KR20060135061A - 휴대용 트랜시버를 네트워크에 동기시키는 시스템 - Google Patents

휴대용 트랜시버를 네트워크에 동기시키는 시스템 Download PDF

Info

Publication number
KR20060135061A
KR20060135061A KR1020067023194A KR20067023194A KR20060135061A KR 20060135061 A KR20060135061 A KR 20060135061A KR 1020067023194 A KR1020067023194 A KR 1020067023194A KR 20067023194 A KR20067023194 A KR 20067023194A KR 20060135061 A KR20060135061 A KR 20060135061A
Authority
KR
South Korea
Prior art keywords
frequency
adjusting
timing
portable transceiver
network
Prior art date
Application number
KR1020067023194A
Other languages
English (en)
Other versions
KR101018201B1 (ko
Inventor
얄레 코마일리
다리우시 아가히
릭케 더블유 클락
Original Assignee
스카이워크스 솔루션즈 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스카이워크스 솔루션즈 인코포레이티드 filed Critical 스카이워크스 솔루션즈 인코포레이티드
Publication of KR20060135061A publication Critical patent/KR20060135061A/ko
Application granted granted Critical
Publication of KR101018201B1 publication Critical patent/KR101018201B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2662Arrangements for Wireless System Synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2662Arrangements for Wireless System Synchronisation
    • H04B7/2671Arrangements for Wireless Time-Division Multiple Access [TDMA] System Synchronisation
    • H04B7/2675Frequency synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/233Demodulator circuits; Receiver circuits using non-coherent demodulation
    • H04L27/2332Demodulator circuits; Receiver circuits using non-coherent demodulation using a non-coherent carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0063Elements of loops
    • H04L2027/0065Frequency error detectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Oscillators With Electromechanical Resonators (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Liquid Developers In Electrophotography (AREA)

Abstract

휴대용 트랜시버를 네트워크에 동기시키는 시스템이 개시되어 있다. 휴대용 트랜시버를 네트워크에 동기시키는 시스템의 실시형태는 수정 오실레이터, 수정 오실레이터의 출력을 수신하도록 구성된 주파수 신시사이저, 수정 오실레이터에 연결되어 있으며 수신 신호의 주파수를 평가하도록 구성되는 로직, 로직으로부터 주파수 신시사이저로 제공된 제1 제어 신호로서, 에러를 보상하도록 주파수 신시사이저를 조정하도록 구성되는 제1 제어 신호를 포함한다.

Description

휴대용 트랜시버를 네트워크에 동기시키는 시스템{SYSTEM FOR SYNCHRONIZING A PORTABLE TRANSCEIVER TO A NETWORK}
본 발명은 일반적으로 무선 송신기에 대한 동기 시스템에 관한 것이며, 보다 자세하게는, 제한 수정 튜닝(crystal tuning) 방식으로 주파수와 타이밍에서 휴대용 트랜시버를 네트워크에 동기시키는 시스템에 관한 것이다.
효율적이면서 저비용인 전자 모듈의 이용이 증가함에 따라, 이동 통신 시스템이 점점더 확산되고 있다. 예를 들어, 여러 주파수, 송신 방식, 변조 기술 및 통신 프로토콜을 이용하여 양방향 음성 및 데이터 통신을 휴대용의 전화 형태인 통신 핸드셋(또한, 휴대용 트랜시버라고도 함)을 제공할 수 있는 여러 형태의 통신 방식이 있다. 개개의 변조 및 송신 방식은 각각 이점과 단점을 갖고 있다. 이들 휴대용 트랜시버는 이 기지국이 위치된 영역을 "통신 셀" 또는 "셀"이라 하는 각각 기지국을 통하여 통신 네트워크와 통신한다.
이동 통신 시스템이 개발되어 배치됨에 따라, 다른 많은 표준이 진화되고 있으며, 이들 시스템은 이들 표준에 부합해야 한다. 예를 들어, 미국에서는, 많은 휴대용 통신 시스템이 IS-136 표준에 따르고 있는데, 이 표준은 특정 변조 방식 및 액세스 포맷의 이용을 요구한다. IS-136의 경우, 변조 방식은 협대역 오프셋 π/4 차동 직교 위상 시프트 키잉(π/4-DQPSK) 방식이며, 액세스 포맷은 TDMA이다.
유럽과 점차적으로 그 외 다른 나라에서는, GSM(global system for mobile communications)표준이 협대역 TDMA 액세스 환경에서 가우시안 최소 시프트 키잉(GMSK) 변조 방식을 이용할 것을 요구하는데, 이 협대역 TDMA 액세스 환경은 일정한 엔벨로프 변조 방법을 이용한다. 그 외 변조 포맷은 최소 시프트 키잉(MSK), 주파수 시프트 키잉(FSK) 및 그 외 시프트 키잉 변조 기술을 이용한다.
또한, 협대역 TDMA 기술을 이용하는 통상의 GSM 이동 통신 시스템에서는, GMSK 변조 방식이 저잡음 위상 변조(PM) 송신 신호를 오실레이터로부터 직접 비선형 전력 증폭기로 송신한다. 이러한 방식에서는, 고효율의 비선형 전력 증폭기를 이용함에 따라서 위상 변조 신호의 효율적인 변조 및 전력 소비의 최소화를 실현할 수 있다. 이 변조 신호는 오실레이터로부터 직접 제공되기 때문에, 전력 증폭기에 입력되기 전 또는 입력된 후에 필터링해야 하는 필요성을 최소화한다. 또한, GSM 트랜시버에서의 출력은 일정한 앤벨로프(즉, 시간에 불변인 진폭을 갖는) 변조 신호이다.
이용되는 통신 방법의 형태와 무관하게, 각각의 휴대용 트랜시버는 접속하고 있는 통신 네트워크와 주파수 동기 및 타이밍 동기를 유지해야 한다. 예를 들어, GSM에서는, 휴대용 트랜시버는 기지국의 반송파 주파수 정확도의 0.1 ppm 내에서 반송파 주파수 정확도를 유지해야만 한다. 또한, 휴대용 트랜시버는 기지국의 시간 기준으로 2 마이크로초 내에서 시간 기준을 유지해야만 한다. 휴대용 트랜시버의 시간 기준은, 어떠한 에러가 심볼 기간의 1/2 보다 작아질 때까지 ls<Δt<2s로 되 도록 심볼 기간의 1/4의 증분량(0.9225㎲)으로 조정된다. 많은 휴대용 통신 핸드셋은 폐쇄 트랙킹 루프에서의 튜닝 가능 수정 오실레이터(tunable crystal)를 이용하여 네트워크와의 동기를 유지한다. 예를 들어, 어떤 시스템은 고가의 온도 제어 전압 제어 수정 오실레이터(TCVCXO)를 이용하며, 어떤 시스템은 전압 제어 수정 오실레이터(VCXO)를 조정하기 위한 버랙터를 이용한다. 버랙터 제어형 오실레이터는 커패시터 제어형 오실레이터보다 덜 정확하고 통상적으로 보다 고가의 디지털/아날로그 변환기(DAC)를 필요로 한다. 커패시터 제어형 오실레이터는 커패시터의 어레이 세트를 이용하여 조정되는데, 이 커패시터 어레이 세트는 DAC를 효율적으로 형성한다. 이러한 시스템에서는, 통상적으로 네트워크로부터의 피드백을 이용하여 대략적 조정과 정교한 조정을 제공하는 고정형 및 조정가능형 커패시턴스의 복합 어레이를 이용하여 수정 오실레이터를 조정한다. 예를 들어, GSM 통신 네트워크에서는, 몇몇 휴대용 통신 디바이스가 커패시터 제어형 수정 오실레이터(CCXO)를 이용하여 네트워크와의 주파수 및 타이밍 튜닝 특성을 유지한다. 그러나, 정확한 수정 오실레이터들은 고가이고, CCXO 영역을 조정하기 위한 복잡한 캐패시터 어레이는 이 어레이가 위치되는 집적 회로 디바이스 상에서 상당히 많은 영역을 차지해 버린다.
따라서, 수정 오실레이터의 요구되는 정확성을 감소시키고 수정 오실레이터를 조정하는데 이용되는 튜닝 회로의 복잡성을 감소시키면서 여전히 통신 네트워크와 주파수 및 타이밍 동기를 유지시키는 것이 바람직하다.
휴대용 트랜시버를 네트워크 동기화시키는 시스템의 실시형태는, 수정 오실레이터, 수정 오실레이터의 출력을 수신하도록 구성된 주파수 신시사이저, 수정 오실레이터에 연결되어 있으며 수신 신호의 주파수를 평가하도록 구성되는 로직, 로직으로부터 주파수 신시사이저로 제공된 제1 제어 신호로서, 에러를 보상하도록 주파수 신시사이저를 조정하도록 구성되는 제1 제어 신호를 포함한다. 일 실시형태에서, 로직은 수정 오실레이터를 조정할 필요없이 시스템 주파수 및 타이밍에 대한 제한 조정을 실시한다. 또 다른 실시형태에서, 시스템 주파수 에러가 표준에서 허용되는 것보다 많이 빈번한 타이밍 조정을 야기하는 경우, 제한 커패시터 어레이를 조정하여, 수정 오실레이터의 출력을 조정한다. 이러한 시스템은 주파수 도메인 및 시간 도메인에서 휴대용 트랜시버를 네트워크에 동기시키는데 이용할 수 있다.
또한, 상술한 시스템의 동작과 관련된 방법이 제공된다. 본 발명의 그 외의 시스템, 방법, 특징, 및 이점은 도면과 상세한 설명부를 통하여 보다 자세히 설명될 것이다. 이러한 모든 추가 시스템, 방법, 특징 및 이점도 본 발명의 상세한 설명부 내에 포함되며, 본 발명의 범위 내에 있는 것으로서, 첨부된 청구항에 의해 보호받을 수 있는 것이다.
본 발명은 다음의 도면을 참조하여 보다 자세히 설명되어 있다. 도면 내의 구성요소들은 반드시 축적되어 도시된 것은 아니며, 강조 부분은 본 발명의 원리를 명확히 설명하기 위하여 넣은 것이다. 또한, 도면 전반에 걸쳐, 대응하는 구성요소는 동일한 도면 부호로 표기한다.
도 1은 휴대용 트랜시버를 간략히 나타낸 블록도이다.
도 2는 휴대용 트랜시버를 네트워크에 동기시키는 시스템의 일 실시형태를 나타낸 블록도이다.
도 3은 도 2의 동기 시스템의 일 실시형태의 동작을 나타내는 플로우차트이다.
도 4는 도 2의 동기 시스템의 또 다른 실시형태를 나타낸 플로우차트이다.
실시예에서는, GSM 통신 네트워크를 참조하여 구체적으로 본 발명을 설명하고 있지만, 휴대용 트랜시버를 네트워크에 동기시키는 시스템은, 어떤 시스템이 기준 주파수의 대략 ±2.5 ppm 내에서 네트워크에 대한 동기화를 실현할 수 있는 시스템인 것이라면, 주파수 및 시간 제어용 수정 오실레이터 및 그 외 다른 수정 오실레이터를 이용한 그 외 다른 시스템에서도 구현될 수 있다.
휴대용 트랜시버를 네트워크에 동기시키는 시스템은 소프트웨어, 하드웨어, 소프트웨어와 하드웨어의 조합으로 구현될 수 있다. 바람직한 실시형태에서, 휴대용 트랜시버를 네트워크에 동기시키는 시스템은 하드웨어와 소프트웨어의 조합을 이용하여 구현될 수 있다. 하드웨어는 이산 하드웨어 소자와 로직 및/또는 특수 제조된 하드웨어 소자와 로직을 이용하여 구현될 수 있다. 휴대용 트랜시버를 네트워크에 동기시키는 시스템 및 방법의 소프트웨어부는 메모리 내에 저장되어, 적절한 명령 실행 시스템(예를 들어, 마이크로 프로세서)에 의해 실행될 수 있다. 휴대용 트랜시버를 네트워크에 동기시키는 시스템의 하드웨어 구현은 당해 기술분야의 당업자에게 잘 공지되어 있는 다음 기술 중 어느 하나 또는 이들 기술의 조합을 포함 할 수 있는데, 이 기술은, 데이터 신호에 대한 로직 펑션을 구현하는 이산 로직 회로(들) 로직 게이트와, 적합한 로직 게이트를 가진 응용 주문형 집적 회로와, 프프로그래밍 가능 게이트 어레이(들)(PGA), 필드 프로그래밍가능 게이트 어레이(FPGA) 등이 있다. 하드웨어는 예를 들어, 상보성 금속 산화물 반도체(CMOS), 바이폴라 CMOS(BiCMOS) 또는 그 외 다른 프로세스 기술을 이용하여 구현될 수 있다.
휴대용 트랜시버를 네트워크에 동기시키는 시스템의 소프트웨어는 로직 펑션을 구현하는 실행가능 명령의 순서화된 리스트를 포함할 수 있고, 컴퓨터 기반 시스템, 프로세서 포함 시스템과 같은 명령 실행 시스템, 장치, 또는 디바이스, 또는 이러한 명령 실행 시스템, 장치 또는 디바이스로부터의 명령을 패치하여 명령을 실행할 수 있는 그 외 다른 시스템과 접속하여 또는 이 시스템들에 의한 이용을 위한 컴퓨터 판독가능 매체에서 구현될 수 있다.
이 명세서의 내용에서, "컴퓨터 판독가능 매체"는 명령 실행 시스템, 장치 또는 디바이스와 접속하여 또는 명령 실행 시스템, 장치 또는 디바이스에 의한 이용을 위한 프로그램을 포함, 저장, 통신, 전파, 또는 전송할 수 있는 어떠한 수단도 될 수 있다. 컴퓨터 판독가능 매체는 예를 들어, 이에 한정되는 것은 아니지만, 전자, 자기, 광학, 전자기, 적외선, 또는 반도체 시스템, 장치, 디바이스, 또는 전파 매체를 포함한다. 컴퓨터 판독가능 매체의 보다 구체적인 예(대략적인 리스트)는, 하나 이상의 와이어를 가진 전기 접속부(전자 부품), (자성의) 휴대용 컴퓨터 디스켓, 랜덤 액세스 메모리(RAM), 판독 전용 메모리(ROM), (자성의) 소거가능한 프로그래밍 가능 판독 전용 메모리(EPROM 또는 플래시 메모리), (광학성의) 광섬 유, 및 (광학성의) 휴대용 컴팩트 디스크 판독 전용 메모리(CDROM)를 포함한다. 컴퓨터 판독가능 매체는 프로그램이 프린트되어 있는 페이퍼나 다른 적절한 매체도 물론 포함할 수 있는데, 이는 프로그램이 예를 들어, 페이퍼나 또 다른 매체의 광 스캐닝을 통하여 프로그램이 전자적으로 캡쳐링된 다음, 컴파일되거나, 해석되거나 또는 그 외 다른 경우, 필요에 따라 적절한 방식으로 처리될 수 있기 때문이다.
도 1은 휴대용 트랜시버를 네트워크에 동기시키는 시스템을 포함하는 간략한 휴대용 트랜시버(100)를 나타내는 블록도이며, 여기서 이 시스템을 "동기 시스템"이라 한다. 또한, 휴대용 트랜시버(100)를 "모바일 유닛" 또는 "모바일"이라 하기도 한다. 휴대용 트랜시버(100)는 스피커(102), 디스플레이(104), 키보드(106), 및 마이크로 폰(108)을 포함하며, 모드 기저대역 서브시스템(110)에 접속되어 있다. 전력원(142)은 직류(DC) 배터리 또는 그 외 다른 전력원일 수 있으며, 또한, 접속부(144)를 통하여 기저대역 서브시스템(110)에 접속되어 휴대용 트랜시버(100)에 전력을 공급한다. 구체적인 일 실시형태에서, 휴대용 트랜시버(100)는 예를 들어, 이에 한정되는 것은 아니지만, 모바일 셀룰라 형태의 전화기와 같은 휴대용 원격 통신 디바이스일 수 있다. 스피커(102)와 디스플레이(104)는 잘 알려진 바와 같이, 기저대역 서브시스템(110)으로부터 접속부(112 및 114)를 통하여 신호를 수신한다. 이와 유사하게, 키보드(106)와 마이크로 폰(108)도 접속부(116 및 118)를 통하여 기저대역 서브시스템(110)으로 각각 신호를 공급한다. 기저대역 서브시스템(110)은 마이크로프로세서(μP)(120)와 마이크로컨트롤러(μC)(125), 메모리(122), 아날로그 회로(124), 및 버스(128)를 통하여 통신하는 디지털 신호 처리기(DSP)(126)를 버스(128)를 포함한다. 버스(128)는 하나의 버스로만 도시되어 있지만, 기저대역 서브시스템(110) 내의 서브시스템 간에 필요에 따라 접속되는 다수의 버스들을 이용하여 구현될 수도 있다.
동기 시스템이 구현되어 있는 방식에 의존하여, 기저대역 서브시스템(110)은 응용 주문형 집적 회로(ASIC)(135)와 필드 프로그래밍 가능 게이트 어레이(FPGA)(133)도 또한 포함할 수 있다.
마이크로프로세서(120)와 메모리(122)는 휴대용 트랜시버(100)에 대한 신호 타이밍 처리 및 저장 펑션을 제공한다. 아날로그 회로(124)는 기저대역 서브시스템(110) 내에 신호에 대한 아날로그 처리 펑션을 제공한다. 기저대역 서브시스템(110)은 접속부(132)를 통하여 송신기(150)와 수신기(170)에 제어 신호를 제공한다. 하나의 접속부(132)만이 도시되어 있지만, 제어 신호는 DSP(126), ASIC(135), FPGA(133)로부터 발신될 수 있거나, 또는 마이크로프로세서(120)로부터 발신될 수 있으며, 송신기(150)와 수신기(170) 내의 여러 접속부에 제공된다. 간략한 설명을 위하여, 휴대용 트랜시버(100)의 기본 구성요소만을 여기에 설명한다. 기저대역 서브시스템(110)에 의해 제공되는 제어 신호는 송신기(150)와 수신기(170) 내의 여러 구성요소들을 제어한다. 또한, 기저대역 서브시스템(110)의 몇몇 부분들은 디지털 로직(즉, DSP(126), FPGA(133), 마이크로프로세서(120), 마이크로컨트롤러(125))를 이용하여 구현될 수 있으며, 몇몇 부분들은 아날로그 로직(즉, 아날로그 회로(124))를 이용하여 구현될 수 있고, 기저대역 서브시스템(110)은 "믹싱 신호 디바이스" (MSD)라 하는 것을 포함할 수 있다. 예를 들어, MSD는 여기에 설명되어 있 는 여러 펑션들을 수행하기 위한 아날로그 로직 소자와 디지털 로직 소자를 포함할 수 있다.
휴대용 트랜시버를 네트워크에 동기시키는 시스템 및 방법의 부분들은 마이크로프로세서(120)에 의해 실행되는 소프트웨어로 구현되고 있는 경우, 통상적으로, 메모리(122)는 신시사이저 조정 소프트웨어(255), 대략적인 수정 오실레이터 조정 소프트웨어(260) 및 타이밍 편차 평가 소프트웨어(265)를 포함하고 있다. 신시사이저 조정 소프트웨어(255), 대략적인 수정 오실레이터 조정 소프트웨어(260) 및 타이밍 편차 평가 소프트웨어(265)는 메모리(122)에 저장되어 마이크로프로세서(120)에서 실행되는 하나 이상의 실행가능 코드 세그먼트를 포함할 수 있다. 또한, 신시사이저 조정 소프트웨어(255), 대략적인 수정 오실레이터 조정 소프트웨어(260) 및 타이밍 편차 평가 소프트웨어(265)는 하나의 소프트웨어 모듈로 구현될 수 있다. 다른 방법에서는, 신시사이저 조정 소프트웨어(255) 및 대략적인 수정 오실레이터 조정 소프트웨어(260)의 기능성을 ASIC(135) 내에 코딩시킬 수 있거나 FPGA(133)에 의해 실행시킬 수 있다. 메모리(122)는 재기록이 가능할 수 있으며, FPGA(133)는 재프로그래밍 가능하기 때문에, 이들 방법 중 어느 하나를 이용하여 구현되는 경우, 신시사이저 조정 소프트웨어(255) 및 대략적인 수정 오실레이터 조정 소프트웨어(260)에 대한 업데이트가 휴대용 트랜시버(100)로 원격으로 송신되어 저장될 수 있다.
또한, 기저대역 서브시스템(110)은 아날로그/디지털 변환기(ADC)(134)와 디지털/아날로그 변환기(DAC)(136)를 포함한다. 또한, ADC(134)와 DAC(136)는 버 스(128)를 통하여 마이크로프로세서(120), 마이크로컨트롤러(125), 메모리(122), 아날로그 회로(124)) 및DSP(126)와 통신한다.
송신기(150)는 DSP(126)로부터 버스(128)를 통하여 수신된 디지털 기저 대역 정보를 변조한 다음 그 변조 신호를 고주파수(RF) 레벨로 상향 변환하여, 그 변조된 RF 신호를 접속부(152)를 통하여 전력 증폭기(154)에 공급하는 변조기(148)를 포함한다.
전력 증폭기(154)는 RF 신호를 접속부(156)를 스위치(162)에 공급한다. 스위치(162)는 잘 알려진 바와 같이, 송신 신호와 수신 신호의 경로를 제어한다. 송신 신호는 스위치(162)로부터 안테나(160)로 공급된다.
안테나(160)에 의해 수신된 신호는 스위치(162)로부터 수신기(170)로 보내진다. 수신기(170)는 다운 컨버터(172), 필터(180) 및 복조기(178)를 포함한다. 다운 컨버터(172)는 저잡음 증폭기(LNA)(도시 생략)와, RF 레벨로부터 기저대역 레벨(DC)로 수신신호를 변환하거나, 중간 주파수(IF)를 통하여 또는 수신기가 소위 "직접 변환" 수신기인 경우 직접 기저대역으로 변환하는 회로(도시 생략)를 포함한다.
복조기(178)는 송신된 아날로그 정보를 복구한 다음 이러한 정보를 나타내는 신호를 접속부(186)를 통하여 ADC(134)에 공급한다. ADC(134)는 기저대역 주파수에서 이들 아날로그 신호를 디지털 신호로 변환한 다음, 추가 처리를 위하여 그 신호를 버스(128)를 통하여 DSP(126)로 전송한다.
신시사이저(234)는 기준 주파수를 접속부(146)를 통하여 송신기(150)에 공급 하고 기준 주파수를 접속부(147)를 통하여 수신기(170)에 공급한다. 신시사이저에 의해 공급된 기준 주파수는 송신 신호를 상향변환하고 수신기를 정확한 채널로 튜닝시킨 다음 그 수신 신호를 하향변환하는데 이용된다. 일 실시형태에서, 신시사이저(234)는 "소수 N(fractional-N)" 신시사이저라 하는 것이 있다.
도 2는 휴대용 트랜시버를 네트워크에 동기시키는 시스템의 일 실시형태를 나타내는 블록도(200)이다. 동기 시스템(200)은 접속부(252)를 통하여 신시사이저(234)에 출력을 공급하는 수정 오실레이터(250)를 포함한다. 수정 오실레이터(250)는 제한된 튜닝 능력과 감소된 정확도를 갖는 "저가의" 오실레이터일 수 있다. 동기 시스템(200)은 기저대역 서브시스템(110) 내에 상주하지만, "믹싱 신호 디바이스(MSD)"라 하는 것에 위치되어 있는 구성요소를 추가로 포함할 수도 있다. 일반적으로, 믹싱 신호 디바이스는 기저대역 레벨로 하향 변환된 수신 신호에 대하여 작용하여, 수신 신호에서의 정보를 포함하는 디지털화된 비트스트림을 제공하는 디바이스일 수 있다.
동기 시스템(200)은 수정 오실레이터를 튜닝하는 회로를 포함한다. 일 실시형태에서, 수정 오실레이터를 튜닝하는 회로는 제한 커패시터 어레이(310)일 수 있다. 또 다른 실시형태에서, 수정 오실레이터를 튜닝하기 위한 회로는 예를 들어, 예를 들어, ±2.5ppm의 정확도로 수정 오실레이터를 튜닝시키기에 충분한 분해능을 가진 디지털/아날로그 변환기(DAC)일 수 있다. 또한, 동기 시스템(200)은 코더/디코더(CODEC; 312)를 포함한다. 선행/지연 타이밍 메카니즘(320)은 CODEC(312)에 대한 타이밍 제어를 제공하며, 프레임간 시퀀서(IFS; 325)는 수신기(170)와 송신 기(150) 체인에 대한 타이밍 제어를 제공한다. 선행/지연 타이밍 메카니즘(320)은 수정 오실레이터(250)로부터 접속부(302)를 통하여 시스템 클록 신호를 그리고, DSP(126)로부터 접속부(332)를 통하여 제어 신호를 수신한다. 슬립 교정(sleep calibration) 소자(328)는 수정 오실레이터(250)로부터 접속부(302)를 통하여 시스템 클록 신호를, 그리고 DSP(126)로부터 접속부(334)를 통하여 제어 신호를 수신한다. 일 실시형태에서, 신시사이저 조정 소프트웨어(255)는 기저대역으로부터(예를 들어, DSP(126)) 또는 마이크로컨트롤러(125)로부터) 접속부(132)를 통하여 전달되는 제어 신호에 의해 신시사이저(234)를 조정함으로써 수정 오실레이터(250)의 출력을 미세 튜닝하는데 이용된다. 예를 들어, 신시사이저 조정 소프트웨어(255)는 ± 2.5ppm 내의 정확도로 수정 오실레이터(250)를 튜닝시킬 수 있는 로직을 포함할 수 있다. 이러한 방식으로, 동기 시스템(200)은 휴대용 트랜시버가 통신하는 통신 시스템으로부터 수신되는 신호와 수정 오실레이터(250)로부터 수신되는 신호 간에 주파수 에러가 존재하는 경우에도, 통신 시스템 주파수에 대하여 튜닝시킬 수 있다. 본 실시형태에서, 기저대역 서브시스템(110)은 네트워크로부터 수신되는 신호와 휴대용 트랜시버의 주파수 간의 어떠한 주파수 에러를 평가하여, 주파수 에러가 신시사이저 조정 소프트웨어(255)의 수정 능력 내에 있는지를 판정한다. 이 실시형태에서, 주파수 트랙킹 루프는 수정 오실레이터를 직접 조정하기 보다는 신시사이저를 이용하여 "폐쇄"된다. 예를 들어, 수정 오실레이터(250)를 조정하는 대신에, GSM 통신 시스템에서의 각각의 타임 슬롯 마다 신시사이저(234)의 주파수를 조정한다.
또 다른 실시형태에서는, 튜닝 회로(310)는 고정식 또는 조정가능식 커패시터 네트워크 또는 DAC를 포함하며, 튜닝 회로를 이용하여, 신시사이저 조정 소프트웨어(255)의 능력 범위를 벗어나는 어떤 주파수 또는 타이밍 에러를 튜닝하여 신시사이저(234)를 보상한다.
이 실시형태에서, 동기 시스템(200)은 튜닝 회로(310)를 이용하여 접속부(322)를 통한 제어 신호에 의해 수정 오실레이터(250)의 주파수를 대략적으로 튜닝함으로써, 통상 온도 변동이나 에이징에 의해 발생하는 큰 주파수 드리프트(drift)를 보상한다. 이 실시형태에서, 기저대역 서브시스템(110)에서의 대략적인 수정 오실레이터 조정 소프트웨어(260)는 네트워크로부터 수신되는 신호에서의 어떠한 주파수 에러를 평가하여, 접속부(318)를 통하여 튜닝 회로(310)에 제공되는 대략적인 조정 신호가 그러한 에러를 보상할 수 있는지의 여부를 판정한다. 이 실시형태에서, 튜닝 회로(310)는 수정 오실레이터(250)의 주파수를 튜닝시킬 수 있는 대략적인 조정 능력을 제공하는 튜닝 가능 커패시터의 어레이를 포함한다.
또 다른 실시형태에서는, DSP(126)는 비트의 1/8로 된 단위("nit"라고 함)로 휴대용 트랜시버(100)와 네트워크 간의 어떠한 타이밍 에러를 평가한다. 휴대용 트랜시버(100)에서의 모든 타이밍 및 주파수 성분 중 타이밍이 수정 오실레이터(250)로부터 유도되기 때문에, 수정 오실레이터(250)가 튜닝 회로 조정에 의해 네트워크에 대하여 ±2.5 ppm 정확도를 유지하는 경우, 나머지 필요한 타이밍 정확도는 송수신 타이밍, CODEC 타이밍 및 슬립 교정 타이밍을 조정하는 기저대역 서브시스템(110)에 의해 실현될 수 있다. 구체적으로, 모바일의 시간 기준이 기지국의 시간 기준과 2 마이크로초 이상 다른 경우, 모바일은 에러가 1/2 비트보다 작아질 때까지 1s < Δt < 2s로 되도록 Δt의 간격에서 심볼 기간의 1/4 증분량만큼 자신의 시간 기준을 조정한다. 이것은 예를 들어, 선행/지연 메카니즘(320)의 타이밍을 접속부(332)를 통해 제어하고 IFS(325)의 타이밍을 접속부(314)를 통해 제어하고 슬립 교정 소자(328)의 타이밍을 접속부(334)를 통해 제어하는 기저대역 서브시스템(110)에서의 DSP(126) 또는 마이크로컨트롤러(125)에 의해 실현된다. 이것은 선행/지연 메카니즘(320), 송신기(150) 및 수신기(170)에 대한 수정을 기록하는 DSP(126) 또는 마이크로컨트롤러(125)에 의해 실현될 수 있다. 이러한 방식으로, CODEC(312), 송신기(150) 및 수신기(170)에 대한 클록(타이밍)은 통신 네트워크와의 타이밍 동기를 유지하도록 조정된다.
튜닝 회로(310)의 감도가 약 20 헤르쯔(Hz)보다 큰 계단폭을 가질 때는 수정 오실레이터(250)의 주파수를 변경하도록 하기 때문에, 수정 오실레이터(250)가 주파수 에러에 대하여 조정되는 경우, 타이밍 체인은 정확한 타이밍을 유지한다. 이러한 방식으로, 수정 오실레이터(250)의 주파수 드리프트가 예를 들어, +/- 20 Hz를 초과하는 경우, 수정 오실레이터(250)가 조정된다. GSM 통신 대역에서의 20 Hz에서의 주파수 에러는 식 1,
[식 1]
Figure 112006080922191-PCT00001
과 같게 되며, 여기서, Δf는 주파수 에러이며, fc는 반송파 주파수이고, Tframe 은 프레임 타이밍이며, Δt는 타이밍 에러이다. 식 1에 기초하여, 수정 오실레이터(250)의 주파수가 수정되는 경우, 휴대용 트랜시버(100)의 시간 기준은 네트워크의 시간 기준을 정확하게 트랙킹한다.
믹싱 신호 디바이스, RF 및 기저대역에서의 소자들의 타이밍은 IFS(325)에 의해 제어된다. IFS(325)는 8 배의 GSM 비트 레이트 또는 2.166 메가헤르쯔(MHz)의 주파수에서 동작할 수 있다. 따라서, IFS(325) 내의 클록 분해능은 GSM 비트의 1/8(이를 "nit"(0.46125 마이크로초)라고 한다)에 있을 수 있다. 따라서, 믹싱 신호 디바이스(330)에서의 소자들은 GSM 비트의 1/8 정밀도로 조정될 수 있다.
타이밍 에러는 다음과 같이 평가될 수 있다. 휴대용 트랜시버(100)는 1/8 비트 정밀도로 기지국 타이밍으로부터의 어떤 타이밍 편차를 평가하는 타이밍 편차 평가 소프트웨어(265)를 포함한다. 타이밍 편차 평가 소프트웨어(265)는 휴대용 트랜시버(100)와 기기국 간의 타이밍 차이를 "1/4 비트 지연(QBDelay라 함)"이라 하는 단위로 평가하는데 이용될 수 있다. 마이크로컨트롤러(125)는 다중 경로 간섭으로 인해 어떤 검출된 피크 편차를 소거하기 위하여 지연의 장기간 평균을 판정한다. IFS(325)에 의해 송신기(150)와 수신기(170)의 타이밍 소자에 대하여 적절한 조정을 수행한다. CODEC(312)의 타이밍은 타이밍 메카니즘(320)에 의해 선행되거나 지연될 수 있다. 슬립 모드 동안에, 수정 오실레이터(250)는 오프로 스위칭된다. 시스템은 수정 오실레이터(250)에 대한 슬립 오실레이터의 교정 데이터와 기 상(awaken)시 계산된 에러를 이용하여 기상시의 동기화를 실현할 수 있다. 에러 계산에 있어서, 어떤 타이밍 드리프트가 계산되어 보상된다. 32 킬로헤르쯔(kHz) 슬립 클록의 슬립 교정 동안, 수정 오실레이터를 구동시키는 주 클록을 이용한다. 따라서, 추정된 드리프트가 교정 과정에 반영된다. 주파수 에러는 매 프레임마다 평가된다. 따라서, 다른 방법에서는, 식 1을 이용하여 유도되는 타이밍 에러를 평가하는데 주파수 에러를 이용할 수 있다.
타이밍 에러는 다음과 같은 방식으로 수정될 수 있다. 일단 타이밍 에러가 평가되면, 그 에러를 CODEC(312), 수신기(170), 송신기(150), IFS(325) 및 슬립 교정 소자(328)에 적용한다. IFS(325)는 송신기(150)와 수신기(170)의 타이밍을 조정한다. CODEC(312)의 타이밍은 송신기(150)와 수신기(170)의 타이밍과 동기 상태로 유지되어야 한다. 이것은 타이밍 메카니즘(320)을 이용하여 CODEC(312)의 타이밍을 선행시키거나 지연시킴으로써 실현된다. 이에 의해, DSP(126) 또는 마이크로컨트롤러(125)가 복수의 nit(비트의 1/8) 동안 CODEC(312)이 선행되거나 지연되어야 함을 프로그래밍할 수 있다. 이들 수의 극성은 조정의 방향을 결정한다. Tx/Rx 체인에서 조정되는 모든 nit 마다, CODEC은 26 MHz 클록의 12 사이클만큼 바람직하게 조정된다.
도 2에 도시되어 있는 튜닝 회로(310)로서 제한 커패시터 어레이를 채택하는 경우, 수정 오실레이터(250)의 초기 에러는 초기 팩토리(factory) 교정 동안 큰 값으로 제거될 수 있다. 따라서, 수정 오실레이터의 사양에 기초하여, 수정 오실레이터(250)가 교정되고, 수정 특성에 의존하여, 초기 주파수 획득의 최악의 경우가 온 도 편차 및 에이징으로 인해 약 ±25 ppm으로 된다. 예를 들어, GSM 통신 시스템에서는, 에러가 대략 +/- 22.5 KHz가 된다.
동작시 주파수 트랙킹에 대해서는, DSP(126)는 수정 주파수 드리프트의 범위를 결정한다. 신시사이저(234)의 주파수를 조정하는 신시사이저 조정 소프트웨어(255)의 분해능 내에서 수정이 필요한 경우, 신시사이저(234)를 이용하여 주파수 에러를 수정한다. 주파수 에러가 예를 들어, ±2.5 ppm의 한계값보다 큰 경우, 튜닝 회로(310)를 이용하여 수정 오실레이터(250)의 주파수를 튜닝하고, 후속하여 추가 수정이 인가되는 경우 신시사이저 조정 소프트웨어(255)에 의한 소프트웨어 조정을 수행한다.
시간 트랙킹에 대해서는, 초기 교정만을 이용하여 수정 오실레이터(250)를 교정할 경우, 어떠한 초기 주파수 허용오차도 제거되어 버린다. 그러나, 상술한 식 1에 기초하면, ±25 ppm인 최악의 경우 주파수 기간, 0.115375e-인 Δt는 6㎲ = 0.25 nit로 된다. 이는 4 프레임 마다 측정가능한 타이밍 에러를 발생시킨다. 이러한 타이밍 에러에 요구되는 조정은 대략적인 수정 오실레이터 신시사이저 조정 소프트웨어(255)의 능력을 벗어나는 것이다. 그러나, 수정 오실레이터(250)의 요구되는 정확도를 결정하기 위해 역의 순서로 분석을 수행하여, 시간 동기를 위한 통신 사양을 만족시킬 수 있다. 예를 들어, GSM 사양은 적어도 매 216 내지 217 프레임(1㎲)에서 1/4 비트 조정이 이루어지게 하며 이때의 에러는 1/2 비트 이하로 유지되어야 한다. ±1.9 ppm 정확도를 가진 수정 오실레이터(250)는 1초시 1/2 비트를 드리프트한다. 수정 오실레이터는 1초마다 1/4 비트 에러에 대하여 조정될 수 있기 때문에, 튜닝 회로(310)에 의해 제공되는 ±2.5 ppm 정확도는 GSM 타이밍 조정 사양 요건을 충족시킨다.
상기 식 1에 따르면, ±2 ppm 수정 오실레이터는 초당 +/- 4.34 nit에 대응하는 부정확성을 드리프트한다. 2 nit 수정이 이 시간 동안 허용되면, 에러를 1/2 비트 미만으로 감소시킬 수 있다. ±2.5 ppm에서는, 시스템 클록의 드리프트 레이트가 초당 약 +/- 5.34 nit로 된다. 2 nit가 1 초당 수정될 수 있고 총 에러는 1/2 비트 미만으로 될 수 있다. 따라서, 튜닝 회로(310)는 예를 들어, ± 2.5 ppm 정확도 내에서 수정 오실레이터(250)를 튜닝시킬 수 있고, 미세 커패시터 튜닝 또는 등가의 고분해능 DAC의 필요성이 제거될 수 있다. 이러한 방식으로, 수정 오실레이터(250)에 대한 튜닝 회로(310)의 비용 및 복잡성을 최소로 할 수 있다.
도 3은 도 2의 동기 시스템(200)의 일 실시형태의 동작을 나타내는 플로우 차트(350)이다. 도 3의 플로우 차트와 도 4의 플로우 차트는 본 발명의 일 실시형태의 동작을 설명한다. 또한, 플로우 차트에서의 블록들은 도시된 순서대로 수행될 필요는 없다. 이들 블록은 다른 순서로 수행될 수도 있고 또는 동시에 수행될 수도 있다. 블록 352에서, 수정 오실레이터(250)의 어떠한 주파수 에러 출력이 기저대역 서브시스템(110)에 의해 평가된다. 바람직하게는, 주파수 에러는 DSP(126)에 의해 평가될 수 있다. 블록 354에서, 블록 352에서 DSP(126)에 의해 평가되는 에러가 기저대역 서브 시스템에서의 신시사이저 조정 소프트웨어(255)의 수정 능력을 벗어나는지를 판정한다. 블록 352에서 평가된 주파수 에러가 기저대역 서브 시스템에서의 신시사이저 조정 소프트웨어(255)의 수정 능력 내에 있는 경우, 블록 356에서, 기 저대역 서브시스템(110)은 수정 오실레이터(250)를 직접 조정할 필요없이 신시사이저(234)와 타이밍 소자에 대하여 필요한 수정 데이터를 송신한다.
블록 354에서, 에러 크기가 기저대역 서브시스템에서의 신시사이저 조정 소프트웨어(255)의 수정 능력을 벗어나는 것으로 판정되는 경우, 블록 358에서, 기저대역 서브시스템(110)은 튜닝 회로(310)를 조정하여 수정 오실레이터(250)를 직접 조정한다. 예를 들어, ± 2.5ppm 내에서 신시사이저 조정 소프트웨어(255)가 수정 오실레이터(250)를 상술한 바와 같이 직접 미세 조정하는 방식으로 수정 오실레이터(250)를 조정한다.
블록 362에서, 추가 조정이 필요한지를 판정한다. 추가 조정이 필요하지 않은 경우, 처리는 블록 352로 복귀한다.
도 4는 도 2의 동기 시스템(200)의 또 다른 실시형태를 나타내는 플로우차트(400)이다. 블록 402에서, 기저대역 서브시스템(110)은 휴대용 트랜시버(100)의 타이밍이 접속하고 있는 네트워크와 동기되어 있는지를 판정한다. 이는 도 1의 타이밍 편차 평가 소프트웨어(265)를 이용하여 실시될 수 있다. 휴대용 트랜시버(100)의 타이밍이 네트워크와 동기되지 않은 경우, 블록 404에서, 기저대역 서브시스템(110)은 블록 402에서 판정된 타이밍 에러에 기초하여 CODEC(312), 송신기(150), 수신기(170) 및 슬립 교정 소자(328)의 타이밍을 변경한다. 휴대용 트랜시버의 타이밍이 네트워크에 동기되어 있는 경우, 처리가 완료된다. 블록 406에서, 추가 조정이 필요한지의 여부가 판정된다. 추가 조정이 필요하지 않은 경우, 처리는 블록 402로 복귀한다.
본 발명의 여러 실시형태가 설명되어 있지만, 보다 많은 실시형태 및 구현이 본 발명의 범위 내에서 이루어질 수 있다. 예를 들어, 커패시터 제어형 수정 오실레이터(CCXO), 디지털 제어형 수정 오실레이터(DCXO) 및 마이크로컨트롤러 제어형 수정 오실레이터(MCXO) 및 그 외의 다른 오실레이터를 본 발명의 실시형태와 함께 이용할 수 있다. 따라서, 본 발명은 다음의 청구항 및 그 등가물을 제외한 다른 어떠한 것에 의해 제한받지 않는다.

Claims (27)

  1. 휴대용 트랜시버를 네트워크에 동기시키는 시스템으로서,
    수정 오실레이터와;
    상기 수정 오실레이터의 출력을 수신하도록 구성되는 주파수 신시사이저와;
    상기 수정 오실레이터에 연결되어 수신 신호의 주파수 에러를 평가하도록 구성되는 로직으로서, 상기 주파수 에러는 네트워크로부터의 수신 신호와 수정 오실레이터의 출력과의 비교에 의해 판정되는 것인 로직과;
    상기 로직으로부터 상기 주파수 신시사이저로 공급되어, 주파수 신시사이저를 조정하여 주파수 에러를 보상하도록 구성되는 제1 제어 신호
    를 포함하는 네트워크 동기 시스템.
  2. 제1항에 있어서,
    상기 수정 오실레이터에 연결되어 있으며 제한 조정 능력을 가진 튜닝 회로와;
    상기 로직으로부터 상기 튜닝 회로로 공급되어, 상기 튜닝 회로를 조정하도록 구성되는 제2 제어 신호
    를 더 포함하며,
    상기 튜닝 회로는 에러를 보상하도록 구성되는 것인 네트워크 동기 시스템.
  3. 제2항에 있어서,
    상기 주파수 신시사이저의 조정은 통신 네트워크에 대하여 휴대용 트랜시버의 타이밍을 조정하는 것인 네트워크 동기 시스템.
  4. 제2항에 있어서,
    상기 타이밍의 조정은 송신기, 수신기, 코더/디코더(CODEC) 및 슬립 교정 소자(sleep calibration element)의 타이밍을 조정하는 것을 포함하는 것인 네트워크 동기 시스템.
  5. 제3항에 있어서,
    상기 튜닝 회로는 디지털/아날로그 변환기를 포함하는 것인 네트워크 동기 시스템.
  6. 제3항에 있어서,
    상기 튜닝 회로는 커패시턴스 어레이를 포함하는 것인 네트워크 동기 시스템.
  7. 제6항에 있어서,
    상기 커패시턴스 어레이는 고정형 커패시턴스를 포함하는 것인 네트워크 동기 시스템.
  8. 제6항에 있어서,
    상기 커패시턴스 어레이는 가변형 커패시턴스를 포함하는 것인 네트워크 동기 시스템.
  9. 제8항에 있어서,
    상기 커패시턴스 어레이의 조정 능력은 통신 네트워크의 주파수 및 타이밍에 대하여 ±2 ppm 내지 ±2.5 ppm 사이로 시스템을 튜닝시킬 수 있는 것인 네트워크 동기 시스템.
  10. 휴대용 트랜시버를 네트워크에 동기시키는 방법으로서,
    상기 휴대용 트랜시버 내에서 생성되는 주파수에 비교시, 상기 휴대용 트랜시버에 의해 수신된 신호의 주파수 에러를 판정하는 단계와;
    상기 주파수 에러가 소정의 값보다 작은 경우, 에러를 보상하도록 주파수 신시사이저를 조정하여 시스템의 주파수를 조정하는 단계
    를 포함하는 네트워크 동기 방법.
  11. 제10항에 있어서,
    수정 오실레이터와 관련되어 있는 튜닝 회로를 조정하여 수정 오실레이터의 주파수를 조정하는 단계를 더 포함하는 네트워크 동기 방법.
  12. 제11항에 있어서,
    상기 주파수 신시사이저의 조정은 통신 네트워크에 대하여 상기 휴대용 트랜시버의 타이밍을 조정하는 것인 네트워크 동기 방법.
  13. 제12항에 있어서,
    상기 타이밍의 조정은 송신기, 수신기, 코더/디코더(CODEC) 및 슬립 교정 소자의 타이밍을 조정하는 것을 포함하는 것인 네트워크 동기 방법.
  14. 제12항에 있어서,
    디지털/아날로그 변환기(DAC)를 이용하여 상기 수정 오실레이터의 주파수를 조정하는 단계를 더 포함하는 네트워크 동기 방법.
  15. 제12항에 있어서,
    커패시턴스 어레이를 이용하여 수정 오실레이터의 주파수를 조정하는 단계를 더 포함하는 네트워크 동기 방법.
  16. 제15항에 있어서,
    고정형 커패시턴스 어레이를 이용하는 단계를 더 포함하는 네트워크 동기 방법.
  17. 제15항에 있어서,
    가변형 커패시턴스 어레이를 이용하는 단계를 더 포함하는 네트워크 동기 방법.
  18. 제17항에 있어서,
    상기 가변형 커패시턴스 어레이의 조정 능력은 통신 네트워크의 주파수의 ±2 ppm 내지 ±2.5 ppm 사이로 시스템 주파수를 튜닝시키는 것인 네트워크 동기 방법.
  19. 휴대용 트랜시버를 네트워크에 동기시키는 시스템으로서,
    상기 휴대용 트랜시버 내에서 생성되는 주파수에 비교시, 상기 휴대용 트랜시버에 의해 수신되는 신호의 주파수 에러를 판정하는 수단과;
    상기 주파수 에러가 소정의 값보다 작은 경우, 주파수 에러를 보상하도록 주파수 신시사이저를 조정하여 시스템의 주파수를 조정하는 수단
    을 포함하는 네트워크 동기 시스템.
  20. 제19항에 있어서,
    수정 오실레이터와 연결된 튜닝 회로를 조정하여 수정 오실레이터의 주파수를 조정하는 수단을 더 포함하는 네트워크 동기 시스템.
  21. 제20항에 있어서,
    상기 주파수 신시사이저의 조정은 통신 네트워크에 대하여 휴대용 트랜시버의 타이밍을 조정하는 것인 네트워크 동기 시스템.
  22. 제21항에 있어서,
    상기 타이밍 조정은 송신기, 수신기, 코더/디코더(CODEC) 및 슬립 교정 소자의 타이밍을 조정하는 것을 포함하는 것인 네트워크 동기 시스템.
  23. 제21항에 있어서,
    상기 수정 오실레이터의 주파수를 조정하는 수단은 디지털/아날로그 변환기(DAC)를 포함하는 것인 네트워크 동기 시스템.
  24. 제21항에 있어서,
    상기 수정 오실레이터의 주파수를 조정하는 수단은 커패시턴스 어레이를 포함하는 것인 네트워크 동기 시스템.
  25. 제24항에 있어서,
    상기 커패시턴스 어레이는 고정형 커패시턴스 어레이를 포함하는 것인 네트워크 동기 시스템.
  26. 제24항에 있어서,
    상기 커패시턴스 어레이는 가변형 커패시턴스 어레이를 포함하는 것인 네트워크 동기 시스템.
  27. 제26항에 있어서,
    상기 커패시턴스 어레이의 조정 능력은 통신 네트워크의 주파수의 ±2 ppm 내지 ±2.5 ppm 사이로 시스템 주파수를 튜닝시키는 것인 네트워크 동기 시스템.
KR1020067023194A 2004-04-08 2005-03-07 휴대용 트랜시버를 네트워크에 동기시키는 시스템 KR101018201B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/820,252 2004-04-08
US10/820,252 US7155176B2 (en) 2004-04-08 2004-04-08 System for synchronizing a portable transceiver to a network

Publications (2)

Publication Number Publication Date
KR20060135061A true KR20060135061A (ko) 2006-12-28
KR101018201B1 KR101018201B1 (ko) 2011-02-28

Family

ID=35061191

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067023194A KR101018201B1 (ko) 2004-04-08 2005-03-07 휴대용 트랜시버를 네트워크에 동기시키는 시스템

Country Status (6)

Country Link
US (1) US7155176B2 (ko)
EP (1) EP1738476B1 (ko)
KR (1) KR101018201B1 (ko)
CN (1) CN1965491B (ko)
AT (1) ATE542304T1 (ko)
WO (1) WO2005104388A2 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6400930B1 (en) * 1998-11-06 2002-06-04 Dspc Israel, Ltd. Frequency tuning for radio transceivers
GB2432467B (en) * 2005-11-22 2008-03-19 Motorola Inc RF transceiver and a method of operation therein
EP1892853A1 (en) * 2006-08-21 2008-02-27 Siemens Aktiengesellschaft Method, access node and user equipment for managing radio resources in a radio communications system
US8346091B2 (en) 2009-04-29 2013-01-01 Andrew Llc Distributed antenna system for wireless network systems
CA2885238C (en) 2012-10-31 2021-10-12 Commscope Technologies Llc Digital baseband transport in telecommunications distribution systems
EP2741442A1 (en) * 2012-12-07 2014-06-11 Dialog Semiconductor B.V. Automatic clock calibration of a remote unit using phase drift
EP2990832A1 (en) * 2014-08-29 2016-03-02 Sercel Data acquisition apparatus using one single local clock
KR20180131855A (ko) * 2017-06-01 2018-12-11 삼성전자주식회사 전자 장치 및 전자 장치에서 dcxo 제어 방법
CN111756462B (zh) * 2019-03-28 2023-09-22 上海寰泰电子有限公司 一种时钟的时间校准方法和装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4631496A (en) * 1981-04-06 1986-12-23 Motorola, Inc. Battery saving system for a frequency synthesizer
US4394776A (en) * 1981-04-06 1983-07-19 Motorola, Inc. Priority channel system for a synthesized transceiver
US5809395A (en) * 1991-01-15 1998-09-15 Rogers Cable Systems Limited Remote antenna driver for a radio telephony system
JPH084235B2 (ja) * 1993-03-31 1996-01-17 日本電気株式会社 周波数制御装置
US5546383A (en) * 1993-09-30 1996-08-13 Cooley; David M. Modularly clustered radiotelephone system
JP3300252B2 (ja) * 1997-04-02 2002-07-08 松下電器産業株式会社 適応送信ダイバーシチ装置及び適応送信ダイバーシチ方法
JP3279957B2 (ja) * 1997-05-23 2002-04-30 松下電器産業株式会社 携帯無線装置
JP3290926B2 (ja) * 1997-07-04 2002-06-10 松下電器産業株式会社 送信ダイバーシチ装置
JP3608936B2 (ja) * 1998-03-20 2005-01-12 富士通株式会社 多重無線送信装置,多重無線受信装置,多重無線送受信装置及び多重無線送受信システム
US6278867B1 (en) * 1998-11-25 2001-08-21 Ericsson Inc. Methods and systems for frequency generation for wireless devices
US6463266B1 (en) * 1999-08-10 2002-10-08 Broadcom Corporation Radio frequency control for communications systems
US20020024393A1 (en) 2000-08-25 2002-02-28 Lars-Peter Kunkel Electronic circuit for and a method of controlling the output frequency of a frequency synthesizer
EP1182792A1 (en) * 2000-08-25 2002-02-27 Telefonaktiebolaget L M Ericsson (Publ) An electronic circuit for and a method of controlling the output frequency of a frequency synthesizer
GB2368751B (en) * 2000-09-20 2004-04-21 Nec Technologies Removal of reference frequency offset of a local oscillator in a telecommunications receiver
DE10108110A1 (de) * 2001-02-21 2002-08-29 Philips Corp Intellectual Pty Empfänger und Verfahren zum anfänglichen Synchronisieren eines Empfängers auf die Trägerfrequenz eines gewünschten Kanals
TW200633408A (en) * 2001-09-28 2006-09-16 Interdigital Tech Corp Automatic frequency correction method and apparatus for time division duplex modes of 3G wireless communications
JP2003347936A (ja) 2001-11-02 2003-12-05 Seiko Epson Corp クロック整形回路および電子機器
US6856791B2 (en) * 2002-03-14 2005-02-15 Ericsson Inc. Direct automatic frequency control method and apparatus
US6850735B2 (en) * 2002-04-22 2005-02-01 Cognio, Inc. System and method for signal classiciation of signals in a frequency band
US6907229B2 (en) * 2002-05-06 2005-06-14 Extricom Ltd. Enhancing wireless LAN capacity using transmission power control
KR100492690B1 (ko) * 2002-11-04 2005-06-07 매그나칩 반도체 유한회사 프리스케일러를 포함하는 위상 제어 루프 회로

Also Published As

Publication number Publication date
WO2005104388A3 (en) 2006-10-05
EP1738476A4 (en) 2009-07-08
KR101018201B1 (ko) 2011-02-28
WO2005104388B1 (en) 2006-11-16
WO2005104388A2 (en) 2005-11-03
US20050227630A1 (en) 2005-10-13
EP1738476A2 (en) 2007-01-03
CN1965491B (zh) 2012-05-23
US7155176B2 (en) 2006-12-26
ATE542304T1 (de) 2012-02-15
CN1965491A (zh) 2007-05-16
EP1738476B1 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
KR101018201B1 (ko) 휴대용 트랜시버를 네트워크에 동기시키는 시스템
EP0937338B1 (en) Method and apparatus for reducing standby current in communications equipment
JP5105688B2 (ja) 共通基準発振器を用いたマルチモード無線通信装置
US5497126A (en) Phase synchronization circuit and method therefor for a phase locked loop
US7579919B1 (en) Method and apparatus for compensating temperature changes in an oscillator-based frequency synthesizer
JP4929429B2 (ja) 通信システムで使用される水晶のための周波数オフセット補正技術
US8170000B2 (en) Method and apparatus for automatic frequency correction in a multimode device
US20030137357A1 (en) CMOS phase locked loop with voltage controlled oscillator having realignment to reference and method for the same
EP1657813A4 (en) BROADBAND MODULATION PLL TIME ERROR CORRECTION SYSTEM A BROADBAND MODULATION PLL, MODULATION TIME ERROR CORRECTION METHOD AND METHOD FOR SETTING A RADIO COMMUNICATION DEVICE WITH A BROADBAND MODULATION PLL
US7248658B2 (en) Method and circuit for deriving a second clock signal from a first clock signal
JPH0832507A (ja) 移動無線機
EP0735715B1 (en) Radio communication terminal station
CN201270504Y (zh) 频率合成器
US8687748B2 (en) Radio frequency control for communication systems
US20080274704A1 (en) Rf Transceiver and a Method of Operation Therein
JP2000196516A (ja) 移動通信機のafc回路
JPH06261089A (ja) 周波数安定化機能を有する移動無線機

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140210

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150205

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160205

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180207

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200213

Year of fee payment: 10