこととし、その開口部102の形成されない壁部の一部を過圧逃がし部106の壁体108(脆弱壁部)が構成してもよい。このように過圧逃がし部106を設けるうえで、隔壁体28に開口部102を形成することは必須とはならない。   The opening portion 102 may not be formed in the wall portion of the partition body 28, and a part of the wall portion where the opening portion 102 is not formed may constitute the wall body 108 (fragile wall portion) of the overpressure relief portion 106. In order to provide the overpressure relief part 106 in this manner, it is not essential to form the opening 102 in the partition 28.

過圧逃がし部106が構成する壁体108は、隔壁体28の一部を構成していればよい。この壁体108は、たとえば、隔壁体28の天壁部28aや端壁部28dが構成していてもよい。   The wall body 108 which the overpressure relief part 106 constitutes may constitute a part of the partition 28. For example, the top wall 28 a and the end wall 28 d of the partition 28 may be configured as the wall 108.

過圧逃がし部106は、ガス室32内に過圧がかかるまでは壁体108を閉位置P1に保持し、過圧がかかったときにガス室32の内圧により壁体108が開位置P2に移動するように構成してもよい。これは、たとえば、壁体108を閉位置P1に保持するばね等の付勢部材を組み込むことで実現される。   The overpressure relief portion 106 holds the wall 108 at the closed position P1 until the overpressure is applied in the gas chamber 32, and when the overpressure is applied, the internal pressure of the gas chamber 32 causes the wall 108 to reach the open position P2. It may be configured to move. This is realized, for example, by incorporating a biasing member such as a spring that holds the wall 108 in the closed position P1.

過圧逃がし部106は、複数の小室112に対応せずに設けられてもよい。たとえば、ガス室32につき一つの過圧逃がし部106のみが設けられてもよい。   The overpressure relief portion 106 may be provided without corresponding to the plurality of small chambers 112. For example, only one overpressure relief 106 may be provided per gas chamber 32.

複数の小室112はX方向に配列される例を説明したが、X方向及びY方向の両方に配列されてもよい。   Although the plurality of cells 112 have been described as being arranged in the X direction, they may be arranged in both the X direction and the Y direction.

隣り合う小室112を連通する連通路118は、仕切り部材114とは別の部材に形成されてもよい。この別の部材とは、たとえば、隔壁体28に接続される配管部材である。   The communication passage 118 communicating the adjacent small chambers 112 may be formed in a member different from the partition member 114. This other member is, for example, a piping member connected to the bulkhead 28.

以上の構成要素の任意の組み合わせも、本発明の態様として有効である。たとえば、第5実施形態〜第7実施形態の過圧逃がし部106、仕切り部材114を、第1実施形態〜第4実施形態のガス回収装置10に組み合わせてもよい。同様に、第1実施形態〜第4実施形態の任意の構成要素(ガス回収通路52、ガス供給通路54、ガス排出通路56、切替弁58、計測部60、制御部62、ミスト捕捉体82等)を第5実施形態〜第7実施形態のガス回収装置10に組み合わせてもよい。また、第5実施形態〜第7実施形態の過圧逃がし部106と仕切り部材114を組み合わせずに、何れか一方のみが用いられていてもよい。   Any combination of the above components is also effective as an aspect of the present invention. For example, the overpressure relief unit 106 and the partition member 114 of the fifth to seventh embodiments may be combined with the gas recovery device 10 of the first to fourth embodiments. Similarly, optional components of the first to fourth embodiments (the gas recovery passage 52, the gas supply passage 54, the gas discharge passage 56, the switching valve 58, the measuring unit 60, the control unit 62, the mist capturing body 82, etc.) ) May be combined with the gas recovery device 10 of the fifth to seventh embodiments. Moreover, only one of the fifth to seventh embodiments may be used without combining the overpressure relief part 106 and the partition member 114.

以上、本発明の実施形態の例や変形例について詳細に説明した。前述した実施形態や変形例は、いずれも本発明を実施するにあたっての具体例を示したものにすぎない。実施形態や変形例の内容は、本発明の技術的範囲を限定するものではなく、発明の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。前述の実施形態では、このような設計変更が可能な内容に関して、「実施形態の」「実施形態では」等との表記を付して強調しているが、そのような表記のない内容でも設計変更が許容される。また、図面の断面に付したハッチングは、ハッチングを付した対象の材質を限定するものではない。   In the above, the example and modification of an embodiment of the present invention were explained in detail. The above-described embodiment and modifications are merely specific examples for implementing the present invention. The contents of the embodiments and the modifications do not limit the technical scope of the present invention, and many design changes such as changes, additions, and deletions of components can be made without departing from the spirit of the invention. In the above-mentioned embodiment, the contents which can be changed in design like this are emphasized with the notation of "of the embodiment", "in the embodiment" and the like, but even the contents without such notation are designed Changes are acceptable. Further, the hatching attached to the cross section of the drawing does not limit the material of the hatched object.

以上の実施形態、変形例により具体化される発明を一般化すると、以下の技術的思想が導かれる。以下、発明が解決しようとする課題に記載の態様を用いて説明する。   By generalizing the invention embodied by the above embodiment and modification, the following technical ideas can be derived. Hereinafter, the present invention will be described using an aspect described in the problem to be solved.

第2態様のガス回収装置は、第1態様において、前記隔壁体は、複数の前記電極を取り囲んで一つの前記ガス室を形成してもよい。
この態様によれば、電極毎に個別の隔壁体を用いるよりも隔壁体の個数を削減でき、隔壁体の設置作業が容易となる。
In the gas recovery apparatus of the second aspect, in the first aspect, the partition may surround a plurality of the electrodes to form one gas chamber.
According to this aspect, the number of partition bodies can be reduced compared to using individual partition bodies for each electrode, and the installation work of the partition bodies becomes easy.

第3態様のガス回収装置は、第1または第2態様において、前記開口部は、前記電極の上端部が貫通する位置に設けられてもよい。ここでの「電極の上端部」とは、電極の上端から電極の長手方向の全長の10%の領域をいう。
この態様によれば、隔壁体等のガス室形成面から開口部までの距離が短くなり、それだけ開口部を通る洗浄器具や洗浄液を用いてガス室形成面を洗浄し易くなる。
In the gas recovery apparatus of the third aspect, in the first or second aspect, the opening may be provided at a position where the upper end of the electrode penetrates. Here, "the upper end portion of the electrode" refers to a region of 10% of the total length in the longitudinal direction of the electrode from the upper end of the electrode.
According to this aspect, the distance from the gas chamber formation surface such as the partition wall to the opening becomes short, and the gas chamber formation surface can be easily cleaned using the cleaning tool or the cleaning liquid passing through the opening.

第4態様のガス回収装置は、第1から第3態様のいずれかにおいて、前記隔壁体は、前記電極を吊り下げ支持する支持構造体に被せられていてもよい。
この態様によれば、隔壁体の荷重を第1支持構造体にしっかりと伝達するうえで、隔壁体の荷重を支持構造体に直接に伝達できる。よって、隔壁体を支持構造体に接続するための接続構造を簡素化できる。
In the gas recovery apparatus of the fourth aspect, in any of the first to third aspects, the partition may be covered on a support structure that suspends and supports the electrode.
According to this aspect, the load of the partition can be directly transmitted to the support structure in order to securely transmit the load of the partition to the first support structure. Therefore, the connection structure for connecting the partition to the support structure can be simplified.

第5態様のガス回収装置は、第4態様において、前記電極は、水平方向に複数配列され、前記支持構造体は、前記複数の電極が接続され、前記複数の電極の配列方向を長手方向として延びるとともに電解槽内に配置される電極接続部を備え、前記隔壁体の前記長手方向の一端側の壁部は、前記電極接続部の前記長手方向の一端より前記長手方向の内側に配置されてもよい。
この態様によれば、既存の電解槽の内壁面と支持構造体の電極接続部の一端との間に隙間があまりない場合でも、その電解槽との干渉を避けつつ隔壁体を利用できる。
In the gas recovery apparatus of the fifth aspect, in the fourth aspect, the plurality of electrodes are arranged in the horizontal direction, the plurality of electrodes are connected to the support structure, and the arrangement direction of the plurality of electrodes is a longitudinal direction An electrode connection portion extending and disposed in the electrolytic cell, wherein a wall portion at one end side in the longitudinal direction of the partition body is disposed inside the longitudinal direction from one end in the longitudinal direction of the electrode connection portion It is also good.
According to this aspect, even when there is not much gap between the inner wall surface of the existing electrolytic cell and one end of the electrode connection portion of the support structure, the partition can be used while avoiding interference with the electrolytic cell.

第6態様のガス回収装置は、第1から第5態様のいずれかにおいて、前記ガス室内のガスを回収用空間に送るためのガス回収通路と、前記ガス室に不活性ガスを供給するためのガス供給通路と、を備えてもよい。
この態様によれば、電解ガスを発生させる前にガス室内に不活性ガスを供給することで、ガス室内に残存した空気をガス回収通路を通して不活性ガスによりパージできる。よって、ガス室内に残存した空気の酸素成分を可能な限り除去してから電解ガスを回収できる。
In a gas recovery apparatus according to a sixth aspect, in any one of the first to fifth aspects, a gas recovery passage for sending a gas in the gas chamber to a recovery space, and an inert gas for supplying the gas chamber. And a gas supply passage.
According to this aspect, by supplying the inert gas into the gas chamber before generating the electrolytic gas, the air remaining in the gas chamber can be purged by the inert gas through the gas recovery passage. Therefore, the electrolytic gas can be recovered after removing the oxygen component of air remaining in the gas chamber as much as possible.

第7態様のガス回収装置は、第6態様において、前記電極は、水平方向に複数配列され、前記ガス室は、平面視において、前記複数の電極の配列方向を長手方向として細長に広がっており、前記ガス回収通路のガス流入口は、前記ガス室を形成する前記配列方向の一端側の壁部に開口し、前記ガス供給通路のガス流出口は、前記ガス室を形成する前記配列方向の他端側の壁部に開口してもよい。
この態様によれば、ガス室の配列方向の末端箇所に残存する空気を不活性ガスによりスムーズに押し出し易くなり、ガス室内の空気のパージに要する不活性ガスの使用量を削減できる。
In a gas recovery apparatus according to a seventh aspect, in the sixth aspect, a plurality of the electrodes are arranged in the horizontal direction, and the gas chambers are elongated in a plan view with the arrangement direction of the plurality of electrodes as a longitudinal direction. The gas inlet of the gas recovery passage opens at a wall portion at one end side of the arrangement direction forming the gas chamber, and the gas outlet of the gas supply passage forms the gas chamber in the arrangement direction. You may open in the wall part of the other end side.
According to this aspect, the air remaining at the end of the gas chamber in the arrangement direction can be easily pushed out smoothly by the inert gas, and the amount of use of the inert gas required to purge the air in the gas chamber can be reduced.

第8態様のガス回収装置は、第1から第7態様のいずれかにおいて、前記ガス室内のガスを回収用空間に送るためのガス回収通路と、前記ガス回収通路から分岐して排気用空間に繋がるガス排出通路と、前記回収用空間及び前記排気用空間のいずれかに、前記ガス室内のガスの送り先を切り替え可能な切替弁と、を備えてもよい。
この態様によれば、ガス室内に残存する空気を排気用空間に送ってから、電解ガスを回収用空間に送れるようになる。
In the gas recovery apparatus according to an eighth aspect, in any of the first to seventh aspects, a gas recovery passage for sending the gas in the gas chamber to a recovery space, and a branch from the gas recovery passage to an exhaust space The gas discharge passage to be connected, and the switching valve capable of switching the destination of the gas in the gas chamber may be provided in any of the recovery space and the exhaust space.
According to this aspect, after the air remaining in the gas chamber is sent to the exhaust space, the electrolytic gas can be sent to the recovery space.

第9態様のガス回収装置は、第8態様において、前記ガス室の酸素の濃度を計測可能な計測部と、前記計測部により計測される前記酸素の濃度が所定の濃度超の場合に前記送り先を前記排気用空間にし、前記所定の濃度以下の場合に前記送り先を前記回収用空間にするように前記切替弁を制御する制御部と、を備えてもよい。
この態様によれば、ガス室内に残存する空気を排気用空間に送ってから、電解ガスを回収用空間に送るように、ガス回収装置の動作の自動化を図れる。
The gas recovery apparatus according to a ninth aspect is, according to the eighth aspect, a measuring unit capable of measuring the concentration of oxygen in the gas chamber, and the destination when the concentration of the oxygen measured by the measuring unit exceeds a predetermined concentration. And a control unit configured to control the switching valve so as to set the destination as the recovery space when the concentration is lower than the predetermined concentration.
According to this aspect, after the air remaining in the gas chamber is sent to the exhaust space, the operation of the gas recovery apparatus can be automated to send the electrolytic gas to the recovery space.

第10態様のガス回収装置は、第1から第9態様のいずれかにおいて、前記電極を吊り下げ支持する支持構造体及び前記隔壁体とは別体であり、前記ガス室内に設けられるミスト捕捉体を備えてもよい。
この態様によれば、電解ガスの気泡の破裂に伴いミストが生じたときでも、ミスト捕捉体によりミストを捕捉して、その支持構造体や隔壁体への飛散を防止できる。
The gas recovery system according to a tenth aspect of the present invention is the mist capturing body according to any of the first to ninth aspects, wherein the support structure for suspending and supporting the electrode and the partition body are separate members, and are provided in the gas chamber. May be provided.
According to this aspect, even when mist is generated due to the explosion of the bubble of the electrolytic gas, the mist can be captured by the mist capturing body, and scattering to the support structure or the partition can be prevented.

第11態様のガス回収装置は、第1から第10態様のいずれかにおいて、前記隔壁体は、前記ガス室内の過圧を外部に逃がすことができる過圧逃がし部を備えてもよい。
この態様によれば、ガス室内に過圧がかかった状態のもとでガス室内の圧力が更に増大する事態を避けられ、ガス回収装置の安全性の向上を図れる。
In the gas recovery apparatus of the eleventh aspect, in any of the first to tenth aspects, the partition may include an overpressure relief part capable of releasing the overpressure in the gas chamber to the outside.
According to this aspect, it is possible to avoid the situation in which the pressure in the gas chamber further increases when the gas chamber is over-pressured, and to improve the safety of the gas recovery apparatus.

第12態様のガス回収装置は、第11態様において、前記隔壁体は、前記電極を間に挟んで配置される一対の壁部を有し、前記過圧逃がし部は、前記一対の壁部のうちの一方の壁部にのみ設けられてもよい。
この態様によれば、他方の壁部の近くに他の物体を置いても、過圧逃がし部が動作するとき、その他の物体との干渉を避けられる。このため、他方の壁部の近くに他の物体を置くような設計を許容でき、隔壁体に過圧逃がし部を設けるうえでの設計の自由度の向上を図れる。
In a gas recovery apparatus according to a twelfth aspect, in the eleventh aspect, the partition body has a pair of wall portions disposed with the electrode interposed therebetween, and the overpressure relief portion is a portion of the pair of wall portions It may be provided only on one of the walls.
According to this aspect, even if another object is placed near the other wall, interference with the other object can be avoided when the overpressure relief operates. Therefore, it is possible to allow a design in which another object is placed near the other wall portion, and it is possible to improve the design freedom in providing the overpressure relief portion in the bulkhead.

第13態様のガス回収装置は、第1から第12態様のいずれかにおいて、前記隔壁体の内部に配置され、前記ガス室を複数の小室に仕切る仕切り部材を備えてもよい。
この態様によれば、ガス室の全体に火炎が伝搬する過程で、仕切り部材により火炎伝搬を堰き止めることで、その伝搬速度を一時的に遅くでき、ガス室の全体に急速に火炎が伝搬するのを避けられる。これに伴い、その急速な火炎伝搬に伴いガス室の圧力が急増加する前にガス室の内圧を逃がす設計を許容でき、ガス回収装置の安全性の向上を図れる。
The gas recovery apparatus of the thirteenth aspect may include a partition member which is disposed inside the partition body and which divides the gas chamber into a plurality of small cells in any of the first to twelfth aspects.
According to this aspect, in the process of propagation of the flame throughout the gas chamber, the propagation speed can be temporarily reduced by blocking the flame propagation by the partition member, and the flame propagates rapidly throughout the gas chamber. Can avoid Accordingly, it is possible to allow a design for escaping the internal pressure of the gas chamber before the pressure of the gas chamber rapidly increases due to the rapid flame propagation, and the safety of the gas recovery system can be improved.

第14態様のガス回収装置は、第13態様において、前記仕切り部材には、隣り合う前記複数の小室を連通する連通路が形成されてもよい。
この態様によれば、仕切り部材とは別部材を用いて連通路を設けるより、部品点数の削減を図れる。
In the gas recovery system according to a fourteenth aspect, in the thirteenth aspect, the partition member may be formed with a communication passage communicating the plurality of adjacent small chambers.
According to this aspect, the number of parts can be reduced by providing the communication passage using a member separate from the partition member.

第15態様のガス回収装置は、第13または第14態様において、前記隔壁体は、前記複数の小室に対応して設けられ、対応する小室内の過圧を外部に逃がすことができる過圧逃がし部を備えてもよい。
この態様によれば、複数の小室内で順次に火炎が伝搬する過程で、個々の小室内で過圧を徐々に外部に逃がせるようになる。よって、ガス室全体に一気に火炎が伝搬する場合と比べ、ガス室全体に過大な圧力がかかり難くなる。
In a gas recovery apparatus according to a fifteenth aspect, in the thirteenth or fourteenth aspect, the partition body is provided corresponding to the plurality of cells, and an overpressure relief capable of releasing the overpressure in the corresponding cells to the outside. You may provide a part.
According to this aspect, in the process of propagation of the flame sequentially in the plurality of small chambers, the overpressure can be gradually released to the outside in each small chamber. Therefore, it becomes difficult to apply an excessive pressure to the whole gas chamber as compared with the case where the flame propagates to the whole gas chamber at once.

10…ガス回収装置、14…電解液、16…陰極(電極)、20…電解槽、22…支持構造体、26…電極接続部、28…隔壁体、32…ガス室、38…開口部、52…ガス回収通路、52c…ガス流入口、54…ガス供給通路、54a…ガス流出口、64…回収用空間、82…ミスト捕捉体、106…過圧逃がし部、112…小室、114…仕切り部材、118…連通路。 DESCRIPTION OF SYMBOLS 10 ... Gas recovery apparatus, 14 ... Electrolyte solution, 16 ... Cathode (electrode), 20 ... Electrolysis tank, 22 ... Support structure, 26 ... Electrode connection part, 28 ... Partition body, 32 ... Gas chamber, 38 ... Opening part, 52: gas recovery passage, 52c: gas inlet, 54: gas supply passage, 54a: gas outlet, 64: space for recovery, 82: mist capture body, 106: overpressure relief portion, 112: small chamber, 114: partition Member, 118 ... communication passage.

Claims (15)

電解液の電気分解に伴い電解ガスが生じる電極を取り囲み、前記電解液上に前記電解ガスを集めるためのガス室を形成する隔壁体を備え、
前記隔壁体には、下向きに開く開口部が形成されるガス回収装置。
A partition body surrounding an electrode that generates an electrolytic gas with the electrolysis of the electrolytic solution, and forming a gas chamber for collecting the electrolytic gas on the electrolytic solution,
The gas recovery device according to claim 1, wherein the partition has an opening that opens downward.
前記隔壁体は、複数の前記電極を取り囲んで一つの前記ガス室を形成する請求項1に記載のガス回収装置。   The gas recovery apparatus according to claim 1, wherein the partition body surrounds a plurality of the electrodes to form one gas chamber. 前記開口部は、前記電極の上端部が貫通する位置に設けられる請求項1または2に記載のガス回収装置。   The gas recovery apparatus according to claim 1, wherein the opening is provided at a position where the upper end of the electrode penetrates. 前記隔壁体は、前記電極を吊り下げ支持する支持構造体に被せられている請求項1から3のいずれかに記載のガス回収装置。   The gas recovery apparatus according to any one of claims 1 to 3, wherein the partition is placed on a support structure that suspends and supports the electrode. 前記電極は、水平方向に複数配列され、
前記支持構造体は、前記複数の電極が接続され、前記複数の電極の配列方向を長手方向として延びるとともに電解槽内に配置される電極接続部を備え、
前記隔壁体の前記長手方向の一端側の壁部は、前記電極接続部の前記長手方向の一端より前記長手方向の内側に配置される請求項4に記載のガス回収装置。
The plurality of electrodes are arranged in the horizontal direction,
The support structure includes an electrode connection portion to which the plurality of electrodes are connected and which extends in the direction in which the plurality of electrodes are arranged as a longitudinal direction and which is disposed in the electrolytic cell,
5. The gas recovery apparatus according to claim 4, wherein a wall portion at one end side in the longitudinal direction of the partition body is disposed inward in the longitudinal direction from one end in the longitudinal direction of the electrode connection portion.
前記ガス室内のガスを回収用空間に送るためのガス回収通路と、
前記ガス室に不活性ガスを供給するためのガス供給通路と、を備える請求項1から5のいずれかに記載のガス回収装置。
A gas recovery passage for sending the gas in the gas chamber to a recovery space;
The gas recovery system according to any one of claims 1 to 5, further comprising: a gas supply passage for supplying an inert gas to the gas chamber.
前記電極は、水平方向に複数配列され、
前記ガス室は、平面視において、前記複数の電極の配列方向を長手方向として細長に広がっており、
前記ガス回収通路のガス流入口は、前記ガス室を形成する前記配列方向の一端側の壁部に開口し、
前記ガス供給通路のガス流出口は、前記ガス室を形成する前記配列方向の他端側の壁部に開口する請求項6に記載のガス回収装置。
The plurality of electrodes are arranged in the horizontal direction,
The gas chamber is elongated in a plan view with the arrangement direction of the plurality of electrodes as a longitudinal direction,
The gas inlet of the gas recovery passage is open at a wall on one end side of the arrangement direction forming the gas chamber,
The gas recovery device according to claim 6, wherein the gas outlet of the gas supply passage is opened at a wall on the other end side in the arrangement direction forming the gas chamber.
前記ガス室内のガスを回収用空間に送るためのガス回収通路と、
前記ガス回収通路から分岐して排気用空間に繋がるガス排出通路と、
前記回収用空間及び前記排気用空間のいずれかに、前記ガス室内のガスの送り先を切り替え可能な切替弁と、を備える請求項1から7のいずれかに記載のガス回収装置。
A gas recovery passage for sending the gas in the gas chamber to a recovery space;
A gas discharge passage branched from the gas recovery passage and connected to an exhaust space;
The gas recovery device according to any one of claims 1 to 7, further comprising: a switching valve capable of switching the destination of the gas in the gas chamber in any one of the recovery space and the exhaust space.
前記ガス室の酸素の濃度を計測可能な計測部と、
前記計測部により計測される前記酸素の濃度が所定の濃度超の場合に前記送り先を前記排気用空間にし、前記所定の濃度以下の場合に前記送り先を前記回収用空間にするように前記切替弁を制御する制御部と、を備える請求項8に記載のガス回収装置。
A measurement unit capable of measuring the concentration of oxygen in the gas chamber;
The switching valve is configured to set the destination as the exhaust space when the concentration of the oxygen measured by the measurement unit exceeds the predetermined concentration, and to set the destination as the collection space when the concentration is less than the predetermined concentration. The controller according to claim 8, further comprising:
前記電極を吊り下げ支持する支持構造体及び前記隔壁体とは別体であり、前記ガス室内に設けられるミスト捕捉体を備える請求項1から9のいずれかに記載のガス回収装置。   The gas recovery system according to any one of claims 1 to 9, further comprising: a support structure body for suspending and supporting the electrode and the partition body separately from the partition body, and including a mist capturing body provided in the gas chamber. 前記隔壁体は、前記ガス室内の過圧を外部に逃がすことができる過圧逃がし部を備える請求項1から10のいずれかに記載のガス回収装置。   The gas recovery device according to any one of claims 1 to 10, wherein the partition includes an overpressure relief portion capable of releasing overpressure in the gas chamber to the outside. 前記隔壁体は、前記電極を間に挟んで配置される一対の壁部を有し、
前記過圧逃がし部は、前記一対の壁部のうちの一方の壁部にのみ設けられる請求項11に記載のガス回収装置。
The partition body has a pair of wall portions disposed so as to sandwich the electrode therebetween,
The gas recovery apparatus according to claim 11, wherein the overpressure relief portion is provided only on one of the pair of wall portions.
前記隔壁体の内部に配置され、前記ガス室を複数の小室に仕切る仕切り部材を備える請求項1から12のいずれかに記載のガス回収装置。   The gas recovery apparatus according to any one of claims 1 to 12, further comprising: a partition member disposed inside the partition body and partitioning the gas chamber into a plurality of small chambers. 前記仕切り部材には、隣り合う前記複数の小室を連通する連通路が形成される請求項13に記載のガス回収装置。   The gas recovery device according to claim 13, wherein a communication passage communicating the plurality of adjacent small chambers is formed in the partition member. 前記隔壁体は、前記複数の小室に対応して設けられ、対応する小室内の過圧を外部に逃がすことができる過圧逃がし部を備える請求項13または14に記載のガス回収装置。   The gas recovery device according to claim 13, wherein the partition body is provided corresponding to the plurality of cells, and includes an overpressure relief portion capable of releasing the overpressure in the corresponding cells to the outside.
JP2018179817A 2017-09-28 2018-09-26 gas recovery device Active JP7198619B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017187763 2017-09-28
JP2017187763 2017-09-28

Publications (2)

Publication Number Publication Date
JP2019065392A true JP2019065392A (en) 2019-04-25
JP7198619B2 JP7198619B2 (en) 2023-01-04

Family

ID=66339137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018179817A Active JP7198619B2 (en) 2017-09-28 2018-09-26 gas recovery device

Country Status (1)

Country Link
JP (1) JP7198619B2 (en)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125481A (en) * 1974-08-28 1976-03-02 Hitachi Ltd
JPS5237575A (en) * 1975-09-19 1977-03-23 Matsushita Electric Ind Co Ltd Oxygen-generating apparatus
JPS5989781A (en) * 1982-11-13 1984-05-24 Nippon Paint Co Ltd Electrolytic reactor in which electrolyte is circulated
JPS61221388A (en) * 1985-03-27 1986-10-01 Japan Carlit Co Ltd:The Electrolytic cell for producing periodate
JPH05320970A (en) * 1992-05-19 1993-12-07 Chlorine Eng Corp Ltd Ion exchange membrane electrolyzer
US5733422A (en) * 1997-02-28 1998-03-31 Lin; I-Chuan High-pressure gas producing electrolysis tank
US6257175B1 (en) * 1997-09-15 2001-07-10 Edward G. Mosher Oxygen and hydrogen generator apparatus for internal combustion engines
JP2002322584A (en) * 2001-04-25 2002-11-08 Mori Kazuo Method for promoting electrochemical reaction
US20040195089A1 (en) * 2001-11-02 2004-10-07 O'brien Robert N. Gas-collecting electrets as magneto-electrolysis cell components
JP2004307878A (en) * 2003-04-02 2004-11-04 Hanshin Gijutsu Kenkyusho:Kk Device for generating hydrogen and oxygen
JP2005159286A (en) * 2003-10-29 2005-06-16 Tatsumi Ryoki:Kk Load equipment
US20090026087A1 (en) * 2007-07-26 2009-01-29 Sego James T Apparatus for increasing the fuel efficiency of an internal combustion energy device by water electrolysis
JP2010053378A (en) * 2008-08-27 2010-03-11 Honda Motor Co Ltd Hydrogen generating system and method for operating the same
KR101223376B1 (en) * 2011-12-19 2013-01-23 오씨아이머티리얼즈 주식회사 Electrolyzer for manufacturing nitrogen trifluoride gas
KR20150137321A (en) * 2014-05-29 2015-12-09 (주)후성 Advanced fluorine gas generator
JP2017002345A (en) * 2015-06-08 2017-01-05 株式会社フォーエス Water electrolyzer
JP2017039982A (en) * 2015-08-20 2017-02-23 デノラ・ペルメレック株式会社 Electrolytic apparatus and electrolytic method
WO2017057950A1 (en) * 2015-10-02 2017-04-06 후성정공 주식회사 Collector of electrolyzer for manufacturing nitrogen trifluoride and method for manufacturing same
US20170275773A1 (en) * 2016-03-25 2017-09-28 Alcoa Usa Corp Electrode Configurations for Electrolytic Cells and Related Methods

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5320970B2 (en) 2008-10-15 2013-10-23 日産自動車株式会社 Vehicle display device and display method

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5125481A (en) * 1974-08-28 1976-03-02 Hitachi Ltd
JPS5237575A (en) * 1975-09-19 1977-03-23 Matsushita Electric Ind Co Ltd Oxygen-generating apparatus
JPS5989781A (en) * 1982-11-13 1984-05-24 Nippon Paint Co Ltd Electrolytic reactor in which electrolyte is circulated
JPS61221388A (en) * 1985-03-27 1986-10-01 Japan Carlit Co Ltd:The Electrolytic cell for producing periodate
JPH05320970A (en) * 1992-05-19 1993-12-07 Chlorine Eng Corp Ltd Ion exchange membrane electrolyzer
US5733422A (en) * 1997-02-28 1998-03-31 Lin; I-Chuan High-pressure gas producing electrolysis tank
US6257175B1 (en) * 1997-09-15 2001-07-10 Edward G. Mosher Oxygen and hydrogen generator apparatus for internal combustion engines
JP2002322584A (en) * 2001-04-25 2002-11-08 Mori Kazuo Method for promoting electrochemical reaction
US20040195089A1 (en) * 2001-11-02 2004-10-07 O'brien Robert N. Gas-collecting electrets as magneto-electrolysis cell components
JP2004307878A (en) * 2003-04-02 2004-11-04 Hanshin Gijutsu Kenkyusho:Kk Device for generating hydrogen and oxygen
JP2005159286A (en) * 2003-10-29 2005-06-16 Tatsumi Ryoki:Kk Load equipment
US20090026087A1 (en) * 2007-07-26 2009-01-29 Sego James T Apparatus for increasing the fuel efficiency of an internal combustion energy device by water electrolysis
JP2010053378A (en) * 2008-08-27 2010-03-11 Honda Motor Co Ltd Hydrogen generating system and method for operating the same
KR101223376B1 (en) * 2011-12-19 2013-01-23 오씨아이머티리얼즈 주식회사 Electrolyzer for manufacturing nitrogen trifluoride gas
KR20150137321A (en) * 2014-05-29 2015-12-09 (주)후성 Advanced fluorine gas generator
JP2017002345A (en) * 2015-06-08 2017-01-05 株式会社フォーエス Water electrolyzer
JP2017039982A (en) * 2015-08-20 2017-02-23 デノラ・ペルメレック株式会社 Electrolytic apparatus and electrolytic method
WO2017057950A1 (en) * 2015-10-02 2017-04-06 후성정공 주식회사 Collector of electrolyzer for manufacturing nitrogen trifluoride and method for manufacturing same
US20170275773A1 (en) * 2016-03-25 2017-09-28 Alcoa Usa Corp Electrode Configurations for Electrolytic Cells and Related Methods

Also Published As

Publication number Publication date
JP7198619B2 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
KR100393947B1 (en) Pressure-compensated electrochemical cell
JP3271987B2 (en) Electrochemical half-cell with pressure compensation
KR101062578B1 (en) Electrolyzed Hydrogen Separation Device of Electrolyzed Vessel Ballast Water Treatment System
KR200487890Y1 (en) Apparatus for spraying hydrogen enriched water mist
JP2013194296A (en) Protective member of electrolytic cell and electrolytic cell using the same
KR20140021666A (en) Alternative installation of a gas diffusion electrode in an electrochemical cell having percolator technology
JP4723250B2 (en) Electrolyzer with internal trough
US20220307153A1 (en) Anode holder, and plating apparatus
JP2019065392A (en) Gas collecting apparatus
KR101367624B1 (en) An apparatus for producing ozone by electrolysis
CN104781450A (en) gas generating device and assembly thereof
MX2013005102A (en) System for confining and evacuating aerosols of two or three - phases.
JP5835096B2 (en) Electrolyte supply piping
CA2946089C (en) Method and arrangement for collecting and removal of acid mist from an electrolytic cell
JP5868630B2 (en) Electrolyzed water production apparatus and electrolyzed water production method
US10305130B2 (en) Tank-type power generation device capable of manufacturing high-pressure hydrogen and fuel cell vehicle
JP2016172921A (en) Gas generator and device using the same
KR20230167054A (en) Process fluid treatment method and filter apparatus for performing the method
EP3299342B1 (en) Dehydrogenation tank for ballast water treatment system having same
KR101814794B1 (en) Water Tank System for Producing Water contained Ozone
EP2889931A1 (en) Adaptor plug for industrial battery
JP2016172883A (en) Gas generator and device using the same
JP5824256B2 (en) Electrolyzer
RU174582U1 (en) HIGH PRESSURE ELECTROLYZER
KR102489546B1 (en) Hydrogen generation and hydrogen water generation apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221219

R150 Certificate of patent or registration of utility model

Ref document number: 7198619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150