KR20060023379A - Ssr primer isolated from perilla spp. and use thereof - Google Patents
Ssr primer isolated from perilla spp. and use thereof Download PDFInfo
- Publication number
- KR20060023379A KR20060023379A KR1020040072205A KR20040072205A KR20060023379A KR 20060023379 A KR20060023379 A KR 20060023379A KR 1020040072205 A KR1020040072205 A KR 1020040072205A KR 20040072205 A KR20040072205 A KR 20040072205A KR 20060023379 A KR20060023379 A KR 20060023379A
- Authority
- KR
- South Korea
- Prior art keywords
- dna
- primer
- kwpe
- artificial sequence
- perilla
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6827—Hybridisation assays for detection of mutation or polymorphism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/156—Polymorphic or mutational markers
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- Plant Pathology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
본 발명은 들깨 속 식물(Perilla spp.)에서 분리한 SSR 프라이머 및 이의 용도에 관한 것으로서, 보다 상세하게는 서열번호 1 내지 서열번호 26으로 이루어진 군에서 선택되는 2개의 염기서열을 갖는 SSR 프라이머쌍 및 이를 이용하여 PCR을 수행하는 것을 포함하는 들깨 속 식물의 DNA 다형성 검출 방법에 관한 것이다. 본 발명에서 제공되는 SSR 프라이머쌍은 들깨 속 식물의 DNA 다형성을 효과적으로 검출할 수 있으며, 들깨 속 식물의 DNA 프로파일을 작성하는데 매우 유용하게 이용될 수 있다. 또한, 이를 통해 들깨 속 식물의 유전자원을 효율적으로 평가함으로써 신규 유전자원 도입시 기존 보유자원과의 중복성 분석 및 신규성 확립을 효과적으로 수행할 수 있다.
The present invention relates to an SSR primer isolated from Perilla spp. And its use, and more particularly, to an SSR primer pair having two base sequences selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 26; The present invention relates to a method for detecting DNA polymorphism of perilla plants, including performing PCR. SSR primer pair provided in the present invention can effectively detect the DNA polymorphism of perilla plants, it can be very useful for preparing the DNA profile of perilla plants. In addition, by efficiently evaluating the genetic resources of the genus perilla plants, it is possible to effectively perform redundancy analysis and establishment of novelty with existing resources when introducing new genetic resources.
SSR 프라이머, 들깨, DNA 다형성SSR Primer, Perilla, DNA Polymorphism
Description
도 1은 본 발명에서 디자인된 SSR 프라이머쌍 중에서 20점의 재배형 및 잡초형 들깨 속 식물들에서 유전적 다형성을 나타내는 효율적인 SSR 프라이머쌍을 선발하기 위하여 수행한 PCR 결과의 일부이다. 1 is a part of a PCR result performed to select an efficient SSR primer pair showing genetic polymorphism in 20 cultivated and weed perilla plants among the SSR primer pair designed in the present invention.
M: 분자량 사이즈 마커
M: molecular weight size marker
본 발명은 들깨 속 식물에서 분리한 SSR 프라이머 및 이의 용도에 관한 것으로서, 보다 상세하게는 서열번호 1 내지 서열번호 26으로 이루어진 군에서 선택되는 2개의 염기서열을 갖는 SSR 프라이머쌍 및 이를 이용하여 PCR을 수행하는 것을 포함하는 들깨 속 식물의 DNA 다형성 검출 방법에 관한 것이다.
The present invention relates to an SSR primer isolated from perilla plants and its use, and more particularly, SSR primer pair having two base sequences selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 26 and PCR using the same The present invention relates to a method for detecting DNA polymorphism of a genus perilla plant.
육종에 이용되고 있는 대부분의 주요 작물 및 소재배 작물에서 해마다 많은 양의 유전자원이 수집되고 있다. 그러나, 이에 반해 유전자원에 대한 평가는 충분히 이루어지지 않고 있는 실정이다. 수집된 유전자원의 종간 및 아종간 품종의 신속한 판별은 정확한 유전자원의 관리 및 보호를 위하여 매우 중요하다. 또한 품종의 판별과 함께 유전자원의 유형 형질 탐색과 분류, 그리고 유연관계의 규명은 유전자원의 보존이나 신품종의 창출 및 작물의 개량에 있어서 매우 중요하다.Large quantities of genetic resources are collected annually in most major crops and cultivated crops used for breeding. However, on the other hand, the evaluation of genetic resources has not been sufficiently made. Rapid discrimination between species and subspecies varieties of collected genetic resources is very important for accurate management and protection of genetic resources. In addition to the identification of varieties, the identification and classification of trait traits and genetic relationships of genetic resources are very important for the conservation of genetic resources, the creation of new varieties, and the improvement of crops.
최근 분자생물학의 급속한 발전으로 핵산(DNA) 수준에서 유전자원의 다양성(bio-diversity) 연구를 가능케 하는 핵산 지문 분석 방법 및 다양한 DNA 마커들이 개발되었다. 이를 통해 유용 형질 탐색, 생물의 종 판별, 품종 분류·동정 및 집단 개체군의 유연관계 분석을 외부환경 등에 대하여 거의 영향을 받지 않고 간단하고 신속하게 수행할 수 있게 되었다. 지금까지 개발된 PCR(polymerase chain reaction)을 이용한 핵산지문법(fingerprinting)에는 RAPD(randomly amplified polymorphic DNAs) 방법, AFLP(amplified fragment length polymorphic DNA) 방법, SSR(simple sequence repeat) 방법 등이 있다. 상기 방법 중 RAPD 방법은 비특이적 PCR 산물이 증폭되므로 재현성이 떨어지는 단점이 있고, AFLP 방법은 높은 DNA 다형성 검출로 각광받고 있지만 재현성이 떨어지는 밴드의 출현과 분석이 복잡하다는 단점이 있다. 이에 반해, SSR 방법은 DNA 반복 배열인 초위성체(microsatellite) 영역의 염기 배열 정보를 근거로 PCR 프라이머를 제작하여 이용하는 방법으로서, 초위성체 분석이 용이하고 높은 재현성을 가지는 장점으로 인하여 생물종의 동정에 자주 사용되고 있다. 특히 SSR 방법은 외부 환경의 영향을 전혀 받지 않는다는 장점이 있다. 이와 같은 SSR 방법의 우수성으로 인해 여러 주 요작물 및 소재배 작물에서 SSR 마커를 개발하려는 연구가 한창 진행 중에 있다.Recent rapid advances in molecular biology have led to the development of nucleic acid fingerprint analysis methods and various DNA markers that enable bio-diversity studies at the nucleic acid (DNA) level. This makes it possible to search useful traits, identify species of species, classify and identify varieties, and analyze flexible relationships of populations in a simple and quick manner with little influence on the external environment. Nucleic acid fingerprinting using polymerase chain reaction (PCR) developed so far includes randomly amplified polymorphic DNAs (RAPD), amplified fragment length polymorphic DNA (AFLP), and simple sequence repeat (SSR). The RAPD method has a disadvantage of poor reproducibility because the non-specific PCR product is amplified, and the AFLP method is spotlighted by high DNA polymorphism detection, but has a disadvantage of complicated appearance and analysis of a low reproducible band. In contrast, the SSR method is a method of constructing a PCR primer based on nucleotide sequence information of a microsatellite region, which is a DNA repeat sequence. Frequently used. In particular, the SSR method has the advantage that it is not affected by the external environment at all. Due to the superiority of this SSR method, there is an ongoing research to develop SSR markers in several major crops and cultivated crops.
벼에서는 벼 게놈에 반복되는 SSR을 PCR 기술로 증폭하여 벼 품종의 유전자형을 동정하는 초위성체 마커들이 개발되었다(특허출원번호 제2001-34003호). 미국의 탕(Tang) 박사팀은 879개의 SSR 마커들을 개발한 해바라기의 유전자 지도를 발표한 바 있다(Tang et al., Theor. Appl. Genet., 105: 1124-1136, 2002). 이외에도 보리, 콩 등에서 많은 SSR 마커들이 개발되었다. 그러나, 들깨(Perilla)에서는 SSR 마커가 전혀 개발된 바 없다.
In rice, supersatellite markers have been developed that amplify SSR repeated in the rice genome by PCR technology to identify genotypes of rice varieties (Patent Application No. 2001-34003). Tang's team in the United States published a genetic map of sunflowers that developed 879 SSR markers (Tang et al., Theor. Appl. Genet ., 105: 1124-1136, 2002). In addition, many SSR markers have been developed in barley and soybeans. However, SSR markers have never been developed in Perilla.
이에 본 발명자들은 들깨의 유전자원을 효율적으로 평가할 수 있는 SSR 마커를 개발하기 위하여 연구를 거듭하던 중, 다양한 들깨 계통들에서 다형성 변이를 많이 나타내는 SSR 프라이머쌍을 개발함으로써 본 발명을 완성하였다.
Accordingly, the present inventors have completed the present invention by developing SSR primer pairs showing a large number of polymorphic variations in various perilla lines, while continuing to develop SSR markers capable of efficiently evaluating the gene source of perilla.
따라서, 본 발명의 목적은 들깨 속(Perilla spp.) 식물의 유전자원을 효율적으로 평가할 수 있는 SSR 마커 및 이의 용도를 제공하는 것이다.
Accordingly, it is an object of the present invention to provide an SSR marker and its use capable of efficiently evaluating the genetic resources of Perilla spp. Plants.
상기와 같은 목적을 달성하기 위하여, 본 발명은 서열번호 1 내지 서열번호 26으로 이루어진 군에서 선택되는 2개의 염기서열을 갖는 SSR 프라이머쌍을 제공한다. In order to achieve the above object, the present invention provides an SSR primer pair having two base sequences selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 26.
본 발명의 다른 목적을 달성하기 위하여, 본 발명은 상기 SSR 프라이머쌍을 이용하여 PCR을 수행하는 것을 포함하는 들깨 속 식물의 DNA 다형성 검출 방법을 제공한다.In order to achieve another object of the present invention, the present invention provides a method for detecting DNA polymorphism of the genus Perilla plants comprising performing PCR using the SSR primer pair.
본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 상기 SSR 프라이머쌍, DNA 중합효소 및 PCR 반응 완충용액을 포함하는 들깨 속 식물의 DNA 다형성 검출용 키트를 제공한다.
In order to achieve another object of the present invention, the present invention provides a kit for detecting the DNA polymorphism of the genus Perilla plants comprising the SSR primer pair, DNA polymerase and PCR reaction buffer.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 들깨 속(Perilla spp.) 식물의 유전적 다양성을 특이적으로 분석할 수 있는 SSR 마커를 제공한다는 점에 특징이 있다. 본 발명에서는 AFLP와 한 방향(one way) PCR을 결합시킨 새로운 방법으로 들깨 속 식물로부터 SSR 마커를 개발하였다. 들깨 속 식물에서 분리된 SSR 마커는 본 발명에 의해 처음으로 제공되는 것이다.The present invention is characterized in that it provides an SSR marker that can specifically analyze the genetic diversity of Perilla spp. Plants. In the present invention, SSR markers were developed from perilla plants by a novel method combining AFLP and one way PCR. SSR markers isolated from perilla plants are the first to be provided by the present invention.
본 발명에서 제공하는 SSR 마커는 PCR 프라이머쌍을 말하며, 정방향 프라이머와 역방향 프라이머를 포함한다. 본 발명에서 제공되는 SSR 프라이머쌍은 서열번호 1 내지 서열번호 26으로 이루어진 군에서 선택되는 2개의 염기서열을 가진다. 바람직하게는 KWPE-1(서열번호 1과 2로 표시되는 프라이머쌍), KWPE-5(서열번호 3과 4로 표시되는 프라이머쌍), KWPE-19(서열번호 5와 6으로 표시되는 프라이머쌍), KWPE-25(서열번호 7과 8로 표시되는 프라이머쌍), KWPE-26(서열번호 9와 10으로 표시되는 프라이머쌍), KWPE-29(서열번호 11과 12로 표시되는 프라이머쌍), KWPE-32( 서열번호 13과 14로 표시되는 프라이머쌍), KWPE-39(서열번호 15와 16으로 표시되는 프라이머쌍), KWPE-48(서열번호 17과 18로 표시되는 프라이머쌍), KWPE-51(서열번호 19와 20으로 표시되는 프라이머쌍), KWPE-53(서열번호 21와 22로 표시되는 프라이머쌍), KWPE-57(서열번호 23과 24로 표시되는 프라이머쌍) 및 KWPE-58(서열번호 25와 26으로 표시되는 프라이머쌍)로 이루어진 군에서 선택된다. 본 발명에서 제공되는 프라이머쌍 및 이들에 의해 증폭되는 초위성체에 존재하는 반복 모티브(repeat motif), 증폭되는 초위성체의 크기, Tm(℃) 및 초위성체가 존재하는 염색체 대립인자에 대한 정보를 하기 표 1에 기재하였다.
The SSR marker provided by the present invention refers to a pair of PCR primers, and includes a forward primer and a reverse primer. SSR primer pair provided in the present invention has two base sequences selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 26. Preferably, KWPE-1 (primary pairs represented by SEQ ID NOs: 1 and 2), KWPE-5 (primary pairs represented by SEQ ID NOs: 3 and 4), KWPE-19 (primary pairs represented by SEQ ID NOs: 5 and 6) , KWPE-25 (primary pairs represented by SEQ ID NOs: 7 and 8), KWPE-26 (primary pairs represented by SEQ ID NOs: 9 and 10), KWPE-29 (primary pairs represented by SEQ ID NOs: 11 and 12), KWPE -32 (primary pairs represented by SEQ ID NOs: 13 and 14), KWPE-39 (primary pairs represented by SEQ ID NOs: 15 and 16), KWPE-48 (primary pairs represented by SEQ ID NOs: 17 and 18), KWPE-51 (Primary pairs represented by SEQ ID NOs: 19 and 20), KWPE-53 (primary pairs represented by SEQ ID NOs: 21 and 22), KWPE-57 (primary pairs represented by SEQ ID NOs: 23 and 24), and KWPE-58 (SEQ ID NO: Primer pairs represented by numbers 25 and 26). Information on the primer pairs provided in the present invention and the repeat motifs present in the supersatellites amplified by them, the size of the supersatellites to be amplified, the Tm (° C.) and the chromosomal alleles in which the supersatellites are present are given below. It is shown in Table 1.
표 1Table 1
본 발명의 SSR 프라이머쌍 및 이로부터 증폭되는 초위성체의 특성Characteristics of SSR Primer Pairs of the Present Invention and Supersatellites Amplified therefrom
aF: 정방향 프라이머 bR: 역방향 프라이머
a F: forward primer b R: reverse primer
본 발명에서 제공되는 SSR 프라이머쌍은 들깨 속 식물에서 DNA 다형성을 검 출하고 유전적 다양성을 분석하는데 유용하게 사용될 수 있다. 본 발명에 따른 SSR 프라이머를 이용하여 들깨 속 식물의 유전자원을 효율적으로 평가 및 보존할 수 있다. 따라서 본 발명은 상기 SSR 프라이머쌍을 이용하여 PCR을 수행하는 것을 포함하는 들깨 속 식물의 DNA 다형성 검출 방법을 제공한다. SSR primer pairs provided in the present invention can be usefully used for detecting DNA polymorphism and analyzing genetic diversity in perilla plants. The SSR primer according to the present invention can be used to efficiently evaluate and preserve the genetic resources of the genus Perilla. Accordingly, the present invention provides a method for detecting DNA polymorphism of a perilla plant comprising performing PCR using the SSR primer pair.
구체적으로 본 발명의 방법은 Specifically, the method of the present invention
(a) 분석하고자 하는 들깨 속 식물로부터 게놈 DNA를 추출하는 단계; (a) extracting genomic DNA from the perilla plant to be analyzed;
(b) 추출된 게놈 DNA를 주형으로 하고 본 발명에서 제공하는 SSR 프라이머쌍을 이용하여 PCR을 수행하는 단계; 및(b) performing PCR using the extracted genomic DNA as a template and the SSR primer pair provided by the present invention; And
(c) PCR 산물을 전기영동하는 단계를 포함한다.(c) electrophoresis of the PCR product.
상기 (a) 단계에서 게놈 DNA의 추출은 당업계에서 통상적으로 사용되는 페놀/클로로포름 추출법 또는 SDS 추출법(Tai et al., Plant Mol. Biol. Reporter, 8: 297-303, 1990) 또는 상업적으로 판매되는 DNA 추출 키트를 이용하여 수행할 수 있다. Extraction of genomic DNA in step (a) is phenol / chloroform extraction or SDS extraction commonly used in the art (Tai et al ., Plant Mol. Biol. Reporter , 8: 297-303, 1990) or sold commercially DNA extraction kits can be used.
또한 상기 (b) 단계에서 PCR은 PCR 반응에 필요한 당업계에 공지된 여러 성분을 포함하는 PCR 반응 혼합액을 이용하여 수행될 수 있다. 상기 PCR 반응 혼합액에는 분석하고자 하는 들깨 속 식물에서 추출된 게놈 DNA와 본 발명에서 제공되는 SSR 프라이머쌍 이외에 적당량의 DNA 중합효소, dNTP, PCR 완충용액 및 물(dH2O)을 포함한다. 상기 PCR 완충용액은 Tris-HCl, MgCl2, KCl 등을 포함한다. 이 때 MgCl2 농도는 증폭의 특이성과 수량에 크게 영향을 준다. 바람직하게는 1.5-2.5 mM 의 범위로 사용될 수 있다. 일반적으로 Mg2+가 과량인 경우는 비특이적인 PCR 증폭산물이 증가하고, Mg2+가 부족한 경우 PCR 산물의 산출율이 감소한다. 상기 PCR 완충용액에는 적당량의 Triton X-100이 추가로 포함될 수도 있다. 또한 PCR은 94-95℃에서 주형 DNA를 전변성시킨 후, 변성(denaturation); 결합(annealing); 및 증폭(extension)의 사이클을 거친 후, 최종적으로 72℃에서 연장(elongation)시키는 일반적인 PCR 반응 조건에서 수행될 수 있다. 상기에서 변성 및 증폭은 94-95℃ 및 72℃에서 각각 수행될 수 있으며, 결합시의 온도는 프라이머의 종류에 따라 달라질 수 있다. 바람직하게는 52-57℃이며, 보다 바람직하게는 55℃이다. 각 단계의 시간과 싸이클 수는 당업계에 일반적으로 행해지는 조건에 따라 정해질 수 있다. 본 발명에 따른 SSR 프라이머쌍을 이용한 PCR 수행시의 최적의 반응 조건은 다음과 같다: 95℃에서 3분간 주형 DNA를 전변성시킨 후, 95℃에서 30초; 55℃에서 30초; 및 72℃에서 1분 30초를 36 싸이클 반복 수행한 후, 최종적으로 72℃에서 5분간 반응시킨다. In addition, the PCR in the step (b) may be performed using a PCR reaction mixture containing a variety of components known in the art required for the PCR reaction. The PCR reaction mixture includes an appropriate amount of DNA polymerase, dNTP, PCR buffer and water (dH 2 O) in addition to genomic DNA extracted from perilla plants to be analyzed and the SSR primer pair provided in the present invention. The PCR buffer solution includes Tris-HCl, MgCl 2 , KCl and the like. At this time, the concentration of MgCl 2 greatly affects the specificity and quantity of amplification. Preferably in the range of 1.5-2.5 mM. In general, when Mg 2+ is excessive, nonspecific PCR amplification products increase, and when Mg 2+ is insufficient, PCR The yield of the product is reduced. The PCR buffer may further include an appropriate amount of Triton X-100. PCR also denatured the template DNA at 94-95 ° C., followed by denaturation; Annealing; And a cycle of extension, followed by general PCR reaction conditions which are finally elongated at 72 ° C. The denaturation and amplification may be performed at 94-95 ° C. and 72 ° C., respectively, and the temperature at the time of binding may vary depending on the type of primer. Preferably it is 52-57 degreeC, More preferably, it is 55 degreeC. The time and number of cycles in each step can be determined according to the conditions generally made in the art. The optimal reaction conditions when performing PCR using the SSR primer pair according to the present invention are as follows: After denature the template DNA for 3 minutes at 95 ℃, 30 seconds at 95 ℃; 30 seconds at 55 ° C .; And repeating 36 cycles of 1 minute 30 seconds at 72 ° C., and finally reacting at 72 ° C. for 5 minutes.
PCR 증폭 결과는 아가로스 겔(agarose gel) 또는 폴리아크릴아미드 겔(polyacrylamide gel) 전기영동에 의해 확인할 수 있다(상기 (c) 단계). 바람직하게는 폴리아크릴아미드 겔 전기영동, 보다 바람직하게는 변성 폴리아크릴아미드 겔 전기영동에 의해 확인할 수 있다. 전기영동 후 실버 염색(silver staining)으로 전기영동 결과를 분석할 수 있다. 일반적인 PCR 수행 및 그 결과 분석 방법에 대해서는 당업계에 잘 알려져 있다.
PCR amplification results can be confirmed by agarose gel (agarose gel) or polyacrylamide gel (polyacrylamide gel) electrophoresis (step (c)). Preferably it can be confirmed by polyacrylamide gel electrophoresis, more preferably by modified polyacrylamide gel electrophoresis. Electrophoresis results can be analyzed by silver staining after electrophoresis. General PCR performance and resulting analysis methods are well known in the art.
또한 본 발명은 본 발명에 따른 SSR 프라이머쌍, DNA 중합효소 및 PCR 반응 완충용액을 포함하는 들깨 속 식물의 DNA 다형성 검출용 키트를 제공한다. 상기에서 PCR 반응 완충용액의 조성은 상기에서 기재한 바와 같다. 이외에 PCR 산물의 증폭 여부를 확인할 수 있는 전기영동 수행에 필요한 구성성분들이 본 발명의 키트에 추가로 포함될 수 있다. In another aspect, the present invention provides a kit for detecting DNA polymorphism of perilla plants comprising SSR primer pair, DNA polymerase and PCR reaction buffer according to the present invention. The composition of the PCR reaction buffer is as described above. In addition, the components necessary for performing electrophoresis capable of confirming amplification of PCR products may be further included in the kit of the present invention.
본 발명에 적용될 수 있는 들깨 속 식물은 페릴라 프루테스센스(Perilla frutescens), 페릴라 시트리오도라(Perilla citriodora), 페릴라 히르텔라(Perilla hirtella), 페릴라 세토엔시스(Perilla setoyensis) 및 이들의 변종일 수 있으며, 이에 제한되는 것은 아니다. 바람직하게는 재배형 또는 잡초형의 들깨(Perilla frutescens var. frutescens)와 차조기(Perilla frutescens var. crispa)일 수 있다.
Perilla in plants which can be applied to the present invention, perilla fruit test sense (Perilla frutescens), perilla sheet Rio Dora (Perilla citriodora), perilla Nevsehir telra (Perilla hirtella), perilla Seto N-Sys (Perilla setoyensis) and their It may be a variant, but is not limited thereto. Preferably perilla frutescens var. Frutescens and perilla frutescens var. Crispa .
이하, 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.
단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.
<실시예 1><Example 1>
게놈 DNA 추출Genomic DNA Extraction
재배형 들깨(Cultivated type of var. frutescens)(농진청 유전자원과, 기탁번호: KOR17)로부터 SDS를 이용한 방법(Tai et al., Plant Mol. Biol. Reporter, 8: 297-303, 1990)에 따라 게놈 DNA를 추출하였다. 생육 1개월째의 어린 들깨 식물체로부터 0.5 g 정도의 잎 조직을 채취하여 1.5 ㎖ 튜브에 넣고 액체질소로 급냉시켰다. 이후, 즉시 플라스틱 막대로 잎을 곱게 마쇄하였다. 엽절편이 녹기 전에 추출 완충용액(200 mM Tris-HCl pH8.0, 200 mM NaCl, 25 mM EDTA, 0.5% SDS) 750 ㎕를 첨가하였다. 동량의 페놀(phenol):클로로포름(chloroform):이소아밀알코올(isoamylalchol)(25:24:1)을 추가로 첨가한 후, 약 5분간 손으로 조심스럽게 흔들어 주었다. 혼합액을 65℃에서 15분간 보관한 후, 13,000 rpm에서 15분간 원심분리하였다. 상층액을 취하여 새 튜브에 옮겼다. 상기 튜브에 -20℃에 보관해 놓은 동량의 이소프로판올을 첨가하고, -20℃에서 1시간 보관하였다. 이후, 13,000 rpm에서 15분간 원심분리하였다. 침전된 DNA를 70% 에탄올로 세척하였다. DNA를 건조시킨 후, 약 300 ㎕의 RNase (50㎍/㎖)를 함유하는 TE 완충용액(10 mM Tris-Cl, 1 mM EDTA, pH7.4)을 첨가하여 충분히 녹인 후, 37℃에서 1시간 정도 보관하였다.
According to: (297-303, 1990 Tai et al , Plant Mol Biol Reporter, 8...): Cultivation type perilla (Cultivated type of frutescens var.) Method using the SDS from (Rural Development Administration genetic resources and, Accession No. KOR17) Genomic DNA was extracted. 0.5 g of leaf tissues were taken from young perilla plants at 1 month of growth and placed in a 1.5 ml tube and quenched with liquid nitrogen. The leaf was then ground finely with a plastic rod immediately. 750 μl of extraction buffer (200 mM Tris-HCl pH8.0, 200 mM NaCl, 25 mM EDTA, 0.5% SDS) was added before the leaf sections were dissolved. The same amount of phenol (chloro): chloroform: isoamylalchol (25: 24: 1) was further added, and then gently shaken by hand for about 5 minutes. The mixed solution was stored at 65 ° C. for 15 minutes, and then centrifuged at 13,000 rpm for 15 minutes. The supernatant was taken and transferred to a new tube. The same amount of isopropanol stored at -20 ° C was added to the tube, and stored at -20 ° C for 1 hour. Thereafter, the mixture was centrifuged at 13,000 rpm for 15 minutes. Precipitated DNA was washed with 70% ethanol. After the DNA was dried, it was sufficiently dissolved by adding TE buffer solution (10 mM Tris-Cl, 1 mM EDTA, pH7.4) containing about 300 µl of RNase (50 µg / ml), followed by 1 hour at 37 ° C. It was stored about.
<실시예 2><Example 2>
어댑터와의 라이게이션Ligation with Adapters
상기 실시예 1에서 얻은 게놈 DNA 약 500 ng/㎕을 EcoRⅠ과 TaqⅠ으로 이중 절단하였다. 절단된 DNA를 1.2% 아가로스 겔에 전기영동한 후, 약 300-1500 bp 크기의 DNA 단편만을 겔로부터 일루션(elution)하였다. 이후, 일루션된 DNA 단편을 상기 제한효소와 상보적인 염기서열을 가지고 있는 4개의 어댑터와 22℃에서 하룻밤 동안 라이게이션시켰다. 라이게이션은 T4 DNA 라이게이즈(ligase)를 이용하여 수행하였다. 각 어댑터의 서열을 하기 표 2에 기재하였다.
About 500 ng / μl of genomic DNA obtained in Example 1 was double cut into Eco RI and Taq I. After cleaved DNA was electrophoresed in a 1.2% agarose gel, only DNA fragments of about 300-1500 bp size were eluated from the gel. Thereafter, the affected DNA fragment was ligated overnight at 22 ° C. with four adapters having base sequences complementary to the restriction enzymes. Ligation was performed using T4 DNA ligase. The sequence of each adapter is shown in Table 2 below.
표 2TABLE 2
본 발명에서 사용한 어댑터Adapter used in the present invention
<실시예 3> <Example 3>
한 방향 PCROne-way PCR
상기 실시예 2에서 어댑터와 라이게이션된 DNA를 주형으로 하고 5′말단에 포스페이트(phosphate)를 부착시킨 TaqⅠ 어댑터 프라이머(PRTP-0, 서열번호 31) 하나만을 사용하여 한 방향 PCR을 수행하였다. PCR 반응 혼합물(50 ㎕)의 조성은 다음과 같다: 250 ng 어댑터-라이게이션된 DNA, 0.5 μM TaqI 어댑터 프라이머, 2 mM dNTP, 2 units Taq DNA 중합효소, 5 ㎕ 10ㅧ 완충용액. PCR 반응은 72℃에서 2분, 94℃에서 3분동안 가열한 후 94℃에서 30초; 56℃에서 30초; 및 72℃에서 1분을 60 싸이클(cycle)로 반복 수행하고, 마지막으로 72℃에서 5분의 조건으로 수행하였다.
In Example 2, one-way PCR was performed using only one Taq I adapter primer (PRTP-0, SEQ ID NO: 31) having a DNA ligated with the adapter as a template and a phosphate attached to the 5 ′ end. The composition of the PCR reaction mixture (50 μl) is as follows: 250 ng adapter-ligated DNA, 0.5 μM Taq I adapter primer, 2 mM dNTP, 2 units Taq DNA polymerase, 5 μl 10 μs buffer. PCR reactions were heated at 72 ° C. for 2 minutes, 94 ° C. for 3 minutes, and then at 94 ° C. for 30 seconds; 30 seconds at 56 ° C .; And 1 minute at 72 ° C. was repeated for 60 cycles, and finally at 72 ° C. for 5 minutes.
<실시예 4> <Example 4>
초위성체를 포함하고 있는 DNA 단편의 선발 및 분리Selection and Isolation of DNA Fragments Containing Supersatellites
<4-1> 마그네틱 비드-올리고탐침 결합체의 제조<4-1> Preparation of Magnetic Bead-Oligo Probe Conjugate
마그네틱 비드(magnetic bead; Roche magnetic particles)를 5× SSC로 l회 세척한 후, 다시 50 ㎕ 5 SSC에 용해시켰다. 한편, 하기 표 3에 기재된 14개의 올리고탐침은 당업계에 공지된 통상의 방법에 따라 바이오틴으로 표지하였다. 이후, 5× SSC에 용해된 마그네틱 비드 50 ㎕, 각 올리고탐침 1.3 ㎕, 10× SSC 25 ㎕ 그리고 23.7 ㎕의 증류수를 혼합하였다. 실온에서 15분간 방치하여 마그네틱 비드와 올리고탐침의 결합을 유도하였다. 마그네틱 비드-올리고탐침 결합체를 100 ㎕ 5× SSC로 3회 세척하였다. 상기 세척은 마그네틱 분리기(magnetic separator, Promega)의 자력을 이용하여 튜브의 밑으로 상기 결합체를 침전시켜 수행하였다. 이와 같은 세척을 통해 순도가 높아진 마그네틱 비드-올리고탐침 결합체를 50 ㎕의 10× SSC에 다시 용해시키고, 잠시 실온에 보관하였다.
Magnetic beads (Roche magnetic particles) were washed 1 times with 5 × SSC and then dissolved in 50 μl 5 SSC. On the other hand, the fourteen oligo probes described in Table 3 were labeled with biotin according to conventional methods known in the art. Then, 50 μl of magnetic beads dissolved in 5 × SSC, 1.3 μl of each oligo probe, 25 μl of 10 × SSC, and 23.7 μl of distilled water were mixed. The mixture was allowed to stand at room temperature for 15 minutes to induce binding of the magnetic beads and the oligo probe. Magnetic bead-oligoprobe conjugates were washed three times with 100 μl 5 × SSC. The washing was performed by precipitating the conjugate under the tube using the magnetic force of a magnetic separator (Promega). Purity of the magnetic beads-oligoprobe conjugate with increased purity was again dissolved in 50 μl of 10 × SSC and stored at room temperature for a while.
표 3TABLE 3
들깨 속 식물의 초위성체를 분리하기 위한 올리고탐침의 서열Sequence of Oligo-Probe for Separation of Supersatellites of Perilla Plants
<4-2> 혼성화<4-2> hybridization
혼성화를 위해 상기 실시예 3에서 얻은 PCR 산물을 다음과 같이 준비하였다: PCR 산물 10 ㎕에 증류수 40 ㎕를 혼합하고, 변성을 위해 끓는 물에서 5분간 방치하였다. 그리고 나서 DNA의 고정을 위해 바로 얼음으로 옮겼다. 변성된 PCR 산물 50 ㎕와 마그네틱 비드에 결합된 올리고탐침 50 ㎕를 혼합한 후, 30℃에서 20분간 반응시켜 혼성화를 유도하였다. 이후, 2× SSC 100 ㎕로 5분간 4회 세척하고, 다시 1× SSC 100 ㎕로 30℃에서 5분간 4회 세척하였다. 20 ㎕의 0.15 M NaOH을 20분간 실온에서 처리하였다. NaOH 처리에 의해 마그네틱 비드에 결합된 올리고탐침은 따로 떨어지게 된다(화학적 변성(chemical denature)). 남아있는 올리고탐침은 마그네틱 분리기를 이용하여 다시 제거하였다. 2.2 ㎕ 10× TE 완충용액과 1.24 M 아세트산 1.3 ㎕을 첨가하여 화학적 변성을 중화시켰다. 이후, PCR 산물을 PCR 정제 키트(PCR purification kit) 또는 에탄올 침전법을 이용하여 탈염시켰다. The PCR product obtained in Example 3 for hybridization was prepared as follows: 10 μl of the PCR product was mixed with 40 μl of distilled water and left for 5 minutes in boiling water for denaturation. It was then transferred directly to ice for DNA fixation. 50 μl of the denatured PCR product was mixed with 50 μl of the oligo probe bound to the magnetic beads, and then reacted at 30 ° C. for 20 minutes to induce hybridization. Thereafter, the mixture was washed four times for 5 minutes with 100 μl of 2 × SSC, and again for 4 minutes at 30 ° C. with 100 μl of 1 × SSC. 20 μl of 0.15 M NaOH was treated for 20 minutes at room temperature. The oligoprobe bound to the magnetic beads by NaOH treatment is separated separately (chemical denature). The remaining oligo probe was removed again using a magnetic separator. Chemical denaturation was neutralized by adding 2.2 μl 10 × TE buffer and 1.3 μl of 1.24 M acetic acid. Thereafter, the PCR product was desalted using a PCR purification kit or ethanol precipitation.
탈염된 PCR 산물을 서열분석을 위해 다시 증폭시켰다. 이 때 상기 실시예 3에서 사용한 프라이머와 더불어 EcoRⅠ-0 프라이머(서열번호 43)를 함께 사용하여 PCR을 수행하였다. PCR의 총 싸이클 수를 24 싸이클로 줄인 것을 제외하고는 상기 실시예 3과 동일한 조건으로 PCR을 수행하였다. 이와 같은 방법으로 본 발명에서는 초위성체를 함유하고 있는 약 500개의 DNA 단편을 분리하였다.
Desalted PCR products were amplified again for sequencing. At this time, PCR was performed using Eco RI-0 primer (SEQ ID NO: 43) together with the primer used in Example 3. PCR was performed under the same conditions as in Example 3, except that the total number of cycles of the PCR was reduced to 24 cycles. In this manner, about 500 DNA fragments containing supersatellites were isolated in the present invention.
<실시예 5><Example 5>
분리된 DNA 단편의 서열분석 및 프라이머 디자인Sequencing and Primer Design of Isolated DNA Fragments
상기 실시예 4에서 분리된 초위성체를 함유하고 있는 DNA 단편들을 pGEM T-easy vector 벡터(Promega, USA)에 클로닝하여 이들의 서열을 분석하였다. 염기서열 분석은 (주)마크로젠에 의뢰하여 수행하였다. 분석된 서열을 기초로 하여 5개 이상의 반복 유닛(repeat unit)을 포함하고 있는 단편만을 선발하였다. 반복 유닛을 포함하는 부분을 기준으로 하여 초위성체를 증폭할 수 있는 양 방향의 프라이머를 디자인하였다. 총 68개의 프라이머쌍을 디자인하였다. 각 프라이머쌍의 염기서열 및 이들로부터 증폭되는 초위성체의 특성을 하기 표 4 내지 표 7에 기재하였다. 하기 표 4 내지 표 7에서 F는 정방향 프라이머를, R은 역방향 프라이머를 나타낸다. DNA fragments containing the supersatellite isolated in Example 4 were cloned into pGEM T-easy vector vector (Promega, USA) to analyze their sequences. Sequence analysis was performed by requesting Macrogen. Only fragments containing 5 or more repeat units were selected based on the analyzed sequences. Based on the part containing the repeating unit, a primer in both directions was designed to amplify the supersatellite. A total of 68 primer pairs were designed. The base sequences of each primer pair and the properties of the supersatellites amplified therefrom are shown in Tables 4 to 7. In Tables 4 to 7, F represents a forward primer and R represents a reverse primer.
표 4Table 4
디자인된 SSR 프라이머쌍(Nos.1-20) 및 이로부터 증폭되는 초위성체의 특성Designed SSR Primer Pairs (Nos. 1-20) and Characteristics of Supersatellites Amplified therefrom
표 5Table 5
디자인된 SSR 프라이머쌍(Nos.21-40) 및 이로부터 증폭되는 초위성체의 특성Designed SSR Primer Pair (Nos.21-40) and Characterization of Supersatellites Amplified from It
표 6Table 6
디자인된 SSR 프라이머쌍(Nos.41-60) 및 이로부터 증폭되는 초위성체의 특성Designed SSR Primer Pairs (Nos. 41-60) and Characteristics of Supersatellites Amplified therefrom
표 7TABLE 7
디자인된 SSR 프라이머쌍(Nos.61-68) 및 이로부터 증폭되는 초위성체의 특성Designed SSR Primer Pair (Nos. 61-68) and Characterization of Supersatellites Amplified from It
<실시예 6><Example 6>
SSR 마커의 선발Selection of SSR Markers
상기 실시예 5에서 디자인된 프라이머쌍 중에서 다양한 들깨 계통에서 다형성 변이를 많이 나타내는 SSR 프라이머 조합을 선발하기 위하여, 하기 표 8에 기재된 20점의 재배형 또는 잡초형 들깨 속 식물에 대하여 PCR을 통한 DNA 프로파일링(profiling) 분석을 수행하였다.
In order to select an SSR primer combination showing a lot of polymorphic variation in various perilla strains among the primer pairs designed in Example 5, DNA profiles through PCR for 20 cultivated or weed perilla plants shown in Table 8 below Profiling analysis was performed.
표 8Table 8
SSR 분석에 사용된 들깨 속 식물Perilla plants used for SSR analysis
PCR 반응 혼합물(20 ㎕)의 조성은 다음과 같다: 들깨의 게놈 DNA 20 ng, 각 프라이머 0.5 μM, dNTPs 200 μM, 1× PCR 반응 완충용액 (10 mM Tris-HCl pH 8.8, 1.5 mM MgCl2, 50 mM KCl, 0.1% Triton X-100), 1 unit DNA 중합효소 및 나머지 증류수. PCR 반응은 95℃에서 3분간 주형 DNA를 전변성시킨 후, 95℃에서 30초; 55℃에서 30초; 및 72℃에서 1분 30초를 36 싸이클로 반복 수행하고, 마지막으로 72℃에서 5분의 조건으로 수행하였다.The composition of the PCR reaction mixture (20 μl) is as follows: 20 ng of perilla genomic DNA, 0.5 μM of each primer, 200 μM of dNTPs, 1 × PCR reaction buffer (10 mM Tris-HCl pH 8.8, 1.5 mM MgCl 2 , 50 mM KCl, 0.1% Triton X-100), 1 unit DNA polymerase and remaining distilled water. PCR reaction was performed after denaturing the template DNA for 3 minutes at 95 ℃, 30 seconds at 95 ℃; 30 seconds at 55 ° C .; And 1 minute 30 seconds at 72 ° C. was repeated for 36 cycles, and finally at 72 ° C. for 5 minutes.
증폭된 PCR 산물 2㎕를 6× 로딩 완충용액(10 mM NaOH, 95% formamide, 0.05% bromophenol blue, 0.05% xylene cyanol FF) 4 ㎕와 혼합하였다. 혼합액을 95℃에서 5분간 가열한 후, 그 중 3 ㎕를 취하여 55℃로 미리 가열된 6% 변성 폴리아크릴아미드 겔(denaturing polyacrylamide gel)[acrylamide : bisacrylamide(19:1), 7.5 M urea, 1× TBE buffer(0.89 M Tris-HCl pH 8.0, 0.89 M boric acid, 0.02 M EDTA pH 8.0)]에 로딩하였다. 이후, 1800V, 60W에서 1시간 30분 동안 전기영동을 수행하였다. 실버 염색(silver staining)으로 결과를 분석하였다. 2 μl of the amplified PCR product was mixed with 4 μl of 6 × loading buffer (10 mM NaOH, 95% formamide, 0.05% bromophenol blue, 0.05% xylene cyanol FF). The mixed solution was heated at 95 ° C. for 5 minutes, and then 3 μl of the mixed solution was taken and a 6% denaturing polyacrylamide gel (acrylamide: bisacrylamide (19: 1), 7.5 M urea, 1, previously heated to 55 ° C.). TBE buffer (0.89 M Tris-HCl pH 8.0, 0.89 M boric acid, 0.02 M EDTA pH 8.0). Then, electrophoresis was performed for 1 hour and 30 minutes at 1800V, 60W. The results were analyzed by silver staining.
그 결과, 상기 실시예 5에서 디자인된 총 68개의 프라이머쌍 중에서 13개의 프라이머쌍(KWPE-1, KWPE-5, KWPE-19, KWPE-25, KWPE-26, KWPE-29, KWPE-32, KWPE-39, KWPE-48, KWPE-51, KWPE-53, KWPE-57 및 KWPE-58)이 20점의 재배형 또는 잡초형 들깨 속 식물에서 다형성을 나타냄을 확인할 수 있었다. 대표적인 결과를 도 1에 나타내었다.As a result, 13 primer pairs (KWPE-1, KWPE-5, KWPE-19, KWPE-25, KWPE-26, KWPE-29, KWPE-32, KWPE) out of a total of 68 primer pairs designed in Example 5 -39, KWPE-48, KWPE-51, KWPE-53, KWPE-57 and KWPE-58) showed polymorphism in 20 cultivated or weed perilla plants. Representative results are shown in FIG. 1.
도 1은, KWPE-53, KWPE-57, KWPE-58, KWPE-29 및 KWPE-26 프라이머쌍이 20점의 재배형 또는 잡초형 들깨 속 식물에서 다형성을 나타내는 것을 확인한 결과이다. KWPE-53 프라이머쌍은 20점의 들깨 계통들에서 약 150-200bp 크기의 DNA 단편을 증폭시켰으며, 관찰된 대립 유전자의 수는 9개이었다. KWPE-57 프라이머쌍은 약 170-220 bp 크기의 DNA 단편을 증폭시켰으며, 관찰된 대립 유전자의 수는 9개이었다. 또한 KWPE-58 프라이머쌍은 약 160-180 bp 크기의 DNA 단편을 증폭시켰으며, 대립 유전자의 수는 7개이었다. KWPE-29 프라이머쌍은 약 230-260 bp 크기의 DNA 단편을 증폭시켰으며, 관찰된 대립 유전자의 수는 6개이었다. 마지막으로, KWPE-26 프라이머쌍은 약 240-260 bp 크기의 DNA 단편을 증폭시켰으며, 관찰된 대 립 유전자의 수는 7개이었다.
FIG. 1 shows that KWPE-53, KWPE-57, KWPE-58, KWPE-29 and KWPE-26 primer pairs show polymorphism in 20 cultivated or weed perilla plants. The KWPE-53 primer pair amplified DNA fragments of about 150-200 bp in 20 perilla lines, and the number of alleles observed was nine. KWPE-57 primer pairs amplified DNA fragments of about 170-220 bp size and the number of alleles observed was nine. In addition, KWPE-58 primer pairs amplified DNA fragments of about 160-180 bp in size, and the number of alleles was seven. KWPE-29 primer pairs amplified DNA fragments of about 230-260 bp size and the number of alleles observed was six. Finally, the KWPE-26 primer pair amplified DNA fragments of about 240-260 bp in size, with seven alleles observed.
이상 살펴본 바와 같이, 본 발명에서는 들깨에서 처음으로 SSR 마커를 개발하였다. 본 발명에서 제공되는 SSR 프라이머쌍은 들깨의 DNA 다형성을 효과적으로 검출하여 들깨 속 식물의 DNA 프로파일을 작성하는데 매우 유용하게 이용될 수 있다. 이를 통해 들깨 속 식물의 유전자원을 효율적으로 평가함으로써 신규 유전자원 도입시 기존 보유자원과의 중복성 분석 및 신규성 확립을 효과적으로 수행할 수 있다. As described above, in the present invention, the first SSR marker was developed in perilla. SSR primer pairs provided in the present invention can be very useful for effectively detecting the DNA polymorphism of perilla to create a DNA profile of the genus perilla. By efficiently evaluating the genetic resources of perilla plants, it is possible to effectively conduct redundancy analysis and establish novelty with existing resources when introducing new genetic resources.
<110> Kangwon National University <120> SSR primer isolated from Perilla spp. and use thereof <130> NP04-0088 <160> 153 <170> KopatentIn 1.71 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-1 F primer <400> 1 caaaagcctt acaactttga 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-1 R primer <400> 2 agcgtttgta tttcatggac 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-5 F primer <400> 3 atctccaagc ttatgaatgc 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-5 R primer <400> 4 ctggtagtga gcctgttcat 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-19 F primer <400> 5 caacccttca cgatcactat 20 <210> 6 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-19 R primer <400> 6 aaataacggc cgattctac 19 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KWPE-25 F primer <400> 7 acatttaaga gagagagcaa g 21 <210> 8 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-25 R primer <400> 8 acgaacgggc ttcaatctt 19 <210> 9 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-26 F primer <400> 9 gaggcaatgc tggtacttc 19 <210> 10 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-26 R primer <400> 10 gaacgggctt caatcttc 18 <210> 11 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-29 F primer <400> 11 aagacaagga ggaagatgc 19 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KWPE-29 R primer <400> 12 ataggtgttc gctctcctgt g 21 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-32 F primer <400> 13 agaacaacat tgtagctcgg 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-32 R primer <400> 14 acgaccaacc agtagatgat 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-39 F primer <400> 15 agaacaacat tgtagctcgg 20 <210> 16 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-39 R primer <400> 16 gacgaaccag caaacgac 18 <210> 17 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-48 F primer <400> 17 caccccatct ttttggat 18 <210> 18 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-48 R primer <400> 18 agcaggatgg tggtggtc 18 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-51 F primer <400> 19 ccatacctgg aacaaacatt 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-51 R primer <400> 20 gaccctagct tctctccatt 20 <210> 21 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KWPE-53 F primer <400> 21 actcaccaga agagaagaag a 21 <210> 22 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-53 R primer <400> 22 gccactgacc tgttaatatc tg 22 <210> 23 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-57 F primer <400> 23 atcacatctc tctctttctg ga 22 <210> 24 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KWPE-57 R primer <400> 24 ccagtcactc catcatctct a 21 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KWPE-58 F primer <400> 25 agagagttac ctgcgatttt c 21 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-58 R primer <400> 26 cttcaatatt cggccatctt 20 <210> 27 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> EcoRI-1 adaptor <400> 27 atcgtagact gcgtacc 17 <210> 28 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> EcoRI-2 adaptor <400> 28 aattggtacg cagtctac 18 <210> 29 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> TaqI-1 adaptor <400> 29 gacgatgagt cctgag 16 <210> 30 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> TaqI-2 adaptor <400> 30 cgctcaggac tcat 14 <210> 31 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> TaqI adaptor primer PRTP-0 <400> 31 gacgatgagt cctgagcga 19 <210> 32 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> (AT)12 oligonucleotide probe <400> 32 atatatatat atatatatat atat 24 <210> 33 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> (AG)12 oligonucleotide probe <400> 33 agagagagag agagagagag agag 24 <210> 34 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> (CA)12 oligonucleotide probe <400> 34 cacacacaca cacacacaca caca 24 <210> 35 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> (AAC)8 oligonucleotide probe <400> 35 aacaacaaca acaacaacaa caac 24 <210> 36 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> (AAG)8 oligonucleotide probe <400> 36 aagaagaaga agaagaagaa gaag 24 <210> 37 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> (ACG)8 oligonucleotide probe <400> 37 acgacgacga cgacgacgac gacg 24 <210> 38 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> (AGC)8 oligonucleotide probe <400> 38 agcagcagca gcagcagcag cagc 24 <210> 39 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> (AGG)8 oligonucleotide probe <400> 39 aggaggagga ggaggaggag gagg 24 <210> 40 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> (CCG)8 oligonucleotide probe <400> 40 ccgccgccgc cgccgccgcc gccg 24 <210> 41 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> (CTC)8 oligonucleotide probe <400> 41 ctcctcctcc tcctcctcct cctc 24 <210> 42 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> (TAA)8 oligonucleotide probe <400> 42 taataataat aataataata ataa 24 <210> 43 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> EcoRI-0 primer <400> 43 gactgcgtac caattc 16 <210> 44 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-2 F primer <400> 44 ttagtacatc ccaccccata 20 <210> 45 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-2 R primer <400> 45 gctctatgat ccgagcttc 19 <210> 46 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-3 F primer <400> 46 gtacagatgc ggtcgtagtc 20 <210> 47 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-3 R primer <400> 47 gaggtgattc ttgagctctg 20 <210> 48 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-4 F primer <400> 48 aggaagcaaa gaaagaggag 20 <210> 49 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-4 R primer <400> 49 gtcattggag gatagtacgg 20 <210> 50 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KWPE-6 F primer <400> 50 gacgtgtaac aatcatcaac a 21 <210> 51 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-6 R primer <400> 51 acattgtaag cccctttctc 20 <210> 52 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-7 F primer <400> 52 ccagccactt ctcaacttta 20 <210> 53 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-7 R primer <400> 53 tgaatttgaa ggttgacacc 20 <210> 54 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-8 F primer <400> 54 tctagagctc acacgcaag 19 <210> 55 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-8 R primer <400> 55 tttttgcttt accctctcag 20 <210> 56 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-9 F primer <400> 56 ttgagatctg acaaccaacc 20 <210> 57 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-9 R primer <400> 57 cctcaagtca tcatccacat 20 <210> 58 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-10 F primer <400> 58 tgtagatgcg gtcataatca 20 <210> 59 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-10 R primer <400> 59 ggtgttcttg aggtctgtca 20 <210> 60 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-11 F primer <400> 60 acaccccacc ccatactt 18 <210> 61 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-11 R primer <400> 61 cactacgact ccagcttctc 20 <210> 62 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-12 F primer <400> 62 cagcagctca aaggtcat 18 <210> 63 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-12 R primer <400> 63 tccgcttctt catcagtagt 20 <210> 64 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-13 F primer <400> 64 atcaccttaa gccggactg 19 <210> 65 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KWPE-13 R primer <400> 65 gcagtactgt atgaagcagg a 21 <210> 66 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-14 F primer <400> 66 gaatagccag ctgaagagag 20 <210> 67 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-14 R primer <400> 67 ctttcagcat ccacgtct 18 <210> 68 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-15 F primer <400> 68 gtggacgagg aggaggaa 18 <210> 69 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-15 R primer <400> 69 ctgatccatg accacctc 18 <210> 70 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-16 F primer <400> 70 tcactggaag acggagtg 18 <210> 71 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-16 R primer <400> 71 cccatcagac gacgactc 18 <210> 72 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-17 F primer <400> 72 ccctggatct ttactggac 19 <210> 73 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-17 R primer <400> 73 gaagatcaag gacaaaggaa 20 <210> 74 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-18 F primer <400> 74 aagtcggatc cctcttctc 19 <210> 75 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-18 R primer <400> 75 atcaccactt cttccatcac 20 <210> 76 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-20 F primer <400> 76 atggaggcaa atattttaga 20 <210> 77 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KWPE-20 R primer <400> 77 gctttggaag atagtttagg c 21 <210> 78 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-21 F primer <400> 78 cggtttcact tccattctat 20 <210> 79 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-21 R primer <400> 79 tctgtgctga aaaagtaggc 20 <210> 80 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-22 F primer <400> 80 cttgcacttc tccttctcc 19 <210> 81 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-22 R primer <400> 81 ccgtcttcca ctctatcct 19 <210> 82 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-23 F primer <400> 82 gaggaaggac ggatgtcta 19 <210> 83 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-23 R primer <400> 83 cacctttctc cacgtgtc 18 <210> 84 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-24 F primer <400> 84 ccatacttgg gacaaacatt 20 <210> 85 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-24 R primer <400> 85 catggacgac ctcaatcata 20 <210> 86 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-27 F primer <400> 86 gagggaaaga aacctacctt 20 <210> 87 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KWPE-27 R primer <400> 87 tgtcttcctt tataccggtt c 21 <210> 88 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-91 F primer <400> 88 ggagagagag aggttggatt 20 <210> 89 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-91 R primer <400> 89 ccaaccaacg ccacctac 18 <210> 90 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-30 F primer <400> 90 acctcctgat ccatgacc 18 <210> 91 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-30 R primer <400> 91 ggacgacgag gaggaaat 18 <210> 92 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-31 F primer <400> 92 ctgaagtaga gaaggcgatg 20 <210> 93 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-31 R primer <400> 93 tactccactt tcctccacc 19 <210> 94 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-33 F primer <400> 94 cttctctatc gccttcttca 20 <210> 95 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-33 R primer <400> 95 gaggaaggac ggatgtcta 19 <210> 96 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-34 F primer <400> 96 ctctacctag cggcagtg 18 <210> 97 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-34 R primer <400> 97 atacaaattc attttgagcg 20 <210> 98 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-35 F primer <400> 98 cttcctgacc tcaaaccc 18 <210> 99 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-35 R primer <400> 99 ccagttgtag agctccgat 19 <210> 100 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-36 F primer <400> 100 ctacactcag ctcccatgtt 20 <210> 101 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-36 R primer <400> 101 atagtgaaga gtgattcggc 20 <210> 102 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-37 F primer <400> 102 tcatagacgc ggatactgac 20 <210> 103 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-37 R primer <400> 103 ctgaagtaga gaaggcgatg 20 <210> 104 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-38 F primer <400> 104 cattgagtag ctcccagagt 20 <210> 105 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-38 R primer <400> 105 atcctaaagc tctagctggg 20 <210> 106 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-40 F primer <400> 106 atgaagtctt cttccacgg 19 <210> 107 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-40 R primer <400> 107 cctgctttca tggacatc 18 <210> 108 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-41 F primer <400> 108 caccacctcc aagatttgt 19 <210> 109 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KWPE-41 R primer <400> 109 ggggtagggc tataaatagg t 21 <210> 110 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-42 F primer <400> 110 cttcttcccc ttttctcatt 20 <210> 111 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-42 R primer <400> 111 agagatggag aaagacctgc 20 <210> 112 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-43 F primer <400> 112 actttgctca actggacaat 20 <210> 113 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-43 R primer <400> 113 gctacaattg tgggaggata 20 <210> 114 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-44 F primer <400> 114 cacccacaat gaagaaaaat 20 <210> 115 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-44 R primer <400> 115 tacaattgtg ggaggatagg 20 <210> 116 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-45 F primer <400> 116 ttgtgaagat gagttccgat 20 <210> 117 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-45 R primer <400> 117 caatcatcct cctaaggtca 20 <210> 118 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-46 F primer <400> 118 gagaggaggg gagagagg 18 <210> 119 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-46 R primer <400> 119 ttttcactcc gccgattt 18 <210> 120 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-47 F primer <400> 120 atttcttctc aagccttcg 19 <210> 121 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-47 R primer <400> 121 agaaggtgag gtaggaggag 20 <210> 122 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-49 F primer <400> 122 ctctctcgcc ctcaatct 18 <210> 123 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-49 R primer <400> 123 ggaagaaaaa gaaagaaaga aa 22 <210> 124 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-50 F primer <400> 124 caacctctag ctctgccc 18 <210> 125 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-50 R primer <400> 125 ccacacctcc tcccagag 18 <210> 126 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KWPE-52 F primer <400> 126 gtacggaagc gtcagtatgg t 21 <210> 127 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-52 R primer <400> 127 gtcctccaat caaaaggtct 20 <210> 128 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-54 F primer <400> 128 ctcaatctcc ctcgctctca 20 <210> 129 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> KWPE-54 R primer <400> 129 aagtgagaga gataaaggaa gaaa 24 <210> 130 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-55 F primer <400> 130 gtgaagatta tgaagggaca tt 22 <210> 131 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-55 R primer <400> 131 atgtttccag atatggagtg ag 22 <210> 132 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-56 F primer <400> 132 aagcagtgga ctgattgttt 20 <210> 133 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-56 R primer <400> 133 acaaaatcca attactttct gc 22 <210> 134 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KWPE-59 F primer <400> 134 aaagagatgg agaaagacct g 21 <210> 135 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-59 R primer <400> 135 cttcttcccc ttttctcatt 20 <210> 136 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-60 F primer <400> 136 tatgaggaga ctgatgatga tg 22 <210> 137 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-60 R primer <400> 137 gtaaccgtct tctctaccaa tg 22 <210> 138 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-61 F primer <400> 138 gttttgggtg gaagaatcg 19 <210> 139 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-61 R primer <400> 139 cctccctata ctgatacttc gt 22 <210> 140 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-62 F primer <400> 140 ggttttgggt ggaagaatc 19 <210> 141 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KWPE-62 R primer <400> 141 gccacctccc tatactgata c 21 <210> 142 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-63 F primer <400> 142 gtttgttcac caccttatct ct 22 <210> 143 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-63 R primer <400> 143 tgttttatgg aaggagctgt 20 <210> 144 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-64 F primer <400> 144 gattactggg attatgctga tt 22 <210> 145 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-64 R primer <400> 145 gaacaatcaa aggaaatagg aa 22 <210> 146 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-65 F primer <400> 146 gacgacgagg aggaggaag 19 <210> 147 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-65 R primer <400> 147 aaccgtaaaa attctgctac ac 22 <210> 148 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-66 F primer <400> 148 ctgtatctgt ccctgtgtcc 20 <210> 149 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-66 R primer <400> 149 ttcagtcttt tgatccacat ta 22 <210> 150 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-67 F primer <400> 150 aaaggagtct ggaaacacat ac 22 <210> 151 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-67 R primer <400> 151 cttttgacgt tcattaatat gc 22 <210> 152 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-68 F primer <400> 152 ttagctgatc tagttctctc ca 22 <210> 153 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KWPE-68 R primer <400> 153 aaaatgcact gttttatgga a 21 <110> Kangwon National University <120> SSR primer isolated from Perilla spp. and use according <130> NP04-0088 <160> 153 <170> KopatentIn 1.71 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-1 F primer <400> 1 caaaagcctt acaactttga 20 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-1 R primer <400> 2 agcgtttgta tttcatggac 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-5 F primer <400> 3 atctccaagc ttatgaatgc 20 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-5 R primer <400> 4 ctggtagtga gcctgttcat 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-19 F primer <400> 5 caacccttca cgatcactat 20 <210> 6 <211> 19 <212> DNA <213> Artificial Sequence <220> 223 KWPE-19 R primer <400> 6 aaataacggc cgattctac 19 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KWPE-25 F primer <400> 7 acatttaaga gagagagcaa g 21 <210> 8 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-25 R primer <400> 8 acgaacgggc ttcaatctt 19 <210> 9 <211> 19 <212> DNA <213> Artificial Sequence <220> 223 KWPE-26 F primer <400> 9 gaggcaatgc tggtacttc 19 <210> 10 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-26 R primer <400> 10 gaacgggctt caatcttc 18 <210> 11 <211> 19 <212> DNA <213> Artificial Sequence <220> 223 KWPE-29 F primer <400> 11 aagacaagga ggaagatgc 19 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KWPE-29 R primer <400> 12 ataggtgttc gctctcctgt g 21 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-32 F primer <400> 13 agaacaacat tgtagctcgg 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-32 R primer <400> 14 acgaccaacc agtagatgat 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-39 F primer <400> 15 agaacaacat tgtagctcgg 20 <210> 16 <211> 18 <212> DNA <213> Artificial Sequence <220> 223 KWPE-39 R primer <400> 16 gacgaaccag caaacgac 18 <210> 17 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-48 F primer <400> 17 caccccatct ttttggat 18 <210> 18 <211> 18 <212> DNA <213> Artificial Sequence <220> 223 KWPE-48 R primer <400> 18 agcaggatgg tggtggtc 18 <210> 19 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-51 F primer <400> 19 ccatacctgg aacaaacatt 20 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-51 R primer <400> 20 gaccctagct tctctccatt 20 <210> 21 <211> 21 <212> DNA <213> Artificial Sequence <220> 223 KWPE-53 F primer <400> 21 actcaccaga agagaagaag a 21 <210> 22 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-53 R primer <400> 22 gccactgacc tgttaatatc tg 22 <210> 23 <211> 22 <212> DNA <213> Artificial Sequence <220> 223 KWPE-57 F primer <400> 23 atcacatctc tctctttctg ga 22 <210> 24 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KWPE-57 R primer <400> 24 ccagtcactc catcatctct a 21 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KWPE-58 F primer <400> 25 agagagttac ctgcgatttt c 21 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-58 R primer <400> 26 cttcaatatt cggccatctt 20 <210> 27 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> EcoRI-1 adapter <400> 27 atcgtagact gcgtacc 17 <210> 28 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> EcoRI-2 adapter <400> 28 aattggtacg cagtctac 18 <210> 29 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> TaqI-1 adapter <400> 29 gacgatgagt cctgag 16 <210> 30 <211> 14 <212> DNA <213> Artificial Sequence <220> <223> TaqI-2 adapter <400> 30 cgctcaggac tcat 14 <210> 31 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> TaqI adapter primer PRTP-0 <400> 31 gacgatgagt cctgagcga 19 <210> 32 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> (AT) 12 oligonucleotide probe <400> 32 atatatatat atatatatat atat 24 <210> 33 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> (AG) 12 oligonucleotide probe <400> 33 agagagagag agagagagag agag 24 <210> 34 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> (CA) 12 oligonucleotide probe <400> 34 cacacacaca cacacacaca caca 24 <210> 35 <211> 24 <212> DNA <213> Artificial Sequence <220> (223) (AAC) 8 oligonucleotide probe <400> 35 aacaacaaca acaacaacaa caac 24 <210> 36 <211> 24 <212> DNA <213> Artificial Sequence <220> (AAG) 8 oligonucleotide probe <400> 36 aagaagaaga agaagaagaa gaag 24 <210> 37 <211> 24 <212> DNA <213> Artificial Sequence <220> (223) (ACG) 8 oligonucleotide probe <400> 37 acgacgacga cgacgacgac gacg 24 <210> 38 <211> 24 <212> DNA <213> Artificial Sequence <220> (223) (AGC) 8 oligonucleotide probe <400> 38 agcagcagca gcagcagcag cagc 24 <210> 39 <211> 24 <212> DNA <213> Artificial Sequence <220> (223) (AGG) 8 oligonucleotide probe <400> 39 aggaggagga ggaggaggag gagg 24 <210> 40 <211> 24 <212> DNA <213> Artificial Sequence <220> (CCG) 8 oligonucleotide probe <400> 40 ccgccgccgc cgccgccgcc gccg 24 <210> 41 <211> 24 <212> DNA <213> Artificial Sequence <220> (CTC) 8 oligonucleotide probe <400> 41 ctcctcctcc tcctcctcct cctc 24 <210> 42 <211> 24 <212> DNA <213> Artificial Sequence <220> (TAA) 8 oligonucleotide probe <400> 42 taataataat aataataata ataa 24 <210> 43 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> EcoRI-0 primer <400> 43 gactgcgtac caattc 16 <210> 44 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-2 F primer <400> 44 ttagtacatc ccaccccata 20 <210> 45 <211> 19 <212> DNA <213> Artificial Sequence <220> 223 KWPE-2 R primer <400> 45 gctctatgat ccgagcttc 19 <210> 46 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-3 F primer <400> 46 gtacagatgc ggtcgtagtc 20 <210> 47 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-3 R primer <400> 47 gaggtgattc ttgagctctg 20 <210> 48 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-4 F primer <400> 48 aggaagcaaa gaaagaggag 20 <210> 49 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-4 R primer <400> 49 gtcattggag gatagtacgg 20 <210> 50 <211> 21 <212> DNA <213> Artificial Sequence <220> 223 KWPE-6 F primer <400> 50 gacgtgtaac aatcatcaac a 21 <210> 51 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-6 R primer <400> 51 acattgtaag cccctttctc 20 <210> 52 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-7 F primer <400> 52 ccagccactt ctcaacttta 20 <210> 53 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-7 R primer <400> 53 tgaatttgaa ggttgacacc 20 <210> 54 <211> 19 <212> DNA <213> Artificial Sequence <220> 223 KWPE-8 F primer <400> 54 tctagagctc acacgcaag 19 <210> 55 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-8 R primer <400> 55 tttttgcttt accctctcag 20 <210> 56 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-9 F primer <400> 56 ttgagatctg acaaccaacc 20 <210> 57 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-9 R primer <400> 57 cctcaagtca tcatccacat 20 <210> 58 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-10 F primer <400> 58 tgtagatgcg gtcataatca 20 <210> 59 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-10 R primer <400> 59 ggtgttcttg aggtctgtca 20 <210> 60 <211> 18 <212> DNA <213> Artificial Sequence <220> 223 KWPE-11 F primer <400> 60 acaccccacc ccatactt 18 <210> 61 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-11 R primer <400> 61 cactacgact ccagcttctc 20 <210> 62 <211> 18 <212> DNA <213> Artificial Sequence <220> 223 KWPE-12 F primer <400> 62 cagcagctca aaggtcat 18 <210> 63 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-12 R primer <400> 63 tccgcttctt catcagtagt 20 <210> 64 <211> 19 <212> DNA <213> Artificial Sequence <220> 223 KWPE-13 F primer <400> 64 atcaccttaa gccggactg 19 <210> 65 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KWPE-13 R primer <400> 65 gcagtactgt atgaagcagg a 21 <210> 66 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-14 F primer <400> 66 gaatagccag ctgaagagag 20 <210> 67 <211> 18 <212> DNA <213> Artificial Sequence <220> 223 KWPE-14 R primer <400> 67 ctttcagcat ccacgtct 18 <210> 68 <211> 18 <212> DNA <213> Artificial Sequence <220> 223 KWPE-15 F primer <400> 68 gtggacgagg aggaggaa 18 <210> 69 <211> 18 <212> DNA <213> Artificial Sequence <220> 223 KWPE-15 R primer <400> 69 ctgatccatg accacctc 18 <210> 70 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-16 F primer <400> 70 tcactggaag acggagtg 18 <210> 71 <211> 18 <212> DNA <213> Artificial Sequence <220> 223 KWPE-16 R primer <400> 71 cccatcagac gacgactc 18 <210> 72 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-17 F primer <400> 72 ccctggatct ttactggac 19 <210> 73 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-17 R primer <400> 73 gaagatcaag gacaaaggaa 20 <210> 74 <211> 19 <212> DNA <213> Artificial Sequence <220> 223 KWPE-18 F primer <400> 74 aagtcggatc cctcttctc 19 <210> 75 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-18 R primer <400> 75 atcaccactt cttccatcac 20 <210> 76 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-20 F primer <400> 76 atggaggcaa atattttaga 20 <210> 77 <211> 21 <212> DNA <213> Artificial Sequence <220> 223 KWPE-20 R primer <400> 77 gctttggaag atagtttagg c 21 <210> 78 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-21 F primer <400> 78 cggtttcact tccattctat 20 <210> 79 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-21 R primer <400> 79 tctgtgctga aaaagtaggc 20 <210> 80 <211> 19 <212> DNA <213> Artificial Sequence <220> 223 KWPE-22 F primer <400> 80 cttgcacttc tccttctcc 19 <210> 81 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-22 R primer <400> 81 ccgtcttcca ctctatcct 19 <210> 82 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-23 F primer <400> 82 gaggaaggac ggatgtcta 19 <210> 83 <211> 18 <212> DNA <213> Artificial Sequence <220> 223 KWPE-23 R primer <400> 83 cacctttctc cacgtgtc 18 <210> 84 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-24 F primer <400> 84 ccatacttgg gacaaacatt 20 <210> 85 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-24 R primer <400> 85 catggacgac ctcaatcata 20 <210> 86 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-27 F primer <400> 86 gagggaaaga aacctacctt 20 <210> 87 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KWPE-27 R primer <400> 87 tgtcttcctt tataccggtt c 21 <210> 88 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-91 F primer <400> 88 ggagagagag aggttggatt 20 <210> 89 <211> 18 <212> DNA <213> Artificial Sequence <220> 223 KWPE-91 R primer <400> 89 ccaaccaacg ccacctac 18 <210> 90 <211> 18 <212> DNA <213> Artificial Sequence <220> 223 KWPE-30 F primer <400> 90 acctcctgat ccatgacc 18 <210> 91 <211> 18 <212> DNA <213> Artificial Sequence <220> 223 KWPE-30 R primer <400> 91 ggacgacgag gaggaaat 18 <210> 92 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-31 F primer <400> 92 ctgaagtaga gaaggcgatg 20 <210> 93 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-31 R primer <400> 93 tactccactt tcctccacc 19 <210> 94 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-33 F primer <400> 94 cttctctatc gccttcttca 20 <210> 95 <211> 19 <212> DNA <213> Artificial Sequence <220> 223 KWPE-33 R primer <400> 95 gaggaaggac ggatgtcta 19 <210> 96 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-34 F primer <400> 96 ctctacctag cggcagtg 18 <210> 97 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-34 R primer <400> 97 atacaaattc attttgagcg 20 <210> 98 <211> 18 <212> DNA <213> Artificial Sequence <220> 223 KWPE-35 F primer <400> 98 cttcctgacc tcaaaccc 18 <210> 99 <211> 19 <212> DNA <213> Artificial Sequence <220> 223 KWPE-35 R primer <400> 99 ccagttgtag agctccgat 19 <210> 100 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-36 F primer <400> 100 ctacactcag ctcccatgtt 20 <210> 101 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-36 R primer <400> 101 atagtgaaga gtgattcggc 20 <210> 102 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-37 F primer <400> 102 tcatagacgc ggatactgac 20 <210> 103 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-37 R primer <400> 103 ctgaagtaga gaaggcgatg 20 <210> 104 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-38 F primer <400> 104 cattgagtag ctcccagagt 20 <210> 105 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-38 R primer <400> 105 atcctaaagc tctagctggg 20 <210> 106 <211> 19 <212> DNA <213> Artificial Sequence <220> 223 KWPE-40 F primer <400> 106 atgaagtctt cttccacgg 19 <210> 107 <211> 18 <212> DNA <213> Artificial Sequence <220> 223 KWPE-40 R primer <400> 107 cctgctttca tggacatc 18 <210> 108 <211> 19 <212> DNA <213> Artificial Sequence <220> 223 KWPE-41 F primer <400> 108 caccacctcc aagatttgt 19 <210> 109 <211> 21 <212> DNA <213> Artificial Sequence <220> 223 KWPE-41 R primer <400> 109 ggggtagggc tataaatagg t 21 <210> 110 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-42 F primer <400> 110 cttcttcccc ttttctcatt 20 <210> 111 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-42 R primer <400> 111 agagatggag aaagacctgc 20 <210> 112 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-43 F primer <400> 112 actttgctca actggacaat 20 <210> 113 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-43 R primer <400> 113 gctacaattg tgggaggata 20 <210> 114 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-44 F primer <400> 114 cacccacaat gaagaaaaat 20 <210> 115 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-44 R primer <400> 115 tacaattgtg ggaggatagg 20 <210> 116 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-45 F primer <400> 116 ttgtgaagat gagttccgat 20 <210> 117 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-45 R primer <400> 117 caatcatcct cctaaggtca 20 <210> 118 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> KWPE-46 F primer <400> 118 gagaggaggg gagagagg 18 <210> 119 <211> 18 <212> DNA <213> Artificial Sequence <220> 223 KWPE-46 R primer <400> 119 ttttcactcc gccgattt 18 <210> 120 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-47 F primer <400> 120 atttcttctc aagccttcg 19 <210> 121 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-47 R primer <400> 121 agaaggtgag gtaggaggag 20 <210> 122 <211> 18 <212> DNA <213> Artificial Sequence <220> 223 KWPE-49 F primer <400> 122 ctctctcgcc ctcaatct 18 <210> 123 <211> 22 <212> DNA <213> Artificial Sequence <220> 223 KWPE-49 R primer <400> 123 ggaagaaaaa gaaagaaaga aa 22 <210> 124 <211> 18 <212> DNA <213> Artificial Sequence <220> 223 KWPE-50 F primer <400> 124 caacctctag ctctgccc 18 <210> 125 <211> 18 <212> DNA <213> Artificial Sequence <220> 223 KWPE-50 R primer <400> 125 ccacacctcc tcccagag 18 <210> 126 <211> 21 <212> DNA <213> Artificial Sequence <220> 223 KWPE-52 F primer <400> 126 gtacggaagc gtcagtatgg t 21 <210> 127 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-52 R primer <400> 127 gtcctccaat caaaaggtct 20 <210> 128 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-54 F primer <400> 128 ctcaatctcc ctcgctctca 20 <210> 129 <211> 24 <212> DNA <213> Artificial Sequence <220> 223 KWPE-54 R primer <400> 129 aagtgagaga gataaaggaa gaaa 24 <210> 130 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-55 F primer <400> 130 gtgaagatta tgaagggaca tt 22 <210> 131 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-55 R primer <400> 131 atgtttccag atatggagtg ag 22 <210> 132 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-56 F primer <400> 132 aagcagtgga ctgattgttt 20 <210> 133 <211> 22 <212> DNA <213> Artificial Sequence <220> 223 KWPE-56 R primer <133> 133 acaaaatcca attactttct gc 22 <210> 134 <211> 21 <212> DNA <213> Artificial Sequence <220> 223 KWPE-59 F primer <400> 134 aaagagatgg agaaagacct g 21 <210> 135 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> KWPE-59 R primer <400> 135 cttcttcccc ttttctcatt 20 <210> 136 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-60 F primer <400> 136 tatgaggaga ctgatgatga tg 22 <210> 137 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-60 R primer <400> 137 gtaaccgtct tctctaccaa tg 22 <210> 138 <211> 19 <212> DNA <213> Artificial Sequence <220> 223 KWPE-61 F primer <400> 138 gttttgggtg gaagaatcg 19 <139> <211> 22 <212> DNA <213> Artificial Sequence <220> 223 KWPE-61 R primer <400> 139 cctccctata ctgatacttc gt 22 <210> 140 <211> 19 <212> DNA <213> Artificial Sequence <220> 223 KWPE-62 F primer <400> 140 ggttttgggt ggaagaatc 19 <210> 141 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KWPE-62 R primer <400> 141 gccacctccc tatactgata c 21 <210> 142 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-63 F primer <400> 142 gtttgttcac caccttatct ct 22 <210> 143 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-63 R primer <400> 143 tgttttatgg aaggagctgt 20 <210> 144 <211> 22 <212> DNA <213> Artificial Sequence <220> 223 KWPE-64 F primer <400> 144 gattactggg attatgctga tt 22 <210> 145 <211> 22 <212> DNA <213> Artificial Sequence <220> 223 KWPE-64 R primer <400> 145 gaacaatcaa aggaaatagg aa 22 <210> 146 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> KWPE-65 F primer <400> 146 gacgacgagg aggaggaag 19 <210> 147 <211> 22 <212> DNA <213> Artificial Sequence <220> 223 KWPE-65 R primer <400> 147 aaccgtaaaa attctgctac ac 22 <210> 148 <211> 20 <212> DNA <213> Artificial Sequence <220> 223 KWPE-66 F primer <400> 148 ctgtatctgt ccctgtgtcc 20 <210> 149 <211> 22 <212> DNA <213> Artificial Sequence <220> 223 KWPE-66 R primer <400> 149 ttcagtcttt tgatccacat ta 22 <210> 150 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-67 F primer <400> 150 aaaggagtct ggaaacacat ac 22 <210> 151 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-67 R primer <400> 151 cttttgacgt tcattaatat gc 22 <210> 152 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> KWPE-68 F primer <400> 152 ttagctgatc tagttctctc ca 22 <210> 153 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> KWPE-68 R primer <400> 153 aaaatgcact gttttatgga a 21
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040072205A KR100781205B1 (en) | 2004-09-09 | 2004-09-09 | SSR primer isolated from Perilla spp. and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040072205A KR100781205B1 (en) | 2004-09-09 | 2004-09-09 | SSR primer isolated from Perilla spp. and use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060023379A true KR20060023379A (en) | 2006-03-14 |
KR100781205B1 KR100781205B1 (en) | 2007-12-03 |
Family
ID=37129604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040072205A KR100781205B1 (en) | 2004-09-09 | 2004-09-09 | SSR primer isolated from Perilla spp. and use thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100781205B1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100803392B1 (en) * | 2006-08-14 | 2008-02-14 | 대한민국 | Ssr primer derived from job's tears and use thereof |
KR100842446B1 (en) * | 2007-04-11 | 2008-07-01 | 대한민국 | Ssr primer derived from ginger and use thereof |
KR100842432B1 (en) * | 2007-04-11 | 2008-07-01 | 대한민국 | Ssr primer derived from mandarin and use thereof |
KR100842430B1 (en) * | 2007-04-11 | 2008-07-01 | 대한민국 | Ssr primer derived from japanese apricot and use thereof |
KR100842429B1 (en) * | 2007-04-11 | 2008-07-01 | 대한민국 | Ssr primer derived from lawn grass and use thereof |
KR100842434B1 (en) * | 2007-04-11 | 2008-07-01 | 대한민국 | Ssr primer derived from ginseng and use thereof |
KR101331740B1 (en) * | 2011-10-26 | 2013-11-20 | 공주대학교 산학협력단 | SSR primer derived from Paeonia lactiflora and use thereof |
KR20190037609A (en) * | 2017-09-29 | 2019-04-08 | 대한민국(농촌진흥청장) | Molecular marker for identifying Perilla cultivars and Perilla wild species based on the information of chloroplast genomes and 45S nrDNAs sequence and uses thereof |
KR20190048451A (en) * | 2017-10-31 | 2019-05-09 | 주식회사 씨더스 농업회사법인 | Molecular marker for discriminating purple color of Perilla leaf and uses thereof |
KR102261239B1 (en) * | 2020-05-28 | 2021-06-04 | 강원대학교산학협력단 | SSR primer set for discriminating leaf color of Perilla sp. and uses thereof |
KR102261896B1 (en) * | 2020-04-29 | 2021-06-08 | 강원대학교산학협력단 | Primer set for discriminating genetic background of Perilla sp. and uses thereof |
KR102691263B1 (en) * | 2021-11-15 | 2024-08-05 | 강원대학교산학협력단 | Primer set for discriminating genetic polymorphism of Perilla sp. and uses thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102276917B1 (en) * | 2020-02-26 | 2021-07-14 | 한국원자력연구원 | EST-SSR primer set for identifying Perilla frutescens cultivar, kit for identifying Perilla frutescens cultivar comprising the same, and method for identifying Perilla frutescens cultivar using the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100496029B1 (en) | 2003-02-20 | 2005-06-16 | 대한민국 | Method for Producing Transgenic Perilla Plants, and Herbicide-Resistent Perilla Plants by the Method |
KR100645445B1 (en) * | 2004-09-09 | 2006-11-15 | 강원대학교산학협력단 | Method for producing a marker for detecting polymorphism in a plant |
-
2004
- 2004-09-09 KR KR1020040072205A patent/KR100781205B1/en active IP Right Grant
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100803392B1 (en) * | 2006-08-14 | 2008-02-14 | 대한민국 | Ssr primer derived from job's tears and use thereof |
KR100842446B1 (en) * | 2007-04-11 | 2008-07-01 | 대한민국 | Ssr primer derived from ginger and use thereof |
KR100842432B1 (en) * | 2007-04-11 | 2008-07-01 | 대한민국 | Ssr primer derived from mandarin and use thereof |
KR100842430B1 (en) * | 2007-04-11 | 2008-07-01 | 대한민국 | Ssr primer derived from japanese apricot and use thereof |
KR100842429B1 (en) * | 2007-04-11 | 2008-07-01 | 대한민국 | Ssr primer derived from lawn grass and use thereof |
KR100842434B1 (en) * | 2007-04-11 | 2008-07-01 | 대한민국 | Ssr primer derived from ginseng and use thereof |
KR101331740B1 (en) * | 2011-10-26 | 2013-11-20 | 공주대학교 산학협력단 | SSR primer derived from Paeonia lactiflora and use thereof |
KR20190037609A (en) * | 2017-09-29 | 2019-04-08 | 대한민국(농촌진흥청장) | Molecular marker for identifying Perilla cultivars and Perilla wild species based on the information of chloroplast genomes and 45S nrDNAs sequence and uses thereof |
KR20190048451A (en) * | 2017-10-31 | 2019-05-09 | 주식회사 씨더스 농업회사법인 | Molecular marker for discriminating purple color of Perilla leaf and uses thereof |
KR102261896B1 (en) * | 2020-04-29 | 2021-06-08 | 강원대학교산학협력단 | Primer set for discriminating genetic background of Perilla sp. and uses thereof |
KR102261239B1 (en) * | 2020-05-28 | 2021-06-04 | 강원대학교산학협력단 | SSR primer set for discriminating leaf color of Perilla sp. and uses thereof |
KR102691263B1 (en) * | 2021-11-15 | 2024-08-05 | 강원대학교산학협력단 | Primer set for discriminating genetic polymorphism of Perilla sp. and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
KR100781205B1 (en) | 2007-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hu et al. | Target region amplification polymorphism: a novel marker technique for plant genotyping | |
KR101183987B1 (en) | SSR primer derived from Actinidia arguta and use thereof | |
KR100842432B1 (en) | Ssr primer derived from mandarin and use thereof | |
KR100781205B1 (en) | SSR primer isolated from Perilla spp. and use thereof | |
KR100769366B1 (en) | Ssr primer derived from mungbean and use thereof | |
KR100645445B1 (en) | Method for producing a marker for detecting polymorphism in a plant | |
KR100996968B1 (en) | SSR primer derived from Oyster Mushroom and use of there | |
KR100753676B1 (en) | TRIM-Br1 and TRIM-Br2 DNA marker system using the same and classification method using the same | |
KR100781206B1 (en) | SSR primer isolated from Sesamum sp. and use thereof | |
KR100842434B1 (en) | Ssr primer derived from ginseng and use thereof | |
KR101269311B1 (en) | SSR primer derived from Cymbidium spp. and use thereof | |
KR101271367B1 (en) | SSR primer isolated from Lilum spp. and use thereof | |
KR101006079B1 (en) | SSR primer derived from Garlic and use of there | |
KR100842429B1 (en) | Ssr primer derived from lawn grass and use thereof | |
KR100769367B1 (en) | Ssr primer derived from common millet and use thereof | |
KR101183996B1 (en) | SSR primer derived from Buckwheat and use thereof | |
KR20100079527A (en) | Ssr primer derived from azuki-bean and use thereof | |
KR101236316B1 (en) | SSR primer and kits derived from Acanthopanax senticosus, and use of there | |
KR101354041B1 (en) | Primer set, method and kit for selecting PepMoV-resistant pepper cultivar | |
KR100842446B1 (en) | Ssr primer derived from ginger and use thereof | |
KR100842430B1 (en) | Ssr primer derived from japanese apricot and use thereof | |
KR100803392B1 (en) | Ssr primer derived from job's tears and use thereof | |
KR100769368B1 (en) | Ssr primer derived from italian millet and use thereof | |
KR101183991B1 (en) | SSR primer derived from Chinese matrimony vine and use thereof | |
Česonienė et al. | Evaluation of genetic diversity and genetic relationships among female Lithuanian accessions of Kolomikta kiwi |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
N231 | Notification of change of applicant | ||
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20121011 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20130930 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20141001 Year of fee payment: 17 |